NOAA Technical Memorandum NWS NHC 28

A STATISTICAL MODEL FOR THE PREDICTION OF WESTERN NORTH PACIFIC TROPICAL CYCLONE MOTION (WPCLPR)

Yiming/Xu
Shanghai-Typhoon Institute
People's Republic of China
Charles J. Neumann
National Hurricane Center Miami, Florida

National Hurricane Center Miami, Florida November 1985

The National Weather Service National Hurricane Center (NHC) subseries provides an informal medium for the documentation and quick dissemination of results not appropriate, or not yet ready, for formal publication. The series is used to report on work in progress, to describe technical procedures and practices, or to relate progress to a limited audience and hence will not be widely distributed.

Technical Memoranda originated at the National Hurricane Center prior to the establishment of this series are listed below. They were published as ESSA Technical Memoranda, Southern Region (SRTM); ESSA Technical Memoranda, WBTM; or NOAA Technical Memoranda, NWS.

Beginning with WBTM SR 38, the papers are available from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22151 . Price $\$ 2.75$ per copy; $\$ 1.45$ microfiche. Order by accession number shown in parenthesis at end of each entry.

ESSA Technical Memoranda

SRTM 28 The Weather Distribution with Upper Tropospheric Cold Lows in the Tropics. Neil L. Frank - September 1966
WBTM. SR 38 Florida Hurricanes. Gordon E. Dunn and Staff NHC - November 1967 (PB 182220)
WBTM SR 42 Memorable Hurricanes of the United States Since 1873. Arnold L. Sugg and Robert L. Carrodus - January 1969 (PB 182 228)
WBTM SR 44 Climatology of Atlantic Tropical Cyclones by Two and One-Half Degree Latitude-Longitude Boxes. John R. Hope and Charles J. Neumann - February 1969 (PB 183 308)
WBTM SR 45 On the Maximum Sustained Winds Occurring in Atlantic Hurricanes. Charles Holliday May 1969 (PB 184 609)
WBTM SR 46 Hemispheric Circulation and Anomaly Patterns Observed When Tropical Storms Reach Hurricane Intensity. Paul. J. Hebert, NHC and Banner I. Miller, NHRL - May 1969 (PB 184 610)
WBTM SR 47 Disturbances in the Tropical and Equatorial Atlantic. R. H. Simpson - June 1969 (PB 184 740)
WBTM SR 49 A Mean Storm Surge Profile. Arnold L. Sugg - December 1969 (PB 188 422)
WBTM SR 50 A Reassessment of the Hurricane Prediction Problem. Robert H. Simpson - February 1970 (PB 189 846)
WBTM SR 51 The Satellite Applications Section of the National Hurricane Center. R. H. Simpson and D. C. Gaby - September 1970 (COM 71 00005)

NOAA Technical Memoranda NWS

NWS SR 53 The Decision Process in Hurricane Forecasting. R. H. Simpson - January 1971 (COM 71 00336)
NWS SR 55 Digitized Atlantic Tropical Cyclone Tracks. John R. Hope and Charles J. Neumann February 1971 (COM 71 00984)
NWS SR 56 Memorable Hurricanes of the United States Since 1873. Arnold Sugg, Leonard G. Pardue and Robert L. Carrodus - April 1971 (COM 71 00610)
NWS SR 58 Atlantic Hurricane Frequencies Along the U. S. Coastline. R. H. Simpson and Miles B. Lawrence - June 1971 (COM 71 00796)
NWS SR 62 An Alternate to the HURRAN (Hurricane Analog) Tropical Cyclone Forecast System.
Charles J. Neumann - January 1972 (COM 72 10351)
NWS SR 63 A Statistical Method of Combining Synoptic and Empirical Tropical Cyclone Prediction Systems. Charles J. Neumann, John R. Hope and Banner I. Miller - May 1972 (COM 72 10553)
NWS SR 69 Statistical-Dynamical Prediction of Tropical Cyclone Motion. Charles J. Neumann and Miles B. Lawrence - April 1973 (COM 73 10728)
NWS SR 71 A Decision Procedure for Application in Predicting the Landfall of Hurricanes. R. H. Simpson and Brián R. Jarvinen - August 1973 (COM 73-11663/AS).

NWS SR 72 Objective Analysis of the Sea Surface Temperature. Brian R. Jarvinen - August 1973
NWS SR 81 The Effect of Initial Data Uncertainties on the Performance of Statistical Tropical Cyclone Prediction Models: Charles J. Neumann - March 1975 (COM 75-10483/AS)
NWS SR 82 A Statistical Study of Tropical Cyclone Positioning Errors with Economic Applications. Charles J. Neumann - March 1975 (COM 75-1I362/AS)
NWS SR 83 A Satellite Classification Technique for Subtropical Cyclones. Paul J. Hebert and Kenneth O. Poteat - July 1975 (COM 75-11220/AS)
NWS NHC I Annual Data and Verification Tabulation of Atlantic Tropical Cyclones 1974. John R. Hope and Staff, NHC - January 1976 (PB28526I/AS)
NWS NHC 2 Annual Data and Verification Tabulation - Atlantic Tropical Cyclones 1975. Paul J. Hebert and Staff, NHC - January 1977 (PB285263/AS)
NWS NHC 3 Intensification Criteria for Tropical Depressions in the Western North Atlantic. Paul J. Hebert - April 1977 (PB2854I5/AS)
NWS NHC 4 Annual Data and Verification Tabulation of Atlantic Tropical Cyclones 1976. Paul J. Hebert and Staff, NHC - May 1977 (PB285262/AS)
NWS NHC 5 Atlantic Tropical Cyclone Tracks by 5-, 10-, 15-, and 30-Day Periods. Brian J. Jarvinen and Charles J. Neumann - May 1978 (PB284009/AS)

CONTENTS

Page
ABSTRACT 1

1. INTRODUCTION 1
2. DEVELOPMENTAL DATA 3
2.1 Historical Storm Tracks 3
2.2 Definition of Predictors/Predictands 6
3. PREDICTOR SELECTION 6
4. PERFORMANCE ON DEPENDENT, INDEPENDENT, AND OPERATIONAL DATA 8
5. PERFORMANCE CHARACTERISTICS 10
5.1 Time of Year 10
5.2 Initial Latitude 10
5.3 Initial Longitude 12
5.4 Average Motion Over the Past 12 h 12
5.5 Average Motion Over the Past 24h 12
5.6 Storm Intensity 12
6. OPTIMIZING MODEL PERFORMANCE 15
6.1 Initial Motion Vectors 15
6.2 Model Limitations 15
7. FURTHER COMMENTS 15
8. COMPUTER PROGRAM LISTING 17
9. ACKNOWL EDGMENTS 19
REFERENCES 19
APPENDIX: FORTRAN Computer Program and Associated Data Needed for WPCLPR Model 21

A STATISTICAL MODEL FOR THE PREDICTION OF WESTERN NORTH PACIFIC TROPICAL CYCLONE MOTION (WPCLPR)

Yiming Xu ${ }^{1}$
Shanghai Typhoon Institute People's Republic of China
and
Charles J. Neumann
National Hurricane Center
Coral Gables, Florida 33146

Abstract

The derivation, implementation and operational utility of a new statistical model for the prediction of western North Pacific tropical cyclone motion is described. The model uses regression equations to forecast tropical cyclone motion through 72 h and incorporates predictors derived from climatology, persistence, and storm intensity. It is patterned after models that were developed for most of the other tropical cyclone basins. In addition to its usefulness for operational prediction, the model provides a convenient threshold skill level for evaluating the performance of other, more sophisticated models.

Developmental data consisted of western Pacific tropical cyclone tracks and associated storm intensities for 1946 through 1980. The model was tested on independent data for 1981 and 1982 and on operational data for 1983 and 1984.

1. INTRODUCTION

This report documents a recently developed statistical model (WPCLPR) for the prediction of western North Pacific (WESPAC) tropical cyclone motion. The prediction scheme is based on a series of regression equations. The predictors are derived from climatology (the location of a storm and time of year), persistence (average storm motion over the past 12 and 24 h) and storm intensity (maximum sustained surface wind). Predictors derived from analyzed fields of environmental data (winds or geopotential heights) have explicitly been omitted. Predictands are the meridional (north/south) and zonal (east/west) components of tropical cyclone motion in 12-h increments through 72 h .

[^0]

Figure 1. Tracks of the 873 western North Pacific tropical storms and typhoons, 1946-1980. These storms were used as dependent data.

This type of model, commonly referred to as a "CLIPER-class" model, has been used for several years in other basins and is well-documented in the literature. References to the other basins include: Neumann (1972) for the Atlantic; Neumann and Randrianarison (1976) for the southwest Indian Ocean; Neumann and Leftwich (1977) for the eastern North Pacific; and Neumann and Mandal (1978) for the North Indian Basin. Because of this rather extensive documentation, only those aspects of the model unique to WESPAC are described here.

2. DEVELOPMENTAL DATA

2.1 Historical Storm Tracks

Developmental data consist of the best tracks ${ }^{2}$ of all recorded western North Pacific tropical cyclones over the $35-\mathrm{y}$ period 1946-1980. This data set (through 1975) originally had been obtained from the NOAA National Climatic Center, Asheville, North Carolina (tropical cyclone deck 993). Included were storm positions for every 12 h and maximum winds for most storms. This original data set was extensively supplemented by storm positions and maximum winds at 6 -hourly intervals as obtained from WESPAC storm summaries that are published annually by the Joint Typhoon Warning Center on Guam (for example, Annual Tropical Cyclone Report, 1984). Also, some missing storm intensities for the earlier years were obtained from records maintained by the People's Republic of China (Central Meteorological Bureau, 1972). The final data set, beginning in 1946, consists of storm positions and intensities at 6-hourly intervals. Through 1980, 873 storms are documented; these are depicted in Figure 1. The latter plot of storm tracks led to spatial bounds of the model being set at $5^{\circ}-35^{\circ} \mathrm{N}$ latitude and west of $150^{\circ} \mathrm{E}$ longitude.

