
R eanalyses such as the National Centers for

 Environmental Prediction (NCEP)–National

 Center for Atmospheric Research (NCAR) re-

analysis (Kalnay et al. 1996) and the European Centre 

for Medium-Range Weather Forecasts (ECMWF) 

40-year reanalysis (ERA-40; Uppala et al. 2005) have 

become heavily used products for geophysical science 

research. These reanalyses run a practical, consistent 

data assimilation and short-range forecast system 

over a long period of time. While the observation 

type and quality may change somewhat, the forecast 

model and assimilation system are typically fixed. 

This facilitates the generation of a reanalysis dataset 

that is fairly consistent in quality over time. These 

reanalysis datasets have facilitated a wide range of 

research; for example, the Kalnay et al. (1996) article 

above has been cited more than 3200 times.

In this article, we explore the value of a companion 

dataset to reanalyses, which we shall call “reforecasts.” 

These are retrospective weather forecasts generated 

with a fixed numerical model. Model developers 

could use them for diagnosing model bias, thereby 

facilitating the development of new, improved ver-

sions of the model. Others could use them as data 

for statistically correcting weather forecasts, thereby 

developing improved, user-specific products [e.g., 

model output statistics (MOS) Glahn and Lowry 

1972; Carter et al. 1989]. Others may use them for 

studies of atmospheric predictability. Unfortunately, 

extensive sets of reforecasts are not commonly pro-

duced utilizing the same model version as is run 

operationally. These computationally expensive 

reforecasts are “squeezed out” by operational data 

assimilation and forecast models that are run at as 

fine a resolution as possible.

Would the additional forecast improvement and 

diagnostic capability provided by reforecasts make 

them worth the extra computational resources they 

require? To explore this, we recently generated a 

prototype 25-yr, 15-member ensemble reforecast 

dataset using a 1998 version of the NCEP Medium 

Range Forecast (MRF) model run at T62 resolution, 

which is admittedly a resolution far from being state 
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of the art in operational numerical weather prediction 

centers in 2005. Despite the coarse resolution of this 

dataset, we were able to make probabilistic week-2 

forecasts that were more skillful than the operational 

NCEP forecasts that are based on higher-resolution 

models (Hamill et al. 2004). Others have also dem-

onstrated the utility of reforecasts for improving pre-

dictions. Rajagopalan et al. (2002) and Stefanova and 

Krishnamurti (2002) used multimodel reforecasts 

to improve seasonal predictions, and Vitart (2004) 

demonstrated improved monthly forecasts using a 

smaller reforecast dataset. Other smaller reforecast 

datasets also have been produced as companions 

to reanalysis datasets, but have not been used for 

real-time statistical corrections of forecasts (Kistler 

et al. 2001; Mesinger et al. 2005). The novelty of the 

reforecast dataset discussed here is its length (every 

day, from 1979 to the present), the ongoing produc-

tion of real-time numerical forecasts from the same 

model, and that it is an ensemble of forecasts rather 

than a single integration.

A variety of other approaches are being explored 

for improving probabilistic forecasts. The Develop-

ment of the European Multimodel Ensemble System 

for Seasonal to Interannual Prediction (DEMETER) 

project in Europe has generated probabilistic sea-

sonal climate forecasts in a multimodel environment 

(Palmer et al. 2004; Hagedorn et al. 2005; Doblas-

Reyes et al. 2005). Statistical approaches to correct-

ing weather forecasts have been tried using shorter 

training datasets, including some with multimodel 

or multianalysis approaches (Vislocky and Fritsch 

1995, 1997; Hamill and Colucci 1997, 1998; Eckel and 

Walters 1998; Krishnamurti et al. 1999; Roulston and 

Smith 2003; Raftery et al. 2005; Wang and Bishop 

2005). Results presented here will reinforce our previ-

ous assertion (Hamill et al. 2004) that for many dif-

ficult problems, such as long lead forecasts, forecasts 

of rare events, or forecasts of surface variables with 

significant bias, a large training sample size afforded 

by reforecasts may prove especially beneficial.

Our intent in this article is to introduce the reader 

to the several applications of reforecast data that 

demonstrate the potential for improving weather 

predictions and increasing our understanding of at-

mospheric predictability. We also intend to stimulate 

a serious discussion about the value of reforecasts. 

Is the value added so large that operational weather 

forecast centers should make reforecasting a regular 

part of the operational numerical weather prediction 

process? We will demonstrate that for the problem 

of probabilistic precipitation forecasting there is a 

large, additional amount of skill that can be realized 

through the use of the reforecasts. Because reforecast-

ing using higher-resolution models can be expensive, 

implementing this idea could require the purchase or 

reallocation of computer resources. Thus, the imple-

mentation of reforecasting requires discussion at the 

top levels of the weather services.

