## Commentary



David A. Relman, M.D.

Professor of Microbiology & Immunology,

Professor of Medicine

Stanford University School of Medicine

#### Comments

David A. Relman
Stanford University
Member, National Science Advisory Board for Biosecurity
Chair, NSABB Working Group on Synthetic Biology

Interactive Webcast September 22, 2010

# Outline

- Life sciences landscape: time and space
- Cases
- Strategies for mitigating the risk
- Issues for further consideration

#### Comparing the pace of biological technologies and Moore's Law (Robert Carlson, 2003)



Volume 1, Number 3, 2003

# Process-based classification of life sciences technologies

- 1. Acquisition of novel biological or molecular diversity (e.g., DNA synthesis, DNA shuffling, combinatorial chemistry)
- 2. Directed design (e.g., synthetic biology, reverse genetic engineering)
- 3. Understanding and manipulating biological systems (e.g., "systems biology", RNAi, modulators of homeostatic systems)
- 4. Production, packaging, delivery (e.g., microfluidics / microfabrication, nanotechnology, microencapsulation, gene therapy/targeting)

#### Commercial DNA Synthesis Foundries

Rob Carlson, University of Washington; Gerald Epstein and Anne Yu, CSIS



18 July 05. Method: Rough Google search. Thus not a thorough survey. No academic facilities.

Data Source: Rob Carlson, U of W, Seattle www.synthesis.cc, rob@synthesis.cc





- We are entering "The Biological Century"
  [Gregory Benford, 1992]
- Unimaginable capabilities, untold benefits, unforeseen issues, unavoidable risks

#### Dual Use Research of Concern

Research that, based on current understanding, can be reasonably anticipated to provide knowledge, products, or technologies that could be directly misapplied by others to pose a threat to public health and safety, agricultural crops and other plants, animals, the environment, or materiel

### Cases

- Importance of context: sociological (intentions of investigator), scientific
- "directly misapplied"?, scope of impact?
- Trade-offs, not just "black or white"
- Strategies for mitigating risk: measured, independent, complementary....imperfect

# Mitigating the risks

- · Outreach, education
- · Promote awareness, sensitize relevant communities
  - Self-governance (importance of investigator)
  - · Local (professional orgs, academia, industry)
  - National leadership (e.g., NAS, NSABB)
  - · International organizations (e.g., UN, ICRC)
- Risk assessment, risk management
- · Communication: importance of discussion
- Public health countermeasures: flexible, agile, speedy

NATIONAL SCIENCE ADVISORY BOARD FOR BIOSECURITY

# Addressing Biosecurity Concerns Related to the Synthesis of Select Agents

**DECEMBER 2006** 





NATIONAL
SCIENCE
ADVISORY
BOARD FOR
BIOSECURITY

#### ADDRESSING BIOSECURITY CONCERNS RELATED TO SYNTHETIC BIOLOGY









Report of the National Science Advisory Board for Biosecurity (NSABB)

April 2010



- We are entering "The Biological Century" [Gregory Benford, 1992]
- Unimaginable capabilities, untold benefits, unforeseen issues, unavoidable risks
- Mitigating the risks: raise awareness, educate, communicate, norms, guidelines, anticipate threats, and promote flexible/agile/rapid/generic biodefense