
NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

NLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

[nominal delivery draft]

 On Measurement, Daniel E. Geer, Jr., Sc.D.
 Software Assurance Forum, Mclean, Virginia, 19 Sept 12

ABSTRACT:
 The most important thing the Software Assurance Community can
 do is to ensure that there is no silent failure. This means
 instrumentation, it means well designed surveillance regimes,
 it means an attention to the kind of metrics that come out of
 an airplane's flight data recorder, it means keeping things
 simple enough that, well, there are fewer surprises, and it may
 mean changing how you think about how you make tradeoffs.
 Repeating Kernighan, if you write the code as cleverly as
 possible, you are, by definition, not smart enough to debug it.
 Because security is not composable (and may never be), be very
 careful where the code you reuse comes from.

Good afternoon. As always, I am both appreciative of, and frightened
by, the opportunity to stand before my colleagues and give advice.
There was a time -- a time not so very long ago -- when the number
of people who had a care about software security might be countable.
This is no longer the case; there are many people working on the
issue. We are, for almost all values of "we," spending a great
deal more money and time on software security than once we were.
Yet while we are winning battles, we are not winning the war.

Perhaps we never will. Perhaps the rate of change that we have
come to know and love in the digital sphere is itself a guarantee
of an unrestrained climb in the workfactor that software security
requires.

Last February, in a different setting, I made the case [1] for
choosing between two roads while we were still at the intersection
of them -- the one was to damp down the growth of complexity such
that human-scale responses to untoward changes in the computing
environment remained the best kind of responses to make. The other
was to conclude that the time had come to pick automation of
cybersecurity as the way forward. The thesis behind this dichotomy
is obvious; there comes a point in the growth of scale and complexity
where no longer is it possible for informed decision making of the
human sort.

Note that I said "informed" decision making. Decision making is
always possible, but informed decision making is another thing
altogether. We have actually had numerous straightforward proofs
of this thesis, one of which may have been the first even if it was
not recognized as such at the time. When the Three Mile Island
nuclear reactor failed in 1979, the lesson was that in a fully
instrumented control room, human decision making is paralyzed if
enough of the alarms go off at once. A few flashing lights, and
everyone sprints to their station and starts dialing up remediations
to quench the flashing lights, but if enough lights are flashing,
everyone freezes and there is no remediation.

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

OLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

...

For the purposes of this discussion, I rather favor Peter Bernstein's
definition of risk as "more things can happen than will." The bland
neutrality of that definition helps me think about risk and remediation
of risk as one where preparation matters more than courage. Bravery
has its place, and let us never forget the honor deserved by those
who have placed the welfare of others ahead of their own, but
cybersecurity has much more room for preparation than it does for
bravery.

In "Against the Gods," [2] Bernstein convincingly made the point
that the modern world itself dates from the time when we humans
came to see risk as something that could be described, something
that could be measured, something that could be anticipated -- in
short, that the analysis of risk was not only feasible but empowering.
Bernstein's bibliography, or the history of insurance, teach us
that understanding risk frees one from a fatalism that can only rob
us of initiative.

As with all people my age in cybersecurity, I was trained for
something else. In my case, it was biostatistics which is to say
decision making under uncertainty with mortal consequences. There
are many other preparations that would do as well; civil engineers
study why bridges fall down, attorneys study how to write policy
that can be put into actual practice, and military field hospitals
are from whence the concept of triage comes.