We will provide a description of this dataset in 

“Description of the reforecast dataset” and illustrate how 

users can download raw data. We then demonstrate a 

range of potential applications in “Some applications at 

the reforecast data,” illustrating how such datasets may 

be used to inform a variety of forecast problems. “How 

can reforecasts be integrated into operational numerical 

weather prediction?” discusses the manner in which 

reforecasts may be able to be integrated into operational 

NWP facilities without excessive disruption.

DESCRIPTION OF THE REFORECAST 
DATASET. A T62 resolution (roughly 200-km grid 

spacing) version of NCEP’s Global Forecasting System 

(GFS) model (Kanamitsu 1989; Kanamitsu et al. 1991; 

Hong and Pan 1996; Wu et al. 1997; Caplan et al. 1997, 

and references therein) was used with physics that 

were operational in the 1998 version of the model. 

This model was run with 28 vertical sigma levels. The 

reforecasts were generated at the National Oceanic 

and Atmospheric Administration (NOAA) laboratory 

in Boulder, Colorado, and real-time forecasts are now 

generated at NCEP and archived in Boulder.

A 15-member ensemble was produced every day 

from 1979 to the present, starting from 0000 UTC 

initial conditions. The ensemble initial conditions con-

sisted of a control initialized with the NCEP–NCAR 

reanalysis (Kalnay et al. 1996) and a set of seven bred 

pairs of initial conditions (Toth and Kalnay 1993, 1997) 

that are recentered each day on the reanalysis initial 

condition. The breeding method was the same as that 

used operationally in January 1998. The forecasts ex-

tend to 15 days lead, with data archived every 12 h.

Because of the large size of this dataset, we have 

chosen to archive only a limited set of model output. 

Winds, temperature, and geopotential height are avail-

able at the 850-, 700-, 500-, 250-, and 150-hPa levels, 

and winds and temperature are available at 1000 hPa. 

The 10-m wind components, 2-m temperature, mean 

sea level pressure, accumulated precipitation, convec-

tive heating, precipitable water, and 700-hPa relative 

humidity were also archived. Data can be downloaded 

using the online form at www.cdc.noaa.gov/refore-
cast/ (Fig. 1). Real-time data can also be obtained us-

ing file transfer portocol (ftp) from ftp://ftp.cdc.noaa.
gov/Datasets.other.refcst/ensdata/yyyymmddhh, 

where yyyy is the year, mm is the month, dd is the 
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day, and hh is the hour of the initialization time. The 

real-time forecasts are typically available about 10 h 

after the initialization time.

SOME APPLICATIONS OF THE REFORE-
CAST DATASET. Because reanalyses have fostered 

many creative diagnostic studies, a long reforecast da-

taset permits an examination and correction of weath-

er forecasts in ways that were not previously possible. 

Robust statistical forecast techniques can be developed, 

the characteristics of model biases more thoroughly 

understood, and predictability issues explored. Here, 

we demonstrate some interesting applications.

Forecasting with observed analogs. Many forecast users 

desire reliable, skillful high-resolution ensemble pre-

dictions, perhaps for such applications as probabilistic 

quantitative precipitation forecasting or hydrologic 

applications (e.g., Clark and Hay 2004). The dataset 

produced in this pilot reforecast project has a com-

paratively low resolution of T62. However, it may be 

possible to downscale and correct systematic errors in 

ensemble forecasts through analog techniques, pro-

ducing a skillful probabilistic forecast at as high a res-

olution as that of the observed data. Given a long time 

series of reforecasts and 

high-resolution analyses 

or observations, a two-step 

procedure is invoked. First, 

today’s ensemble forecast is 

compared to reforecasts of 

the same lead. Second, the 

dates of the closest pattern 

matches are noted, and an 

ensemble is formed from 

the observed or analyzed 

conditions on those dates.

This two-step procedure 

may be appealing, because 

it simulates the forecast 

process of many humans: 

we look at the current fore-

cast, recall situations where 

the forecast depiction was 

comparable (step 1), and 

try to recall the weath-

er that actually occurred 

(step 2). Analog forecast 

techniques have a rich his-

tory (e.g., Toth 1989; van 

den Dool 1989; Livezey 

et al. 1994; Zorita and von 

Storch 1999; Sievers et al. 

2000), but most utilize a simpler approach of directly 

finding observed analogs to the forecast. Consider a 

situation where the forecast model is consistently too 

wet. In a one-step analog technique, the ensemble of 

observed analogs would, by construction, retain the 

forecast’s wet bias. The two-step procedure would 

first find similar forecasts, but if the observed data 

were drier, the second step would compensate for 

the wet bias.

To demonstrate the potential of this two-step 

analog procedure, the technique was used to gen-

erate probabilistic forecasts of 24-h-accumulated 

precipitation over the conterminous United States. 