In the temporal sense, cases were excluded if they occurred before 15 May or after 15 December. As shown in Figure 2, this 8 -month period comprises the bulk of the WESPAC season. Activating the program outside of these spatial and temporal bounds is not advised. Indeed, the recommended computer program to run the model (appendix) disallows running the program outside of these temporal bounds or if a storm is initially beyond $35^{\circ} \mathrm{N}$ latitude. The developmental data set also excluded all systems having maximum intensity of < 34 kt . Storms in existence for < 36 h are also inherently excluded from the developmental data set in that there is a requirement for past positions through at least $-24 h$ and a future storm position through at least +12 h .

Storms that occurred in 1981 and 1982 were reserved for testing of the model in an independent data mode and the model, developed early in 1983, was subsequently tested in an operational mode for 1983 and 1984. Storms that occurred during these latter $2-y$ periods are shown in figures 3 and 4.

The 1946-1980 developmental data set is large enough (5,410 cases at 12 h to 2,788 cases at 72 h) that, even allowing for lost degrees of freedom through serial correlation, the classical significance testing exercise could probably

[^1]

Figure 2. Daily frequency of typhoons (shaded area) and tropical storms and typhoons combined (nonshaded area) per 100 years based on the 39year period 1946-1984. Data have been smoothed over 9-day period. Mean number of days per year with tropical storms or typhoons is 149.5 . Mean number of days per year with typhoons alone is 79.9.

Figure 3. Tracks of the 54 western North Pacific tropical storms and typhoons, 1981-1982. These storms were used as independent data.

Figure 4. Tracks of the 50 western North Pacific tropical storms and typhoons, 1983-1984. These storms were used in operational testing of program.
have been omitted and the 1981 and 1982 storms profitably could have been added to the developmental data. This option was considered, but not adopted.

2.2 Definition of Predictors/Predictands

From the basic developmental data set, 8 first-order predictors can be defined. These are: initial storm latitude, initial storm longitude, time of year (Julian day number), average meridional translational speed over past 12 h , average zonal speed over past 12 h , average meridional storm translational speed over past 24 h , average zonal storm translational speed over past 24 h and initial storm intensity. The assumption is made that each of the orthogonal components of projected motion $\left(Y_{t}\right)$ is a function of these 8 predictors,

$$
\begin{equation*}
Y_{t}=f\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{8}\right) . \tag{1}
\end{equation*}
$$

When we developed CLIPER-class models for other basins, the above function was taken as a second- or third-order polynomial, with the order being determined by the size of the developmental data set and the geometric complexity of the basin. The very large data set available here and the parabolic nature of the tracks over WESPAC justify the use of a third-order polynomial. The number of possible predictors (excluding the "intercept" value) in the polynomial expansion of (1) is given by

$$
\begin{equation*}
T=(m+n)!/(m!n!)-1 \tag{2}
\end{equation*}
$$

where n is the order of the polynomial and m is the number of basic predictors. From (2), it follows that the third-order polynomial, including the intercept value, will contain 165 terms. Accordingly, a master data file was structured, and contained, for each case, the 12 predictands (storm meridional and zonal motion displacements for $12,24,36,48,60$ and 72 h) and the 164 potential predictors. The additional predictors, 9 through 164 , can be generated by considering all possible products and cross products of the 8 basic predictors. These are identified in the FORTRAN program listing beginning on page 22. The predictor indexing, however, is somewhat different in the program from that just described.

3. PREDICTOR SELECTION

Experience from the development of other CLIPER-class models led to a modified procedure to determine which of the 164 potential predictors were to be retained in the final prediction equations. Typically, predictors are systematically selected until the incremental variance reduction drops below some preset value, often taken as 1 or $1 / 2 \%$. The problem with this classical approach in the development of CLIPER-class models is that some predictors, which may be working in combination (as is often the case in nth-order polynomials), may be overlooked in the screening process. Another, even more serious, problem is that predictor selection from one period to another is done independently. This gives rise to the generation of meandering tracks that impart a certain degree of skepticism to the forecast.

To alleviate these problems, 20 "best" predictors were selected for each of the 12 regression equations (meridional and zonal components for each of six forecast periods). Trial-and-error screening runs suggested that this retention of 20 predictors was about optimal in assuring that all predictors acting in combination were selected. There were some differences here, depending upon projection or component, but, in the interest of simplicity, these differences were ignored. In this connection, the large sample size guarantees that if worthless predictors are included in the program, the partial correlations and, thus, the regression.coefficients, will be near zero.

Next, we searched for predictors that were used at least once for any of the six meridional time periods, 12 through $72 h$. As a result, we obtained 32 of the 164 possible predictors. This sorting was also carried out for zonal motion and, coincidentally, 32 predictors (not necessarily the same ones) were identified. To avoid the meandering track problem referred to earlier, the program was structured about these 32 predictors.

The general form of the prediction equations is:

$$
\begin{equation*}
D=c_{0}+\sum_{i=1}^{i=32} c_{i} P_{i}, \tag{3}
\end{equation*}
$$

where D is an orthogonal (zonal or meridional) displacement component at a given period, C_{0} is the intercept value and C_{i} is the 32 regression coefficients corresponding to the 32 predictors p_{i} for that given forecast period and orthogonal component.

The specific predictors and regression coefficients can be identified from the data cards following the FORTRAN program listing given in the appendix (beginning on page 28). The predictand/predictor numbering convention in the program is:
P_{1} and P_{2} are the forecast meridional and zonal displacements in nautical miles (predictands) for each of the six projections, 12 through 72 h .
P_{3} is the initial storm latitude.
P_{4} is the initial storm longitude.
P_{5} is the current Julian day number.
P_{6} is the average meridional speed (knots) over the past $12 \mathrm{~h} .{ }^{3}$

[^2]P_{7} is the average zonal speed (knots) over the past $12 h$.
P_{8} is the average meridional speed (knots) over the past 24h.
P_{9} is the average zonal speed (knots) over the past 24 h .
P_{10} is the storm intensity in knots.
P_{11} through P_{166} are additional predictors generated by the cubic products and cross products of P_{3} through P_{10}.

It can be noted in the data cards that specify the predictors and regression coefficients that there are 12 nine-card sets of 32 predictor numbers and associated regression coefficients, each preceded by an intercept value. These 12 sets are in the order 12 h meridional, 12 h zonal, 24 h meridional... 72 h zonal. For example, the intercept value for 12 h meridional motion is 82.43 , while the first predictor is number 29 and the associated regression coefficient is 0.1673843 . As noted on page 25 , predictor number 29 is defined as the product of P_{4} and P_{6} or the product of initial storm longitude and average meridional speed over the past 12 h . These predictor/ regression coefficient sets are listed in the order that they were selected in the screening program. In the example under discussion, subsequent predictor numbers are 141, 154, 113, 133, etc.

For each of the 12 prediction equations, the first and most important predictor turned out to be a function of average motion over the past 12 h . This characteristic points out the importance of the persistence factor in the prediction scheme and, as discussed in section 6, great care must be exercised in determing this motion.
4. PERFORMANCE ON DEPENDENT, INDEPENDENT, AND OPERATIONAL DATA

Tables 1 and 2 depict, respectively, the performance of the model on dependent and independent data. The dependent data forecast errors are somewhat greater for the short-term projections and somewhat less for the long-term projections than for the Atlantic counterpart of the model (Neumann, 1972). Comparison with still other basins shows that the WESPAC dependent data errors are higher for all periods. The explanation here is probably related to the degrees of forecast difficulty one encounters in going from one basin to another or to parts of the same basin. The concept is discussed by Pike (1985).

Comparison of Table 1 with Table 2 shows, for the most part, that the model performed better on the $2-y$ independent sample than on the $35-y$ developmental data set. Typically, the reverse is true. For example, in structuring a CLIPER-class model for the southwest Indian Ocean, Neumann and Randrianarison (1976) found about a 20% increase in forecast error when running the model on an independent sample. The explanation probably lies partially in that the data set used in developing WPCLPR was unusually large. Also, the sample of storms used to test the model for 1981 and 1982 (Figure 3) showed more adherence than normal to persistence and climatology.

Table 1. Performance of the model on best-track independent data. Period of record is 1946-1980. Errors are in n.mi. (km).

Forecast period (hours)	Component	Sample size	Multiple corr. coef.	Standard error	Forecast error
12	Meridional Zonal	5410	$\begin{aligned} & 0.92 \\ & 0.83 \end{aligned}$	$\begin{array}{ll} 40.6 & (78.9) \\ 37.3 & (72.5) \end{array}$	44.0 (85.5)
24	Meridional Zonal	4894	$\begin{aligned} & 0.90 \\ & 0.78 \end{aligned}$	$\begin{array}{ll} 88.8 & (172.5) \\ 80.5 & (156.4) \end{array}$	97.5 (189.4)
36	Meridional Zonal	4342	$\begin{aligned} & 0.87 \\ & 0.72 \end{aligned}$	$\begin{aligned} & 144.4(280.5) \\ & 127.2(247.1) \end{aligned}$	157.7 (306.3)
48	Meridional Zonal	3784	$\begin{aligned} & 0.83 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 205.5(399.2) \\ & 172.1(334.3) \end{aligned}$	219.7 (426.8)
60	Meridional Zonal	3276	$\begin{aligned} & 0.80 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 267.7(520.0) \\ & 210.7(409.3) \end{aligned}$	278.1 (540.2)
72	Meridional Zonal	2788	$\begin{aligned} & 0.76 \\ & 0.56 \end{aligned}$	$\begin{aligned} & 328.2(637.5) \\ & 244.9(475.7) \end{aligned}$	334.9 (650.6)

Table 2. Performance of the model on best-track independent data. Period of record is 1981-1982. Errors are in n.mi. (km).