In the pantheon of statistical science, there is, on the one hand,
the legacy of Ronald Fisher and the frequentist school and, on the
other hand, the legacy of Rev. Thomas Bayes whose name is on the
bayesian school. The frequentists argue that only things which
repeat can be estimated well enough to inform planning for the
future -- that one time events do not and cannot contribute. The
bayesians argue that the true probability of anything is not the
point but, rather, each bit of data can and should change our beliefs
of what the future might bring. The proportion of your time you
spend as a frequentist or as a bayesian probably depends on how
uncertain are the parameters of the decisions you must make. With
no data at all, you have only your beliefs to go on. With a deluge
of data about a physical law, the frequency of an event is definitive.
It is in between that is more challenging. It is in between that
we find ourselves.[3]

As I said in the Abstract, the most important thing the Software
Assurance Community can do is to ensure that there is no silent
failure. This means instrumentation, it means well designed
surveillance regimes, it means an attention to the kind of metrics
that come out of an airplane's black box, it means keeping things
simple enough that there are ever fewer surprises, and it may mean
changing how you think about making tradeoffs.

Software as a service illustrates the tradeoff challenge. When you
believe that your code won't actually be seen by its users because
they are only buying it as a service, your tendency will be to
compete not on ease of installation, update, field supportability
or integrability, but rather on performance and the latency of

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

PLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

re-configuration. Your code will get more idiosyncratic and possibly
more clever. Two engineers who have built big systems have something
to say about this; first, Mike O'Dell, the founding Chief Scientist
of UUNet and now a venture capitalist, said:

 Left to themselves, creative engineers will deliver the most
 complicated system they think they can debug. [4]

while Brian Kernighan, the co-inventor of C, said:

 Everyone knows that debugging is twice as hard as writing a
 program in the first place. So if you're as clever as you can
 be when you write it, how will you ever debug it? [5]

Anyone who has ever hit their limit debugging knows that by the
time that you do, you will have instrumented your code with PRINTFs
and breakpoints galore. Why? Because only then can you, the human,
follow what is going on enough to make a decision about remediation.
If we are to replace you, the human, with a machine, that machine
is going to need more instrumentation than the human needs because
the machine will be based on rules, not judgment.

That may be good in the end, but we might have already seen version
1.0 of the strategy of turning decision making over to machines --
it's called High Frequency Trading and, in a proof by demonstration,
those who implemented it did not know what the complexity and the
speed would do to their algorithms. Nevertheless, the High Frequency
Trading machines now dominate the trading arena, and bring us
so-called Flash Crashes. Two stockbrokers who are proposing the
simple rule that bids be honored for 50 milliseconds have been
called cavemen and sore losers.[6]

So a bit of irony has arisen; as you are all aware, one of the
difficulties that website software has is distinguishing a human
from a machine and website operators have invested in technology
that rather imperfectly tries to make that decision automatically,
often by forcing a workfactor onto the client end of the connection
that is intrinsically easier for a human to perform. By contrast,
High Frequency Trading platforms do not have that problem. Why?
Because HFT orders come in and are then cancelled faster than a
human can even see them so that, in the words of one of those two
stockbrokers, "They will flicker [prices] to see who is not flickering.
The guy who is not flickering is the idiot -- the real investor."

...

Sometimes you can measure a variable directly, like your body weight.
Sometimes the variable can only be measured indirectly, like counting
how many planets there are in our solar system by measuring any
anomalies in the orbits of the planets we do know about. While not
perfect, I certainly commend to your reading pile Douglas Hubbard's
How to Measure Anything [7] largely because he and I share a bias
-- unless you are a natural scientist, the reason you measure is
for the purpose of decision support. That is probably my biostat
background showing through as a bias, but decision making under
uncertainty can use all the support it can get and there is little
reason to measure something that will not contribute to making

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

QLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

better decisions.

Does this idea of measurement for decision support apply to software
assurance? I would not be here if I didn't think so, nor would
you. What sorts of decisions need support in building better
software? Are there measurements that, if made, might support
better decisions? I think there are.

Good guys and bad guys alike have come a long way toward building
systems that can assess code quality. Good guys do it one way and
bad guys do it another, but both good guys and bad guys have the
same purpose -- deciding how much effort to spend to reach their
real goal. (This is probably where I should acknowledge that to
my mind all security products are dual use.) Assessing code quality
is a central theme of this event, and tools for measuring code
quality are increasingly abundant. Are they perfect? Of course
not. Do I care? Not much.