Forecasts were verified during January–March (JFM) 

1979–2003. The approximately 32-km North Ameri-

can Regional Reanalysis (NARR; Mesinger et al. 

2005)-analyzed precipitation data were used both for 

verification and as the dataset from which historical 

observed weather analogs were selected.

The first step of the procedure was to find the closest 

local reforecast analogs to the current numerical fore-

cast. That is, within a limited-size region, today’s forecast 

was compared against past forecasts in the same region 

and at the same forecast lead. Specifically, the ensemble 

mean precipitation forecast pattern was computed at 

FIG. 1. Screenshot of the reforecast dataset download Web page.
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a subset of 16 coarse-resolution grid 

points (e.g., the large purple dots in 

Fig. 2).1 The ensemble mean forecasts 

in this region were compared to en-

semble mean reforecasts over all other 

years, but only those within a window 

of 91 days (± 45 day window) around 

the date of the forecast. For example, 

a 15 February 2002 4-day ensemble 

mean forecast over the northwest 

United States was compared against 

the 4-day ensemble mean reforecasts 

from 1 January to 1 April 1979–2001 

over the northwest United States. The 

root-mean-square (rms) difference 

between the current forecast and each 

reforecast was computed, averaged 

over the 16 grid points in Fig. 1. The n 

historical dates with the smallest rms 

difference were chosen as the dates of 

the analogs.

The second step was the 

collection of the ensemble 

of observed weather on 

the dates of the closest n 

analogs. For this applica-

tion, the NARR-observed 

precipitation states were 

collected at the interior 

red dots in Fig. 2. A proba-

bilistic forecast was then 

generated using the en-

semble relative frequency; 

for example, if 2 ⁄3 of the 

members at a grid point 

had greater than 10 mm 

of accumulated rain, the 

probability of exceeding 

10 mm was set to 67%.

The process was then 

repeated for other locations 

around the United States. A 

full, high-resolution proba-

bilistic forecast was gener-

ated by tiling together the 

local analog forecasts.2

1 Techniques that attempted to find analogs for each member were generally less skillful; we believe that this is both because 

the ensemble mean acts as a filter of the unpredictable scales and because there is not much of a relationship between spread 

and skill in this particular ensemble (Hamill et al. 2004).
2 Tiling can, in some situations, introduce slight discontinuities of the probabilities at the boundaries between tiles. We tested 

a slightly modified method that produced a smoother field. Skill scores were similar (Hamill and Whitaker 2005, manuscript 

submitted to Mon. Wea. Rev.).

FIG. 3. (a) Raw ensemble-based probability of greater than 100 mm of pre-
cipitation accumulated during days 4–6 for a forecast initialized at 0000 UTC 
26 Dec 1996 (from 0000 UTC 29 Dec 1996 to 0000 UTC 1 Jan 1997). Dots 
indicate locations used in Fig. 4. (b) As in (a), but where probabilities have been 
estimated from relative frequency of historical NARR analogs. (c) Observed 
precipitation from NARR (mm). The 100-mm threshold is highlighted.

F I G .  2 .  M a p  o f 
reforecast gr id 
points used in the 
d e t e r m i n a t i o n 
of closest analog 
fo re c a s t s .  The 
smaller dots de-
note where NARR 
data are available 
(a 32-km Lambert 
conformal grid). 
Large blue dots 
denote where the 
T62 forecasts are 
available (interpo-
lated from a global 
2.5° grid to every 
eighth NARR grid 
point). The analyzed fields associated with the closest pattern 
matches at the blue dots are extracted at the red dots. The national 
forecast is comprised of a tiling of similar regions from around the 
country.
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Figure 3 shows the data from one such case, a 

3-day heavy precipitation event along the West Coast 

in late December 1996 (Ralph et al. 1998; Ogston et al. 

2000). Figure 3a shows the probabilistic forecasts 

generated from the raw T62 ensemble. Regions where 

the ensemble forecast members exceeded 100 mm of 

rainfall over the 2 days excluded Washington State, 

and the probabilities of greater than 100 mm thereof 

were highest in northern California. In comparison, 

when probabilities were computed from the n = 75 

historical analogs, nonzero probabilities for exceed-

ing 100 mm were extended north into Washington 

State. The high probability tended to be localized 

more along the coastal mountain ranges, that is, 

the Cascades and the Sierra Nevada. The observed 

precipitation (Fig. 3c) shows that the heaviest pre-

cipitation had a similar spatial pattern of high prob-

abilities, with the heaviest precipitation along the 

mountain ranges.