Forecast period (hours)	Component	Sample size	Multiple corr. coef.	Standard error	Forecast error
12	Meridional Zonal	353	$\begin{aligned} & 0.94 \\ & 0.86 \end{aligned}$	$\begin{array}{ll} 34.7 & (67.4) \\ 33.2 & (64.5) \end{array}$	39.3 (76.3)
24	Meridional Zonal	317	$\begin{aligned} & 0.91 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 77.1(149.8) \\ & 77.4(150.4) \end{aligned}$	88.7 (172.3)
36	Meridional Zonal	281	$\begin{aligned} & 0.87 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 128.8(250.2) \\ & 121.1(235.2) \end{aligned}$	144.6 (280.9)
48	Meridional Zonal	250	$\begin{aligned} & 0.83 \\ & 0.59 \end{aligned}$	$\begin{aligned} & 185.8(360.9) \\ & 163.2(317.0) \end{aligned}$	205.5 (399.2)
60	Meridional Zonal	217	$\begin{aligned} & 0.76 \\ & 0.52 \end{aligned}$	$\begin{aligned} & 256.3(497.9) \\ & 203.2(394.7) \end{aligned}$	270.8 (526.0)
72	Meridional Zonal	186	$\begin{aligned} & 0.69 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 327.9(637.0) \\ & 247.2(480.2) \end{aligned}$	$337.9(656.4)$

Regardless of a model's performance on dependent or independent data, it must be tested on operational data where marked degradation over dependent or even independent data is not unusual. In the latter modes, initial input data is derived from the best track of the storm, whereas in an operational mode, a best-track scale of motion can only be estimated from warning time positions. As is noted in section 5 , the model is particularly sensitive to uncertainties in the specification of the average motion over the past 12 h .

During the last part of the 1983 season and throughout the 1984 season, the model was run operationally at JTWC. Verification statistics are presented in the Annual Typhoon Report, 1984 (JTWC, 1984). On page 164 of this report, it can be noted that the model's performance met expectations. That is, in comparison with other models, best performance was observed at the shorter range projections. At the more extended projections, models sensitive to environmental forcing were superior.

5. PERFORMANCE CHARACTERISTICS

In this section, examples of model performance under controlled initialization are presented. As stated, input data to the model consist of 8 predictors -- initial storm latitude, initial storm longitude, time of year, average meridional translational speed over past 12 h , average zonal speed over past 12 h , average meridional translational speed over past 24 h , average zonal translational speed over past 24 h , and maximum storm intensity. Speeds are computed within the program from current, $12 h$ - and $24 h-01 d$ warning time positions.

How sensitive is the model to inaccuracies in operational specification of these predictors? This question is best answered by holding certain predictors constant and varying others.

5.1 Time of Year

For a storm at a given location, which has a given intensity and for which past motion characteristics have been determined, the expected track, in the climatological sense, is a function of the time of year. This, of course, is merely a reflection of a normal climatological shift in the environmental steering forces. The model's ability to sense these average forces is demonstrated in Figure 5. Here, all input data were held constant, except for the Julian day number. The resultant shift in track is clearly noted. In accordance with climatological prediction, recurvature within 72 h can be expected early and late in the season, but not during mid-season when the maximum westerly component occurs near mid-August.

5.2 Initial Latitude

In the climatological sense, storms initially in the deep tropics are more likely to remain embedded in the easterlies (move with a westward component of motion) through 72 h than are storms initially at a more poleward location. Controlled WPCLPR forecasts, as illustrated in Figure 6, agree with this expectation. However, the model sensitivity to errors in initial

Figure 5. Sensitivity of WPCLPR to time of year. Shown are 72-h forecast tracks on fifteenth day of each month, May through December, with other predictors being held constant. Storm intensity was set at 100 kt .

Figure 6. Sensitivity of WPCLPR model to initial latitude. Shown are 72-h forecast tracks with different initial latitudes and with other predictors being held constant. Date and storm intensity are set at 15 September and 100 kt , respectively.
latitude is rather small and, after a correction for this initial positioning error, the downstream effect of even a 1° or 2° error in latitude is not serious.

5.3 Initial Longitude

Figure 7 shows the effect of varying the initial longitude and holding constant the other seven input parameters. Here, the sensitivity is even less than for initial latitude, although there is some tendency for storms that are initially closer to the western edge of the basin to have a smaller northerly component in 72h.

5.4 Average Motion Over the Past 12 h

Two predictors (average meridional and zonal speed over the past 12 h) are involved here. The model computes these orthogonal components from the present and the 12 h -old positions of the storm. As noted in Figure 8, there is much model sensitivity here, with errors in the $12 h-o l d$ position having rather marked downstream effect. In this example, if the 12 h -old position is to the north, the $72 h$ forecast position will be to the south. Similarly, if the $12 h$-old position is to the south, the $72-h$ forecast position will be to the north. Further tests (not shown here), show even greater sensitivity to differences in present position. Accordingly (section 6), great care must be taken in specification of present and $12 h-o l d$ warning time positions. Collectively, these two positions should reflect the forecaster's best estimate of average storm motion over the past 12 h .

5.5 Average Motion Over the Past 24h

In contrast to model sensitivity to average motion over the past 12 h , model sensitivity to average motion over the past 24 h (as obtained from the present and the 24 h -old positions) is considerably less. This is depicted in Figure 9. It can be noted that the downstream effects are rather small.

5.6 Storm Intensity

It can be shown dynamically that large storms have a larger poleward motion component than small storms. Although the WPCLPR does not directly address storm size, it does consider storm intensity and there is a weak positive statistical relationship between storm size (as measured by the outer closed surface isobar) and storm intensity (Merrill, 1982). Also, weak storms tend to be steered more by the lower troposphere and intense storms more by a deep layer throughout the troposphere (Simpson, 1971). The net result of these factors, and probably others, is that the more intense storms tend to have a larger poleward component than do the weaker storms. Also, there is slight increase in the westerly component with increasing storm intensity. The effect is illustrated in Figure 10.

Figure 7. Sensitivity of WPCLPR model to initial longitude. Shown are 72-h forecast tracks with different initial longitudes and with other predictors being held constant. Date and storm intensity are set at 15 September and 100 kt , respectively.

Figure 8. Sensitivity of WPCLPR model to 12 h -old position. Shown are 72-h forecast tracks with three $12 h-01 d$ positions and with other predictors being held constant. Date and storm intensity are set at 15 September and 100 kt , respectively.

9. Sensitivity of WPCLPR model to 24 h -old position. Shown are 72-h forecast tracks with different $24 h$-old positions with other predictors being held constant. Date and storm intensity are set at 15 September and 100 kt , respectively.

Figure 10. Sensitivity of WPCLPR model to initial storm intensity. Shown are 72-h forecast tracks with three initial intensities and with other predictors being held constant. Date has been set at 15 September.

6. OPTIMIZING MODEL PERFORMANCE

6.1 Initial Motion Vectors

In the preceding section, it was noted that the model is very sensitive to the average motion vector over the past 12 h as defined by the current and the $12 h-o l d$ storm positions. The forecaster must make every effort to assure that these positions reflect a best-track scale of motion. The methodology to accomplish this varies from one forecast center to another. A pitfall is the unqualified use of storm positions that reflect small-scale, perhaps trochoidal, oscillations of the storm center, which are not really representative of the larger scale, more conservative motion of the entire storm envelope.

In this connection, the current position of a storm need not automatically be the $12 \mathrm{~h}-\mathrm{old}$ position of a storm 12 h hence; similarly, the current $12 h$-old position of a storm need not automatically become the $24 \mathrm{~h}-\mathrm{old}$ position 12 h hence. The three sets of positions (now, 12 h and 24 h ago) might require continuous adjustment so as to best reflect current motion trends.

6.2 Model Limitations

As stated, operational use of the model is limited to storms that are initially at $5^{\circ}-35^{\circ} \mathrm{N}$ and westward from $150^{\circ} \mathrm{E}$ longitude through the Asian mainland. In the temporal sense, the model should not be activated on storms occurring before 15 May or after 15 December. Finally, the system must be of at least tropical storm intensity. Violation of these spatial, temporal, and wind restrictions will result in performance degradation. For example, Figure 11 illustrates a predicted $72-\mathrm{h}$ track on a storm that is initially near the northern boundary of the dependent data set $\left(35^{\circ} \mathrm{N}\right)$. The model is acutely biased toward storms that moved slowly; faster moving storms having been dropped from the master storm data file.

Activating the model on storms that were initially east of $150^{\circ} \mathrm{E}$ apparently does not have serious effects on the model performance. Figure 7 shows one such forecast on a storm, initially at $15^{\circ} \mathrm{N}, 160^{\circ} \mathrm{E}$. The $72-\mathrm{h}$ track does not appear to be out of line with the other tracks that are within the spatial bounds of the model:

7. FURTHER COMMENTS

The model described here is designed to make optimum use of climatology and persistence in WESPAC tropical cyclone prediction and provides a good first estimate of future storm motion. However, the third-order polynomial representation of the storm tracks does not allow for small local deviations from the large-scale climatology. Thus, track deviations as storms cross mountainous areas, such as Taiwan or the Philippine Islands (Brand and Blelloch, 1972, 1973) are not well-handled by the model. These areas would have to be modeled separately and blended into the larger scale patterns.

