
 
Report Issued: May 29, 2012 
 
Disclaimer: This report is released to inform interested parties of research and to encourage discussion.  
The views expressed are those of the authors and not necessarily those of the U.S. Census Bureau. 
 

 
 
 
 
 
 

RESEARCH REPORT SERIES 
(Statistics #2012-06) 

 
 

Uncorrelatedness and Other Correlation Options 
for Differenced Seasonal Decomposition 

Components of ARIMA Model Decompositions 
 

David F. Findley 
 
 
 
 
 

 

 

 

 

 
 
 
 

Center for Statistical Research & Methodology 
Research and Methodology Directorate 

U.S. Census Bureau 
Washington, D.C. 20233 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 



Uncorrelatedness and Other Correlation Options
for Di¤erenced Seasonal Decomposition

Components of ARIMA Model Decompositions

David F. Findley
Center for Statistical Research and Methodology

U.S. Census Bureau

Abstract

Two gaps in the optimality theory supporting current ARIMA model-
based seasonal adjustment are addressed. The main one concerns the
requirement that decomposition components be uncorrelated with one
another after they are minimally di¤erenced to stationarity. Uncorre-
latedness has been assumed but not formally veri�ed. We verify it by
introducing a model compatibility criterion �tting current practice that
speci�es how the ARIMA models of the seasonal decomposition compo-
nents are to be compatible with the ARIMA model of the observed sea-
sonal series. This criterion always supports the assumption of uncorre-
lated components for a stationary decomposition involving the di¤erenced
observed series and the similarly di¤erenced and therefore overdi¤erenced
stationary component series. We verify the requirement by proving that
overdi¤erencing can be corrected for and that doing this preserves uncor-
relatedness. Then we investigate whether correlated components are also
allowed by the compatibility criterion and give a complete description of
the allowed correlation structures for two-component decompositions. We
also discuss their impracticality.
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1 Introduction

This note addresses two gaps in the theoretical foundation of ARIMA model-
based (AMB) seasonal adjustment and more general ARIMA signal extraction,
as presented in Burman (1980), Hillmer and Tiao (1982), Bell (1984), Gómez
and Maravall (2001), and McElroy (2008). The gaps have to do with correlation
properties of the components of seasonal (or other) time series decompositions,
after any ARIMA components have been di¤erenced to stationarity in the way
speci�ed by their models. For simplicity, until we get to the main result, which
is the Corollary of Section 4, we focus on two-component unobserved �signal
plus noise�decompositions of an observable nonstationary ARIMA series Zt,

Zt = St +Nt: (1)

The minimal degree di¤erencing polynomials �S (B) and �N (B) that render St
and Nt stationary are required to factorize the di¤erencing polynomial � (B) of
Zt�s model,

� (B) = �S (B) �N (B) : (2)

and to not have common zeroes: if �S (z0) = 0, then �N (z0) 6= 0 and if
�N (z0) = 0, then �S (z0) 6= 0. If a component on the right in (1) is stationary,
its di¤erencing polynomial is the constant 1, e.g. �N (B) = 1 if Nt is stationary,
in which case �S (B) = � (B).
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The series xt = � (B)St and ~xt = � (B)Nt are stationary and satisfy

wt = xt + ~xt; t = 0;�1; : : : ; (3)

but at least one is overdi¤erenced because at least one factor on the right in
(2) has lower degree than � (B). In ARIMA model based signal extraction,
ARIMA model pairs (one member of the pair could be ARMA) are determined
or speci�ed for St and Nt. We use the decomposition (3) to de�ne a convenient
compatibility condition to insure that any proposed ARIMA component model
pair is compatible with the ARIMA model of the observed series Zt: a model
pair�s implied autocovariances x;j = Extxt+j and ~x;j = E~xt~xt+j for xt and
~xt are required to sum to the autocovariances j = Ewtwt+j of wt,

j = x;j + ~x;j ; j = 0;�1; : : : : (4)

The most important gap in the theory of AMB seasonal adjustment and
signal extraction has to do with establishing that the minimally di¤erenced
stationary series ut = �S (B)St and ~ut = �N (B)Nt can be taken as uncorrelated
with one another, Eut~ut+j = 0, t; j = 0;�1; : : : , a property we denote by

futg ? f~utg : (5)

Bell (1984) showed that this is required to establish the linear mean square
optimality property that provides an attractive theoretical justi�cation for the
standard procedures used for estimating St and Nt, assuming that the ARIMA
model for wt = � (B)Zt and its parameters are correct; see McElroy (2008) for
an elementary �nite-sample development1 . The model-based seasonal adjust-
ment estimation procedures subject to this requirement for optimality include
those of TRAMO-SEATS (Gómez and Maravall, 1996), TSW (Caporello and
Maravall, 2004), X-13ARIMA-SEATS (U.S. Census Bureau, 2012) and STAMP
(Koopman, Harvey, Doornik, and Shephard, 2000).
What is immediately justi�able is the assumption

fxtg ? f~xtg ; (6)

because of its obvious compatibility with (4), see Section 3. Using (2), we can
re-express (3) as

wt = �N (B)ut + �S (B) ~ut; (7)

and obtain a more revealing formulation of (6) as

f�N (B)utg ? f�S (B) ~utg . (8)

Our goal is to get from (8) to (5). To do this, we show how a di¤erencing
operation applied to an already stationary series can be inverted, and we verify

1Bell (1984) also showed that the "naive" historical assumption that St and Nt should be
uncorrelateded requires more complex estimation formulas than those now used in order to
achieve linear mean square optimality.
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that this operation preserves uncorrelatedness. In the Corollary of Proposition
1 of Section 4, we establish for K � 2 component generalizations of (8) and
(5), that if one holds, so does the other. Thus the mutual uncorrelatedness of
minimally di¤erenced component series can always be assumed for the correct
model context.
The presentation of this general result, which covers all di¤erencing poly-

nomials used in AMB seasonal adjustment, is preceded by the treatment of a
simple motivating trend plus irregular decomposition example in Section 3, after
a brief review of spectral densities in Section 2. With gw = gw (�) denoting the
spectral density of wt, gw (�) =

P1
j=�1 je

�i2�j�, �1=2 � � � 1=2 and gx (�)
and g~x (�) de�ned analogously for xt, and ~xt, it is revealing to re-express the
compatibility requirement (4) as the spectral density decomposition property,

gw = gx + g~x: (9)