Why do I not care if the tools are really, really good or not?
Because to a first approximation, software builders need a relative
measure, not an absolute one, for the decisions they need to make.
Whatever it is that you are measuring, when your measurement
instrument is not very good that does not mean that it is useless.
If that measurement instrument is has reasonably constant errors,
then the trend lines it produces are still relevant, just not the
absolute values. At least at first, I probably don't care whether
my programming staff is perfect but I may well care about two
relative measures: "Are they getting better month over month?" and
"How do they compare to their peers?" Imperfect, even noisy,
measures can help with those two questions (and others like them).
Don't let the best be the enemy of the good.

As a side note, if you are the designer of some measurement method
and you discover, whether through experience or brainstorm, a better
measurement method, then please don't just replace the old method
with the new one. Run them both side by side for a while. In that
way, you will gain some ability to calibrate the new method against
the old and, if all goes well, you will be able to avoid throwing
away the trendlines that you have accumulated. If you just swap
the new for the old, your record keeping starts again from scratch.
That is not the way to do decision support.

...

Turning back toward complexity, when we measure software quality
and/or security,[8] often as not our unit of observation is the
software module, however defined. What we deploy in the field,
however, is not a module but many modules linked together in various
ways depending on language, base platform, and so forth. As an
hypothesis, is the dominant fraction of exploitable security flaws
at module interfaces? If that hypothesis is correct, then increasing
numbers of modules creates risk. To the point of this meeting, I'd
be very interested in some one of you doing a thoughtful, real-numbers
analysis of the impact of cloud computing's cheapness on code bloat.
Chris Wysopal, who speaks later, has in fact observed that the size
of applications tends to rise after they are moved into the cloud
precisely because space becomes too cheap to meter -- developers

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

RLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

link against any library that contains even one call they care about
and, in any case, it's faster to just include everything. Bloat
like that doesn't matter to anyone except, perhaps, us security
people, but measuring it seems a worthy bit of decision support to
me.

Another, shall we say, "question" is where is code executed? Mitja
Kolsek [9] suggests that the way to think about the execution space
on the web today is that the client has become the server's server.
His comment does rather make a crucial point about software security,
namely that the execution space is not one that the software writer
has seen or will ever see. It is thus another irony, at least for
measurement people, that the most common use of Javascript is the
"measurement" that Google Analytics does with its ga.js script.
Realistically speaking, if the execution space of your counterparty
is where your code will run, then what began as "You're OK, I'm OK,
but the network is dangerous" has become "I hope I'm OK, I have to
assume that you are hosed, and the network may make this worse."
Preparing for this is not so much a measurement problem as a detection
problem -- a detection problem of paramount importance if you accept
the notion from the abstract, that the most important thing the
Software Assurance Community can do is to ensure that there is no
silent failure.

...

The most telling legacy of Dennis Ritchie was that C had data
structures, data structures that operated at a level that was just
barely high enough. I've come to view parsimony of expressiveness
as a talisman against silent failure. Let me quote Don Davis,[10]
whose code is all but surely running on every computer in this room:

 The network-security industry has produced lots of examples
 of over-rich expressiveness: RACF, firewall rules, and .htaccess
 are my favorite examples. I argue that in computer security
 applications, a language or UI should present a little _less_
 expressiveness than expert administrators will find necessary,
 so as not to help normal administrators to confuse themselves.

 The problem is that every security rule-set has to be long-lived
 and to change steadily. If the rule-set's syntax allows for
 subtlety, then each rule-set's size and complexity tends only
 to grow, never to shrink. This is because each security
 administrator will tend to avoid analyzing whatever subtleties
 have accumulated, and will instead blindly add special-case
 allowances and constraints, so as to avoid breaking whatever
 came before. The typical result is an unwieldy rule-set that
 no human can understand, with unpredictable security holes.