Figure 11. Example of WPCLPR model performance on a storm initially located near northern boundary of developmental (dependent) data set. Date and storm intensity were set at 15 September and 90 kt , respectively. Storm symbols give positions every 12 h .

Through knowledge of current and future steering forces, it should be possible to refine model performance. Indeed, the model can be used as input to more sophisticated models that are sensitive to the existing environmental conditions. However, experience has shown that the model is subject to degradation if these synoptic steering forces are not known with sufficient precision (Neumann, 1980).

In addition to its use as a "first-guess" to the' projected track, or as input to more sophisticated models, the WPCLPR model has other potential uses. Some of these are:

1) Establishment of a benchmark skill level with which to assess the real skill of more sophisticated models (Neumann and Pelissier, 1981).
2) Establishment of a "Forecast Difficulty Level," which can be used to assess long-term trends in tropical cyclone prediction (Neumann, 1981). When the model is run in this mode, best-track, rather than operational input, data are used.
3) Simulation studies that use Monte-Carlo techniques (Neumann, 1975; Jarrell et al., 1984).
4) Normalization of WESPAC tropical cyclone forecasts to those of other basins (Pike, 1985).

8. COMPUTER PROGRAM LISTING

Listing of a recommended FORTRAN IV computer program to run the program is given in the appendix. The program was written for an IBM 32-bit (4-byte) word-size machine and some of the statements may not be compatible with nonIBM compilers. Also, the job control language has been omitted; this must be user-supplied.

When the program is run, two sets of data cards are read in at execution time; the regression coefficient set and the storm data card set. The former consists of 110 cards, the first and last of which are dummies and read as such by the program. The 108 cards that contained the coefficients could probably be stored elsewhere or entered through a block data subroutine.

Following the regression coefficient cards are the storm data cards; there is no limit to the number of storms that can be run in a single job step. The program senses the last storm data card that goes through as end-of-file-marker; however, a "sentinel" card with 9999999 punched in columns 1 though 8 for the integer variable $Y M D H$ could alternately be incorporated with minor program modification. The specific formats (FORMAT statement 20 of the MAIN program) of the data card are:

Columns 1 through 8 -- Date/time in integer format (i.e., 85081706 represents August 17, 1985, 0600 GMT).
Columns 9 and 10 -- leave blank.
Columns 11 through 15 -- initial storm latitude.
Columns 16 through 20 -- initial storm longitude.
Columns 21 through 25 -- storm latitude $12 h$ earlier.
Columns 26 through 30 -- storm longitude $12 h$ earlier.
Columns 31 through 35 -- stom latitude 24 earlier.
Columns 36 through 40 -- storm longitude 24 h earlier.
Note: Above latitudes and longitudes are in $F 5.1$ format.
Column 41 -- leave blank.
Columns 42 through 44 -- wind in whole knots (integer format).
Note: If wind is < 100 kt , the two-digit entry must be right-adjusted.
Columns 45 through 56 -- storm name (Alphanumeric format).
Columns 57 through 80 -- leave blank.
Two sample storm data cards are included on the final page of the program. Program output generated by each data card is:

72H WPCLPR FORECAST ON STORM TEST STORMI
BEGINNING OF FORECAST PERIOD YR/MO/DA/HR (GMT) IS 85051500
MAXIMUM WIND IS 100 KNOTS
THIS IS RUN NUMBER 1

PROJECTION	LATD	LONG	DISPLACEMENT (NMI) $\mathrm{N}+\mathrm{S}-\quad \mathrm{E}+/ \mathrm{W}-$		$\begin{aligned} & \text { MOTION (DIR/SPD) } \\ & \text { OVER LAST } 12 \mathrm{H} \end{aligned}$
-24H	14.4N	128.4 E	----	----	---/----
-12H	15.4 N	126.9 E	----	----	305/8.8 kts
OH	16.4N	125.4 E	0	0	305/ 8.8 kts
$+12 \mathrm{H}$	17.5 N	124.4 E	68.7	-60.2	319/7.6 kts
$+24 \mathrm{H}$	18.8N	125.8 E	144.2	-90.7	338/ 6.8 kts
+36H	20.2N	123.9 E	226.2	-85.2	004/ 6.8 kts
+48H	21.7 N	124.4 E	315.8	-56.7	017/7.8 kts
$+6 \mathrm{OH}$	23.2 N	125.5 E	405.1	7.5	035/ 9.1 kts
+72H	24.8N	126.8 E	502.6	78.7	036/10.0 kts

and the second is:

```
72H WPCLPR FORECAST ON STORM TEST STORM2
BEGINNING OF FORECAST PERIOD YR/MO/DA/HR (GMT) IS 85091500
MAXIMUM WIND IS 100 KNOTS
THIS IS RUN NUMBER 2
```

PROJECTION	LATD	LONG	DISPLACEMENT (NMI) $\mathrm{N}+\mathrm{S}-\quad \mathrm{E}+/ \mathrm{W}-$		MOTION (DIR/SPD) $\text { OVER LAST } 12 \mathrm{H}$
-24H	14.4 N	128.4 E	----	----	---/----
$-12 \mathrm{H}$	15.4 N	$126.9 E$	-	-	305/8.8 KTS
OH	16.4 N	125.4 E	0	0	305/ 8.8 KTS
$+12 \mathrm{H}$	17.4 N	123.8 E	63.0	-91.5	305/ 9.3 KTS
+24H	18.5 N	122.3 E	128.4	-179.8	$307 / 9.2 \mathrm{KTS}$
$+36 \mathrm{H}$	19.8 N	120.8 E	202.5	-261.6	312/ 6.8 KTS
+48H	21.0 N	119.7 E	277.2	-326.5	$319 / 8.3$ KTS
$+6 \mathrm{H}$	22.2 N	118.7E	348.4	-382.0	322/ 7.5 KTS
$+72 \mathrm{H}$	23.3 N	118.0 E	413.9	-419.9	330/ 6.3 KTS

These forecast tracks (for 15 May and 15 September) were among those illustrated in Figure 5. It is recommended that the program be tested on these two cases.

9. ACKNOWLEDGMENTS

Operational testing of this program was accomplished through the cooperation of the Naval Environmental Research Facility and the Joint Typhoon Warning Center. This assistance is greatly appreciated. The lead author also expresses his gratitude to the National Weather Service and the National Hurricane Center for support received during his assignment to the center, November 1982 to November 1983. Finally, appreciation is directed to the NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) Hurricane Research Division for editorial assistance and word processing services in preparing the manuscript for publication.

REFERENCES

Brand, S. and J. Blelloch, 1972: Changes in the characteristics of typhoons crossing the Philippines. Naval Environmental Prediction Research Facility Research Report TP 6-72, 38 pp.

Brand, S. and J. Blelloch, 1973: Changes in the characteristics of typhoons crossing the Island of Taiwan. Naval Environmental Prediction Research Facility Research Report TP 8-73, 21 pp.

Central Meteorological Bureau, 1972: Northwest Pacific typhoon track maps, 1949-1969, Peking, PRC, 378 pp. (in Chinese).

Jarrell, J. D., S. Brand and P. F. Krumpe, 1984: Tropical cyclone threat estimates: Where are we? Postprints, Fifteenth Conference on Hurricanes and Tropical Meteorology, January 9-13, 1984, Miami, Florida. American Meteorological Society, Boston, J29-J34.

Joint Typhoon Warning Center, 1985: Annual Typhoon Report, 1984. Joint Typhoon Warning center (JTWC), Guam, Mariana Islands, 222 pp.

Merrill, R. T., 1982: A comparison of large and small tropical cyclones. University of Colorado, Department of Atmospheric Science Paper No. 352, Ft. Collins, 75 pp.

Neumann, C. J., 1972: An alternate to the HURRAN tropical cyclone forecast system. NOAA Technical Memorandum NWS SR-62, Miami, Florida, 25 pp.

Neumann, C. J., 1975: A statistical study of tropical cyclone positioning errors with economic applications. NOAA Technical Memorandum NWS SR-62, Miami, Florida, 21 pp.

Neumann, C. J., 1980: The prediction of tropical cyclone motion - An overview. Selected Papers, Thirteenth Technical Conference on Hurricanes and Tropical Meteorology, Miami Beach, Florida, December 1-5, 1980. American Meteorological Society, Boston, 68-78.

Neumann, C. J. and P. W. Lèftwich, 1977: Statistical guidance for the prediction of eastern North Pacific tropical cyclone motion - Part 1. NOAA Technical Memorandum NWS WR-124, Miami, Florida.

Neumann, C. J. and G. S. Mandal, 1978: Statistical prediction of tropical cyclone motion over the Bay of Bengal and Arabian Sea. Indian Journal of Meteorology, Hydrology, and Geophysics, 29, 487-500.

Neumann, C. J. and J. M. Pellissier, 1981: An analysis of Atlantic tropical cyclone forecast errors, 1970-1979. Monthly Weather Review, 109, 12481266.

Neumann, C. J. and E. A. Randrianarison, 1976: Statistical prediction of tropical cyclone motion over the southwest Indian Ocean. Monthly Weather Review, 104, 76-85.

Pike, A. C., 1985: The variation of track forecast difficulty among tropical cyclone basins. Extended Abstracts, Sixteenth Conference on Hurricanes and Tropical Meteorology, May 14-17, 1985, Houston, Texas. American Meteorological Society, Boston, 76-77.