As will be illustrated, such spectral density decompositions and their K � 2
component generalizations are algebraically equivalent to admissible pseudo-
spectral density decompositions in the sense of Hillmer and Tiao (1982), and
include those used by AMB seasonal adjustment programs. Hence (5) can be
assumed for all AMB seasonal adjustments in the correct-model context.
The second gap we address concerns the question of whether an assumption

di¤erent from (6), namely correlation between the series xt and ~xt of (3), is
also compatible with (9). The answer is yes: in Proposition 3 of Section 5, for
�xed, everywhere continuous gxand g~x, we characterize the in�nitude of possible
stationary correlation relations between xt and ~xt that are compatible with (9),
ranging from no correlation to complete correlation. The latter term means that
each of the series xt and ~xt is a linear �ltered version of the other.
However, it will be seen that there is no information in gw to favor a choice

among the possible correlated decompositions. (We further show that the best-
known correlated decomposition, that of Beveridge and Nelson (1981), which
has no known optimality property, is not compatible with (9).) The uncorrelated
decomposition is to be preferred as the most neutral one, in a speci�c sense to
be described as well as in a general sense.
Our exposition assumes that the reader has some basic familiarity with

ARIMA models and their decomposition for model-based seasonal adjustment.
In this article, stationary always means covariance stationary and stationary
series are taken to have mean zero.

2 Spectral Densities and ARMA Models

We start by reviewing basic material on spectral densities of stationary series
and of ARMA models and their properties we will need. The reader familiar
with the de�nition of a spectral density and the formula for the spectral density
of an ARMA series can skip to Section 3 concerned with spectral density de-
compositions after noting the formula (15) which connects the spectral densities
of the input and output of a linear (time-invariant) �lter.
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2.1 Review

We use a standard notation and terminology regarding complex numbers z =
a + ib, with a and b real and with i2 = �1. The number a is the real part
of z, a = Re (z), and b the is the imaginary part, b = Im (z). The number
�z = a � ib is the complex conjugate of z. Its basic properties are z + �z =
2Re (z), z � �z = 2i Im (z) and

p
z�z =

p
a2 + b2, which is the magnitude of z,

denoted jzj (the distance from (a; b) to (0; 0) in the coordinate plane). Euler�s
formula ei� = cos �+ i sin � shows that e�i� is the complex conjugate of ei�. See
Wikipedia Contributors (2012) for more information.
For a stationary time series wt, the fact that Ewtwt+j = Ewt�jwt shows

that its autocovariances j = Ewtwt+j have the property �j = j for all
j = 0;�1; : : : . Because of this property the spectral density gw of wt can be
de�ned by any of the three formulas

gw (�) =
1X

j=�1
je

�i2�j� = 0 +
1X
j=1

j
�
e�i2�j� + ei2�j�

�
(10)

= 0 + 2

1X
j=1

j cos 2�j�; �1=2 � � � 1=2:

The simplest example, which we will build upon, is that of white noise,
wt = at, with at an uncorrelated mean zero series with variance �2a: Its spectral
density is its variance, a constant,

ga (�) = �2a; � 1=2 � � � 1=2: (11)

The second and third formulas of (10) show that a spectral density is always
an even function, gw (�) = gw (��), and spectral densities can be proven to be
non-negative for all �, as the formula for the ARMA case (16) below illustrates.
In the ARMA case, the j converge to zero exponentially rapidly

2 , making it
easy to justify term by term integration in (10) in order to use the propertyZ 1=2

�1=2
ei2�(k�j)�d� =

�
1; j = k
0 j 6= k

;

which can be veri�ed using ei2�(k�j)� = cos 2� (k � j)� + i sin 2� (k � j)�, to
obtain

k =

Z 1=2

�1=2
ei2�k�gw (�) d�; k = 0;�1; : : : ; (12)

see Theorem 4.3.2 of Brockwell and Davis (1991).

Remark. The formula (12) is the more versatile de�nition of the spectral
density gw of wt because it avoids the issue of possible non-convergence of the

2Autocovariances of an ARMA processes converge exponentially rapidly to 0 at a rate
connected to the smallest magnitude of a zero of the AR polynomial ' (B). One has jkj �
Cr�k for some constant C = C (r) for any 1 < r < min fjzj ; ' (z) = 0g, see (3.3.9) and §3.6
of Brockwell and Davis (1991).
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series in (10). In the Appendix, Section 7.3, we introduce a weaker form of
in�nite series convergence which will be used to establish (5). When applied to
the in�nite series in (10), it yields convergence to gw (�) for all �, and shows the
equivalence of both de�nitions of the spectral density, whenever gw is continuous
on �1=2 � � � 1=2.

2.2 ARMA Spectral Densities

Recall that, for a zero-mean stationary ARMA(p,q) series wt, with B denoting
the backshift (or lag) operator, we have

' (B)wt = # (B) at; (13)

with white noise at, with ' (z) = 1� '1z � � � � � 'pzp satisfying

' (z) 6= 0 when jzj � 1 (14)

and having no zeroes in common with # (z) = 1�#1z�� � ��#qzq. The property
(14) can be expressed as min fjzj : ' (z) = 0g > 1. When wt is a zero-mean
seasonal ARMA series, � (B) � (Bs)wt = � (B)� (Bs) at for s � 2, then we set
' (z) = � (z) � (zs) and # (z) = � (z)� (zs). In the Gaussian case, there is no
loss of generality in assuming that # (z) 6= 0 when jzj < 1. The ARMA model
is said to be noninvertible if # (z) = 0 for some z with jzj = 1.
To obtain the spectral density of such a wt, one uses the fundamental fact

that when wt is the output of a linear �lter A (B) =
P

j �jB
j applied to some

stationary xt, i.e. wt = A (B)xt =
P

j �jxt�j (where B
jxt = xt�j with j < 0 is

a forward shift �j units in time), then the spectral densities of the input series
xt and the output wt are related by

gw (�) =
��A �e�i2�����2 gx (�) ; (15)

see §4.4 of Brockwell and Davis (1991). The functionA
�
e�i2��

�
=
P

j �je
�2i�j�

is called the transfer function of the �lter A (B). When the coe¢ cients �j are
real, its complex conjugate A (e�i2��) has the formula A (e�i2��) = A

�
ei2��

�
and

��A �e�i2�����2 = A
�
e�i2��

�
A
�
ei2��

�
.

