April 18, 2002

Mr. William O'Connor, Jr. Vice President Nuclear Generation Detroit Edison Company 6400 North Dixie Highway Newport, MI 48166

SUBJECT: FERMI 2 NUCLEAR POWER STATION

NRC INSPECTION REPORT 50-341/02-03(DRP)

Dear Mr. O'Connor:

On March 31, 2002, the NRC completed an inspection at your Fermi 2 Nuclear Power Station. The enclosed report documents inspection findings which were discussed on March 28, 2002, with you, and other members of your staff.

The inspection examined activities conducted under your license as they relate to safety and compliance with the Commission's rules and regulations and with the conditions of your license. The inspectors reviewed selected procedures and records, observed activities, and interviewed personnel. Specifically, this inspection focused on plant operations.

No findings of significance were identified.

In accordance with 10 CFR 2.790 of the NRC's "Rules of Practice," a copy of this letter and its enclosure will be available electronically for public inspection in the NRC Public Document Room or from the Publicly Available Records (PARS) component of NRC's document system (ADAMS). ADAMS is accessible from the NRC Web site at http://www.nrc.gov/NRC/ADAMS/index.html (the Public Electronic Reading Room).

Sincerely,

/RA/

Mark A. Ring, Chief Branch 1 Division of Reactor Projects

Docket No. 50-341 License No. NPF-43

Enclosure: Inspection Report 50-341/02-03(DRP)

See Attached Distribution

DOCUMENT NAME: G:\ferm\ML021080483.wpd

To receive a copy of this document, indicate in the box "C" = Copy without attachment/enclosure "E" = Copy with attachment/enclosure "N" = No copy

OFFICE	RIII	RIII	RIII	RIII	
NAME	PPelke/trn	MRing			
DATE	04/12/02	04/18/02			

OFFICIAL RECORD COPY

cc w/encl: N. Peterson, Director, Nuclear Licensing

P. Marquardt, Corporate Legal Department

Compliance Supervisor

R. Whale, Michigan Public Service Commission Michigan Department of Environmental Quality Monroe County, Emergency Management Division

Emergency Management Division MI Department of State Police

ADAMS Distribution:

WDR

DFT

MAS4

RidsNrrDipmlipb

GEG

HBC

SJC4

C. Ariano (hard copy) DRPIII

DRSIII

PLB1

JRK1

U. S. NUCLEAR REGULATORY COMMISSION REGION III

Docket No: 50-341 License No: DPR-43

Report No: 50-341/02-03(DRP)

Licensee: Detroit Edison Company

Facility: Enrico Fermi, Unit 2

Location: 6400 N. Dixie Hwy.

Newport, MI 48166

Dates: February 16 through March 31, 2002

Inspectors: S. Campbell, Senior Resident Inspector

J. Larizza, Resident Inspector

Approved by: Mark Ring, Chief

Branch 1

Division of Reactor Projects

SUMMARY OF FINDINGS

IR 05000341-02-03, on 2/16-3/31/2002, Detroit Edison Company, Fermi 2 Nuclear Power Station.

The inspection was conducted by the resident inspectors. No findings of significance were identified. The significance of most findings is indicated by their color (Green, White, Yellow, Red) using Inspection Manual Chapter 0609, "Significance Determination Process" (SDP). Findings for which the SDP does not apply are indicated by "No Color" or by the severity level of the application violation. The NRC's program for overseeing the safe operation of commercial nuclear power reactors is described at its Reactor Oversight Process website at http://www.nrc.gov/NRR/OVERSIGHT/index.html.

Report Details

Plant Status

Fermi 2 operated at or near 100 percent power throughout the inspection period. On March 2, 2002, power was decreased to 65 percent to remove the south reactor feedwater pump from service for planned maintenance. Reactor power was returned to 100 percent on March 3, 2002. On March 9, 2002, power was decreased to 65 percent to perform a control rod swap and planned maintenance on a steam line drain valve. Reactor power was returned to 100 percent on the same day. On March 30, 2002, power was reduced automatically to 55 percent due to the trip of the "A" reactor recirculation motor generator set caused by a generator field ground. Reactor power remained at 55 percent the remainder of the inspection period to perform corrective maintenance on the motor end slip ring of the "A" reactor recirculation motor generator set and to determine the root cause of the generator field ground.