To understand better how the analog technique 

performed, consider the forecasts at the three dots in 

Fig. 3a. The lower two dots, near Mt. Shasta (bottom) 

and Medford, Oregon (middle), were both in the re-

gion where the model predicted record rainfall. The 

top dot, in the Olympic Range in Washington, was 

outside of the region where any of the ensemble mem-

bers forecast over 100 mm (precipitation was forecast 

there, just consistently less than 100 mm). At these 

three grid points, we will consider the raw ensemble 

data at that grid point, the values of the ensemble 

means of the chosen forecast analogs interpolated 

to this location, and the values of the associated 

observed data on those same days. Figure 4a pro-

vides information for the grid point near Mt. Shasta. 

The histogram along the top denotes the raw T62 

ensemble forecast information, showing that the 

precipitation was exceptionally heavy at this point 

for all ensemble members. The scatterplot shows the 

closest 75 ensemble mean reforecast values of rainfall 

(abscissa) plotted against the associated 75 histori-

FIG. 4. Ensemble forecast, reforecast analog, and 
observed analog data for three dots in Fig. 3a. Histo-
grams along the top of the plots indicate the raw T62 
ensemble forecast total amounts. Histograms along 
the right of the plots indicate the frequency of NARR 
analog forecast amounts. Scatterplots indicate the 
joint value of ensemble mean analog forecasts that 
are taken from the reforecast dataset (abscissa) and 
the value of the associated NARR historical analog 
(ordinate). (a) Scatterplot from Mt. Shasta (northern 
CA), (b) scatterplot from Medford (southern OR), and 
(c) scatterplot from Olympic Mountains, WA.
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cal NARR-analyzed rainfall values (ordinate). The 

histogram for the NARR analog ensemble is plotted 

along the right-hand side. As indicated by the dif-

ference in the position of the raw forecast histogram 

and forecast analogs dots, the reforecast data were 

not able to find many close forecast analogs to this 

record event, at least considering just the data at this 

one point. However, the observed amounts that are 

associated with even these relatively poor analogs 

often indicated heavier precipitation than that fore-

cast, correcting a typical underforecast bias. Also, the 

spread of the observed analogs was much larger than 

the spread of the raw ensemble or the ensemble mean 

forecast analogs, correcting the ubiquitous precipita-

tion spread deficiency (e.g., Hamill and Colucci 1997; 

Mullen and Buizza 2001).

In Fig. 4b, the raw forecast ensemble at Medford 

Oregon, also indicated a record-breaking heavy 

precipitation event. As with Mt. Shasta, no similarly 

wet analogs could be found among the reforecasts. 

However, this location was in a climatological 

rain shadow of the Coast Ranges in Oregon and 

California. The smoothed terrain in the reforecast 

model was unable to resolve this level of terrain de-

tail, so heavier precipitation than was observed was 

commonly forecast in Medford. Consequently, the 

two-step analog procedure adjusted for the typical 

overforecast bias. The very different bias corrections 

between Mt. Shasta and Medford amount to a way 

of downscaling the coarse forecast to be consistent 

with the local variations of rainfall in the observed 

data.

In Fig. 4c, moderate precipitation amounts were 

forecast in the original ensemble in the Olympic 

Range of Washington State, and many similar refore-

cast analogs were found in the dataset. The associ-

ated NARR-observed analogs tended to be heavier 

in amount, with a larger spread than the original 

ensemble, thus correcting for an underforecasting 

bias and what was probably insufficient spread in the 

original ensemble.

The analog technique apparently can correct 

for bias and spread deficiencies and downscale the 

forecast to account for terrain effects. But, does 

the skill of this technique exceed that from exist-

ing operational ensemble forecast? To determine 

this, we have extracted the operational ensemble 

forecasts from NCEP for JFM 2002–03; starting in 

January 2002, NCEP GFS ensemble forecasts were 

computed at T126 resolution to 84-h lead, providing 

it with a resolution advantage over the reforecast 

model. Figures 5a–b show the Brier skill score (BSS; 

Wilks 1995) of ensemble forecasts at the 2.5- and 

25-mm (per 24 h) thresholds, respectively, calcu-

lated in a way that does not exaggerate forecast skill 

(Hamill and Juras 2005, manuscript submitted to 

Mon. Wea. Rev., hereafter HAM). The 75-member 

analog reforecast technique is much more skillful 

than the NCEP forecast, especially at the 25-mm 

threshold.

