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Abstract 

HIV replication requires the insertion of the viral genome inside the nuclear genome 

of infected cells through a recombination process catalyzed by the virus-encoded 

enzyme, integrase. HIV integrase has recently been recognized as a reachable 

antiviral target following the promising results of integrase inhibitors in clinical trials. 

The present review focuses on the recent advances in understanding the cellular 

mechanisms of HIV integration and the sites of actions of inhibitors. It also provides 

an extensive list of the known mutations that have been characterized for HIV-1 

integrase with their impact on integrase activity, viral replication and response to 

anti-integrase drugs. Novel rational approaches for inhibiting HIV integration are also 

discussed, as well as the two integrase inhibitors in clinical trials and other selected 

inhibitors in development. 
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I. Foreword 

The encouraging results reported for two integrase inhibitors in clinical trials and 

the recent insights in the cellular cofactors of DNA integration, have renewed interest 

in HIV integrase pharmacology and cellular biology. The current review gives an 

overview of the functions of integrase and the cofactors for integration. It focuses on 

pharmacological approaches to interfere with integration and provides an extensive 

list of integrase mutations with their functional and pharmacological impacts. 

References have been kept to a minimum. Further information can be found in 

recent reviews (Dayam et al., 2006; Marchand et al., 2006a; Pommier et al., 2005; 

Savarino, 2006; Semenova et al., 2006b). 

 

 

II. Integration: a Crucial Step in the HIV Life Cycle. 

Like other retroviruses, the HIV genome consists of single-stranded RNA. During 

infection, the viral RNA is released into the host cell following fusion of the viral 

particles to the cell membrane  (Figure 1). The viral RNA then serves as a template 

for the synthesis of a double-stranded DNA copy of the viral RNA (cDNA) bearing 

long terminal repeats (LTR) by the HIV-encoded reverse transcriptase (Sierra et al., 

2005). The conversion of the viral RNA into cDNA is necessary for making new viral 

RNA copies and for transcribing the virally encoding genes. Transcription of the viral 

cDNA also requires its insertion into a host chromosome. That insertion (integration) 

is catalyzed by the HIV-encoded enzyme – integrase (IN). The viral cDNA integrated 
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into a host chromosome is called provirus (Figure 1). Depending on the sites of 

integration, the provirus can be constitutively transcribed if it is integrated near an 

active promoter, or remain silent until a stress response triggers transcription. 

Transcription of the viral genome and of the viral genes followed by translation, 

packaging, fusion and maturation supply the molecular components for the release 

of the new infectious viral particles (Figure 1). 

<Figure 1> 

 A. HIV-1 Integrase Structure. 

The three viral enzymes (protease, reverse transcriptase and IN) are encoded 

within the HIV pol gene and translated as a polyprotein (Figure 2). IN (32-kDa) is 

released from the polyprotein by the HIV protease during maturation. The IN protein 

consists of three domains: N-terminal, core (or catalytic), and C-terminal domains 

(Figure 2) (Chiu and Davies, 2004). The N-terminal domain enhances IN 

multimerization through zinc coordination (HHCC motif) and promotes concerted 

integration of the two viral cDNA ends together into a host cell chromosome. The C-

terminal domain is responsible for metal-independent, sequence-independent DNA 

binding. Each HIV-1 IN molecule contains a catalytic site within the core domain 

bearing three essential amino acids: Asp64, Asp116, and Glu152 (D,D-35-E motif). 

These acidic residues coordinate at least one and probably two divalent cations 

(Mg2+ or Mn2+) that form a bridge with the DNA substrates (see Figure 3) (Marchand 

et al., 2006a). Mutation of any of these residues abolishes IN enzymatic activities 

and viral replication (Table 1). IN functions as a multimer.  

<Figure 2> 
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<Figure 3> 

<Table 1> 

 

B. Chemistry of Retroviral Integration. 

During the first reaction catalyzed by IN [3’-processing (3’-P)], the donor (viral) 

DNA is hydrolyzed immediately 3’ from the conserved CA dinucleotide at both 3’-

ends of the LTRs (Vink et al., 1991) (Fig. 3a). 3’-P releases 3’-terminal nucleotides 

(generally pGpT dinucleotide for HIV-1) and generates 3’-hydroxyl nucleophilic ends 

at both ends of the viral DNA. The next step, integration [strand transfer (ST)] 

proceeds in the nucleus through a transesterification reaction, where the processed 

nucleophilic 3'-OH ends of the donor (viral) cDNA are inserted into the backbone of 

the target (host) DNA (Vink et al., 1990) (Figure 3b and c]. Both ends insert with a 

five-base-pair stagger across the DNA major groove of the target chromosomal DNA 

following the trimming of the integrated HIV cDNA junctions, gap filling and ligation, 

which are probably carried out by the host cell DNA repair mechanism (Figure 1) 

(Pommier et al., 2005). 

<Figure 3> 

 

 C. Integration Occurs within a Large Macromolecular Complex. 

Cellular integration requires several cofactors in addition to IN (Van Maele et al., 

2006). The preintegration complex (PIC) is a crucial structural unit required for 

integration. The PIC contains proteins from both the viral core (matrix, nucleocapsid, 

reverse transcriptase) and the host cell [lens epithelium-derived growth factor 
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(LEDGF/p75), INI1, barrier-to-autointegration factor (BAF), HMGA1] (Figure 1). The 

viral cDNA is probably bound to IN immediately following reverse transcription. IN 

also binds directly to LEDGF/p75, INI1, reverse transcriptase and matrix (Van Maele 

and Debyser, 2005). 