Using (15), (11) and (13) yield
��' �ei2�����2 gw (�) = ��# �ei2�����2 �2a and

therefore also

gw (�) = �2a

��# �ei2�����2
j' (ei2��)j2

; �1=2 � � � 1=2; (16)

where �2a is the variance of the white noise at. This formula shows that gw (�)
is non-negative and continuous for all � due to (14).
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2.2.1 The MA(1) Spectral Density and Autocovariances

For example, from (16), the spectral density of the MA(1) model, wt = (1 �
�B)at; �1 � � � 1 is

gw (�) = �2a
��1� �e�i2�s���2 = �2a

�
1� �ei2�s�

� �
1� �e�i2�s�

�
(17)

= �2a
�
1 + �2

�
� �2a�

�
ei2�� + e�i2��

�
;

which provides an alternate derivation of the familiar fact that an MA(1) has
0 = �2a

�
1 + �2

�
, �1 = ��2a� and j = 0 for jjj � 2.

2.2.2 The Gap AR(s) Spectral Density and Its Autocovariances

It follows from (16) that the spectral density of a gap AR(s) model,
wt = 'wt�s + at, with s � 1, is

gw (�) = �2a
��1� 'ei2�s����2 : (18)

We will need to know the coe¢ cients of the bi-in�nite series expansion (10).
By using (1� 'Bs)�1 =

P1
k=0 '

kBks, one obtains wt =
P1

k=0 '
kat�ks, from

which it easily follows that

j =

�
�2a
�
1� '2

��1
'jkj; j = ks for some integer k
0; otherwise.

: (19)

3 Sums of Spectral Densities and Uncorrelated
Decompositions

If two stationary mean zero times series xt and ~xt are uncorrelated, fxtg ? f~xtg,
then

E (xt + ~xt) (xt+j + ~xt+j) = Extxt+j + E~xt~xt+j ; j = 0;�1; : : : : (20)

Multiplying both sides of (20) by e�i2�j� and summing over �1 < j < 1
yields that the spectral density of the sum series wt = xt + ~xt is the sum of the
component spectral densities, i.e. (9) holds.
Conversely, if a given spectral density gw of a stationary series is found

to have a decomposition into a sum of spectral densities, say gw = g1 + g2,
then as regards its autocovariance properties, one can treat wt as admitting
a decomposition wt = xt + ~xt with uncorrelated components having spectral
densities gx = g1 and g~x = g2. (Correlated decompositions also compatible
with (9) are considered in Section 5.) Analogous conclusions hold for sums of
more than two series.
An important example of a trend plus irregular decomposition of an IMA(1,1)

Zt,
(1�B)Zt = (1� �B)at; �1 � � < 1: (21)
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is associated with the easily veri�ed decomposition of the MA(1) spectral density

�2a
��1� �ei2����2 = �2b

��1 + ei2����2 + �2c ��1� ei2����2 ; (22)

for which
�2b =

1

4
(1� �)2 �2a; �2c =

1

4
(1 + �)

2
�2a: (23)

In (22), the spectral density of the MA(1) process wt = (1 � �B)at has been
decomposed into spectral densities of the components on the right of

wt = (1�B)Tt + (1�B) It: (24)

This yields the IMA(1,1) model

(1�B)Tt = (1 +B) bt

for the trend Tt and the overdi¤erenced MA(1) model (1�B) It = (1�B) ct,
which is equivalent to the white noise model

It = ct

for the irregular component It, with the variances of the white noise process bt
and ct given by (23). These are the models calculated (numerically) from (21)
by TRAMO-SEATS, TSW and X-13ARIMA-SEATS to estimate the trend and
irregular components of an IMA(1,1) Zt. The spectral density decomposition
(22) allows the assumption that the MA(1) processes xt = (1 + B)bt and ~xt =
(1�B) ct are uncorrelated, i.e. (6) is satis�ed. The component ~xt of wt is
overdi¤erenced because It is stationary.
The spectral density decomposition (22) is algebraically equivalent to

�2a

��1� �ei2����2
j1� ei2��j2

= �2b

��1 + ei2����2
j1� ei2��j2

+ �2c ; (25)

which is a decomposition of the pseudo-spectral density function of the model
(21) as we now explain. The non-constant functions in (25) each have a form
analogous to that of an ARMA spectral density (16), except their denominators
are the squared magnitude of the transfer function �

�
e�i2��

�
= 1�e�i2�� of the

di¤erencing polynomial 1 � B of (21) and therefore have the value 0 at � = 0.
This causes their integrals over [�1=2; 1=2] to be in�nite. This is in contrast
to the �nite value obtained from (12) with k = 0 for a spectral density. When��� �e�i2��2���2 from an ARIMA model is incorporated into the denominator of
the ARMA spectral density formula (16), the resulting function is called the
pseudo-spectral density function (p-sd for short) of the ARIMA model. Thus
the function on the left in (25) is the p-sd of (21) and the similar function on the
right is the p-sd of the trend�s IMA(1,1) model, (1�B)Tt = (1 +B) bt. The
formula (25) is the canonical p-sd decomposition of (21), meaning that every
non-constant p-sd or spectral density belongs to a non-invertible model. The
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constant term on the right in (25) is the spectral density of the white noise
irregular component. Such decompositions are used to identify the component
models�ARIMA models in AMB seasonal adjustment, see Hillmer and Tiao
(1982) for a variety of examples.
The algebraic equivalence of (22) and (25) illustrates a fundamental fact:

the decompositions of Zt�s pseudo-spectral density that are the foundation of
AMB seasonal adjustment, see Burman (1980), Hillmer and Tiao (1982) and
Gómez and Maravall (2001) are algebraically equivalent to model compatibility
criteria (9) or their K component generalizations (36) below.