Simpson, R. L., 1971: The decision process in hurricane forecasting. NOAA Technical Memorandum NWS SR-63, Miami, Florida, 35 pp.

APPENDIX: FORTRAN Computer Program and Associated Data Needed for WPCLPR model

```
C THIS IS MAIN PROGRAM
    INTEGER YMDH.WIND
    REAL LAO.LOO.LAM12.LOM12.LAM24.LOM24
    DIMENSION CI(121.M132.12).COF(32.121.OISP(2.6).FP(2.6)
    OIMENSION IDIR(3.8).SPD(8)
    NRUNS=0
\(C\)
C READ IN REGRESSION COEFFICIENTS AND CORRESPONDING PrEDICTOR NUMBERS
C
        CALL READRC(COF.M.CI)
        10 REAO(5.20.END=50) YMDH.LAO.LOO.LAM12.LOMI2.LAM24.LOM24.WIND
        $ .NAME1.NAME2.NAME3
    20 FORMAT(I8.2X.6F5.1.1X.[3.3A4)
        NRUNS=NRUNS+1
C
C PREPARE FORECAST
C
        CALL WPCLIP IYMOH.LAO.LOO.LAMI2.LOMI2.LAM24.LOM24.WIND.CI.M.COF.
        SDISP.FPI
C
C OBTAIN PAST AND FORECAST MOTIONS
    CALL DIRSPOILRO.LOO.LAM12.LOM12.LAM24.LOM24.FP.IOIR.SPDI
C
C WRITE GUTPUT tO PRINTER
    WRITE(6.23)
    23 FORMAT(//////5X.61(1Hm))
        WRITE(6.25)NAME1, NAME2,NAME3. MMOH.WIND.NRUNS
    25 FORMAT (5X.'72H WPCLPPR FORECAST ON STORM . 3A4/5X.'BEGINNING OF FOR
    SECAST PERIOD YR/MO/OR/HR (GMT) IS .I8/5X.'MAXIMUM WIND IS 'I3.
    $' kNOTS'/5X.'THIS IS RUN NUMBER '.I4/]
        WRITE(G.26)
    26 FORMATIIHO.29X.'DISPLACEMENT (NMII MOTION IDIR/SPDI'/
    $5X.'PROJECTION LATD LONG N+/S- E+/W- OVER LAST 12H./
        WRITE(G.27)LAM24.LOM24
    27 FORMAT(8X.'-24H'.4X.F4.1.1HN.FG.I.'E --- --- ------
    $--'1
        WRITEIG.28ILAMI2.LOMI2.IOIR(1.1).IDIR(2.1).IDIR(3.1).SPD(1)
    28 FORMAT(8X,'-12H'.4X.F4.1.IHN.FG.1.'E --- ---'.7X.3I1.
    $1H/.F4.1.' KTS'1
        WRITE(6.29ILAO.LOD.IDIR(1.2).IDIR(2.2).IDIR(3.2).SPD(2)
    29 FORMATI8X.' OH'.4X.F4.1.IHN.FG.1.'E 0 0'.8X.3I1.
    $1H/.F4.1.' KTS.1
        00 35 J=1.6
        KHRS=12#J
        WRITEI6.30)KHRS.FP(1.J).FP(2.J).DISP(1.J).OISP(2.J).
    SIDIR(1.J+2).IDIR(2.J+2).IDIR(3.J+2).SPO(J+2)
    30 FORMAT(8X.1H+.12,1HH.4X.F4.1.1HN.FG.1.1HE.2F9.1.6X.3I1.1H/.
    $F4.1.' KTS')
    35 CONTINUE
```

WRITE(6.38)
38 FORMAT (5X.GI (1H*) -
GO TO 10
50 continue
STOP
END

DIMENSION COF (32.12).M(32.12).CI(12).RDUMY(4).IDUMY(4)
C READ 108 CARDS CONTAINING REGRESSION COEFFICIENTS. THERE RRE 12 SETS
C OF 9 CAROS EACH. FIRST SET IS FOR I $2 H$ MERIOIONAL MOTION. SECONO SET IS
C FOR $12 H$ ZONAL MOTION. THIRO SET IS FOR $24 H$ MERIOIONAL MOTION. ETC.
C ARRAY COF HOLOS REGRESSION COEFFICIENTS. 32 COEFFICIENTS PER SET
C ARRAY M HOLDS CORRESPONDING PREDICTOR NUMBER
C ARRAY CI IS INTERCEPT VALUES. ONE PER SET. THIS IS PUNCHED ON FIRST
C CARD. CARDS 2 THRU 6 OF EACH SET HOLD PREDICTOR NUMBER AND REGRESSION
C COEFFICIENTS.
C CARDS ARE SELF INDEXING.... THEY CAN BE OUT OF ORDER
C
READ (5.6)DUMMY I
6 FORMAT(R4)
DO $30 \quad 1=1.108$
READ (5.10)INDEX. (IOUMY(J).ROUMY(J).J=1.4)
10 FORMATI(3.1X.4(I4.E15.71)
$J=(I N D E X+8) / 9$
IFIMOD(INDEX-1.9).EQ.OIGO TO 25
INIT = (INDEX-9*(J-1)]m4-7
LAST $=I N I T+3$
$\mathrm{N}=\mathrm{O}$
OO 20 L=INIT.LAST
$N=N+1$
$M(L, J)=I D U M Y(N)$
$20 \operatorname{COF}(L . J)=\operatorname{ROUMY}(N)$
GO TO 30
25 CI(J)=RDUMY(1) ;
30 CONTINUE
READ (5.6) DUMMY
RETURN
END
SUBROUTINE DIRSPDILAO.LGO.LAM12.LOMI2.LAM24.LOM24.FP.IDIR.SPDI
C COMPUTE APPROXIMATE HEADING AND SPEED AVERAGED OVER $12 H$ INTERVALS
REAL LAO.LOO.LAM12.LOM12.LAM24.LOM24
DIMENSION FP(2.6).O(2.9).IDIR(3.8).SPD: ©).LCIR(8)
OQ $5 \quad 1=1.2$
$004 \mathrm{~J}=1.6$
$40(I, J+3)=F P(I . J)$
5 CONTINUE
$011.11=$ LPM24
$0(2.1)=\operatorname{LOM} 24$
$0(1.2)=$ LAM 12
$012.21=$ LOM12

```
    0(1.3)=LAO
    0(2.3) =LOO
    T=.0087266
    OO 20 J=1.8
    OY=0(1.J+1)-0(1.J)
    OX={0(2.J+1)-0(2.J))wCOS(10(1.J+1)+O(1.J))mT)
    SPD(J)=SQRT(DY=DY+DX=DX)=5.
    IF(SPD(J).EO.O.O)GO TO 10
    DIR=ATAN2(DX.DYI#S7.29578
    IFIDIR.LT.O.OIDIR=DIR+360.
    LDIR(J)=DIR+.S
    IF(LOIR(J).EQ.OILDIR(J)=360
    GO TO 20
10 LOIR(J)=0
20 CONTINUE
    OO 30 J=1.8
    IDIR(1.J')=LDIR(J)/100
    IDIR(2.J)=1LOIR(J)-IOIR(1.J)w100)/10
30 IDIR(3.J)=LDIR(J)-IDIR(1.J)=100-IOIR(2.J)=10
    RETURN
    ENO
```


\$
CI.M.COF.OISP.FPI
INTEGER YMDH.WIND
REAL LAO.LOO.LAM12.LOM12.LAM24.LOM24
DIMENSION CI (12).M(32.12).COF(32.12).DISP(2.6).FP(2.6)

```
A WEST PACIFIC CLIMATOLOGY-PERSISTENCE METHOD
FOR FORECASTING STORM DISPLACEMENTS THROUGH 72H AT 12 HRLY
INCREMENTS. VALID FROM 15 MAY THRU 15 DECEMBER ONLY AND FOR
STORMS INITIALLY AT OR SOUTH OF 35N LATITUDE AND WEST OF 150E.
```