Despite many reports describing the importance of co-factors for HIV integration, 

our understanding of the mechanisms regulating integration remains incomplete. In 

our opinion, the main function of the PIC is to separate the two reactions catalyzed 

by IN (3’-P and ST) into different cellular compartments over time in vivo, while in 

vitro these two reactions occur consequently without delay. It is plausible that IN 

may be kept inactive in the PIC until migration into the nucleus to prevent 

autointegration. A cellular cofactor present in the PIC, BAF (Barrier to 

Autointegration Factor), prevents autointegration (Zheng et al., 2000). Other PIC-

associated factors probably also keep integrase inactive. For instance, HIV reverse 

transcriptase can inhibit IN catalytic activities in vitro (Oz et al., 2002). The viral 

cDNA is protected from nucleases after isolation of PIC only with wild-type IN, 

whereas it is sensitive to nuclease digestion when the PIC are formed with IN mutant 

(Chen et al., 1999; Miller et al., 1997). Thus, IN is probably involved not only in 3’-P 

very early in the viral cycle but also for PIC formation. PIC formation could possibly 

be triggered by 3’-P completion. It is also likely that PIC rearrangements leading to 

the reactivation of IN, occur during the passage of the PIC through the nuclear 

envelope and/or its association with chromatin.  

We will focus on two factors that are known to tether the viral cDNA to 

chromosomal host DNA, emerin and LEDGF/p75. Recently, the interaction of viral 
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cDNA with chromatin has been reported to be dependent on emerin, a nuclear 

protein associated with PIC through BAF. Both emerin and BAF are required for the 

appropriate localization of the viral cDNA in the nucleus before integration. However, 

emerin and BAF do not facilitate HIV integration (Jacque and Stevenson, 2006). 

Another molecular tether linking HIV-1 IN protein to chromatin is LEDGF/p75. 

Binding of LEDGF/p75 to IN targets IN to chromatin, and promotes strand transfer. 

Failure of HIV replication in LEDGF/p75 knockdown cells suggests that LEDGF/p75 

is a critical co-factor for efficient HIV integration. Disrupting its interactions with IN 

could be considered as a therapeutic strategy (Cherepanov et al., 2005; Cherepanov 

et al., 2003; Ciuffi et al., 2005; Llano et al., 2006; Maertens et al., 2003; 

Vandekerckhove et al., 2006). 

 

III.  Approaches to Inhibit HIV Integration. 

 

 A.  Small molecule inhibitors of HIV Integrase enzymatic activities. 

Searching for enzymatic inhibitors of IN is straightforward. High throughput 

assays have been developed, and several in vitro assays are routinely used to 

elucidate the drugs mechanisms of action (Marchand et al., 2001). 3’-P assays 

monitor the release of the terminal dinucleotide from an oligonucleotide duplex 

mimicking the viral LTR ends whereas strand transfer results in larger DNA 

molecules. Pre-cleaved (“3’-processed”) substrates are used to determine ST 

inhibition independently from 3’-P. Disintegration – the third IN-catalyzed reaction 

[the reverse of ST (Chow et al., 1992)], can be used to evaluate the site of drug 
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action as the IN catalytic core it is the only reaction that can be catalyzed by. 

Compounds that compete with target DNA within the enzyme catalytic site (Figure 3 

b’) produce preferential inhibition of ST over 3’-P and are generally ineffective 

against disintegration (Espeseth et al., 2000). Those inhibitors are commonly 

referred to as “STI” (Strand Transfer Inhibitors). In contrast, inhibitors that prevent 

the viral DNA binding to IN inhibit both 3’-P and ST with similar efficiency 

(Bonnenfant et al., 2004; Marchand et al., 2006b).  

As it remains difficult to obtain drug-IN co-crystals, IN-DNA binding assays 

continue to be developed to investigate drug binding sites in the IN-DNA complex. 

The Schiff base (Mazumder and Pommier, 1995) and disulfide crosslinking (Johnson 

et al., 2006b) assays can be used to determine whether a given drug affects viral 

DNA binding to IN or alters crucial ST contacts between the IN amino acid residue 

Q148 and the cytosine at the protruding viral DNA end (Johnson et al., 2006a). A 

novel HIV IN inhibitor-binding site was discovered at the IN core dimer interface 

using photoaffinity labeling and mass spectrometric analysis (Al-Mawsawi et al., 

2006). 

Recently, the development of inhibitors has focused on targeting the D,D-35-E 

motif and chelating the divalent metal (Mg2+ vs. Mn2+) bound at the interface of the 

IN-DNA complex (Figure 3) (Semenova et al., 2006b). We have referred to this 

mode of inhibition as “interfacial inhibition” (Pommier and Cherfils, 2005; Pommier et 

al., 2005; Pommier and Marchand, 2005), as the drugs bind at the interface of two 

macromolecules (here IN and DNA) (Figure 3b’) and trap a catalytic intermediate 

(here the 3’-P step) thereby preventing productive catalytic activity (here, ST). 
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Interfacial inhibition is commonly observed for a broad range of natural products 

targeting a variety of cellular targets (Pommier and Cherfils, 2005). Particular 

attention was given to the D,D-35-E motif after 5CITEP (a diketo acid-like derivative) 

was first co-crystallized in the catalytic domain of HIV IN and shown to bind within 

the D,D-35-E motif (Goldgur et al., 1999). IN inhibitors currently in clinical trial  