4 Obtaining Uncorrelatedness after Overdi¤er-
encing

In this Section, we present and validate an elementary method for inverting the
di¤erencing polynomial � (B) = 1 � Bs, s � 1 after it has been applied to a
stationary time series yt whose autocovariances are j = Eytyt+j are absolutely
summable

1X
j=�1

��j�� = j0j+ 2 1X
j=1

��j�� <1: (26)

A direct attempt at inversion by applying (1� �Bs)�1 =
P1

k=0 �
kBks with

� = 1 to (1�Bs) yt, produces a non-convergent in�nite series: the partial sums
NX
k=0

Bks (1�Bs) yt =
NX
k=0

�
yt�ks � yt�(k+1)s

�
= yt � yt�(N+1)s

do not converge to yt or to anything else. Their errors
�
yt � yt�(N+1)s

�
� yt =

yt�(N+1)s do not converge to zero. The mean square errors Ey2t�(N+1)s = 0
are constant and non-zero.
However, inversion can done with the aid of approximating inverses of the

form (1� �Bs)�1, 0 < � < 1. Proposition 1 shows that these yield the desired
result in mean square limit as � increases to 1,

lim
�"1

E
n
(1� �Bs)�1 (1�Bs) yt � yt

o2
= 0: (27)

We also establish that a series xt is uncorrelated with the stationary series
yt if and only if it is uncorrelated with the series � (B) yt:

fxtg ? f� (B) ytg () fxtg ? fytg : (28)

More generally, (28) will be established for all di¤erencing polynomials that
occur in ARIMA model-based seasonal adjustment, because the zeroes of these
di¤erencing polynomials all have the rational form e�i2�(r=s) for some 0 � r < s.
Such a zero is a zero of 1�zs. Therefore a di¤erencing polynomial whose zeroes
have this form will be a divisor of a polynomial of the form �s (1� zs)ds for
certain s > 0, a property we can use to obtain the needed result.
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4.1 Inverting Di¤erencing of a Stationary Process: White
Noise Case

To motivate the general results of this Section with an important example that
requires only the simplest calculations, we return to the spectral density de-
composition (22) and (23) of (24), resulting from di¤erencing Zt =Tt + It. In
Section 3, it was explained that this decomposition permits us to assume that
the stationary MA(1) processes xt = (1 +B) bt and ~xt = (1�B) It are uncor-
related fxtg ? f~xtg. From this, the series xt must be shown to be uncorrelated
with the undi¤erenced series It,

fxtg ? fItg : (29)

We start by verifying (27) for the white noise case yt = It with s = 1. For
0 < � < 1, de�ne an approximation It (�) to It by

It (�) = (1� �B)�1 (1�B) It =
1X
j=0

�j (1�B) It�j (30)

= It +
1X
j=1

�
�j � �j�1

�
It�j

= It + (� � 1)
1X
j=1

�j�1It�j : (31)

Next observe from (31) and the uncorrelatedness of the di¤erent It�j that this
approximation�s mean square error has the formula

E fIt (�)� Itg2 = (1� �)2
1X
j=1

�2(j�1)�2I

=
(1� �)2

1� �2
�2I =

1� �
1 + �

�2I ; (32)

uniformly in t. Letting � increase to 1, we conclude that

lim
�"1

E fIt (�)� Itg2 = 0: (33)

That is, It = lim�"1 It (�) in mean square, for all t.
The result (33) also yields (29), starting from E fxt (1�B) It+kg = 0 for all

integers k, which in turn yields

E fxtIt+kg = lim
�"1

E fxtIt+k (�)g

= lim
�"1

1X
j=0

�jE fxt (1�B) It+k�jg = lim
�"1

1X
j=0

�j � 0 = 0;
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for all k, t. The �rst equality follows from the Cauchy-Schwarz inequality
jCov(u; v)j �

p
var(u)

p
var(v) with u = xs and v = I (�)� It,

jE fxt (It+k (�)� It+k)gj �
q
E fx2tg

q
E fIt+k (�)� It+kg2; (34)

and (33). The second follows from an analogous argument that justi�es the
interchange of expectation and in�nite summation via a generalization of (32),

E

8<:
1X
j=J

�j f(1�B) It+k�jg

9=;
2

= �2J�2I + �
2J 1� �
1 + �

�2I ;

whose right hand side tends to 0 as J !1 for any �xed 0 < � < 1.
The result (33) and its generalization (27) established by (i) of Proposition

1 below can be regarded as mean square variants of convergence in the sense of
Abel, which is discussed in the Appendix.

4.2 The Proposition 1 and its Corollary

The main results of this Section are Proposition 1 and its Corollary. The latter
provides a generalization to any number of components of the needed uncorre-
latedness result (5) discussed in the Introduction.
The di¤erencing operators important for seasonal adjustment are factors of

1 � Bs for powers of such factors. For integers s > 2, the zeroes of 1 � zs are
z = 1 and z = e�i2�(r=s) for integers 0 < r < s=2, together with z = �1 when s
is even. Therefore 1�Bs factors as

1�Bs = (1�B) (1 +B)n(s)�0<r<s=2
�
1� 2 cos (2�r=s)B +B2;

�
where n (s) = 1 or 0, according as s is even or odd. All rational � with �1=2 �
� � 1=2 are associated with powers of these factors for some s.

Proposition 1 Let yt be a stationary series whose autocovariances j = Eytyt+j
are absolutely summable, i.e. (26) holds.
(i) Then (27) holds for the di¤erencing operators 1�Bs for each s � 1.

(ii) More generally, let � (B) be any di¤erencing polynomial whose zeroes are
rational (i.e. of the form e�i2�(r=s) for integers 0 � r � s=2). Then a stationary
series xt is uncorrelated with the series � (B) yt if and only if it is uncorrelated
with the series yt,

fxtg ? f� (B) ytg () fxtg ? fytg : (35)

The proof is given in the Appendix, see Subsection7.1
As a Corollary, whose proof is given in Subsection 7.2, we obtain the result

required to establish the mean square optimality of the ARIMA model-based
seasonal adjustment and signal extraction methods (under correct model as-
sumptions) as described in the Introduction. It is given for decompositions
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Zt =
PK

k=1 Z
(k)
t into any number K � 2 of component series Z(k)t whose

stationarizing di¤erencing polynomials �(k) (B) have no common zeroes (with
�(k) (B) = 1 when Z(k)t is stationary) and are such that �(�) (B) =

QK
k=1 �

(k) (B)
is the di¤erencing polynomial for Zt. For such decompositions, with gk denoting
the spectral density of �(�) (B)Z(k)t , the generalization of the model compati-
bility condition (9) for wt = �(�) (B)Zt is

gw =
KX
k=1

gk: (36)

This is compatible with the assumptionn
�(�) (B)Z

(j)
t

o
?
n
�(�) (B)Z

(k)
t

o
; j 6= k = 1; : : : ;K: (37)

The desired property isn
�(j) (B)Z

(j)
t

o
?
n
�(k) (B)Z

(k)
t

o
; j 6= k = 1; : : : ;K: (38)

Corollary 2 Suppose that for some K � 2, the nonstationary ARIMA Zt has a
decomposition Zt =

PK
k=1 Z

(k)
t whose component series Z(k)t have stationarizing

di¤erencing polynomials �(k) (B) with rational zeroes such that no two polyno-
mials have common zeroes and such that �(�) (B) =

QK
k=1 �

(k) (B) is the di¤er-

encing polynomial for Zt. Suppose too that the stationary series �
(k) (B)Z

(k)
t ,

1 � k � K all have absolutely summable autocovariance sequences (as they do
when they obey ARMA models). Then (38) holds if and only if (37) does.