ARGUMENTS:
ON INPUT
YMOH--DATE (YEAR. MONTH. DRY. HOUR1. [8. (6/1/83.00Z-83060100)
LAO--INITIAL LATITUDE. DEGREES
LOO--INITIAL LQNGITUDE. DEGREES
LAMI2--LATITUDE AT - 12 HOURS
LOMI2--LONGITUDE AT -12 HOURS
LAM24--LATITUOE AT - 24 HOURS
LOM24--LONGITUDE AT - 24 HOURS
WINO--INITIAL MAXIMUM WIND. KNOTS
CI--REGRESSION INTERCEPTS
M--REGRESSION VARIABLE NUMBERS
COF--REGRESSION COEFFICIENTS
ON OUTPUT
DISP--OISPLACMENTS 12Z.. 12M.. 24Z.. 24M.. 36Z.. 36M.. 48Z..
48M..60Z..60M..72Z..72M.. NM
Z.-- E TO W NEG.
FP--FORECAST POSITIONS DEGREES

```
        DIMENSION PIIGGI
    C POTENTIAL PREDICTORS ARE NUMBERED 3 THRU 1GG. ONLY 32 OF THESE ARE
    C USED FOR EACH OF THE 12 REGRESSION EQUATIONS.
        \(P(3)=L A O\)
        IFILAO.GT. 35.IGO TO 2
        GO TO 4
        2 WRITEIG.3ILAO
        3 FORMATI//5X.'CURRENT LATITUDE OF 'F4.1.' IS NORTH OF 35.0. PROGRAM
        \$ BEING TERMINATED.//I
        STOP
        \(4 P(4)=L O O\)
        I \(Y=Y M O H / 1000000\)
        IMEYMOH/10000-IY \({ }^{1} 100\)
        ID \(=\) YMOH/100-IMW100-IY \(=10000\)
        IHEYMDH-IY \(m\) 1000000-IMm10000-10m100
    \(P(5)=3055=(I M+21 / 100-(I M+10) / 13=2-91+10\)
    IF(P) 5).LT.134..OR.P(5).GT.350.1G0 TO 5
    GO TO 7
    5 WRITE 6.6\()\) YMOH
    6 FORMAT (//SX.'PROGRAM RESULTS NOT VRLIO BEFORE 15 MAY OR AFTER 15 D
        \$ECEMBER. CURRENT DATETIME IS'.IIO/IX.'PROGRAM BEING TERMINATED'/J
        STOP
        7 P(G) \(=(L A O-L A M 12) * 2.5\)
    \(P(7)=(L O O-L O M 12) * 2.5 * C O S(1 L A O+L A M 12) * 0.0087267)\)
C
                                    UNIT NM/30 MINS
    \(P(8)=(L A O-L A M 24) \equiv 2.5\)
    \(P(9)=(L O O-L O M 24)=2.5 * C O S((L A O+L A M 24) * 0.0087267)\)
    C
                                    UNIT KNOT
    \(P(10)=W I N D\)
    \(P(11)=P(3) \times P(3)\)
    \(P(12)=P(3) m P(3) w P(3)\)
    \(P(13)=P(3) \equiv P(4)\)
    \(P(14)=P(3)=P(3) * P(4)\)
    \(P(15)=P(4) m P(4)\)
    \(P(16)=P(3) m P(4) m P(4)\)
    \(P(17)=P(4) \equiv P(4) \equiv P(4)\)
    \(P(18)=P(3) w P(5)\)
    \(P(19)=P(3) w P(3)=P(5)\)
    \(P(20)=P(4)=P(5)\)
    \(P(21)=P(3) m P(4) w P(5)\)
    \(P(22)=P(4) \equiv P(4) m P(5)\)
    \(P(23)=P(5) \equiv P(5)\)
    \(P(24)=P(3) w(5) m(5)\)
    \(P(25)=P(4) \equiv P(5) m P(5)\)
    \(P(26)=P(5) \times P(5) \times P(5)\)
    \(P(27)=P(3)=P(6)\)
    \(P(28)=P(3) \equiv P(3) m P(6)\)
    \(P(29)=P(4)=P(6)\)
    \(P(30)=P(3)=P(4) \equiv P(6)\)
    \(P(31)=P(4)=P(4)=P(6)\)
```

P(32)=P(5)mP(6)
P(33)=P(3)mP(5)mP(6)
P(34)=P(4)wP(5)mP(6)
P(35) =P(5)wP(5)wP(6)
P(36)=P(6)*P(6)
P(37) =P(3)wP(G)wP(G)
P(38)=P(4)mP(6)mP(6)
P(39)=P(5)mP(G)mP(6)
P(40)=P(G)wP(G)*P(6)
P(41)=P(3)wP(7)
P(42)=P(3)mP(3)mP(7)
P(43)=P(4)wP(7)
P(44)=P(3)wP(4)wP(7)
P(45)=P(4)\#P(4)mP(7)
P(46)=P(5)mP(7)
P(47)=P(3)*P(5)wP(7)
P(48)=P(4)*P(5)\#P(7)
P(49)=P(5)mP(5)mP(7)
P(50)=P(6)mP(7)
P(51)=P(3)*P(6)mP(7)
P(52)=P(4)wP(6)wP(7)
P(53)=P(5)wP(6)\#P(7)
P(54)=P(6)mP(6)mP(7)
P(55)=P(7)wP(7)
P(56)=P(3)mP(7)mP(7)
P(57) =P(4)wP(7)*P(7)
P(58)=P(5)wP(7)wP(7)
P(59)=P(6)mP(7)mP(7)
P(60) =P(7)wP(7)wP(7)
P(61) =P(3)wP(8)
P(62)=P(3)mP(3)wP(8)
P(63)=P(4)wP(8)
P(64)=P(3)mP(4)wP(8)
P(65)=P(4)mF(4)mP(8)
P(G6)=P(5)mP(8)
P(67)=P(3)mP(5)mP(8)
P(68)=P(4)mP(5)mP(8)
P(69)=P(5) mP(5)mP(8):
P(70)=P(G)\#P(8)
P(71)=P(3)mP(G)mP(8)
P(72)=P(4)wP(6)wP(8)
P(73)=P(5)wP(6)mP(8)
P(74)=P(6)mP(6)mP(8)
P(75)=P(7) WP(8)
P(76)=P(3)wP(7)wP(8)
P(77)=P(4)wP(7)wP(8)
P(78)=P(5)mP(7)mP(8)
P(79)=P(6)mP(7)mP(8)
P(80)=P(7)\equivP(7)mP(8)
P(81)=P(8)wP(8)
P(82)=P(3)wP(8)wP(8)
P(83)=P(4)mP(8)mP(8)

```
```

P(84)=P(5)wP(8) wP(8)
P(85)=P(G)wP(8)mP(8)
P(86)=P(7)mP(8)mP(8)
P(87)=P(8)*P(8)*P(8)
P(88)=P(3)wP(9)
P(89)=P(3)mP(3)mP(9)
P(90)=P(4)*P(9)
P(91)=P(3)mP(4)mP(9)
P(92)=P(4)mP(4)\#P(9)
P(93)=P(5)\#P(9)
P(94)=P(3)wP(5)wP(9)
P(95)=P(4)*P(5)wP(9)
P(96)=P(5)mP(5)mP(9)
P(97)=P(6)*P(9)
P(98)=P(3)\#P(6)wP(9)
P(99)=P(4)*P(G)wP(9)
P(100)=P(5)mP(6)mP(9)
P(101)=P(6)mP(6)mP(9)
P(102)=P(7)*P(9)
P(103)=P(3)wP(7)*P(9)
P(104) =P(4)*P(7)*P(9)
P(105) =P(5)mP(7)mP(9)
P(106) =P(6)wP(7)mP(9)
P(107)=P(7)*P(7)*P(9)
P(108)=P(8)wP(9)
P(109)=P(3)wP(8)mP(9)
P(110)=P(4)mP(8)*P(9)
P(1111)=P(5)wP(8)*P(9)
P(112)=P(6)mP(8)wP(9)
P(113)=P(7)mP(8)mP(9)
P(114)=P(8)mP(8)*P(9)
P(115)=P(9)mP(9)
P(116)=P(3)mP(9)mP(9)
P(117)=P(4)*P(9)*P(9)
P(118)=P(5)\#P(9)\#P(9)
P(119)=P(6)mP(9)mP(9)
P(120)=P(7)mP(9)mP(9)
P(121)=P(8)*P(9)wP(9)
P(122)=P(9)wP(9)*P(9)
P(123) =P(3)mP(10)
P(124)=P(3)=P(3)wP(10)
P(125)=P(4)wP(10)
P(126)=P(3)mP(4)wP(10)
P(127)=P(4)mP(4)mP(10)
P(128)=P(5)mP(10)
P(129)=P(3)mP(5)mP(10)
P(130) =P(4)\#P(5)\#P(10)
P(131)=P(5)mP(5)\#P(10)
P(132) =P(6)*P(10)
P(133)=P(3)wP(6)wP(10)
P(134)=P(4)=P(6)=P(10)
P(135)=P(5)*P(6)*P(10)

```
```

