Formulas

Conversion of the 13-week Treasury Bill auction clearing price to an ACT/360 simple interest rate:

$$
\begin{equation*}
r_{t}=\frac{360}{L} \times\left(\frac{100}{P_{t}}-1\right) \tag{1}
\end{equation*}
$$

Where,
$r_{t}=\mathrm{ACT} / 360$ simple interest rate at issue date t
$P_{t}=13$-week Treasury Bill auction clearing price at issue date t
$L=$ number of days from (and including) the issue date of the 13-week Treasury bill to (and excluding) the maturity date of the 13-week Treasury bill

For example, on September 10, 2012, Treasury auctioned a 91-day Treasury bill at a price of 99.974722 . The converted ACT/360 simple interest rate is:

$$
\frac{360}{91} \times\left(\frac{100}{99.974722}-1\right)=0.0010003=0.10003 \%
$$

This rate is likely to be truncated or rounded to the nearest tenth of a basis point but the final decisions on precision will be determined later.

Assuming a $\$ 100$ notional, the formula below illustrates how to arrive at the Dirty Price at settlement date T_{0}, the amount of money due at settlement.

$$
\begin{align*}
\frac{\text { Dirty Price }}{100}= & \frac{\frac{1}{360} \sum_{T_{-1} \leq t<T_{1}} \max \left(r_{t}+s, 0\right)}{1+\frac{1}{360} \sum_{T_{0} \leq t<T_{1}}\left(r_{t}+m\right)} \\
& +\frac{\frac{1}{360} \sum_{T_{1} \leq t<T_{2}} \max \left(r_{t}+s, 0\right)}{\left[1+\frac{1}{360} \sum_{T_{0} \leq t<T_{1}}\left(r_{t}+m\right)\right] \times\left[1+\frac{1}{360} \sum_{T_{1} \leq t<T_{2}}\left(r_{t}+m\right)\right]} \tag{2}\\
& +\cdots \\
& +\frac{1+\frac{1}{360} \sum_{T_{N-1} \leq t<T_{N}} \max \left(r_{t}+s, 0\right)}{\left[1+\frac{1}{360} \sum_{T_{0} \leq t T_{1}}\left(r_{t}+m\right)\right] \times \cdots \times\left[1+\frac{1}{360} \sum_{T_{N-1} \leq t<T_{N}}\left(r_{t}+m\right)\right]}
\end{align*}
$$

Where,
$T_{0}=$ settlement date

```
\(T_{-1}=\) start of the Interest Accrual Period
\(r_{t}=\) Index Rate on day \(t^{1}\)
\(s=\) Spread
\(m=\) Discount Margin
```

Note,
$T_{-1} \leq T_{0}$
When $T_{-1}<T_{0}$, there will be Accrued Interest

The next coupon payment is T_{1}
All other coupon payments ($T_{2}, T_{3}, \ldots T_{N}$) continue until maturity with a quarterly Frequency of Interest Payments

Day Count convention is ACT/360
Reset Frequency is daily
$\max \left(r_{t}+s, 0\right)$ because of the Minimum Interest Rate
Define the Accrued Interest as the accrual amount as of the settlement date T_{0}, that is,

$$
\begin{equation*}
\text { Accrued Interest }=100 \times \frac{1}{360} \sum_{T_{-1} \leq t<T_{0}} \max \left(r_{t}+s, 0\right) \tag{3}
\end{equation*}
$$

The Clean Price is derived by subtracting the Accrued Interest from the Dirty Price. ${ }^{2}$ That is,

$$
\begin{equation*}
\text { Clean Price }=\text { Dirty Price }- \text { Accrued Interest } \tag{4}
\end{equation*}
$$

An example calculation can be found on the Bureau of the Public Debt's website at http://www.treasurydirect.gov/instit/statreg/auctreg/DMCalc.xlsm.

[^0]
[^0]: ${ }^{1}$ Index Rate r_{t} beyond the settlement date T_{0} is fixed at the value obtained from the last available good fixing.
 ${ }^{2}$ This methodology does not enable a Clean Price of par any time when the Discount Margin equals the Spread because (1) the Accrued Interest is not discounted to the settlement date, and/or (2) when the Minimum Interest Rate is binding.