Remark. The stochastic integral representation of stationary time series
can be used to give frequency domain de�nitions of �lters that have no direct
time domain representation. For the reader familiar with it, this advanced
methodology o¤ers a faster path to (35) for any di¤erencing operator and under
the weaker assumption that all stationary processes involved have continuous
spectral densities. Theorem 4.10.1 of Brockwell and Davis (1991) shows how
the inverse � (B)�1 of any di¤erencing �lter � (B) can be de�ned for application
to a series di¤erenced with � (B) to yield � (B)�1 f� (B) ytg = yt. Basic mean
square convergence results of §4.6-4.9 of this reference that are related to the
de�nition of the stochastic integrals then yield the uncorrelatedness assertions
of Proposition 1 via arguments based on the Cauchy-Schwarz inequality like

those used above. One applies the inverse of ~�
(j)
(B) =

QK
k=1;k 6=j �

(k) (B) to

�(�) (B)Z
(j)
t to obtain �(j) (B)Z(j)t , 1 � j � K and (38).

5 Regarding Correlated Decompositions

In the Proposition 3 of this Section, for a given pair of spectral densities gx
and g~x, we describe the in�nitely many possible covariance possibilities between

12



jointly stationary series xt and ~xt with these spectral densities such that the
spectral density of xt + ~xt is gx + g~x. The covariance information is expressed
by the cross-spectral density functions de�ned below.

5.1 Joint Stationarity and Cross-Spectral Densities

Two stationary series xt and ~xt are said to be jointly stationary when the cross-
covariances Ext~xt+j ; j = 0;�1; : : : do not depend on t. In this case, in addition
to the lag j autocovariances x;j = Extxt+j and ~x;j = E~xt~xt+j , we consider
the lag j cross-covariances x~x;j = Ext~xt+j and ~xx;j = E~xtxt+j , observing
from Ext~xt�j = E~xt�jxt that

x~x;�j = ~xx;j j = 0;�1; : : : . (39)

For the sum xt + ~xt, with x+~x;j = E (xt + ~xt) (xt+j + ~xt+j), we have

x+~x;j = x;j + ~x;j + x~x;j + ~xx;j : (40)

The cross-spectral densities can be de�ned by gx~x (�) =
P1

j=�1 x~x;je
�i2�j�

and g~xx (�) =
P1

j=�1 ~xx;je
�i2�j�;�1=2 � � � 1=2. They complete the de�n-

ition of the joint spectral density matrix,

gx;~x =

�
gx gx~x
g~xx g~x

�
=

�
gx gx~x
�gx~x g~x

�
; (41)

whose second expression follows from

g~xx (�) =
1X

j=�1
x~x;�je

�i2�j� =
1X

j=�1
x~x;je

i2�j� = �gx~x (�) ; (42)

where �gx~x (�) denotes the complex conjugate of gx~x (�). The spectral density
matrix gx;~x is Hermitian positive semi-de�nite, which in this bivariate case is
equivalent (Sylvester�s criterion) to det gx;~x (�) � 0 and therefore to

jgx~x(�)j2 � gx (�) g~x (�) ; �1=2 � � � 1=2: (43)

In the bivariate ARMA case, the autocovariances and cross-covariances of xt
and ~xt decay exponentially to 0, and the spectral and cross-spectral densities
are continuous. The analogue of (12) holds for cross-covariances x~x;j :

x~x;j =

Z 1=2

�1=2
ei2�j�gx~x (�) d�; j = 0;�1; : : : : (44)

From (40) and (42), the spectral density gx+~x (�) =
P1

j=�1 x+~x;je
i2�j� of

the sum xt + ~xt has the decompositions

gx+~x (�) = gx (�) + g~x (�) + gx~x (�) + g~xx (�) (45)

= gx (�) + g~x (�) + 2Re gx~x (�) ; �1=2 � � � 1=2: (46)
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5.2 Characterizations of gx+~x = gx + g~x
Here we characterize the structure of spectral density matrices of jointly sta-
tionary time series xt and ~xt with the property that

gx+~x = gx + g~x: (47)

This enables us to describe all possible cross-spectral densities compatible with
(47) for the continuous case.
It follows from (46) that (47) holds if and only if

Re gx~x (�) = 0; �1=2 � � � 1=2;

that is, gx~x (�) is purely imaginary where it is nonzero. This can be expressed
as

�gx~x (�) = �gx~x (�) ; �1=2 � � � 1=2; (48)

which yields
gx~x(0) = 0: (49)

From (42), (48) is equivalent to

g~xx = �gx~x (50)

yet another formulation of the model compatibility condition (9). More conve-
niently, (47) holds if and only if the joint spectral density matrix gx;~x has the
form

gx;~x =

�
gx gx~x
�gx~x g~x

�
: (51)

Finally, combining (39) with ~xx;j = �x~x;j from (40), we obtain the charac-
terization

x~x;�j = �x~x;j ; j = 0;�1; : : : : (52)

The following Proposition characterizes all continuous gx~x, and therefore
all cross-correlation possibilities, that are compatible with speci�ed spectral
densities gx and g~x in the continuous case.

Proposition 3 For any given continuous spectral densities gx and g~x, the con-
tinuous cross-spectral densities gx~x associated with jointly stationary time series
xt and ~xt for which (47) holds are all functions of the form

gx~x (�) =

8<: �if (��) ;�1=2 < � < 0
0 ; � = 0
if (�) ; 0 < � � 1=2

; (53)

where f is any continuous real-valued function on [0; 1=2] satisfying

jf (�)j2 � gx (�) g~x (�) ; 0 � � � 1=2. (54)

and
f (0) = 0: (55)
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Proof. This result follows from (50), (49), and the fact that, due to (54),
each matrix function

gx;~x =

�
gx gx~x
�gx~x g~x

�
(56)

with purely imaginary gx~x de�ned by (53) is Hermitian positive semi-de�nite
and therefore de�nes a joint spectral density matrix.