(Table 2) also contain diketo-acid-like motifs that are believed to chelate divalent 

cations (Mg2+ or Mn2+) within the D,D-35-E motif. Those drugs demonstrate 

preferential inhibition of the ST reaction. Preferential strand transfer inhibition (STI) 

was first observed for caffeic acid phenethyl ester (CAPE) and proposed to be 

related to chelation of an IN divalent metal (Fesen et al., 1993). This model was 

further developed for the diketo acid (DKA) derivatives, which were shown to act as 

competitors for the target (host chromosomal) DNA within the IN active site (Hazuda 

et al., 2000). The benefits of the strand transfer inhibitors emerged with the 

characterization of more potent DKA compounds effective against HIV infection 

(Tables 2 and 3). IN residues involved in DKA and DKA-like resistance are listed in 

Table 1. 

As 3’-P is a pre-requisite for ST and HIV integration, and is probably required for 

PIC formation, inhibiting 3’-P is a rational approach to inhibit HIV replication. It might 

also be logical to combine 3’-P inhibitors with the currently developed ST inhibitors. 

A styrylquinoline (SQL) derivative, FZ-41 inhibits both 3’-P and ST with similar 

efficiency (Bonnenfant et al., 2004) and has been confirmed as a cellular HIV IN 

inhibitor by developing a drug-resistant viruses. The antiviral activity of FZ 41 could 

serve as a paradigm for 3’-P inhibitors that could also prevent PIC formation. 
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Inhibition of the IN nuclear import after SQL treatment (Mousnier et al., 2004) could 

be a consequence of PIC assembly failure. 

 

 B. Targeting the Preintegration Complex (PIC). 

According to the paradigm of interfacial inhibition (Pommier and Cherfils, 2005; 

Pommier and Marchand, 2005), protein-protein interactions (IN monomer - IN 

monomer, IN-LEDGF/p75, IN-matrix, IN-INI1, matrix-BAF, etc) and protein-DNA 

junctions (IN-viral DNA, BAF-viral DNA, etc) within the PIC are equally important for 

integration. Alteration of any of these interfaces may prevent integration. For 

example, diketo-acid-like inhibitors change the target DNA binding surface within the 

IN active site  (protein-DNA interface) due to the chelation of divalent cations after 

3’-P (Figure 3b’). Another candidate target is LEDGF/p75, as HIV replication is 

markedly reduced in LEDGF/p75 knockdown cells due to absence of IN-LEDGF 

interaction (Vandekerckhove et al., 2006). Therefore, prevention or alteration of 

macromolecular contacts among the PIC components is a rational and promising 

approach for the inhibition of HIV integration. Specific IN residues interacting with 

PIC components are highlighted in Table 1. Assays developed to identify inhibitors 

of IN enzymatic functions (protein-DNA contact) may not identify interfacial inhibitors 

because the interfacial contacts with PIC components are not required for IN 

enzymatic activities in vitro (Emiliani et al., 2005). Such compounds could therefore 

be mistakenly ruled out during routine biochemical screening, although they still may 

alter in vivo PIC formation, which underlines the need to develop additional assays 

for integration inhibitors.  
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IV. Inhibitors in Clinical Trials. 

The first pharmacological inhibitor in clinical trial was the guanosine quartet (AR 

177, Zintevir, Aronex Pharmaceuticals, Inc). In spite of it being identified initially as 

an IN inhibitor based on in vitro activity (Mazumder et al., 1996a), this compound 

was also found to inhibit viral entry in vivo. AR 177 was discontinued after Phase I/II 

clinical trial. The next two IN inhibitors in clinical trials (Savarino, 2006; Semenova et 

al., 2006c), were a naphthyridine carboxamide derivative (L-870,810) (Merck & Co 

(Hazuda et al., 2004; Little et al., 2005) and a diketo acid derivative (S-1360/GW-

810781) (Shionogi-GlaxoSmithKline Pharmaceuticals) (GlaxoSmithKline, 2003; 

Yoshinaga et al., 2002) (Table 2). Both were recently discontinued after phase II 

trials. L-870,810 caused toxicity in dogs during long-term dosing. The reasons for 

termination of the clinical trial for S-1360 have not been fully disclosed 

(GlaxoSmithKline, 2003). However their well-tolerated properties in humans (Table 

2) demonstrated the proof of concept for using of HIV-1 IN inhibitors as 

antiretrovirals. 

<Table 2> 

Two IN inhibitors are currently in clinical trial: a derivative of quinolone 

antibiotics (JTK-303/GS-9137, Gilead Sciences, Inc.) (DeJesus et al., 2006; 

Kawaguchi et al., 2006; Matsuzaki et al., 2006; Sato et al., 2006) and a STI from 

“Merck & Co” (MK-0518) (Markowitz et al., 2006; Morales-Ramirez et al., 2005; 

Laufer et al., 2006; Summa et al., 2006) (Table 2). Their efficacy and good-tolerance 

in heavily pretreated patients that had failed reverse transcriptase and protease 
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inhibitors (Table 2) is encouraging, especially for patients living with multidrug-

resistant HIV. 