The increase in skill is primarily due to an in-

crease in the resolution of the probability forecasts, 

rather than improved reliability. Resolution measures 

the ability of the forecasts to distinguish between 

situations with different observed event frequencies 

FIG. 5. Brier skill score of 75-member analog and NCEP 
ensemble forecasts measured relative to climatology. 
(a) 2.5- and (b) 25-mm skill.
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(Murphy 1973; Wilks 1995); higher numbers indi-

cate more skill. Reliability indicates how closely the 

long-term-observed event frequency, given a forecast 

probability, matches the forecast probability; the 

smaller the reliability value, the better (ibid.). If the 

climatological probability of event occurrence is the 

same for all samples (HAM), then the BSS can be 

decomposed as

  
(1)

[Wilks 1995, his Eq. (7.29)], where uncertainty de-

notes the variability of the observations (see Wilks 

for formal definitions). Figure 6 shows the BSS de-

composition for the event of 24-h-accumulated pre-

cipitation that is larger than the upper quintile of the 

climatological distribution for both NCEP forecasts 

and 75-member analog forecasts, using only points 

where the climatological probability of precipitation 

is greater than 20% (otherwise, the definition of the 

upper quintile is ambiguous). Reliability is improved 

through the application of the analog technique, but 

most of the increase in the BSS is a result of increased 

resolution.

The increased skill of the analog forecasts rela-

tive to operational NCEP forecasts results suggests 

that there is some benefit from the use of analogs, 

the large training dataset, or both. 

Figure 4 demonstrated how the use 

of high-resolution observed analogs 

permitted the extraction of small-

scale detail that was not in the 

original forecast. But, are two-plus 

decades of reforecasts necessary? 

Figure 7 indicates that forecast 

skill is degraded somewhat when 

shorter training datasets are used, 

especial ly at high precipitation 

thresholds. In these cases, when a 

large amount of rain is forecast, it 

is important to have other similar 

high-rain-forecast events in the 

dataset, otherwise very few close 

analogs can be found. For 2.5-mm 

forecast amounts, where there are 

many similar analogs in the refore-

cast dataset, little skill is gained 

between 3 and 24 yr of training 

data. However, for 25 mm, there 

still is a notable increase in skill 

between 3 and 24 yr, indicating the 

potential benefit of the long train-

ing dataset with this technique. Notice also in Fig. 7 

that the ensembles of different sizes were tested, and 

relatively small ensembles provided the most skill 

at short leads and larger ensembles at long leads. 

When required to use short training datasets, it is 

difficult to find many close analogs for these short-

lead forecasts, so the performance is degraded if too 

many analogs are used to set probabilities. For large 

training datasets, the performance difference at 

short leads is minimal between 25 and 75 members 

(not shown).

Figure 8 shows the spatial pattern of the 75-

member analogs’ BSS at 2.5 mm and 4 days lead. 

Skill varied greatly with location. The method pro-

duces highly skillful forecasts along the West Coast, 

in part because the methodology provides a way of 

downscaling the weather that is appropriate to the 

complex terrain. Forecast skill was generally high 

over the eastern United States and lower over the 

northern United States and Rockies. In general, the 

BSS tended to be smaller in drier regions, where the 

reference climatology forecasts were more skillful. 

Also, the skill appeared to be less in regions where 

precipitation tended to fall as snow, perhaps because 

the observational data were less trustworthy (both the 

radar and gauge data used in the NARR precipitation 

analysis are less accurate in snow). In any case, the 

forecasts are generally quite reliable (Fig. 6), though 

FIG. 6. Reliability and resolution (scaled by the uncertainty), and BSS 
of the probability of precipitation occurring in the upper quintile of 
the climatological distribution, both for NCEP and the 75-member 
analog forecasts. The overall height of the bar for each day indicates 
the resolution of (left) NCEP and (right) analogs: NCEP reliability 
(blue), analog reliability (green), NCEP BSS (red), and analog BSS 
(yellow).
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less so at short forecast leads, where there is a ten-

dency to underforecast probabilities.3

Analog techniques will never predict record-set-

ting events, which are events that lie outside the span 

of the past data. If predict-

ing near-record events is of 

primary importance, other 

calibration techniques may 

prove more useful. Also, as 

Lorenz (1969) noted, it is 

impossible to find global 

analogs for the current 

weather during a span of 

time as long as the recorded 

history of the atmosphere. 

Hence, analogs must be 

found and applied only 

in geographically limited 

regions, so that the differ-

ence between the current 

forecast and a past forecast 

analog is a small fraction 

of the climatological fore-

cast variance. Still, analog 

techniques should have very notable 

advantages. They represent a condi-

tional climatology given the forecast. 

Hence, they should commonly have 

positive skill relative to the overall 

climatological forecast. This is a 

property that raw forecasts from 

most numerical models commonly 

do not exhibit. It is more typical 

for them to drift to a climatological 

distribution that is different from 

the observed distribution, so that 

FIG. 8. Map of Brier skill scores of 24-h-accumulated precipitation 
forecasts between 3 and 4 days lead at the 2.5-mm threshold for 
JFM 1979–2002.