 Here, as remedy, are two rules of thumb: for security, avoid
 designing order-dependent syntax, and avoid recursive features,
 like groups of groups. Such features seem useful and innocuous,
 but when administrators use them heavily, complexity mounts
 destructively.

Don wrote that eight years ago. His distinction between programming
language and what an administrator uses may now be a distinction

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

SLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

without a difference, but that does not disable his point; it
strengthens it. PERL and Ruby and Java have too many ways to express
the same thing, to do the same thing, and they brag about how "there
is always another way." Each of the three are Turing complete, as
is HTML5. Greater expressiveness seems to be the way things are
going. That expressiveness means that it is not possible to ascertain
whether a bit of software is or is not secure, that is to say that
the question of its security is formally UNDECIDABLE. As mentioned
above, that moves us from direct measurement of the security of
software (it being impossible) into indirect measurement, just like
finding a new planet.

But is indirect measurement of software security a mediocre strategy
however much it might be the best we can do with the languages we
are busy proliferating? That depends on what decisions your
measurement is intended to support. If your decision is whether
or not to deploy a piece of code, then your decision might will be
supported by competent analysis of its security and quality. I do
recommend the measurement of code quality by well-thought tools and
there is a maturing group of suppliers of such toolsets.

Personally, I take a view centered on data security insofar as data
is where the value is and data is, almost always, what attackers
want in the end -- software is, dare I say, merely the vehicle for
getting data. Repeating that the highest goal for the security
professional is that there be no silent failure, then the actual
decision to be made is whether data that wants to leave will be
permitted to do so.

Here an old idea has become new. Jim Anderson published a paper[11]
in 1972 that, by 1983, became the core of the Orange Book.[12]
Anderson had invented the Reference Monitor. A Reference Monitor
is a separate process that watches the first to make sure that it
makes no data handling errors. This is an instructive idea, and
in many ways is echoed in the many products involved in data and
intrusion protection, namely that of a buttress to doing the best
you can at designing applications in the first place. It is also
a kind of measurement in the sense that it takes an observation
from a privileged position and, perhaps in conjunction with other
observations, supports a data handling decision. It is an example
of "no silent failure" at work.

We have nowhere to go but up with respect to a rule of "no silent
failure." The Verizon Data Breach Investigations Report shows that
data loss is overwhelmingly silent. Part of that silence is digital
physics -- if I steal your data, then you still have them, unlike
when I steal your underpants -- but the majority of that silence
is that there is no programmatic indicator of the data's cloning;
it is like a (UNIX) _fork_ operation, fast and cheap. [As an
historical aside, the late Dennis Ritchie wrote that the "PDP-7's
fork call required precisely 27 lines of assembly code."]

Together with colleague Mukul Pareek, we run the Index of Cyber
Security, [13] a monthly measure of how people such as yourselves
see the state of cybersecurity. We've been doing it for a year and
a half now, and in the process measuring the sentiment of those
with operational responsibility for their firms. In addition to a

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

TLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

fixed set of questions asked each month (just like our models, the
Consumer Confidence Index and the Purchasing Managers' Index), we
ask one additional question each month. The question for August
was "Have you and/or your colleagues discovered an attack at another
entity?" for which 55% said "Yes and confirmed" and another 10%
said "Yes but unconfirmed." This is obviously an indirect measure,
but it is supports decisions about proper investment levels in
software security based on the valuable data behind it. It also
underscores that silent failure is happening, and matches up well
with the Verizon DBIR.

...

The rapid rate of change in what software is deployed means that
prediction has a big role to play in decision support. Leading the
target is essential. There appear to be two alternatives here --
minimal change and maximal change.

