
A Software Engineering Approach to Software Assurance

September 2012

Architectural Software Risk Analysis

15 years in software analysis & measurement

2

Our approach to software assurance

“Software Assurance is 5 parts
Code Quality with 2 parts
Software Security.”

- John Keane, Military Health

 Security as an important component of overall structural quality

 Structural quality must be viewed at whole software system level

“Architectural flaws
account for 50% of
security problems.”

- Gary McGraw

3

Current support for security rules

 CWE coverage

 CWE-20: Improper Input Validation

 CWE-73: External Control of File Name or Path

 CWE-78: Failure to Preserve OS Command Structure (aka 'OS Command Injection')

 CWE-79: Failure to Preserve Web Page Structure (aka 'Cross-site Scripting')

 CWE-89: Failure to Preserve SQL Query Structure (aka 'SQL Injection')

 CWE-90: LDAP Injection

 CWE-91: XPATH Injection

 CWE-99: Improper Control of Resource Identifiers ('Resource Injection')

 CWE-116: Improper Encoding or Escaping of Output

 CWE-117: Improper Output Neutralization for Logs

All AIP portals display CWE numbers on appropriate violations – fully searchable

4

Measurement based on standards

Consortium for IT Software Quality:

Characteristic Architectural & System Level Flaws Coding & Component Level Flaws

RELIABILITY

Multi-layer design compliance

Software manages data integrity and consistency

Exception handling through transactions

Class architecture compliance

Protecting state in multi-threaded environments

Safe use of inheritance and polymorphism

Patterns that lead to unexpected behaviors

Resource bounds management, Complex code

Managing allocated resources, Timeouts, Built-in remote addresses

PERFORMANCE

EFFICIENCY

Appropriate interactions with expensive and/or remote

resources

Data access performance and data management

Memory, network and disk space management

Centralized handling of client requests

Use of middle tier components versus stored

procedures and database functions

Compliance with Object-Oriented best practices

Compliance with SQL best practices

Expensive computations in loops

Static connections versus connection pools

Compliance with garbage collection best practices

SECURITY

Input validation

SQL injection

Cross-site scripting

Failure to use vetted libraries or frameworks

Secure architecture design compliance

Error and exception handling Use of hard-coded credentials

Buffer overflows Broken or risky cryptographic

algorithms

Missing initialization Improper validation of array index

Improper locking References to released resources

Uncontrolled format string

MAINTAIN-

ABILITY

Strict hierarchy of calling between architectural layers

Excessive horizontal layers

Tightly coupled modules Unstructured and Duplicated code

Cyclomatic complexity Controlled level of dynamic coding

Encapsulated data access Over-parameterization of methods

Hard coding of literals Commented out instructions

Excessive component size Compliance with OO best practices

A
rc

h
it

e
c

tu
re

 C
o

m
p

li
a

n
c

e

Enterprise-grade IT systems are complicated

5

 Intra-technology architecture

 Intra-layer dependencies

 Module complexity & cohesion

 Design & structure

 Inter-program invocation

 Security Vulnerabilities

Module Level

 Integration quality

 Architectural compliance

 Risk propagation

simulation

 Application security

 Resiliency checks

 Transaction integrity

 Function point & EFP

measurement

 Effort estimation

 Data access control

 SDK versioning

 Calibration across

technologies

System Level

Data FlowTransaction Risk

 Code style & layout

 Expression complexity

 Code documentation

 Class or program design

 Basic coding standards

Program Level

Propagation Risk

Java

EJB

PL/SQL

Oracle

SQL

Server

DB2

T/SQL

Hibernate

Spring

Struts
.NET

C#
VB

COBOL

C++

COBOL

Sybase IMS

Messaging

Java
Web

Services

1

2

3

JSP ASP.NETAPIs

Beyond static analysis – towards architecture

Static Analysis Understanding of language syntax and grammar using source code parsing

Simulation Analysis of some run-time behaviors to understand dynamic behaviors of
applications

Dependencies Understanding of cross-layer and cross-technology links between application
components

Code Pattern Scanning Finding patterns and anti-patterns in application control flow

Data Flow Tracking the use of the content of variables such as user inputs along static and
dynamic call stacks

Architecture Checking Identification of invalid calls and references between application architectural layers

Rules Engine Analysis of knowledge base against quality rules, metrics and constraints to identify
violations (non-compliant objects or situations)

Transaction Scoping Identification and configuration of cross-layer and cross-technology transactions
from UI down to data entities

Function Points Estimation of Function Points functional sizing, relying on data entities and
Application-wide transactions

Aggregation & Consolidation Aggregation and calibration of results along the quality model and consolidation
across applications

Intelligent Configuration Capability to build object sets based on object properties, links, etc. to support
layers, modules, and scope definition

Content Updater Adjustment of analysis results to better match application advanced behaviors

Simulating runtime behavior to resolve links in code

7

Consider “Select Title from Authors where Author = ” as a SQL statement

Use (select) link between Java method “f()” and SQL table “Author”

quasi-runtime behavior

Simulation Analysis of some run-time behaviors to understand
dynamic behaviors of applications

Multi-tier analysis for dependencies (1/2)

8

Create links between Java Class and Sql Table

Hibernate mapping.dtd

Table oracle address

Address.java

Dependencies Understanding of cross-layer and cross-technology
links between application components

Multi-tier analysis for dependencies (2/2)

9

Create links between JSP page and Action mapping

Create links between Action mapping and Java class

Struts-config.xml

Payment.jsp

ActionPaymentMethod.java

Dependencies Understanding of cross-layer and cross-technology
links between application components

Data flow – across distributed architecture

10

(1)