The cross-covariances associated with a given f can be obtained from (44).
The case of no correlation is associated with f = 0.
Tucker McElroy provided the following example of a bivariate vector MA(1)

whose spectral density matrix has the form (51).
Example. Let "t and ~"t denote white noise processes with variances equal

to 1 that are mutually uncorrelated: f"tg ? f~"tg. De�ne�
xt
~xt

�
=

�
"t
~"t

�
+

�
1 �
�� 1

� �
"t�1
~"t�1

�
:

Then with I denoting the 2� 2 identity matrix and

� =

�
1 �
�� 1

�
;�T =

�
1 ��
� 1

�
the joint spectral density matrix is given by�

gx (�) gx~x(�)
g~xx(�) g~x (�)

�
=

�
I +�ei2��

� �
I +�T e�i2��

�
= I +��T +�ei2�� +�T e�i2��

=

�
2 + �2 + 2 cos 2�� �

�
ei2�� � e�i2��

�
��

�
ei2�� � e�i2��

�
2 + �2 + 2 cos 2��

�
;

see Example 11.8.1 of Brockwell and Davis (1991) for the general vector ARMA
generalization of (16). Thus the compatibility condition (50) holds.
We now describe several broad classes of examples.

5.3 Examples with Correlated Components after Di¤er-
encing

Consider signal extraction from an ARIMA Zt = St + Nt whose di¤erencing
polynomial � (B) has a factor of (1�B). Let gx and g~x denote the ARMA
spectral densities of xt = � (B)St and ~xt = � (B)Nt, respectively. Then either
gx (0) = 0 or g~x (0) = 0. In this case, f =

p
gxg~x satis�es both (54) and

(55), and the joint spectral density matrix (56) with gx~x de�ned by (53) is
always singular, det gx;~x (�) = 0, for all �. In this case, the correlation between
components of the decomposition wt = xt + ~xt is complete: each component
is a linear �ltered version of the other. For example ~xt = �~x (B)xt, where the

15



�lter transfer function has the formula3 �
~x

�
e�i�

�
= �gx~x(�)gx (�)�1 (set equal

to 0 where gx (�) = 0 if this occurs, which can happen for only �nitely many
�). The factor �gx~x(�) = g~xx(�) will cause �~x

�
e�i�

�
to be purely imaginary,

with ��
~x

�
e�i�

�
= �~x

�
ei�
�
= ��~x

�
e�i�

�
, so the �lter �~x (B) will have the formP1

j=1 �j
�
B�j �Bj

�
.

For the example (22), where gx (�) = �2b
��1 + ei2����2 = 2�2b (1 + cos 2��) and

g~x (�) = �2c
��1� ei2����2 = 2�2c (1� cos 2��), we have

f(�) =
p
gx (�) g~x (�) = 2�b�c

p
1� cos2 2�� = 2�b�c jsin 2��j :

To obtain a di¤erent f for (22) with the property that the cross-spectral den-
sity g~xx de�ned by (53) is such that (56) is non-singular except when gx (�) g~x (�) =
0 (at � = 0;�1=4; 1=2), one could de�ne

f (�) =
p
2�b�c min

0���1=2

np
1 + cos 2��;

p
1� cos 2��

o
=

� p
2�b�c

p
1� cos 2�� ; 0 � � � 1=4p

2�b�c
p
1 + cos 2�� ; 1=4 < � � 1=2 :

More generally, for all decompositions gw (�) = gx (�) + g~x (�) of ARMA
spectral densities such that gx (0) g~x (0) = 0, the de�nition
f (�) =

p
min0���1=2 fgx (�) ; g~x (�)g will result in (56) being non-singular for

all but �nitely many �. As a result, there will be correlation, but not complete
correlation, between xt and ~xt.

5.4 No Correlation versus Correlation

In the ARIMA signal extraction context, to the extent that all of the model-
relevant statistical information in the data is expressed in the model spectral
density of � (B)Zt, there is no statistical information available to favor one of
the function f in the in�nite collection described by Proposition 3 over another.
The choice f = 0 can be viewed as the neutral choice, also in the following
speci�c sense: with any non-zero f that satis�es the conditions of Proposition 3,

3 In general, for jointly stationary xt and ~xt, the mean square optimal linear approximation
to ~xt from xt�j , 0 � j < 1 is given by bxt = � (B)xt, where � (B) has transfer function
�
�
e�i2��

�
= g~xx (�) gx (�)

�1. This well-known result follows from the fact that mean square
optimality is characterized by the property that the errors et = ~xt � � (B)xt satisfy fetg ?
fxtg, which is equivalent to gex = 0 for the cross spectral density of et and xt. We have
gex (�) = g~xx (�) � �

�
e�i2��

�
gx (�) = g~xx (�) � g~xx (�) gx (�)�1 gx (�) = 0. It follows from

the uncorrelatedness of the decomposition ~xt = bxt + et that
g~x (�) = gbx (�) + ge (�)

=
���� �e�i2������2 gx (�) + ge (�)

= jg~xx (�)j2 =gx (�) + ge (�) .

When jg~xx (�)j2 = g~x (�) gx (�), the �nal formula for g~x (�) becomes g~x (�) = g~x (�)+ge (�),
showing that ge (�) = 0 for all �. Therefore et = 0 for all t, so ~xt = bxt = � (B)xt.
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its opposite function �f could just as well be used to generate cross-correlations,
and �f would give the exact opposite cross-correlations from those obtained
with f . Of course, the choice of no correlation has always had the important
practical advantage that it provides the simplest linear mean square optimal
signal estimation formulas with the least amount of information required.