On the maximal change side, Sandy Clark, et al., have pretty much
shown [14] that software quality does not matter if you roll your
code base often enough. The key is "often enough" meaning often
enough that the reverse engineering opponents don't have time to
get good at beating this version before it is replaced with another.
It is a compelling idea, so let me quote Sandy on this:

 Analysis of software vulnerability data, including up to a decade
 of data for several versions of the most popular operating
 systems, server applications and user applications (both open
 and closed source), shows that properties extrinsic to the
 software play a much greater role in the rate of vulnerability
 discovery than do intrinsic properties such as software quality.
 This leads to the observation that (at least in the first phase
 of a product's existence), software vulnerabilities have different
 properties than software defects.

 We call the period after the release of a software product (or
 version) and before the discovery of the first vulnerability the
 'Honeymoon', and show that familiarity with the system is the
 primary driver for the length of the honeymoon period. We also
 demonstrate that legacy code resulting from code re-use is also
 a major contributor to both the rate of vulnerability discovery
 and the numbers of vulnerabilities found; this has significant
 implications for software engineering principles and practice.

As a sort of corroboration, you might be interested to know that
those High Frequency Trading applications change more or less
constantly, they are all closed source, and they run entirely without
firewalls or anything that anyone here would call a "security
mechanism."

On the minimal change side, Andy Ozment and Stuart Schecter showed
[15] that if you work long and hard on a code base, then the number
of security vulnerabilities in that code base does decline over
time. Quoting from their original paper:

 We examine the code base of the OpenBSD operating system to
 determine whether its security is increasing over time. We

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

ULNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

 measure the rate at which new code has been introduced and the
 rate at which vulnerabilities have been reported over the last
 7.5 years and fifteen versions.

 We learn that 61% of the lines of code in today's OpenBSD are
 foundational: they were introduced prior to the release of the
 initial version we studied and have not been altered since. We
 also learn that 62% of reported vulnerabilities were present
 when the study began and can also be considered to be foundational.

 We find strong statistical evidence of a decrease in the rate
 at which foundational vulnerabilities are being reported. However,
 this decrease is anything but brisk: foundational vulnerabilities
 have a median lifetime of at least 2.6 years.

 Finally, we examined the density of vulnerabilities in the code
 that was altered/introduced in each version. The densities
 ranged from 0 to 0.033 vulnerabilities reported per thousand
 lines of code. These densities will increase as more vulnerabilities
 are reported.

So in these two extremes, minimal change and maximal change, we
have measures that show, however indirectly, alternate paths to low
exploitation opportunity for our opponents. In other words, the
curve of exploitability has a peak in middle age while infancy is
free of exploit and advancing maturity enjoys what might be called
an acquired immunity. Similarly, it appears that for any given
software package the version that is one rev off of current is the
most attacked. That is an almost biologic observation -- you either
want to stay in the center of the herd or disappear into the bush,
that is keep up with revisions or run something that no one is
(still) attacking.

For some software suppliers, the workfactor of constant release and
constant remediation for a large userbase is better handled by the
software as a service model. Putting aside the consumer-side
lock-in, that is all well and good. Of course, people like you at
meetings like this conference have no independent measures of the
rate at which security flaws are introduced, found, or fixed in
software as a service settings.

Auto-update of software might be said to be the most common software
as a service offering. It is a great thing so long as it is capable
of dealing with local anomalies. Generally speaking, you get a
better result if you don't try to analyze too much, just replace
the whole software package. However, if anyone else that doesn't
like you ever gets control of your auto-update mechanism, then it
will be hard to ever pick up the pieces well enough to truthfully
say that you got back to where you were before the strike.

Just don't forget that total cycle time for a round of updates
matters. The coming Smart Grid, is, after all, an application
layered on top of the biggest machine in the world. Kelly Ziegler's
numbers [16] indicate that should it be necessary to do a total
update of the firmware for all U.S. households on a fully deployed
Smart Grid it would take a year or so. What might we do differently?