(2)

(3)

(4)

SQL injection vulnerability – CWE-89

Data Flow Tracking the use of the content of variables such as
user inputs along static and dynamic call stacks

Configuring rules specific to enterprise architecture

11

Architecture Checking
Identification of invalid calls and references
between application architectural layers

12Copyright CAST 2007

req

"select * from

user where usr='"

req

conn

password

stmt

qry

qry

java.sql

Connection.createStatement

javax.servlet.http

HttpServletRequest.getParameter

javax.sql

Statement.executeQuery

+

username

javax.servlet.http

HttpServletRequest.getParameter

+

Source

Target

Input validation with dataflow & configuration

Input validation takes

place here

Source

Security breach due to architecture misuse

 For example: banking application, for monitoring reasons, all

database calls must go through stored procedures

 Investigations showed:

– Many transactions developed offshore did not comply with secure

architecture framework

– Without automation, this could not be monitored

• 100 UI elements (250 kloc)

• 2000 mid-tier programs (1 mloc)

• 250 tables, 350 kloc of PL/SQL

 Use of Architecture Checker

– to define the desired architecture

– To generate and enforce the

appropriated quality rules

14

C
o

n
fi

d
e

n
ti

a
l

Risk analysis, better use of safe components

Application shows a potentially dangerous lack of data control

15

C
o

n
fi

d
e

n
ti

a
l

Use of blueprints for large systems

Proactive threat analysis from an architectural standpoint

L
o
g
ic

D

a
ta

 L
a
y
e
r

U
I
L

a
y
e

r

16

C
o

n
fi

d
e

n
ti

a
l

Propagated Risk Index (PRI)

Violation with the largest impact on the rest of the application, regarding
Robustness, Performance, or Security

L
o
g
ic

D

a
ta

 L
a
y
e
r

U
I
L

a
y
e

r

17

C
o

n
fi

d
e

n
ti

a
l

PRI to prioritize assessment findings – hotspots

 Allows to rapidly identify the most significant critical violations related
to a Health Factor

 PRI is based on

– Violation Index (VI) which assesses the quality issues a defective object
for a specific Health Factor

– Risk Propagation Factor (RPF) which assesses the number of call paths
of a defective object

Violation View
Context (software /

Health Factor)

18

C
o

n
fi

d
e

n
ti

a
l

Transaction Risk Index (TRI)

Transaction with largest number of Robustness, Performance or Security violations

L
o
g
ic

D

a
ta

 L
a
y
e
r

U
I
L

a
y
e

r

19

C
o

n
fi

d
e

n
ti

a
l

TRI to prioritize user-facing elements

 Identify the riskiest transactions for testing, remediation

 Sum of Violation Indices (VIs) of the objects along a specific
transaction: Robustness, Performance or Security

Transaction View

Transaction Details View

Securing multi-tier IT applications – example

Missing Error Handling Block Across All Layers

User Interface - Flex

Business Logic – C# .NET

Data Access – SQL Server (T-SQL)

Securing multi-tier IT applications – another example

Multiple violations across the same transaction

make end-user facing applications more vulnerable

 Input validation - 4 form fields without validator in
user interface

 Architecture design - action class talking to data
access object bypassing business layer

 Database access security - multiple artifacts
accessing and modifying data on the LOAN table
potentially containing confidential data

1

1

2

2

3

3

Security correlation to other quality characteristics

22

CORRELATIONS

ROB PERF SEC TRANS CHG ARCH DOC PROG KLOC
% High &

V.High COC
% High &

V.High COC

Robustness 1 -.014 .556 .410 .616 .474 .103 .513 -.014 -.069 -.050

Performance -.014 1 .263 .064 -.148 -.197 .140 .628 -.054 .233 .201

Security .556 .263 1 .257 .440 .350 .413 .423 .073 .373 .428

Transferability .410 .064 .257 1 .619 .201 .753 .392 -.034 .157 .224

Changeability .616 -.148 .440 .619 1 .802 .401 .163 -.062 -.134 -.055

Architecture .474 -.197 .350 .201 .802 1 .015 -.091 -.057 -.268 -.213

Documentation .103 .140 .413 .753 .401 .015 1 .173 .058 .463 .509

Standards .513 .628 .423 .392 .163 -.091 .173 1 -.068 .142 .119

KLOC -.014 -.054 .073 -.034 -.062 -.057 .058 -.068 1 .132 .078

% High & V.High COC -.069 .233 .373 .157 -.134 -.268 .463 .142 .132 1 .929

% High & V.High
COCast

-.050 .201 .428 .224 -.055 -.213 .509 .119 .078 .929 1

CAST Research Labs – 2012 Industry Trends Report*

 Security

– Prof services scores lowest

in application security

 Maintainability

– Government has lowest

scores

* Full 2012 report available for purchase

24

CAST Research Labs – current and future directions

 Industry benchmark data published for two years running

 Presented technical debt research as part of ICSE Global

Conference – Zurich, June 2012

 Publishing results in next issue of IEEE Software

 Starting research collaboration with several universities

 Next round of benchmark data research due in Q1 of 2013

 Planned research topics

– Risk modeling based on structural application analysis: modeling

likelihood of failure or break-in

– Maintenance cost modeling based on technical debt: empirical

quantification of future maintenance cost

– Frequency, occurrence of security, robustness flaws by application

typology

25

Summary

 Structural quality and Security are inextricably interwoven, in fact

Security is an aspect of structural quality (ISO 25010)

 Structural quality must be measured at the full application level

across languages, architectural layers, transactions, and data

flows to detect the most insidious flaws

 Industrial practice in detecting structural quality and security

flaws is behind the technology