 P(136)=P(6)mP(6)mP(10)
 P(137)=P(7)mP(10)
 P(138)=P(3)wP(7)wP(10)
 P(139)=P(4)mP(7)#P(10)
 P(140)=P(5)wP(7)wP(10)
 P(141)=P(6)=P(7)#P(10)
 P(142)=P(7)mP(7)mP(10)
 P(143) =P(8)mP(10)
 P(144)=P(3)mP(8)mP(10)
 P(145)=P(4)mP(8)mP(10)
 P(146)=P(5)*P(8)#P(10)
 P(147)=P(6)mP(8)mP(10)
 P(148)=P(7)#P(8)#P(10)
 P(149)=P(8)wP(8)mP(10)
 P(150)=P(9)mP(10)
 P(151)=P(.3)mP(9)#P(10)
 P(152)=P(4)wP(9)*P(10)
 P(153)=P(5)wP(9)wP(10)
 P(154)=P(6)*P(9)*P(10)
 P(155)=P(7)mP(9)wP(10)
 P(156) =P(8)mP(9)wP(10)
 P(157) =P(9)wP(9)wP(10)
 P(158)=P(10)mP(10)
 P(159)=P(3)mP(10)mP(10)
 P(160)=P(4)mP(10)*P(10)
 P(161)=P(5)*P(10)*P(10)
 P(162)=P(6)mP(10)mP(10)
 P(163)=P(7)wP(10)mP(10)
 P(164) =P(8)mP(10)mP(10)
 P(165) =P(9)mP(10)*P(10)
 P(166)=P(10)*P(10)wP(10)
 C WRITE(6.9) (PII),I=3.166)
 9 FORMAT(25HOLIST OF PREDICTORS---- .8E12.4/10(E12.4))
 DO 30 k=1.6
 00 20 J=1.2
 KJ=(K-1)m2+J
 DISP(J.K)=CI(KJ)
 OO 10 I=1.32
 L=M(I.KJ)
 10 DISP(J.K)=DISP(J,K)+P(L) mCOF(I,KJ)
 20 CONTINUE
 FP(1.K)=0{SP(1.K)/60.0+P(3)
 FP(2.K)=DISP(2.K)/60.0/COS({FP(1.K) +P(3))w0.0087266)+P(4)
 30 CONTINUE
RETURN
ENO
PERMANENT DATA CAROS ITHIS CARD IS CONSIDERED PART OF SETJ
1 0.8243047E 02
2 29 0.1673843E 00 141 0.2086875E-01 154 -0.3422998E-02 113 -0.3635096E-02
3 13
133 0.2699498E-02 65 -0.9927880E-04 148 -0.5865134E-02 47 0.1775683E-03

```
\(5-0.4999201 E 00\) \(153-0.6018809 E-04\)
\(37 \quad 0.2333808 \mathrm{E}-01\)
\(146 \quad 0.1320566 E-03\)
4 -0.2090873E 00 \(1230.1779330 E-01\) \(-0.7274435 E 02\)
\(7 \quad 0.3444308 \mathrm{E} \quad 01\)
\(94 \quad 0.1220374 \mathrm{E}-03\) 101-0.4025444E-01
\(69 \quad 0.1631727 E-04\)
\(100-0.1912876 \mathrm{E}-02\)
\(44 \quad 0.1044284 \mathrm{E}-02\)
\(19 \quad 0.1243634 E-03\)
98-0.3580001E-02 \(0.2489156 E 03\)
\(29 \quad 0.1700943 \mathrm{E} 00\) \(144-0.2603549 E-02\) \(113-0.2648072 E-01\) \(1310.1996335 E-05\)
\(84 \quad 0.4155543 \mathrm{E}-03\)
12 -0.1352994E-02
\(153-0.7771955 E-04\)
126 -0. \(3429537 \mathrm{E}-03\) 0.2223004 E 02
\(70.1194606 E 02\) \(55 \quad 0.3251997 \mathrm{E} 00\) \(51-0.4293872 \mathrm{E}-01\) 24 0.6120715E-03 100-0.7047493E-02
\(40-0.1018223 E 00\) 22-0.2124114E-04 98-0.9823222E-02 \(0.5401133 E 03\)
\(29 \quad 0.1500874 \mathrm{E} 00\) \(85-0.2617476 E-01\)
\(84 \quad 0.7281310 \mathrm{E}-03\) \(144-0.6947838 E-02\)
\(4-0.2323362 \mathrm{E} \mathrm{O}\) \(154-0.3383111 E-01\) 134 0.1699561E-02 \(135-0.9510636 \mathrm{E}-03\) \(0.3100667 E 03\)
\(7-0.2403130 E 02\)
\(51-0.3152274 \mathrm{E} 00\)
\(70 \quad 0.2465692 \mathrm{E} 01\)
\(3 \quad 0.5310783 E 02\) 100 -0.1926617E-01
\(94 \quad 0.1995778 \mathrm{E}-02\)
\(55 \quad 0.3230032 \mathrm{E} 00\)
\(430.1091300 E 01\)

20 0.2700687E-02 \(163 \quad 0.1673713 E-03\) \(31-0.4772958 \mathrm{E}-03\) 84-0.2983983E-03 46 -0.4572004E-02 126 -0.1372335E-03
67. \(0.6443840 E-03\)
\(1380.1236677 E-02\)
\(51 \quad 0.1947947 E-01\)
\(24 \quad 0.2076455 E-03\)
\(50 \quad 0.1113659 E 01\)
\(135-0.4174725 E-04\)
17 -0.3273220E-04
\(157 \quad 0.4959767 E-04\)
\(7 \quad 0.8978351 E 01\) \(141 \quad 0.6853032 \mathrm{E}-01\) \(85-0.3888343 E-01\)
\(200.7599130 \mathrm{E}-02\)
4 -0.7392796E 00
37 0.5155999E-01
\(134 \quad 0.7513005 E-03\)
\(135-0.2059647 E-03\)

33 0.1438122E-02 \(12-0.3845890 E-03\) \(144-0.2076029 E-02\) \(135-0.2515721 E-03\)
\(92-0.1706305 E-04\)
\(18 \quad 0.4651449 E-03\)
65-0.2021452E-03 151 -0.3542996E-03 107. 0.2317467 E 00 \(18-0.9038967 E-01\)
\(120-0.5292714 \mathrm{E}-01\)
\(70 \quad 0.2064505 E 00\)
\(4 \quad 0.1318529 E 01\)
45-0.1010245E-02
\(133 \quad 0.3507804 \mathrm{E}-02\)
\(154-0.1987820 \mathrm{E}-01\)
5 -0.1491605E 01
\(18 \quad 0.4191808 E-02\)
\(47 \quad 0.9272879 E-03\)
\(65-0.2045497 E-03\)
\(56-0.4073039 \mathrm{E}-02\)
\(146 \quad 0.6084653 \mathrm{E}-04\)
\(40-0.6320661 E-01\)
\(7 \quad 0.2286027 \mathrm{E}\) OI
\(56-0.4434004 \mathrm{E}-02\)
\(134 \quad 0.4485503 E-03\)
85 0.2506665E-02
\(1310.7627250 \mathrm{E}-07\)
\[
\begin{array}{rrr}
55 & 0.1816658 \mathrm{E} & 00 \\
60 & -0.25489888 \mathrm{E} & 00 \\
5 & -0.3123049 \mathrm{E} & 00 \\
3 & 0.9873206 \mathrm{E} & 01 \\
91 & -0.8169997 \mathrm{E}-03 \\
40 & -0.1809160 \mathrm{E}-01 \\
22 & 0.4694369 \mathrm{E}-05 \\
43 & 0.2646374 \mathrm{E} & 00
\end{array}
\]

92-0.4143245E-04
\(148-0.1717164 \mathrm{E}-01\)
\(33 \quad 0.3334465 \mathrm{E}-02\)
\(46-0.3758204 E-01\)
163 0.4049011E-03
\(40-0.9431607 \mathrm{E}-01\)
123 0.4733110E-01
\(31-0.6504587 E-04\)
\(65-0.5685668 \mathrm{E}-03\)
\(44 \quad 0.4644394 E-02\)
69 0.6524181E-04
\(30.2757455 E 02\)
\(94 \quad 0.6836692 \mathrm{E}-03\)
\(107 \quad 0.3417803 E 00\)
\(151-0.1331816 E-02\)
\(135-0.1847712 E-04\)
\(920.7268143 E-04\)
\(113-0.6192457 E-01\)
\(1310.2206964 \mathrm{E}-05\)
\(20 \quad 0.1864345 E-01\)
\(153-0.2317171 E-03\)
\(148-0.2221274 E-01\)
18 0.6707959E-02
\(56 \quad 0.6355673 E-02\)
\(120-0.6427991 E-01\)
\(101-0.8324653 E-01\)
5 -0.1161908E OI
\(1380.4483256 \mathrm{E}-02\)
\(70 \quad 0.9826621 E 00\)
17-0.6994254E-04
\(4 \quad 0.1714292 \mathrm{E} 01\)
\(1570.1516053 \mathrm{E}-03\)
\(1330.5656216 E-02\)
\(47 \quad 0.1639675 \mathrm{E}-02\)
33 0.6248180E-02
\(12-0.2953369 E-02\) 123-0.9330589E-01
\(40-0.3846226 E 00\)
65-0.4418660E-03
\(310.3931348 \mathrm{E}-03\)
\(65-0.8820281 \mathrm{E}-03101\)-0.1938653E 00 60 -0.0029782E 00
5-0.2642607E 01
\(190.1057535 \mathrm{E}-02\)
\(151-0.3066611 E-02\)
\(22 \quad 0.5343799 E-04\)
\(44 \quad 0.9430107 E-02\)
\(40-0.3214965 \mathrm{E} 00\)
\(18-0.5156037 E 00\)
\(50 \quad 0.1442510 \mathrm{E} 02\)
\(107 \quad 0.3948497 E 00\)
\(45-0.4917126 E-02\)
\(120-0.4385853 E-01\)
135-0.8274055E-05

7 -0.4070564E 03 \(24 \quad 0.2840996 E-02\) 101 -0.6059824E 00
\(19 \quad 0.2063197 E-02\) \(138 \quad 0.8881852 \mathrm{E}-02\)
157 0.9130541E-02 60 -0.1698784E 01 107 0.1224539E 01 \(0.1227649 E 04\) \(134 \quad 0.5315151 \mathrm{E}-02\) \(31-0.4714649 E-02\) \(200.4844772 \mathrm{E}-01\) 40-0.4290173E 00 \(1410.6222808 \mathrm{E}-01\) \(1230.2687349 E 00\) \(146 \quad 0.5971477 E-03\) 37-0.4163603E-01 0.1009912 E 04 7 -0.6465908E 03 \(40-0.5615302 E 00\) \(5-0.8648671 E 01\) 101 -0.6459741E 00 \(55-0.2531728 \mathrm{E} 01\) \(51-0.5105714 \mathrm{E} 0\)
\(7 \quad 0.9466640 E \quad 01 \quad 126-0.9195774 E-03\) 133
\(1310.4122331 E-05\)
\(4-0.4121036 E 01\)
\(1410.8610046 E-01\)
\(47 \quad 0.2351495 E-02\)
\(37 \quad 0.1083534 \mathrm{E} 00\)
\(56 \quad 0.7292505 E-02\)
\(84 \quad 0.1586292 \mathrm{E}-02\)
33 0.1029949E-01
\(1630.1774920 E-02\)
\(113-0.6368273 E-01\)
\(46-0.5561870 E-01\)
\(134 \quad 0.2952944 \mathrm{E}-02\)
65-0.1317292E-03
\begin{tabular}{rr}
94 & \(0.1752103 E-02\) \\
40 & \(-0.5115929 E\) \\
5 & -0.4531600 E \\