1. REACTOR SAFETY

Cornerstone: Mitigating Systems

1R04 Equipment Alignments (71111.04Q)

a. Inspection Scope

The inspectors conducted a partial walkdown of emergency diesel generator 12 and its related diesel generator service water, diesel generator fuel oil transfer and starting air systems. The inspectors reviewed associated piping and instrumentation drawings, condition assessment resolution documents (CARDs), and the independent lineup verification of operating and surveillance procedures to complete the walkdown. The inspectors used the documents to verify that system components were aligned properly and that no outstanding deficient conditions existed to prevent proper operation of the emergency diesel.

b. Findings

No findings of significance were identified.

1R05 Fire Protection (71111.05Q)

a. Inspection Scope

The inspectors toured the following areas to determine whether combustible hazards were present, fire extinguishers were properly filled and tested, the CARDOX units were operable, hose stations were properly maintained, and if the fire hazard analysis drawings were correct:

 Updated Final Safety Analysis Report (UFSAR) Section 9A.4.1.3, Zone 2, Reactor Building Basement Corner Rooms

- UFSAR Section 9A.4.1.6, Zone 5, Reactor Building First Floor
- UFSAR Section 9A.4.1.7, Zone 6, Reactor Building Second Floor
- UFSAR Section 9A.4.2.15, Zone 14, Standby Gas Treatment and Control Center Air Conditioning System Rooms
- UFSAR Section 9A.4.3, Division 1 Residual Heat Removal Complex
- UFSAR Section 9A.4.2.11, Zone 10, Divisions 1 and 2 Battery Rooms

b. <u>Findings</u>

No findings of significance were identified.

1R06 Flood Protection (71111.06)

a. <u>Inspection Scope</u>

The inspectors reviewed risk significant systems and components which are below internal or external flood levels or otherwise susceptible to flooding, to verify that the licensee's flooding mitigation plans and equipment are consistent with the licensee's design requirement.

b. Findings

No findings of significance were identified.

1R12 Maintenance Rule Implementation (71111.12Q)

a. Inspection Scope

The inspectors reviewed the system health reports, associated CARDs, white papers for probabilistic risk assessments on conditional probabilities, and the control room unit logs for the following systems to evaluate the characterization of failed structures, systems, and components in the maintenance rule program. The inspectors also evaluated performance goals and performance monitoring.

- Sumps and Drains (G1100)
- Extraction Steam (N3016)

b. <u>Findings</u>

No findings of significance were identified

1R13 Maintenance Risk Assessments and Emergent Work Evaluation (71111.13)

a. Inspection Scope

The inspectors reviewed the licensee's lubrication analysis for the Fermi main unit transformer 2A and system service transformer 69, and the requirement to resample the transformer oil within 6 months. The inspectors also reviewed the justification for continued operation to determine if the conditions would place the plant in an

unacceptable configuration and to verify that the licensee managed plant risks adequately.

b. <u>Findings</u>

No findings of significance were identified.

1R15 Operability Evaluations (71111.15)

.1 Reactor Core Isolation Cooling Room Temperature Switches out of Tolerance

a. Inspection Scope

The inspectors reviewed documents associated with surveillance performed on the high pressure coolant injection (HPCI) and reactor core isolation cooling (RCIC) system room area temperature monitoring equipment. The function of the room temperature monitors is to detect a leak from the associated HPCI and RCIC system steam piping. The isolation of HPCI and RCIC results when a small steam leak is detected. If allowed to continue without isolation, radiation dose limits could be reached and the associated system equipment could be damaged. The allowable values on the room temperature high signals are set low enough to detect a leak equivalent to 25 gallons per minute.

b. <u>Findings</u>

On March 8, 2002, while performing surveillance 44.020.227, "Nuclear Steam Supply System - HPCI and RCIC Room Area Temperature, Channel 'A' Functional Test," E41N602A and E51N602A (Temperature switch electric: steam leak detection 'A' signal to system isolation and temperature switch electric: steam leak detection RCIC equipment area, respectively) were found out of tolerance high at 185° F. Technical Specification Table 3.3.6.1-1, Functions 3.d and 4.d, require the HPCI Equipment Room Temperature - High and the RCIC Equipment Room Temperature - High, respectively, to be set at less or equal to 162° F.