 

V. Inhibitors in Preclinical Development. 

Recent reviews have dealt in details with the development and recent progress in 

the design of IN inhibitors (Dayam et al., 2006; Johnson et al., 2004; Pommier et al., 

2005; Savarino, 2006; Semenova et al., 2006b). Therefore, no attempt is made here 

to list all the inhibitors. We will only summarize and review selected classes of HIV 

IN inhibitors as potential as drug leads (Table 3). Table 1 also lists all the IN 

residues involved in drug resistance mechanisms. 

Screening of biologically active natural extracts (plant, microbial, fungi, marine 

organisms) continues to serve as a source for identifying new leads. A majority of 

reported IN inhibitors are derived from natural products. Examples include caffeic 

acid phenethyl ester (CAPE) (Fesen et al., 1993), anthracyclines (Fesen et al., 

1993), curcumins (Mazumder et al., 1995; Mazumder et al., 1997), flavones and 

flavonoids (Fesen et al., 1994; Rowley et al., 2002), lignans and lignaloids (Eich et 

al., 1996; Ovenden et al., 2004), depsides and depsidones (Neamati et al., 1997a), 

α-hydroxytropolones (Semenova et al., 2006a), lithospermic acid (Abd-Elazem et al., 

2002), indolicidin (Krajewski et al., 2003; Krajewski et al., 2004; Marchand et al., 

2006b), chicoric acids (Meadows et al., 2005; Neamati et al., 1997b), integrasone 

(Herath et al., 2004), and coumarins (Mazumder et al., 1996a; Zhao et al., 1997). 

Despite the fact that many of these compounds inhibit other viral targets, such as 

reverse transcriptase, protease, and gp120 (Mazumder et al., 1996b; Pluymers et 
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al., 2000; Pommier and Neamati, 1999; Robinson et al., 1998; Semenova et al., 

2006a), their structure activity relationship demonstrated the importance of hydroxy 

groups for anti-IN activity as well as the suggestion of their possible mechanism of 

action as metal chelators (Fesen et al., 1994). An interesting approach consist in 

doing parallel structure-activity relationship studies with closely related HIV targets 

such as IN and RNase H (Semenova et al., 2006a). A recently identified new natural 

product IN inhibitor is funalenone (Shiomi et al., 2005), isolated from Penicillium sp. 

FKI-1463 (Table 3) shows good antiviral activity.   

<Table 3> 

 At least three strategies are currently used for the discovery of synthetic IN 

inhibitors: 1) chemical derivatives based on previously known IN inhibitors such as 

diketo acid (Barreca et al., 2005; Di Santo et al., 2005), naphthyridine (Embrey et al., 

2005; Guare et al., 2006), styrylquinoline (Normand-Bayle et al., 2005), L-chicoric 

acid (Charvat et al., 2006), and a-hydroxytropolones (Budihas et al., 2005; 

Didierjean et al., 2005; Semenova et al., 2006a); 2) three-dimensional 

pharmacophore searches based on previously discovered compounds (Deng et al., 

2006); 3) hybrid molecules comprised of core structures of two or more known 

inhibitors [DKA-catechol (Maurin et al., 2006), DKA-nucleobase scaffold hybrids 

(Nair et al., 2006)]. At the same time, bifunctional compounds (that contain two 

identical active groups) provide a rationale for further work due to the potent 

inhibitory properties of a bifunctional DKA derivative (Cpd 8, Table 3) (Di Santo et 

al., 2005) and of geminal disulfone analogues of the chicoric acid (compound #4), 

Table 3 (Meadows et al., 2005). 
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As IN functions as a multimer, dimerization inhibitors  (Camarasa et al., 2006) 

ought to be considered. However, the limitation is to develop assays that can 

unambiguously provide evidence for such a mechanism. Along the same lines, it is 

logical to consider drugs that bind at the interface of the macromolecular complexes 

formed by IN and cellular cofactors during integration. Inhibiting the IN-LEDGF 

interface would require the development of assays that monitor protein-protein 

interactions not only by reducing their formation but also by stabilizing/trapping 

abortive intermediates, as in the case of the interfacial inhibitors (Pommier and 

Cherfils, 2005; Pommier and Marchand, 2005). 

 

VI. Perspectives. 

The major goal of anti-HIV therapy is the efficient suppression of viral load for as 

long as possible; i.e. without emergence of resistant viruses. To achieve such a 

goal, it is rational to combine therapies targeting several viral targets. Virus-specific 

targets are always attractive because selective inhibitors should devoid of side 

effects as the infected cells lack the viral-specific target. 

After the initial discovery of IN in 1978 (Grandgenett et al., 1978) and 

establishing its requirement for HIV replication (Hippenmeyer and Grandgenett, 

1984), major discoveries have paved the way for the development of IN inhibitors. 

These include in vitro assays for integration (Bushman and Craigie, 1991; Craigie et 

al., 1990; Craigie et al., 1991; Fitzgerald et al., 1991; Katzman et al., 1989; Sherman 

and Fyfe, 1990); identification of IN domains and highly conserved residues 

((Engelman and Craigie, 1992; van Gent et al., 1993; Vink et al., 1993; Vink and 
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Plasterk, 1993) (Table 1); determination of X-ray crystal structures of the core and 

C-domains (Bujacz et al., 1995; Chen et al., 2000; Dyda et al., 1994) and elucidation 

of the solution of the structure of the N-domain (Cai et al., 1997); and the role of 

cellular cofactors in HIV integration (Cherepanov et al., 2005).  