3 This is because there tend to be more light 

forecast precipitation events than heavier 

ones among the reforecasts, so the tech-

nique more commonly finds close analogs 

with slightly lighter forecast amounts than 

heavier amounts. At short leads, there is 

skill in the raw numerical forecast; the 

observed precipitation associated with 

the forecast analogs with lighter amounts 

tends to be smaller than the observed pre-

cipitation associated with forecast analogs 

with larger amounts. Hence, the observed 

ensemble has a dry bias. It is possible to 

choose analogs based upon the closeness 

of the rank of the precipitation forecast 

relative to the sorted reforecasts, so that 

there are as many analogs with heavier forecast precipitation 

as with lighter precipitation. These forecasts are more reliable 

and slightly more skillful. We document this in Hamill and 

Whitaker 2005, manuscript submitted to Mon. Wea. Rev.).

FIG. 7. Brier skill scores of the analog reforecast technique for various lengths 
of the training dataset. Probabilistic forecasts were calculated for ensembles 
of sizes 10, 25, 50, and 75; the skill of the ensemble size that was most skill-
ful is the only one plotted. The color of the dot denotes the size of the most 
skillful ensemble.
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longer lead forecasts exhibit a skill that is worse than 

that of the climatology. Analog techniques also can 

be tailored to a wide range of user problems. For 

example, suppose a user requires probabilistic wind 

forecasts at a wind turbine. If a large dataset of past 

observations of wind at the turbine site is available, 

the basic technique can be repeated: find an ensemble 

of past forecast days where the meteorological condi-

tions were similar to today’s forecast, and produce a 

probabilistic forecast from the associated observed 

winds on the days of the analogs. For another recent 

work on forecast analogs using this reforecast dataset 

for hydrologic applications, see Gangopadhyay et al. 

(2004).

The analog technique that is demonstrated here is 

a proof of concept. The technique can be improved in 

some respects, and the technique is also not a cure-all 

for all weather forecast problems. If systematic errors 

are smaller, as they may be when, say, forecasting 500-

hPa geopotential, it is unlikely that statistical correc-

tions of an older model will render the forecasts more 

skillful than those from newer, higher-resolution 

models (Z. Toth, 2005, personal communication). 

Still, for many of the problems that users most care 

about—precipitation, surface temperature, and wind 

speed—model biases can be large and reforecasts 

may prove to be a significant aid. The lessons here 

were that a simple statistical correction technique 

in conjunction with low-resolution reforecasts was 

able to produce probabilistic precipitation forecasts 

exceeding the skill of the higher-resolution NCEP 

global ensemble forecast system, and the long length 

of the reforecast training dataset was apparently help-

ful in achieving this skill improvement.

The reforecast data and this particular applica-

tion may be useful to others that are developing 

and testing new ensemble calibration methods. The 

precipitation forecast and observed data used in this 

section are freely available to the public, along with 

a sample code for reading the data. We encourage 

others to explore this dataset and to compare their 

results against their own. The data and code can be 

downloaded online at www.cdc.noaa.gov/reforecast/
testdata.html).

Diagnosing model bias from reforecasts. Suppose a 

model developer wanted to know the long-term mean 

bias of a particular variable in the forecast model, 

where bias is the mean forecast minus the mean veri-

fication. Reforecasts are a useful tool for diagnosing 

this. For example, Fig. 9a shows the bias of 850-hPa 

temperature forecasts at a location near Kansas City, 

Missouri. These biases were calculated by subtract-

ing the NCEP–NCAR reanalyses from the ensemble 

mean forecasts using 1979–2001 data and a 31-day 

window centered on the day of interest. There is a 

large cold bias at shorter lead times in the winter and 

warm biases in late summer, especially at longer leads. 

And, though not shown here, different locations have 

very different bias characteristics; for example, near 

San Francisco, California, there is a strong cold bias 

at longer leads during midsummer.

Can the long-term bias be properly estimated 

from a much shorter dataset of reforecasts? Figure 9b 

suggests that often they cannot. This panel shows 

the standard deviation of the yearly bias estimates. 

To generate this figure, the bias was estimated for 

each year, day, and forecast lead using just a 31-day 

window centered on the day of interest. From the 

23 bias estimates from 1979 to 2001, the standard 

deviation was calculated and plotted. Note that the 

standard deviation grows with increasing forecast 

lead and is generally larger in the winter than in the 

summer. This is due to the larger variability of the 

forecasts during the wintertime at longer leads. At 

most forecast leads and times of the year the spread in 

the yearly bias estimate is larger than the magnitude 

of the bias in Fig. 9a. For a numerical modeler, this 

indicates that the long-term-averaged bias is liable to 

be misestimated using a single year of data, especially 

at long leads.

Studying predictability using reforecasts. Forecasts of 

individual weather systems during the first week 

are generally referred to as “weather” forecasts, the 

skill of which requires an accurate initial condition. 