During the December 2001 Channel "A" Functional Test, the setpoint of the temperature switch was inadvertently set too high. On January 9, 2002, the other channel, "B," was calibrated with no discrepancies. During the calibration of the "B" channel and for the duration of a period of 1 hour and 15 minutes, both channels "A" and "B" were inoperable. Technical Specification 3.5.2, "Emergency Core Cooling System - Operating Action "E" states that when the HPCI system is inoperable an immediate verification of RCIC operability is required. In this case, for a period of 1 hour and 15 minutes both HPCI and RCIC systems were inoperable, requiring the licensee to take actions within 1 hour to place the unit in Startup Mode within 7 hours. This was not done because the licensee at that time did not recognize that channel "A" was out of specification and thus inoperable.

At the close of the inspection period, the licensee had not determined the root cause for the instrument temperature high out of tolerance setting. The inspectors considered this an unresolved item (URI 50-341/02-003-01) pending the root cause determination for this issue and the inspectors' review of the associated corrective actions.

.2 Failed Stroke Time of RCIC Suppression Pool Isolation Valve E5150F031

a. Inspection Scope

On March 6, 2002, the licensee conducted a post maintenance test on valve E5150-F031 and found a stroke time of 21.5 seconds which did not meet the acceptance criteria of 21.3 seconds. The inspectors reviewed applicable Technical Specifications, design calculations, and procedures to determine if the operability evaluation documented in CARD 02-10311 was properly justified and the component remained available, such that no unrecognized increase in risk occurred.

b. <u>Findings</u>

No findings of significance were identified.

1R17 Permanent Plant Modifications (71111.17)

a. Inspection Scope

Equivalent Replacement Evaluation 31882, "Part Number Changes for RCIC System Governor Control Valve Stem and Spacers," was reviewed for adequacy of the evaluation, disposition, and conclusion. The modification was for equipment upgrade. The vendor has made changes to the part numbers and material for the stem and spacers and suggested changing the inside diameter of the valve spring seat.

b. <u>Findings</u>

No findings of significance were identified.

1R19 Post Maintenance Testing (71111.19)

a. <u>Inspection Scope</u>

The inspectors reviewed the post maintenance testing surveillance procedures for the following systems:

- Standby Feedwater
- RCIC
- HPCI

The procedures were performed to determine the operability of the systems following preventive maintenance activities. Operability determination was based on system response to simulated initiation signals, pump flows, system pressures, valve stroke

times, valve position indications, and pre-established acceptance criteria. The inspectors reviewed the packages to verify that the tests were adequate for the scope of the maintenance. The inspectors also determined that the tests restored the operational readiness consistent with the design and licensing documents.

b. <u>Findings</u>

No findings of significance were identified.

1R22 Surveillance Testing (71111.22)

a. <u>Inspection Scope</u>

The inspectors witnessed and reviewed test data for the following surveillance activities conducted to demonstrate that risk-significant structures, systems, and components were capable of performing their intended safety functions. The reviews included, but were not limited to, avoidance of preconditioning, clear acceptance criteria, properly calibrated test equipment, proper procedure performance, control of electrical jumpers, complete test data, Technical Specification and UFSAR compliance, and proper equipment restoration:

- Procedure 24.020.235, Nuclear Steam Supply System RCIC Steam Line Pressure Division I Functional Test
- Procedure 44.010.143, Division 2 Reactor Protection System Two-out-of-Four Logic Modules Channel Functional Test
- Procedure 24.202.07, HPCI Vacuum Breaker Test
- Procedure 24.208.03, Division 2 Emergency Equipment Cooling Water Test

b. <u>Findings</u>

No findings of significance were identified.

1R23 Temporary Plant Modifications (71111.23)

a. Inspection Scope

The inspectors reviewed Temporary Modification 02-0001, which evaluated the installation of monitoring instrumentation onto the HPCI system lubricating oil system and associated valves. Two pressure transducers will measure oil pressure in the HPCI turbine lube oil system and two position transducers will measure valve stem movement of the HPCI turbine stop and control valves. The purpose of the temporary modification is to minimize the setup time for installing the monitoring instrumentation. The inspectors also reviewed procedure MES 12, "Performing Temporary Modifications."

b. Findings

No findings of significance were identified.