Promising results of clinical trials for IN inhibitors (DeJesus et al., 2006; 

Markowitz et al., 2006; Savarino, 2006) shows the feasibility of using IN inhibitors as 

antiretroviral therapy. This tremendous achievement will promt the developmentof 

new inhibitors based on the existing ones and on novel chemotypes. Obtaining co-

crystal structures for the most effective and promising inhibitors is limited by the 

challenge of solving the structure of full length integrase bound to its DNA substrates 

(donor viral and acceptor target DNA duplexes). However, it is not excluded that the 

inhibitors themselves might help to elucidate such structures if they can act as 

interfacial inhibitor and trap stable macromolecular complexes. Together with the 

mapping of drug resistance IN mutations, these structures should provide rationales 

for further chemical modifications and improvement of the inhibitors.  The search for 

clinically effective IN inhibitors include optimization of pharmacological parameters 

such as a reduced binding to human serum proteins and limited dependence on 

metabolitic activation pathways (Laufer et al., 2006). Finally, besides systemic 

therapies, topical IN inhibitors are worthwhile pursuing as curative and preventive 

therapies.  
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Table 1 Catalytic activities of HIV-1 IN mutantsa 
Mutations 3’-P ST Dis Inf Interaction 

(References) 
 Mutations 3’-P ST Dis Inf Interaction 

(References) 
H12A;N* + + +++ - (-) PIC (1-4)  D64A;E;N;V* - - - - (1,3,5,6,9,18,19) 
H12C*   +++ (-) (5,6)  D64A/D116A    - (3) 
H12N/H16N - - +  (2)  D64R/D116R   -  (17) 
H12C/H16C   +++  (5)  D64A/E152A    - (3) 
H12Q/H16Y    (-) (7)  D64A/D116A/E152A    - (3) 
Y15A    (-) (8)  C65S* +++ +++  +++ (13,14) 
H16A*    - (3)  C65A*    +++ (12) 
H16C;V* +++ +++ +++ (-) (5,6)  C65S/C130S    - (13) 
K34A ++ ++  - (-) PIC (4)  T66A* + ++ ++ (++) (17,20) 
K46A    +++ (4)  T66I* ++/ 

+++ 
++/ 
+++ 

++ +/ 
++ 

L-708,906; L-731,988; 
S-1360; 118D-24; L-CA 
(21-27) 

C40A;S* - - + (-) (1,9)  T66I/L74M + +  + L-708,906;  
S-1360; (23) 

C40S/C43S - - ++  (1)  T66I/S153Y    ++ L-708,906; L-731,988; 
118D-24; L-CA (24-26) 

D41A/K42A    + (3)  T66I/M154I ++ ++ ++ + L-731,988; L-CA (25) 
C43A;S;L* + +  (-) (7,9,10)  T66I/L74M/S230R + +  ++ S-1360; L-708,906 (23) 
M50A    + (9,10)  H67E*    Del (11) 
H51A*    + (3)  H67S* +++ +++ ++  (17) 
H51A/D55V    - (3)  H67Q/K71E    - (11) 
Q53C +++ +++ ++ (-) (5,6)  E69A/K71A    - (3) 
Q53K    +++ (11)  K71E*    +++ (11) 
D55A    - (3)  V72I     L-870,810 (26) 
D55A;S    +++ (11)  L74M* +++ +++   L-708,906; S-1360 

(23,27) 
D55K    - (11)  V75P    (-) (9) 
C56A*    +++ (12)  S81R;A +/- +/- +/- (-) (5,6,9) 
C56S* +++ +++  +++ (13,14)  P90D* +++ - -  (28) 
C56S/C65S    Del (13)  P90D/P145I - - -  (28) 
C56S/C130S    - (13)  E92A;Q +++ +++ +++ +++ (16) 
C56S/C65S/C280S ++ ++ +++  (13,15)  E92A;N + + ++  (17) 
C56S/C65S/C130S/C280S ++ - +++  (13)  E92K + + +++ +++ (16) 
C56S/C65S/Q148C/C280S ++ -   (13,15)  T93A    (++) (20) 
Q62E ++ ++ +++  (16)  G106A +++ +++   (29) 
Q62K    - (11)  P109A;S* +/- +/- - + (3,18,30) 
Q62N + - -  (17)  P109S/T125A +++ +++ +++ (+/-) (30) 
D64C;R*   -  (17)  T112A +++ +++   (18) 
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Table 1 (continue) 
Mutations 3’-P ST Dis Inf Interaction (Ref)  Mutations 3’-P ST Dis Inf Interaction (Ref) 

H114E    ++ (11)  K136E;R* +++ +++ +++ +++ (16) 
T115A;S +++ +++ +++ +++ (1,9,18,31,32)  K136A/E138A +++ +++ +++ +++ (16) 
D116A;E;I;N* - - - - (-) (1,5,6,9,17,18, 31-

34) 
 K136R//F185K/C280S +++ ++   (36) 

D116C*   +  (17)  E138A*    + (3) 
D116A/E152A**    - (3)  E138K*    ++ S-1360 (11,27) 
D116/A23V** - ++ -  (35)  G140S* + + + Del L-CA; L-731,988; (37) 
D116/E11D - ++ -  (35)  G140S/F185K/C280S +++ +++ +++  (38) 
D116/L28R/C65S/ 
T210N/L213I 

- + -  (35)  P142F    +++/ 
(+++) 

(39) 

N117K;Q ++ ++ ++ Del (1,11,17,32,33)  Y143F    Del (3,32) 
N117S + + +  (17)  Y143N +++  +++ Del (3,32,33) 
G118A +++  +++ +++ (32,33)  Y143G    +++/(+