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

VLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

A strategy of intrusion tolerance is different. It begins with the
assumption that your software package will be dinged often but, if
you did a good job in design, the dings won't make the package
unusable. This is an uglier process in practice, but under some
scenarios it is more survivable. Any of you who work for large
firms will have had some visibility if not input into your disaster
recovery plan. If that includes your software base, which I hope
it does, then the DR plan probably includes mechanisms for diminished
operation, which is precisely what I am talking about. In a way,
the Microsoft Address Space Layout Randomization (ASLR) is exactly
a strategy for intrusion tolerance; you may still get dinged but
the attacker will have less probability of getting a shatter. Just
an ugly ding.

...

Some time ago, I was asked what makes a good security product. As
it happens, the discussion that followed was more about what makes
something a "security product." Let me suggest a working definition:

 A product is a security product when it has sentient opponents

Parsing that definition in its contrapositive: If a product does
not have sentient opponents, then it is not a security product.
This is best examined by looking at why products fail -- if the
reasons that your product fails is some collection of clueless users
("Hey, watch this!"), alpha particles, or discharged batteries,
then it is not a security product. If the reason your product fails
is because some gleeful clown discovers that he can be the superuser
by typing 5,000 lower-case "A"s into some prompt, then said clown
may not be all that sentient but nevertheless yours is a security
product.

In other words, I think intent matters (just as The Law would agree
that intent can matter more than effect). In the particular case
here, if the reason your product can, will, or does fail is because
someone can, will, or did try to make it fail, then even if you
can't bring yourself to agree that what you have is a security
product, you will nevertheless at least have to agree that building
your product as if it were a security product is something you must
do.

This can't be a completely bright line, but it is an instructive
distinction. Security products are, almost by definition, designed
with failure in mind. They are designed to resist failure even
when that failure is devoutly wished for by the opponent. They are
designed for the failure case as much as or more than the success
case. They envision an opponent who can think.

Few important ideas are truly new, so this idea is not a new idea;
Bruce Schneier wrote in his Foreword [17] to Ross Anderson's _Security
Engineering_,

 Security involves making sure things work, not in the presence
 of random faults, but in the face of an intelligent and malicious
 adversary trying to ensure that things fail in the worst possible
 way at the worst possible time... again and again.

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

NMLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

Perhaps we are imagining that the digital world is more dissimilar
to the physical world than it really is. Perhaps the better way
to express this is to say that when the opponent you face will
simply try again and perhaps harder if his first approach is repulsed,
then designing for failure is the core of your concern. When a
street light drops a lens and misses you but having missed you the
next street light doesn't cough up its whole light arm, there is
no security issue. When you've whacked a dog with a stick and now
it wants your arm even more, now you've got a security issue.

...

Earlier I spoke of trendlines as something that even a somewhat
lossy measurement can still provide and, more to the point, that
trendlines provide ordinal scales that are almost always sufficient
for decision making. If you have a risk measure that is at least
stable enough to yield a trendline, and you have a corresponding
measure of some exposure, then you can look at what is called
Relative Risk, namely the change in risk that a change in the
exposure transmits. It is trivially calculated: Relative Risk is
the probability of the risk given the presence of the exposure
divided by the probability of the risk given the absence of the
exposure. A Relative Risk greater than one simply means that the
risk is more likely given the exposure.

I suspect some of you know all that already, and you may also know
that dividing the Relative Risk minus 1 by the Relative Risk gives
you the Attributable Risk Percent or ARP. The Attributable Risk
Percent is important -- it is the portion of all risks that could
have been avoided had the exposure been avoided. Attributable Risk
Percent is my choice for a metric [18] with which to think about
attack surfaces.

In their definitive paper, Manadhata & Wing [19] provided two
important insights about relative measures of attack surface:

 [I]f we create a newer version of a software system by only
 adding more resources to an older version, then assuming all
 resources are counted equally, the newer version has a larger
 attack surface and hence a larger number of potential attacks.
 Software developers should ideally strive towards reducing the
 attack surface of their software from one version to another,
 or if adding resources to the software (e.g., adding methods to
 an API), then do so knowingly that they are increasing the attack
 surface.