Cornerstone: Emergency Preparedness

1EP1 Drill, Exercise, and Actual Events (71114.01)

a. <u>Inspection Scope</u>

The inspectors observed the Blue team respond to an emergency drill on March 19, 2002, that included emergency personnel performance in the Technical Support Center, Emergency Operating Facility, and Control Room Simulator. Further, the inspectors attended the controller critique of the Control Room Simulator and Technical Support Center emergency personnel response to the drill.

b. Findings

No findings of significance were identified.

4. OTHER ACTIVITIES (OA)

4OA2 Performance Indicator Verification (71151)

a. <u>Inspection Scope</u>

The inspectors reviewed licensee event reports, licensee memoranda, unit logs, and NRC inspection reports to verify the residual heat removal safety system unavailability performance indicator for the fourth quarter of 2001.

b. Findings

No findings of significance were identified.

4OA3 Event Followup (71153)

(Closed) Licensee Event Report 50-341/01002: "Licensed Power Limit Exceeded Due to a Non-Conservative Steam Moisture Carryover Fraction." On September 28, 2001, the licensee determined that a non-conservative bias existed in the reactor heat balance methodology for calculating core thermal power. The main steam moisture carryover fraction used in the heat balance calculation was found to be higher than the actual value. This bias constituted a small portion of thermal power (less than 0.1 percent) but it was possible that Fermi 2, on occasion, might have exceeded its licensed thermal power limit. Based on the small magnitude of the calculation bias and conservatism of power used in safety analysis this condition had low safety significance

As an interim measure, the maximum reactor power level was administratively reduced by three megawatts thermal and later the moisture carryover fraction was changed to zero to eliminate the potential non-conservative bias. The final value will be determined when a review of heat balance terms will be completed during the second quarter of 2002. The cause of this event was attributed to information provided by the vendor as input to the heat balance calculation. A contributing factor was the failure to analyze

empirical data obtained on two previous occasions against the input parameters of the heat balance methodology.

The failure to meet the requirement of the thermal power limit in Fermi 2 License Section 2.C(1) is of very low safety significance and constitutes a violation of minor significance that is not subject to enforcement action in accordance with Section IV of the Enforcement Policy. The licensee entered this issue into their corrective action program as CARD 01-13286. Although the corrective actions will remain open until the second quarter of 2002, the inspectors determined that the proposed corrective actions were sufficient to close this item.

4OA5 Management Meetings

Exit Meeting Summary

The inspectors presented the inspection results to Mr. O'Connor and other members of licensee management at the conclusion of the inspection on March 28, 2002. The licensee acknowledged the findings presented. No proprietary information was identified.

KEY POINTS OF CONTACT

<u>Licensee</u>

- D. Cobb, Plant Manager
- J. Davis, Manager, Nuclear Outage
- T. Dong, Manager, Performance Engineering
- T. Haberland, Manager, Work Control
- D. Hemmele, Shift Manager
- H. Higgins, Manager, Radiation Protection
- K. Hlavaty, Manager, Nuclear Maintenance
- S. Hassoun, Principal Engineer, Licensing
- R. Johnson, Supervisor, Nuclear Licensing
- A. Lim, Supervisor, Mechanical & Civil
- M. McDonough, Engineer, Fire Protection
- A. Mann, Manager, Operations
- W. O'Connor, Vice President, Nuclear Generation
- N. Peterson, Manager, Nuclear Licensing
- S. Stasek, Director, Nuclear Assessment

NRC

M. Ring, Chief, Division of Reactor Projects, Branch 1

LIST OF ITEMS OPENED, CLOSED, AND DISCUSSED

Opened

50-341/02-003-01 URI Setting on the High Pressure Coolant Injection and Reactor Core

Isolation Cooling System Room Area Temperature Monitoring

Equipment Found out of Tolerance High.

Closed

50-341/01002 LER Licensed Power Limit Exceeded Due to a Non-Conservative

Steam Moisture Carryover Fraction.

Discussed

None

LIST OF ACRONYMS USED

CARD Condition Assessment Resolution Document
HPCI High Pressure Coolant Injection System
RCIC Reactor Core Isolation Cooling System
UFSAR Updated Final Safety Analysis Report

LIST OF DOCUMENTS REVIEWED

The following documents were selected and reviewed by the inspectors to accomplish the objectives and scope of the inspection and to support any findings.