Long-lead predictions, such as those associated with 

El Niño–Southern Oscillation (ENSO) are generally 

referred to as “climate” forecasts, and their skill is pri-

marily driven by sensitivity to boundary conditions, 

such as sea surface temperatures. In between these 

two extremes lies the boundary between weather 

and climate forecasts, in which individual weather 

systems may not be predictable, but larger-scale 

flow patterns that influence those weather systems 

may retain some sensitivity to initial conditions, 

and may also be influenced by persistent boundary 

forcing. The phenomena that yield skill in the second 

week of an ensemble forecast are generally large in 

scale and of a low frequency, and, hence, there may 

be only a few independent samples of these events 

each season. In addition, the predictable signal may 

be small compared to the uncertainty in a single 

forecast, so ensembles may be needed to extract 

that signal. Quantifying the nature of the predict-

able signal in week two; therefore, requires a large 
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sample of ensemble forecasts, spanning many years. 

The reforecast dataset is one of the first to satisfy 

these requirements. Very basic questions, like “how 

much skill is there in week 2?” and “where does that 

skill come from?” remain largely unanswered. In 

this section, we show a few simple diagnostics, using 

the reforecast dataset, which provide some insight 

into these questions. They illustrate the utility of the 

reforecast dataset in investigations of atmospheric 

predictability.

Figure 10 shows a map of the temporal correla-

tion between the time series of the ensemble mean 

forecast and observed 500-hPa height for all day-10 

forecasts in the reforecast dataset that is initialized 

during DJF 1979–2003. Values locally exceeded 0.6 

in the central Pacific, and 

the hemispheric average 

was 0.47. While these val-

ues may seem low, they 

do indicate that skillful 

probabilistic forecasts are 

possible at day 10. Hamill 

et al. (2004, their Fig. 6d) 

showed that a correlation 

of 0.5 can be translated into 

a ranked probability skill 

score of 0.15 for terciles of 

the climatological prob-

ability distribution, which 

is small, but useful.

What are the skillfully 

predicted patterns in these 

day-10 forecasts? To answer 

this question, we have per-

formed a statistical analy-

sis of the 25-yr dataset of 

wintertime day-10 500-hPa 

height forecasts in order to 

identify the most predict-

able patterns. The tech-

nique used was canonical 

correlation analysis (CCA; 

Bretherton et al. 1992), 

which seeks to isolate the 

linear combination of data 

from a predictor field and 

the linear combination of 

data from a predictand 

field that have the maxi-

mum linear correlation. 

The analysis was performed 

in the space of the truncat-

ed principal components 

(PCs; Barnett and Preisendorfer 1987). Here, the 

predictor field consisted of the leading 20 PCs of 

the ensemble mean week-2 forecast 500-hPa height, 

while the predictand field consisted of the leading 

20 PCs of the corresponding weekly mean verifying 

analyses. The analysis was similar in spirit to that 

performed by Renwick and Wallace (1995), using 14 

yr of day-10 forecasts from the European Centre for 

Medium-Range Weather Forecasts. Although their 

“most predictable pattern” is very similar to the one 

shown here, interpretation of their results was ham-

pered by the fact that the forecasts were from a single 

deterministic run (not an ensemble), and there were 

significant changes in the forecast model over the 

span of their forecast archive.

FIG. 9. (a) The 850-hPa temperature bias 40.0°N, –95.0° W, as a function of 
time of year and forecast lead. (b) Std dev of the yearly bias estimates.

42 JANUARY 2006|



the impact of model changes in existing operational 

forecast datasets.

HOW CAN REFORECASTS BE INTEGRAT-
ED INTO OPERATIONAL NUMERICAL 
WEATHER PREDICTION? This paper has 

demonstrated some of the benefits of “reforecasts,” a 

companion dataset to reanalyses. As with reanalyses, 

a fixed model is used, and forecasts for retrospective 

cases are computed with the fixed model. The use 

of reforecasts improved probabilistic precipitation 

forecasts dramatically, aided in the diagnosis of 

model biases, and provided enough forecast samples 

to answer some interesting questions about predict-

ability in the forecast model.

Weather prediction facilities like the Environmen-

tal Modeling Center at NCEP already totally utilize 

the available computational resources, and planned 

model upgrades will utilize most of the newly avail-

able resources in the near future. How, then, can 

reforecasts be integrated into operational numerical 

weather prediction?