++) 
(11,20,39) 

S119T;G;A;K +++ +++   (29)  N144K    - (11) 
N120Q;S* +++ +++ +++  (17)  N144Q    -/(-) (39) 
N120I;L;E;G*    (-) (6)  P145I* - - -  (28) 
N120L;K*    Del (11)  P145A*    + (11) 
N120L/Q148K    - (11)  P145F*    -/(-) (39) 
F121A +/- -   (31)  P145I/F185K/C280S - - -  (28) 
F121Y     L-870,810 (26)  Q146K    + S-1360 (11,27) 
S123A ++ ++ +++ (+) (1,9)  S147I -  +++ - (32,33) 
T125A* +++ +++ +++ + 

(++
+) 

(20,30)  Q148A* ++ -   (15) 

T125K*     L-870,810 (26)  Q148K*    Del (11) 
K127A    + (3)  Q148L* + ++ + Del (11,17) 
A128T     S-1360 (27)  Q148N* +++ ++   (15) 
C130A* +++ +++  ++ OH-Coum (12,36)  Q148A/F185K/C280S + +   (36) 
C130G*    - (-) OH-Coum (12,36)  V150E +++ +++ +++  (28) 
C130S*    - OH-Coum 

(13,14,36) 
 V151A*    (+) (9) 

C130A/F185K/C280S +++ +++   OH-Coum (36)  V151I*     L-870,810 (26) 
C130S/F185K/C280S +++ +   OH-Coum (36)  V151D/E152Q - - - - (10) 
W131G/F185K/C280S ++ ++   (36)  V151T/S153Q ++ - +++  (40) 
W132A;G;R//F185K/C280S +++ -   OH-Coum (36)  V151L/S153L +++ - -  (40) 
W132Y/F185K/C280S +++ ++   OH-Coum (36)  V151L/E152V/S153F ++ - -  (40) 
I135P    (-) (9)  V151A/E152M/S153A ++ - -  (40) 
K136A* +/- +/- +++ -/++ (3,11,16)  V151Y/E152V/S153P +++ - -  (40) 
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Table 1 (continue) 
Mutations 3’-P ST Dis Inf Interaction (Ref)  Mutations 3’-P ST Dis Inf Interaction (Ref) 

V151H/E152G/S153L +++ - -  (40)  K160A*    +++/(+++) (39) 
V151E/E152S/S153N ++ - -  (40)  K160D*     S-1360 (27) 
V151T/E152S/S153M +++ - -  (40)  K160E* +++ +++ +++ - (41) 
V151T/E152F/S153C +++ - -  (40)  V165A ++   - (-) PIC (4,12) 
E152A;C;D;G;H;P;Q;
V;K* 

- - - - (-) (1,3,5,6,9,11,17,
18,28,31,33,34) 

 V165I     S-1360 (27) 

E152A/K156A    - (3)  R166A*    - (3) 
E152N/S153R ++ - -  (40)  R166T* ++ ++   (42,43) 
S153A;R* + + ++ ++ (1,11)  R166A/D167A    - (3) 
S153A* +++  +++ +++ S-1360 

(27,32,33) 
 D167A*    + (3) 

S153Y* ++ ++ ++ + L-708,906;  
L-731,988; 
L-CA (22,25,26) 

 Q168A +++ +++  (-) LEDGF (44,45) 

M154I +++ +++ +++ ++ L-708,906;  
L-731,988; 
L-CA (22,25,26) 

 Q168L +++ -  (-) LEDGF (44) 

N155E;K - - - Del (11,17)  Q168P - -  (-) LEDGF (44) 
N155L + + - Del (11,17)  E170A/H171A +++ +++  +/Del (3,46) 
N155S     L-870,810 (26)  E170A/K173A    + (3) 
K156A*    +/ 

+++/(+++) 
(3,39)  H171A/K173A*    + (3) 

K156E* - - +/- Del (11,17,41)  L172M* +++ +++ +++  (28) 
K156R*     (42)  L172A/K173A +++ +++  - (46) 
K156I* - - -  (28)  T174A + +  - (46) 
K156E/K159E - - - - (11,41)  V176A/Q177A +++ +++  Del (46) 
K156A/E157A    + (3)  M178A - -  - (46) 
E157A/K159A    + (3)  A179P    (-) (9) 
L158F +++ +++ +++  (28)  V180A/F181A - -  - (46) 
K159A*    ++/(++) (39)  N184D;L    - (11) 
K159E* - - +++ -/Del (11,41)  F185A;K;L;H* +++ +++  (-) (16) 
K159N;S* + + +  (17)  K186A;Q;E +++   - (-) (12,20) 
K159Q* +++  +++  (33)  K187A    - (12) 
K159R*     (42)  K188A    - (12) 
K159A/K160A    + (3)  G189A +++ +++   (18) 
K159A;P;Q    (+) (9,31,32)  S195A    (++) (20) 
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Table 1 (continue) 
Mutations 3’-P ST Dis Inf Interaction; (Ref)  Mutations 3’-P ST Dis Inf Interaction; (Ref) 