 [I]f software developers increase a resource's damage potential
 and/or decrease the resource's [required] effort [to compromise]
 in their newer version, then all else being equal, the newer
 version's attack surface measurement becomes larger and the
 number of potential attacks on the software increases.

So, if you call feature expansion an "exposure," then measuring the
Relative Risk of adding that feature delivers exactly what I've
said that security metrics exist only to do: provide decision support
-- in this case decision support for the question of whether the

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

NNLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

feature is worth the inevitably increased Relative Risk. And if
you have that Relative Risk, then you can ask the possibly more
pertinent question of whether the Attributable Risk Percent is a
tolerable price to pay for the feature.

Attack surface Relative Risk may well be old news with respect to
the Windows and Linux operating systems, but Arik Hessendahl reported
[20] four days ago that as of the second quarter of this year the
majority of memory chips no longer go into PCs, they go into tablets,
phones, embedded systems, and so forth. The same is true for
software -- the number of new apps for Apple and Android combined
is well over 1,000 per day. That is where the attack surface is
growing and where the Attributable Risk Percent figure is most
needed for decision support including, but not limited to, the Bring
Your Own Device trend.

Turning to Manadhata's & Wing's section on "Lessons Learned,"

 Choosing a suitable configuration, especially for complex
 enterprise-scale software, is a nontrivial and error-prone task.
 A system's attack surface measurement is dependent on the system's
 configuration. Hence assuming that vendors provide attack surface
 measurements for different configurations of their software,
 software consumers would choose a configuration that results in
 a smaller attack surface.

 [I]n the maintenance phase, software developers can use the
 measurements as a guide while implementing vulnerability patches.
 A good patch should not only remove a system's vulnerability,
 but also should not increase the system's attack surface.

Both of these learned lessons might as well just have said that
measurement of Relative Risk is necessary if rational risk management
tradeoffs are to be made. But in the smartphone case, end-user
configuration control and/or patch choice are impossible (and that
impossibility is strictly intentional on the part of the network
operator). Given that, would it be too much to ask the network
operator to inform you what the Relative Risk between an upgraded
system and the current system is? Of course it isn't (too much to
ask), but does anyone care?

...

If you buy the argument that designing for failure is a central
point in security design, then you will surely want to have the
kind of instrumentation that when things do go badly you will be
able to do forensic analysis that makes the event less likely to
again occur. Speaking as a statistician: Get the data -- you can
always throw it away later. Getting the data is what the Reference
Monitor can do if you add logging to it. Getting the data is what
those price-flickering HFT boxes are doing. Getting the data is
what Network Flight Recorder did and what Net Witness is doing.
And so forth. The less you can prevent failure the more you must
not let it be silent, tne more you must have forensic-readiness as
part of your design. In John Tan's original formulation [21],
forensic-readiness meant precisely two things:

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

NOLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

 Maximising the ability to collect credible digital evidence

 Minimising the cost of forensics during an incident response

Both of those are all about measurement, and both can be practiced.
Perhaps I should have read these at the outset as well, but in his
book, Andrew Jaquith [22] listed the characteristics of a good
security metric, namely that

 It is consistently measured, i.e., objective and repeatable

 It is cheap to gather -- for which automatability is the hallmark

 It has a units of measure, like dollars

 It is expressed as a number rather than an adjective

 It is relevant to decision making

As you figure out what you are going to measure, keep those points
in mind.

To repeat, then, the most important thing the Software Assurance
Community can do is to ensure that there is no silent failure. This
means instrumentation, it means well designed surveillance regimes,
it means an attention to the kind of metrics that come out of an
airplane's flight data recorder, it means keeping things simple
enough that there are fewer surprises, and it may mean changing how
you think about how you make tradeoffs. Take Kernighan's warning
to heart, and do not write code as cleverly as possible because if
you do then you will not be smart enough to debug it. Because
security is not composable (and may never be), be very careful where
the code you reuse comes from, and reuse only what you need, the
cheapness of the cloud notwithstanding.