Remark. The ARIMA process decomposition with correlated components
after minimal di¤erencing that has received considerable attention is the �per-
manent plus transitory� decomposition for ARIMA (p,1,q) processes Zt, due
Beveridge and Nelson (1981), also see Gómez and Breitung (1999). It is based on
the Wold decomposition wt = at +

P1
j=1  jat�j =  (B) at of wt = (1�B)Zt,

where at is the white noise innovations process of wt. Its di¤erenced components
are completely correlated. The Beveridge-Nelson decomposition lies outside the
scope of our discussion because its implied decomposition of wt,

wt =  (1) at + f (B)�  (1)g at; (57)

does not satisfy the compatibility condition (9) with xt =  (1) at and ~xt =
f (B)�  (1)g at except in the degenerate case  (1) = 0. This follows from
cross-covariance calculation, which yields

gx~x (�) = �2a (1) (1�  (1)) + �2a (1)
1X
j=1

 je
�i2��

= �2a (1) (1�  (1)) + �2a (1)
�
 
�
e�i2��

�
� 1
�
:

The decomposition (57) is compatible with the ARIMA (p,1,q) in the di¤erent
sense that (57) uniquely identi�es cross-covariances. Hence (45) is automati-
cally satis�ed in a meaningful way. It does not have a mean square optimality
property.

5.5 More Than Two Components

We now brie�y comment on correlation possibilities for ARIMAmodel decompo-
sitions of a time series Zt =

PK
k=1 Z

(k)
t with K > 2 components and di¤erencing

polynomial � (B). With x(k)t = � (B)Z
(k)
t , let gjk denote the cross-spectral den-

sity of x(j)t and x(k)t , for j 6= k = 1; : : :K. The model compatibility condition

(36) is equivalent to Re
�PK

j 6=k:;j;k=1 gjk

�
= 0, which we have not undertaken

to characterize for K > 2.
Ghysels (1987) has proposed, for illustrative purposes, a correlated three-

component model for �rst di¤erences of demand for money as the sum of the
�rst di¤erences of cycle, seasonal and trend. In this decomposition, the �rst
di¤erences of the seasonal component are assumed to follow a �rst-order sta-
tionary seasonal autoregressive model (a nonstandard model). This three com-
ponent model is outside our framework because the same di¤erencing operator
� (B) = 1 � B is used for the money supply and its components, in con�ict
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with our requirements for � (B), e.g. � (B) 6=
Q3
k=1 �

(k) (B) = � (B)
3. The �rst

di¤erences of the cycle are correlated with those of the seasonal and trend in
quite complex ways. Ghysels (1987) provides a state space formulation that
can be used to estimate the stationary �rst-di¤erenced components in a mean
square optimal way.

Acknowledgements. We are indebted to Agustin Maravall and William
Bell for in�uential comments and suggestions from an earlier draft of this note,
and similarly to Tucker McElroy, who commented helpfully on several drafts
and provided the bivariate MA(1) example of Subsection 5.2. Brian Monsell is
thanked for his careful reading of two earlier drafts.

6 Conclusions

In Proposition 1 and Corollary 2, by showing the inherent compatibility of the
requirement that minimally di¤erenced decomposition components be uncorre-
lated, we have completed the theoretical linear mean square optimality theory
supporting the currently implemented methods for calculating model-based sea-
sonal adjustments. With Proposition 3 and the subsequent discussion, we have
provided further support for these methods by showing that the assumption of
uncorrelated components after minimal di¤erencing is the most neutral among
an in�nite set of correlated alternatives compatible with the ARIMA model for
the observed series. The choice of no correlation has the important advantages
that it yields the simplest linear mean square optimal signal estimation formulas
requires the least amount of information.
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7 Appendix

7.1 Proof of Proposition 1

(i) Suppose � (B) = 1�Bs for s � 1. We will show for yt (�) = (1� �Bs)�1 (1�Bs)
that

lim
�"1

E fyt (�)� ytg2 = 0; (58)
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which is a re-expression of (27).
Observe that

yt (�)� yt = (1� �Bs)�1 f(1�Bs)� (1� �Bs)g yt
= (� � 1)

h
(1� �Bs)�1Bs

i
yt; (59)

and that the squared gain of the �lter A� (B) = (1� �Bs)�1Bs has the formula��A� �e�i2�����2 = ��1� �e�i2�s����2. Therefore, making the appropriate changes
of notation in (15) and in (12) with k = 0, we obtain from (59) that

E fyt (�)� ytg2 = (� � 1)2
Z 1=2

�1=2

��1� �e�i2�s����2 gy (�) d�; (60)

with gy (�) =
P1

j=�1 je
�i2�j�. The function

��1� �e�i2�s����2 has the form of
the spectral density of a gap AR(s) process (18) with ' = � and and �2a = 1.
Using (19) in Parseval�s identity, see Theorem 2.4.2 of Brockwell and Davis
(1991) or (8.2) of Zygmund (1968, p. 157), we obtain

(� � 1)2
Z 1=2

�1=2

��1� �e�i2�����2 gy (�) d� =
(� � 1)2

1� �2
1X

k=�1
�jkjks

� 1� �
1 + �

8<:0 + 2
1X
j=0

jksj

9=;(61)
with the inequality following from

���P1
k=�1 �jkjks

��� � 0 + 2
P1

j=0 jksj < 1
for any 0 < � < 1. Now (58) follows from (61) and (26).
(ii) It is always the case that fxtg ? fytg implies fxtg ? f� (B) ytg be-

cause � (B) yt is a �nite linear combination of variates yt�j . Thus it remains to
establish the forward assertion in (35),

fxtg ? f� (B) ytg =) fxtg ? fytg : (62)

From (58), as in (34), the Cauchy-Schwarz inequality yields

fxtg ?
n
(1�Bs)d yt

o
=) fxtg ? fytg (63)

for d = 1. We can obtain (63) for d � 2 by induction. De�ne y(1)t = yt and y
(d)
t =

(1�Bs) y(d�1)t for d � 2, and note that each y(d)t has an absolutely summable
autocovariance sequence because it is a �xed �nite linear combination of variates

yt�j . Thus we can apply the (1�Bs) result to obtain fxtg ?
n
y
(d)
t

o
=) fxtg ?n

y
(d�1)
t

o
and then apply the induction hypothesis for y(d�1)t to obtain (63) for

all d � 2.
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An analogous induction argument shows that

fxtg ?