E198A/R199A    - (3)  R231A ++ + + + (47,49) 
R199A;C* +++ +++ +++ -/Del (-) (3,5,6,11,12)  P233A ++ ++ ++  (47) 
R199E*    - (11)  L;V234A ++ ++ ++ +++ (47,49) 
R199A/D202A    - (3)  W235A;E;F +++ +++ +++ +/- (-) PIC (2,4-6,9) 
R199T/D202A    - (3)  K236A*    +++ (49) 
V201I     (27)  K236E*    - (-) (49) 
K211A*    (++) (20)  K236A/K240A    - (3) 
K211A/E212A    + (3)  K236/E246A    - (-) (49) 
Q214L/Q216L +++   - (-) (12)  L241A - - - - (-) (47,49) 
K215A*    +++ (12)  L242A - - + - (-) (47,49) 
K215A/K219A ++   - (-) (12)  W243A ++ ++ ++  (47) 
K219A*    + (12)  K244A*    - (-) (49) 
N222A ++ ++ ++  (47)  K244E* - -  (-) (50) 
F223A ++ ++ ++  mAb33 (47,48)  K244A/E246A    - (3) 
R224A ++ ++ ++  mAb33 (47,48)  E246A* ++ ++ ++ Del (+) (47,49) 
Y226     mAb33 (48)  E246K*    - (-) (49) 
Y227A ++ ++ ++  (47)  D253A/D256A    + (30 
R228A    - (-) (49)  W243A ++ ++ ++  (47) 
S230R* +++ +++   L-708,906; 

S-1360 (23) 
       

 
a Abbreviations:  3’-P, 3'-processing; ST, strand transfer; Dis, disintegration; Inf, infectivity; PIC, pre-integration complex; Del, delayed; L-CA, L-
chicoric acid; OH-Coum, hydroxycoumarin. 
- = 0-10%,  + = 10-40%,  ++ = 40-80%,  +++ =80-100%, * = mutant present elsewhere in the table as a combination; / = separates differential 
results from independent publications. 
b References: (1) Engelman and Craigie, 1992; (2) Engelman et al., 1995; (3) Wiskerchen and Muesing, 1995; (4) Lu et al., 2005c; (5) Leavitt, 
Shiue, and Varmus, 1993; (6) Leavitt et al., 1996; (7) Nakamura et al., 1997; (8) Nomura, Masuda, and Kawai, 2006; (9) Cannon et al., 1994; (10) 
LaFemina et al., 1992; (11) Lu et al., 2005b; (12) Lu et al., 2004;  (13) Zhu, Dobard, and Chow, 2004; (14) Bischerour et al., 2003; (15) Johnson et 
al., 2006; (16) Engelman et al., 1997; (17) Gerton et al., 1998; (18) Drelich, Wilhelm, and Mous, 1992; (19) Cherepanov et al., 2000; (20) Tsurutani 
et al., 2000; (21) Yoshinaga et al., 2002; (22) Hazuda et al., 2000; (23) Fikkert et al., 2003; (24) Svarovskaia et al., 2004; (25) Lee and Robinson, 
Jr., 2004; (26) Hazuda et al., 2004; (27) Fikkert et al., 2004; (28) Sayasith, Sauve, and Yelle, 2000; (29) Harper et al., 2001; (30) Taddeo et al., 
1996; (31) Kulkosky et al., 1992; (32) Shin et al., 1994; (33) Oh et al., 1997; (34) Engelman, Bushman, and Craigie, 1993; (35) Parissi et al., 2000; 
(36) Al-Mawsawi et al., 2006; (37) King et al., 2003; King and Robinson, Jr., 1998; (38) Pluymers et al., 2000; (39) Ikeda et al., 2004; (40) Calmels 
et al., 2004; (41) Jenkins et al., 1997; (42) Drake et al., 1998; (43) Pilon et al., 2000; (44) Emiliani et al., 2005; (45) Vandekerckhove et al., 2006; 
(46) Priet et al., 2003; (47) Lutzke and Plasterk, 1998; (48) Ramcharan et al., 2006; (49) Lu, Ghory, and Engelman, 2005a; (50) Williams et al., 
2005; (51) Hickman, Dyda, and Craigie, 1997. 
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Table 2. Inhibitors of HIV-1 integrase in clinical trials.  
Compound  Preclinical studies 

Anti-IN 
activity  

IC50, µM 
Antiviral activity Name, source 

(references)a Structure 

3’P ST EC50 µM CC50 µM 

Comments 
Clinical development 

status 

MK-0518, 
Merck & Co  

(1,2,3,4) 
 

b 0.016 
0.017-
0.029 
(EC95) 

b 

Active against multidrug-resistance HIV-1 
viruses. Oral bioavailability: rats (45%), 

dogs (69%), rhesus monkey (8%). Human 
protein binding (82%). Does not inhibit the 

major cytochrome P450.  

In Phase III. Effective in 
heavily pretreated 

patients resistant to 
other treatments. 

Reduction of HIV counts: 
1.7 to 2.2 log copies 
HIV-RNA/ml. Well-

tolerated. 

JTK-303/GS-
9137, 
Gilead 

Sciences, Inc  
(5,6,7,8) 

 

 

1 to 
10 0.0072 9*10-4 4.0 

Active against drug-resistant clinical 
isolates of HIV-1, HIV-2. Synergistic with 

3TC, AZT/3TC; additive with AZT, 
Efavirenz, Indinavir, Nelfinavir. Oral 

bioavailability: rats (34%), dogs (30%).   

In Phase I/II. Effective in 
heavily pretreated 

patients resistant to 
other treatments. 

Reduction of HIV counts: 
1 to 2 log copies HIV-

RNA/ml. Well-tolerated. 