1R04 Equipment Alignment

Procedure 24.307.15	Emergency Diesel Generator 12 - Start and Load Test	Revision 47
Procedure 24.307.35	DGSW, DFOT and Starting Air Operability Test - EDG 12	Revision 42
1R05 Fire Protection		
UFSAR Section 9A.4.1.3	Reactor Building Basement Corner Rooms, Zone 2, El. 540 Ft and 562 Ft	Revision 11
UFSAR Section 9A.4.1.6	Reactor Building First Floor, Zone 5, El. 583 Ft 6 In	Revision 11
UFSAR Section 9A.4.1.7	Reactor Building Second Floor, Zone 6, El. 613 Ft 6 In	Revision 10
UFSAR Section 9A.4.3.1	Residual Heat Removal Complex	Revision 8
UFSAR Section 9A.4.2.15	Control Room Ventilation Equipment Room and Standby Gas Treatment Room, Zone 14, El. 677 Ft 6 In	Revision 11
UFSAR Section 9A.4.2.11	Divisions 1 and 2 Battery Rooms	Revision 10
Drwg 6A721-2401	Fire Protection Evaluation Reactor Building Subbasement Plan El. 540' 0"	Revision K
Drwg 6A721-2403	Fire Protection Evaluation Reactor and Auxiliary Buildings First Floor Plan El. 583' 6"	Revision O
Drwg 6A721-2405	Fire Protection Evaluation Reactor and Auxiliary Buildings Second Floor Plan El. 613' 6"	Revision Q
Drwg 6A721-2409	Fire Protection Evaluation Reactor and Auxiliary Building Fifth Floor Plan (Elevations 677.5 FT and 684.5 FT)	Revision R
Drwg 6A721-2041	Fire Protection Evaluation Residual Heat Removal Complex (Elevation 590.0 FT)	Revision E

Drwg 6A721-2407	Fire Protection Evaluation Reactor and Auxiliary	Revision Q
	Building Third Floor Plan (Elevations 641.5 FT	
	and 643.5 FT)	

1R06 Flood Protection

UFSAR Section 3.4.4.4	Internal Flood Protection	Revision 7
UFSAR Section 9.2.5.3.1.4	Floods	Revision 10
UFSAR Section 11.7.2.2.5	Flood Protection	Revision 9
UFSAR Section 15.10.2.2.1	Analysis of Effects and Consequences of Floods	Revision 6
Regulatory Guide 1.102	Flood Protection for Nuclear Power Plants	September 1976, Revision 1
AOP20.000.01	Flooding	Revision 32
Maintenance Procedure 35.000.242	Barrier Identification Classification	Revision 30
Technical Requirement Manual 3.7.4	Shore Barriers Protection	Revision 31

1R12 Maintenance Rule Implementation

CARD 02-11760	Functional Failure Reviews Were Not Conducted for Valve T4500F601 (NRC Identified)	April 3, 2002
CARD 98-17088	Failed Local Leak Rate Test (P4400F615)	September 7, 1998
CPEP	CPEP Data for G1100 and N3016 Systems Since January 1998	
CARD 01-19553	Valve Failed to Close During Performance of 27.702.01	December 7, 2001
Control Room Logs	Control Room Log Entries for Sumps and Drains (G1100) and Extraction Steam (N3016), Since January 1998	
Maintenance Rule Program Manual	Appendix G, "Maintenance Rule SSC Specific Functions"	Revision 9