There is never enough time. Thank you for yours.

=================

[1] Geer DE: "People in the Loop: Failsafe or Liability?," Rosslyn,
Virginia, 8 February 2012

[2] Bernstein P: _Against The Gods: the Remarkable Story of Risk_
Wiley, 1996; see also
http://www.mckinseyquarterly.com/Strategy/Strategic_Thinking/Peter_L_Bernstein_on_ri
sk_2211

[3] McGrayne SB: _The Theory that Would Not Die_, Yale University
Press, 2011

[4] O'Dell M: personal communication

[5] Kernighan BW & Plauger PJ: _The Elements of Programming Style_,
McGraw-Hill, 1974

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

NPLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

[6] Searching for a Speed Limit in High-Frequency Trading, New York
Times, 8 Sept 2012
http://www.nytimes.com/2012/09/09/business/high-frequency-trading-of-stocks-is-two-
critics-target.html

[7] Hubbard D: _How to Measure Anything_, Wiley, 2010

[8] Hoare CAR: "There are two ways of constructing a software design.
One way is to make it so simple that there are obviously no
deficiencies and the other is to make it so complicated that there
are no obvious deficiencies."

[9] Kolsek M: personal communication

[10] Davis D: personal communication

[11] Anderson J: "Computer security technology planning study,"
Technical Report ESD-TR-73-51, AFSC, Hanscom AFB, Bedford, Mass.,
October 1972

[12] The Orange Book, "Department of Defense Standard: Department
of Defense Trusted Computer System Evaluation Criteria," DoD
5200.28-STD (Supersedes CSC-STD-00l-83), l5 August 1983

[13] Index of Cyber Security, http://www.cybersecurityindex.org

[14] Clark S, Frei S, Blaze M, & Smith J: "Familiarity Breeds
Contempt: The Honeymoon Effect and The Role of Legacy Code in
Zero-Day Vulnerabilities," ACSAC, 9 December 2010
http://www.acsac.org/2010/openconf/modules/request.php?
module=oc_program&action=view.php&a=&id=69&type=2

[15] Ozment A & Schecter S: "Milk or Wine: Does Software Security
Improve with Age?," USENIX Security Symposium, Vancouver, B.C., 31
July 2006 http://research.microsoft.com/pubs/79177/milkorwine.pdf

[16] Ziegler K: "Smart Grid, Cyber Security, and the Future of
Keeping the Lights On," USENIX Security Symposium, 13 August 2010

[17] Anderson R: _Security Engineering_, Wiley, May 2001
http://www.cl.cam.ac.uk/~rja14/bruce.html

[18] Geer DE: "Attack Surface Inflation," IEEE Security & Privacy,
July/August 2011 http://geer.tinho.net/ieee/ieee.sp.geer.1107a.pdf

[19] Manadhata PK & Wing JM: "An Attack Surface Metric," IEEE
Transactions on Software Engineering, May/June 2011
http://www.cs.cmu.edu/~pratyus/tse10.pdf

[20] Hessendahl A: "It's Official: The Era of the Personal Computer
Is Over," Dow Jones, 19 September 2012
http://allthingsd.com/20120915/its-official-the-era-of-the-personal-computer-is-
over/

[21] Tan J: "Forensic Readiness," Secure Business Quarterly, July 2001
(dead link follows)

NMLNMLNO ÖÉÉêKëï ~KNOMVNVKíñí

NQLNQÑáäÉWLL~êäÅÉåíÉêLéêç àÉÅíLpçÑíï ~êÉ=̂ ëëì ê~åÅÉLmçëíÒ o f̀ Lt ÉÇåÉëÇ~óLÖÉÉêKëï ~KNOMVNVKíñí

http://www.atstake.com/research/reports/acrobat/atstake_forensic_readiness.pdf

[22] Jaquith A: _Security Metrics,_ Adddison-Wesley, March 2007