L-870,810 
Merck & Co 

(9,10) 

 

0.25 
 0.015 

0.015 to 
0.1 

(EC95) 
>10 

Active against multidrug-resistance HIV-1 
viruses. Active against HIV-2 and SIV. 
Oral bioavailability: rats (41%), dogs 

(24%), rhesus (51%).  

Stopped in Phase I/II 
due to toxicity in dogs. 
However well-tolerated 

in patients. 1.7 log 
reduction of HIV-RNA 

copies/ml.  
S-1360/GW-

10781 
Shionogi-

GSKc 

(11,12,13) 

 

 

0.02 d 0.2 12 

Active against a variety of clinical isolates 
and drug-resistant variants of HIV-1. 

Synergic with HIV reverse transcriptase 
and protease inhibitors.  

Stopped in Phase II for 
undisclosed scientific 

reasons. Well-tolerated.  

a References: (1) Morales-Ramirez et al., 2005; (2) Summa et al., 2006; (3) Laufer et al., 2006; (4) Markowitz et al., 2006; (5) Sato et al., 2006; (6) 
Matsuzaki et al., 2006; (7) Kawaguchi et al., 2006; (8) DeJesus et al., 2006; (9) Hazuda et al., 2004; (10) Little et al., 2005; (11) Fikkert et al., 
2004; (12) Yoshinaga et al., 2002; (13) GlaxoSmithKline annual report, 2003. 
b Data unavailable from references. c Joint venture Shionogi-GlaxoSmithKline Pharmaceuticals. d  No information regarding selectivity for 3’P or 
ST. 
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Table 3 Representative inhibitors of HIV-1 integrase. 
 

Anti-IN activity 
IC50, µM a Antiviral activity Chemical 

Family Structure 
3’-P ST EC50, µM CC50, 

µM 

Comments, 
(references)b 

Diketo acids 
(DKA) 

L-731,988 
6 0.08 1 c 

First representative of 
diketo acids. Archetype 
of a new ST selective 

inhibitors of HIV IN. (1) 

Chicoric acids 

 

Compound #4 

4 5 2.4 187 

Geminal disulfone 
analogue of chicoric 

acid. Time-of addition 
experiments indicated 
inhibition after reverse 

transcription. (2) 

Quinolin-4-one 
derivatives 

Cpd 8 

0.44 0.016 4.29 >200 

Newly designed 
bifunctional quinolonyl 
diketo acid derivative. 

(3) 

Styrylquinoline 
derivatives 

(SQL) 

 

FZ-41 

2.8 3. 7 1 to 4 300 

Active against HIV-1 
drug-resistant viruses. 

Inhibits migration of PIC 
into nucleus. Synergy 
with Nevirapine, AZT. 

(4,5) 

Natural 
Peptides 

(Defensins) 

ILPWKWPWWPWRR 
 

Indolicidin 
60 57 (35 to 52 

µM) 
c 

In spite of additional 
targets besides IN, 

direct binding to DNA 
represents a novel 

feature for IN inhibition. 
(6,7,8) 

Naphthyridine 
derivatives 

Compound #11 

c 0.035 
0.02 to 

0.04 
(EC95) 

c 

Good pharmacokinetics 
and oral bioavailability 
when dosed in rats and 

dogs. (9) 

Natural 
products 

Funalenone 

c 10 1.7 87 
Isolated from 

Penicillium sp. FKI-
1463. (10) 

 

a Abbreviations: IC50, concentration required for 50% inhibition of HIV-1 integrase activity; EC50, concentration 
required to induce the exponential growth of MT-2 cells infected by HIV by 50 %; CC50, cytotoxicity of 
compound. 
b References: (1) Hazuda et al., 2000; (2) Meadows et al., 2005; (3) Di Santo et al., 2006; (4) Bonnenfant et 
al., 2004; (5) Mousnier et al., 2004; (6) Marchand et al., 2006b; (7) Robinson et al., 1998; (8); Krajewski et al., 
2004; (9) Embrey et al., 2005; (10) Shiomi et al., 2005. 
c Data not specified in references. 
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Figure legends 

 

Figure 1. Integration in the HIV life cycle. IN: integrase, PIC: preintegration complex, 

BAF: barrier-to-autointegration factor, MA: HIV matrix protein, INI1: integrase 

interactor 1, p75: LEDGF/p75 - lens epithelium-derived growth factor/transcription 

co-activator p75, RT: HIV reverse transcriptase, HMGA1: high mobility group 

chromosomal protein A1. 

 

Figure 2. Functional domains of HIV-1 integrase. IN: integrase, RT: HIV reverse 

transcriptase, PR: HIV protease. 

 

Figure 3. Biochemical steps of retroviral integration and proposed binding of strand 

transfer inhibitors at the interface of the IN-viral DNA complex. a. Integrase binds to 

the LTR viral DNA (thin wavy line) and catalyzes the nucleophilic attack of the 

phosphodiester viral DNA backbone 3’ from a conserved CA dinucleotide by a water 

molecule (3’-P: 3’-processing). b. Following translocation to the nucleus, integrase 

promotes the nucleophilic attack of the host cellular DNA (thick wavy line) by the 3’-

hydroxy viral nucleophilic end, which results in strand transfer (ST) and cleavage of 

the host DNA (c). b’. Strand transfer inhibitors (STI) bind to the integrase-viral DNA 

complex following 3’-P and probably interfere with the binding of host cellular DNA. 
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