One possible interim solution is that the refore-

casts could be run with a less-than-state-of-the-

Figure 11 shows the three most predictable pat-

terns identified by the CCA analysis for day-10 fore-

casts, while Fig. 12 shows the correlation between 

the time series of these patterns as a function of 

forecast lead. The patterns were computed for day-

10 forecasts, but we have projected the forecasts for 

all other forecast leads on to these same patterns to 

see how the forecast skill evolves during the forecast 

period. The most predictable patterns are similar 

to well-known recurring persistent circulation 

anomalies, often called “teleconnection patterns” 

(Barnston and Livezey 1987). The first pattern is 

similar to the tropical–Northern Hemisphere pat-

tern, so named by Mo and Livezey (1986), which is 

often observed to appear in Northern Hemisphere 

wintertime seasonal means during ENSO events. 

Indeed, the model forecast tropical precipitation 

during the first week, regressed on the time series 

of this pattern (not shown), shows a significant 

relationship between precipitation in the central 

equatorial Pacific and the amplitude of the most 

predictable pattern at day 10. However, values of this 

correlation were less than 0.3, indicating that only 

a modest fraction of the variance of this pattern in 

day-10 forecasts is directly related to variations in 

tropical convection. The second most predictable 

pattern was similar to the Pacific–North American 

pattern (Wallace and Gutzler 1981), while the third 

resembled the classical North Atlantic Oscillation 

(ibid.). Regression analysis shows that neither of 

these patterns had a strong relationship with the 

model forecast precipitation in equatorial regions 

during week 1, implying that slow variations in 

tropical convection were not primarily responsible 

for their predictability. The ability of the ensemble 

system to forecast these patterns is remarkable, with 

correlation skill exceeding 0.7 at day 10 for all three 

patterns, and exceeding 0.6 at day 15 for the most 

predictable pattern. The skill of a forecast that sim-

ply persists the projection of these patterns in the 1-

day forecast to day 10 is much lower than the actual 

10-day forecast from the ensemble system (Fig. 12), 

indicating that the forecast model is skillfully pre-

dicting the amplitude tendency of these patterns 

during the first week of the forecast. Diagnosing 

the mechanisms that are responsible for the skillful 

prediction of those tendencies is beyond the scope of 

this article, but would certainly be a likely candidate 

for further research using this dataset.

These results show that the reforecast dataset pro-

vides a new opportunity to address basic predictabil-

ity questions that were previously out of reach due to 

the sample-size limitations and questions concerning 

FIG. 10. Correlation between time series of ensemble 
mean day-10 forecasts and corresponding verifying 
analyses (from the NCEP–NCAR reanalysis) at ev-
ery grid point in the Northern Hemisphere for DJF 
1979–2003.
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art version of the forecast 

model. Our results suggest 

that substantial forecast 

improvements were pos-

sible, even with the T62 

model output. Consider, 

then, the scenario where 

the “f lagship” product at 

the weather production 

facility is a 50-level, 50-

member global ensemble 

of a T300 model. The op-

erational production of a 

25-level, 25-member, T150 

forecast could be produced 

at 1/32 the computational 

expense of the f lagship 

product. Hence, if 16 yr of 

reforecasts were computed, 

this would require comput-

er resources equivalent to 

producing the operational 

forecasts for 6 months. If 

the companion reforecasts 

were computed offline on 

another computer, then 

the reforecast computa-

tions would barely affect 

operations. We suggest 

that this is an appropri-

ate, conservative model to 

follow in the near future. 

A timely forecast would 

be generated from a fixed, 

reduced-resolution version 

of the model—one where 

a companion reforecast 

dataset had been generated. Forecast products would 

be generated through statistical techniques, such as 

those demonstrated here, and the reforecast-based 

products would be compared to products based on 

the flagship product. If they were deemed to improve 

weather forecast capabilities, then every few years 

the reforecast would be updated, utilizing a newer, 

improved version of the forecast model at a higher 

FIG. 12. Correlation between the time series of the first 
three most predictable 500-hPa height day-10 forecast 
patterns and the time series of the corresponding pat-
terns in the verifying analyses as a function of forecast 
lead time. The three dots labeled “persistence fore-
cast” indicate the skill of a forecast that persists the 
projections in the day-1 forecast to day 10.

FIG. 11. Ensemble mean day-10 forecast 500-hPa height regressed onto the 
time series of the three most predictable forecast patterns. Contour interval 
is 15 m. The correlation between the time series of the predictor pattern and 
the corresponding predictand pattern (r) is given for each pattern.
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resolution, maintaining the same relative usage of 

operational central processing unit (CPU) resources 

relative to the updated flagship product.

Computing reforecasts is a task that is easily 

parallelized, so it can take advantage of massively 

parallel clusters of inexpensive computers. Individual 

ensemble member forecasts can be computed on dif-

ferent processors in the cluster, and forecasts for many 

different initial times can also be parallelized. The 

cluster of personal computers and storage array used 

in this experiment cost approximately $90,000, a tiny 

fraction of the cost of the NCEP’s supercomputers.
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