8<:
JY
j=1

�
1�Bs(j)

�d(j)
yt

9=; =) fxtg ? fytg ; (64)

for any integers s (j) � 1; d (j) � 1, d = 1; : : : ; J and J � 1.
Given a � (B) whose zeroes are rational, let J denote the number of distinct

real zeroes (ei2�(r=2), r = 0; 1) plus the number of distinct complex conjugate
pairs e�i2�(r=s), r=s 6= 0; 1=2. Indexing these in some way, let d (j) denote the
multiplicity of the j-th root or root pair and let s (j) denote the denominator of
its ratio r (j) =s (j). Then there is a polynomial ~� (B) such that ~� (B) � (B) =
JY
j=1

�
1�Bs(j)

�d(j)
. Since fxtg ? f� (B) ytg implies fxtg ?

n
~� (B) � (B) yt

o
, we

can conclude from (64) that fxtg ? fytg.

7.2 Proof of Corollary 2

First consider the case K = 2. If �(1) (B) 6= 1, apply (62) with
xt = �(2) (B) �(1) (B)Z

(1)
t , yt = �(2) (B)Z

(2)
t and � (B) = �(1) (B), to obtainn

�(2) (B) �(1) (B)Z
(1)
t

o
?
n
�(2) (B)Z

(2)
t

o
. Next, if �(2) (B) 6= 1, apply (62)

with xt = �(2) (B)Z
(2)
t , yt = �(1) (B)Z

(1)
t , and � (B) = �(2) (B) to conclude thatn

�(1) (B)Z
(1)
t

o
?
n
�(2) (B)Z

(2)
t

o
. Thus the desired result holds for K = 2.

For decompositions of Zt with K > 2 components, Zt =
PK

k=1 Z
(k)
t , it

su¢ ces to consider the case K = 3, because we only need to show that the
members of any pair of properly di¤erenced components are mutually uncor-
related and the third component can be the sum of the components not in
the chosen pair. The three series �(�) (B)Z(k)t , 1 � k � 3, can be written as

�(3) (B)
h
�(2) (B)

�
�(1) (B)Z

(1)
t

�i
, �(3) (B)

h
�(1) (B)

�
�(2) (B)Z

(2)
t

�i
and

�(�) (B)Z
(3)
t respectively. They are assumed to be mutually uncorrelated. We

need to show that the stationary series �(1) (B)Z(1)t and �(2) (B)Z(2)t are mutu-
ally uncorrelated. Assuming �(3) (B) 6= 1, we can apply (62) twice with � (B) =
�(3) (B) to conclude that

n
�(2) (B)

h
�(1) (B)Z

(1)
t

io
?
n
�(1) (B)

h
�(2) (B)Z

(2)
t

io
,

and then the K = 2 result (assuming �(1) (B) 6= 1 or �(2) (B) 6= 1) to obtainn
�(1) (B)Z

(1)
t

o
?
n
�(2) (B)Z

(2)
t

o
.

7.3 Abel Convergence

We now return to the issue raised in the Remark of Subsection 2.1 regarding
the convergence of the in�nite series formula for the spectral density gw. This
issue applies as well to cross-spectral densities. For continuous gw (�), ordinary
convergence of the series can fail on an in�nite set of � (that has measure
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0), but convergence in the sense of Abel to gw (�), a more general concept of
convergence introduced here, holds for all �. This approach to convergence was
used in Subsection 4.1 to establish important cases of Proposition 1 in a very
concrete way. We present it here in its original in�nite series context, in a way
that covers both the real-valued spectral densities (10) and the complex-valued
cross-spectral densities (42) that are the focus of Proposition 3.

Let the real- or complex-valued function g be such that
R 1=2
�1=2 jg (�)j d� <1.

Its Fourier coe¢ cients cj , j = 0;�1; : : : are de�ned by

cj =

Z 1=2

�1=2
ei2�k�g (�) d�; j = 0;�1; : : : :

These are real-valued for the g we consider, which are spectral and cross-
spectral densities, so only this case will be discussed. For the symmetric sumPn

j=�n cje
�i2�j�, substituting e�i2�j� = cos 2�j� � i sin 2�j� and rearranging

yields the identity
nX

j=�n
cje

�i2�j� = c0 +

nX
j=1

(c�j + cj) cos 2�j�+ i

nX
j=1

(c�j � cj) sin 2�j�; (65)

for all �nite integers n � 1 and for n =1. Thus c0+
Pn

j=1 (c�j + cj) cos 2�j� is
the real part of

Pn
j=�n cje

�i2�j� and
Pn

j=1 (c�j � cj) sin 2�j� is its imaginary
part. Convergence of an in�nite sum of the form

P1
j=�1 cje

�i2�j� will always
mean convergence of the symmetric partial sums (65) for �nite n tending to

1. Note that jc�j j �
R 1=2
�1=2 jg (�)j d� for all j � 0. This makes clear that if

we replace the coe¢ cients cj in (65) by the exponentially decaying coe¢ cients,
cj�

jjj for any �xed 0 < � < 1, all three of the resulting series will be absolutely
convergent, e.g.

nX
j=1

���(c�j � cj)�jjj sin 2�j���� �
nX
j=1

(jc�j j+ jcj j)�jjj

� 2

Z 1=2

�1=2
jg (�)j d�

nX
j=1

�jjj

= 2� (1� �)�1
Z 1=2

�1=2
jg (�)j d� <1:

Therefore series with the replaced coe¢ cients are convergent uniformly in �.

De�nition 4 The series
P1

j=�1 cje
�i2�j� is said to converge in the sense of

Abel to the number g� at frequency � if, for 0 < � < 1, the two sums on the
right in (66) are convergent for each � and their sum plus c0 converges to g� as
� increases 1,

g� = c0 + lim
�"1

1X
j=1

�j (c�j + cj) cos 2�j�+ i lim
�"1

1X
j=1

�j (c�j � cj) sin 2�j�: (66)
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The classical Abel convergence results, see Theorem (6.11) of Zygmund
(1968), include the facts that (i) convergence of

P1
j=�1 cje

�i2�j� in the usual
sense to g� implies (66). (ii) If g is continuous at �0, then (66) holds for
� = �0, with g�0 = g (�0), and the convergence is uniform over every interval
[�1; �2] on which gis continuous. Further (iii) if g (�) has a jump discontinu-
ity at � = �0, but the left and right hand limits g (�0�) = lim�"�0 g (�) and
g (�0+) = lim�#�0 g (�) exist (with the same sign if they are in�nite), then

g (�0�) + g (�0+)
2

= c0 +
1X

j=�1
cje

�i2�j� (67)

holds in the sense of Abel.
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