17 & 01 \\
70 & \(-0.2429102 \mathrm{E}-03\) \\
157 & 0.3151261 E \\
151 \\
91 & \(-0.3738598 \mathrm{E}-02\) \\
55 & \(-0.2143630 \mathrm{E}-02\) \\
&
\end{tabular}
\(92 \quad 0.1422788 \mathrm{E}-03\) 5-0.5175555E 01 20 0.3082294E-01 153-0.3377146E-03 \(123 \quad 0.1621369 E 00\) \(18 \quad 0.9735085 \mathrm{E}-02\) \(135-0.1440395 E-02\) 31 -0. \(2794338 E-05\)
\begin{tabular}{rr}
65 & \(-0.1087733 E-02\) \\
22 & \(0.9420360 E-04\) \\
18 & \(-0.8082932 E 00\) \\
19 & \(0.1710244 E-02\) \\
45 & \(-0.1869880 E-01\) \\
43 & \(0.4594197 E 01\) \\
60 & \(-0.8020301 E\) \\
120 & \(-0.3377817 E-01\)
\end{tabular}
\(\begin{array}{rr}65 & -0.1087733 E-02 \\ 22 & 0.9420360 E-04\end{array}\)
18-0.8082932E 00
\(19 \quad 0.1710244 E-02\) \(45-0.1869880 E-01\) \(430.4594197 E 01\) 60-0.8020301E 00 \(120-0.3377817 E-01\)
\(67 \quad 0.3226322 \mathrm{E}-02\)
\(5-0.6543036 E 01\)
\(51-0.5853522 E 00\)
\(100-0.2828110 E-01\)
135 0.6271652E-03
\(45-0.2869136 E-01\)
\(55-0.1119654 \mathrm{E} 01\)
\(94 \quad 0.9927768 \mathrm{E}-03\)
\(18-0.1164495 \mathrm{E} 01\)
\(70 \quad 0.2449144 E 01\)
\(50 \quad 0.2411407 \mathrm{E} 02\)
65-0.1259519E-02
43 0.7279905E 01
91-0.1070156E-01
\(98 \quad 0.1121298500151 \quad 0.4748836 E-02\)
\(40-0.6368155 E 00\) \(5-0.6708192 \mathrm{E} 01\) \(1310.6467513 \mathrm{E}-05\) \(1410.6862462 \mathrm{E}-01\) \(134 \quad 0.4809570 \mathrm{E}-02\) \(135-0.2590124 E-02\)
37 0.2626506E-01
\(56 \quad 0.2455192 E-02\)
17-0.3613045E-03
\(3 \quad 0.1216047 \mathrm{E} \quad 03\)
\(22 \quad 0.1484775 \mathrm{E}-03\)
40-0.5863789E 00 \(69 \quad 0.2335963 E-03\) \(120-0.1447690 E 00\) \(44 \quad 0.1429705 E-01\) \(40.4786591 E 01\)
\(46-0.5306449 E-01 \quad 4 \quad-0.4715615 E \quad 01\) \(153-0.4246614 \mathrm{E}-03 \quad 12-0.1065860 \mathrm{E}-01\) \(163: 0.2085041 E-02 \quad 18 \quad 0.3572815 E-01\) 33. \(0.1273538 \mathrm{E}-01154-0.5434983 \mathrm{E}-01\)
\(7 \quad 0.1034117 \mathrm{E} 02144 \quad-0.8771151 \mathrm{E}-02\) \(126-0.1671656 E-02 \quad 135-0.2234948 E-02\) \(65-0.5225483 E-03133-0.6916974 E-02\) 148. \(0.4399456 E-02\) S. \(0.7542375 E-02\)
\(29 \quad 0.7092304 E 00\) 5 -0.8510695E 01 131 0.1123452E-04
47 0.3082309E-02
\(840.4368767 E-02\)
\(113-0.3654267 E-01\)
\(920.1508313 \mathrm{E}-03^{\circ}\)
\(850.4912918 \mathrm{E}-03\)
\(67 \quad 0.3588817 E-02 \quad 94-0.3876986 E-03 \quad 17-0.4624140 E-03^{\circ}\) \(19 \quad 0.2003934 \mathrm{E}-02 \quad 135 \quad 0.1165639 \mathrm{E}-02 \quad 138 \quad 0.3531024 \mathrm{E}-01\) \(24 \quad 0.3629969 \mathrm{E}-02 \quad 18-0.1472466 \mathrm{E} 01 \quad 3 \quad 0.1582075 \mathrm{E} 03\)
\(22 \quad 0.2087192 \mathrm{E}-03157 \quad 0.1485109 \mathrm{E}-01\)
\(50 \quad 0.2311008 \mathrm{E} 02 \quad 100-0.2338113 \mathrm{E}-01\)
45 -0.4381987E-01 43 0.1115743E 02
\(120-0.7225931 E-01\)
\(107-0.1184354 E 01\)

60-0.1858356E O1 91-0.4631437E-02
\(1081070.1184354 \mathrm{E} 01 \quad 4 \quad 0.4417151 E \quad 01151-0.2811498 \mathrm{E}-02 \quad 98 \quad 0.1303708 \mathrm{E}-01\)
END PERMANENT DATA CAROS. (THIS CARD IS PART OF SET). STORM CARDS FOLLOW
\(85051500 \quad 16.4125 .4 \quad 15.4126 .914 .4128 .4 \quad 100\) TEST STORMI
\(85091500 \quad 16.4125 .415 .4126 .914 .4128 .4100\) TEST STORM2

NWS NHC 7 The Deadliest, Costliest, and Most Intense United States Hurricanes of the Century (and Other Frequently Requested Hurricane Facts). Paul J. Hebert and Glenn Taylor - August 1978 (PB 286753/AS)

Miles B. Lawrence, Paul J. Hebert and Staff, NHC - March 1979 (PB295702) Annual Data and Verification Tabulation of Atlantic Tropical Cyclones 1978.
Paul J. Hebert and Staff, NHC - April 1979 (PB296323)
NWS NHC 17 A Guide to Atlantic and Eastern Pacific Models for the Prediction of Tropical
Cyclone Motion. Charles J. Neumann - April 1979 (PB297141/AS)
Cyclone Prediction Models. Preston W. Leftwich, Jr. - May 1979 (PB297190)
NWS NHC 13 Annual Data and Verification Tabulation Atlantic Tropical Cyclones 1979.
NWS NHC 14 A Statistical Tropical Cyclone Motion Forecasting System for the Gulf of Mexico, Robert T. Merrill - August 1980
NWS NHC 15 Annual Data and Verification Tabulation Atlantic Tropical Cyclones 1980. Glenn Taylor and Staff, NHC - June 1981
NWS NHC 16 A Compilation of Eastern and Central North Pacific Tropical Cyclone Data. Gail M. Brown and Preston W. Leftwich, Jr. - August 1982 (PB83115444)
NWS NHC 17 Annual Data and Verification Tabulation Atlantic Tropical Cyclones 1981. Staff, NHC - November 1982
NWS NHC 18 The Deadliest, Costliest, and Most Intense United States Hurricanes of this Century (and Other Frequently Requested Hurricane Facts), Paul J. Hebert and Glenn Taylor, NHC - January 1983 (PB83-163527)
NWS NHC 19 Annual Data and Verification Tabulation Atlantic Tropical Cyclones 1982. Gilbert B. Clark and Staff, NHC - February 1983 (PB83184077)
NWS NHC 20 The Miss/Hit Ratio - An Estimate of Reliability for Tropical Cyclone Track Predictions, Preston W. Leftwich, Jr. - April 1983
NWS NHC 21 Annual Data and Verification Tabulation Atlantic Tropical Cyclones 1983.
Gilbert B. Clark and Staff, NHC - January 1984.
NWS NHC 22 A Tropical Cyclone Data Tape for the North Atlantic Basin, 1886-1983: Contents, Limitations, and Uses. Brian R. Jarvinen, Charles J. Neumann, and Mary A. S. Davis - March 1984
NWS NHC 23 Frequency and Motion of Western North Pacific Tropical Cyclones. Zongyuan Xue and Charles J. Neumann - May 1984 (PB85106466)
NWS NHC 24 Hurricane Experience Levels of Coastal County Populations - Texas to Maine June 1984: (PB85111383)
NWS NHC 25 A Tropical Cyclone Data Tape for the Eastern and Central North Pacific Basins, 1949-1983: Contents, Limitations, and Uses - September 1984 (PB85110054)
NWS NHC 26 Annual Data and Verification Tabulation Atlantic Tropical Cyclones 1984. Gilbert B. Clark and Robert A. Case, NHC - February 1985.
NWS NHC 27 A Storm Surge Atlas for Corpus Christi, Texas. Brian R. Jarvinen, A. Barry Damiano, and Gloria J.D. Lockett - August 1985

NWS. NHC 28 A Statistical Model for the Prediction of Western North Pacific Tropical Cyclone Motion (WPCLPR). Yiming Xu and Charles J. Neumann -
November 1985```


[^0]:    ${ }^{\text {I }}$ Research accomplished while on temporary assignment to the National Hurricane Center.

[^1]:    ${ }^{2}$ The best track is the accepted track of a storm after a post-analysis of all available data.

[^2]:    ${ }^{3}$ It was intended that $P_{6}$ and $P_{7}$ be in knots. However, through oversight, the equations were derived using $1 / 2$ of this amount. Compensation for this oversight is included in the program definition of $P_{6}$ and $P_{7}$ and is transparent to the user.