Maintenance Rule Program Manual	Appendix H, "Maintenance Rule Performance Criteria"	Revision 9
Log No. 96-002	Development of Train and Divisional Level Conditional Probability, Allowed Number of Failures and Out-of Service Hours, and Redundancy Factor Determination	October 2, 1998, Revision 1
Log No. 96-001	Development of "Conditional Probability for SSCs Modeled in the Fermi 2 PSA"	October 2, 1998, Revision 1
Regulatory Guide 1.160	Monitoring the Effectiveness of Maintenance at Nuclear Power Plants	March 1997, Revision 2
Regulatory Guide 1.177	An Approach for Plant-Specific, Risk Informed Decision Making: Technical Specifications	August 1998
NUMARC 93-01	Nuclear Energy Institute Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants	April 1996
1R13 Maintenance R	isk Assessment and Emergent Work	
Report 01L084-20395	Lubrication Analysis Fermi 2 PP Main Unit Transformer No. 2A	January 24, 2002
Report 02L084-00149	Lubrication Analysis Fermi 2 PP Main Unit Transformer No. 2A and System Service Transformer No. 69	February 22, 2002
Report 01L084-20412	Lubrication Analysis Fermi 2 PP System Service Transformer No. 69	January 24, 2002
CARD 02-11799	Transformer 2A and SS 69 Have Exceeded the NEIL Limits	February 25, 2002
1R15 Operability Eva	<u>lluations</u>	
CARD 02-13570	44.020.227 Tables 1 and 2 Found Greater than the Required Limit	March 8, 2002
TS Table 3.3.6.1- 1 Function 3.d	Primary Containment Isolation Instrumentation HPCI Equipment Room Temperature High	Amendment 134
TS Table 3.3.6.1- 1 Function 4.d	Primary Containment Isolation Instrumentation RCIC Equipment Room Temperature High	Amendment 134
TS 3.5.1	ECCS -Operating Action E	Amendment 134

CARD 02-10311	E5150F031 Stroke Time Out of Tolerance	March 6, 2002
Operability Evaluation	Operability Justification for E5150F031	March 6, 2002
Procedure 24.206.01	RCIC System Pump and Valve Operability Test	Revision 51
DC-2712	Design Specification of Motor Operated Valve Stroke	December 29, 1986
GE Spec 22A1354AR	Reactor Core Isolation Cooling System	April 13, 2002
WR E530020100	RCIC Torus Suction Inboard Isolation Valve	March 5, 2002

1R17 Permanent Plant Modifications

Equivalent	Part Number Changes for RCIC Governor	Revision 0
Replacement Evaluation	Control Valve Stem and Spacers	
ERE 31882		

1R19 Post Maintenance Testing

Procedure 24.202.01	HPCI Pump Time Response and Operability Test at 1025 PSI	Revision 74
Procedure 24.202.01 Temporary Change Notice	TCN's 10835 and 10836	
Procedure 24.206.01	RCIC System Pump Operability and Valve Test at 1000 psig	Revision 51
Procedure 24.107.03	SBFW Pump and Valve Operability and Lineup Verification Test	Revision 30

1R22 Surveillance Testing

Procedure 44.020.235	NSSS - RCIC Steam Line Pressure Division I Functional Test.	Revision 29
TSSR 3.3.6.1.2	Perform Channel Functional Test	Amendment 134
TSSR 3.3.6.1.3	Verify the Trip Unit Setpoint	Amendment 134

TS Table 3.3.6.1- 1 Function 4.b.	RCIC Steam Supply Line Pressure - Low	Amendment 134
Procedure 44.010.143	Div 2 RPS - Two-out-of-Four Logic Modules Channel Functional Test.	Revision 3
TSSR 3.3.1.1.12	Perform Channel Functional Test	Amendment 134
TS Table 3.3.1.1- 1, Function 2.e.	Two-out-of-Four Voter	Amendment 139
Procedure 24.202.07	HPCI Vacuum Breaker Test	Revision 28
Procedure 24.208.03	Division 2 EESW Pump & Valve Operability Test	Revision 42
1R23 Temporary Pla	nt Modifications	
Temp Mod 02-0001	Install Monitoring Instrumentation Onto HPCI Lube Oil System and HPCI Valves E4100F067 and E5100F068	Revision 0
1EP1 Drill, Exercise,	and Actual Events	
Scenario 32 Drill Package	Sequence of Events	March 14, 2002
CARD 02-13073	RERP Objectives not Met During the March 19, 2002 Drill	April 5, 2002
Scenario 32	Drill Exercise Critique Summary (Blue Team)	April 5, 2002
	NRC Performance Indicator (RERP) Documentation Form	April 2, 2002
4OA2 Performance	Indicator Verification	
	4Q/2001 Performance Indicators - Fermi 2	
	Control Room Logs from October 1 through December 31, 2001	
Nuclear Generation Memo	Performance Engineering Group NRC Performance Indicator Fourth Quarter 2001 Data Submittal	January 15, 2002

Log 01-013	Performance Evaluation Program Evaluation Sheet NRC Performance Indicator Data Submittal for 2001 Q4	January 10, 2002
NEI 99-02	Regulatory Assessment Performance Indicator Guideline	Revision 2