AASHTO "Connected Vehicle" Infrastructure Deployment Analysis

JPO Webinar June 24th, 2011 Jim Wright American Association of State Highway and Transportation Officials

Agenda

- Purpose of Deployment Plan
- Developmental Approach
- Task Highlights
- Scenarios 2011 2029
- Strategies 2011 2014+
- Companion Activities
- Next Steps

Plan Purpose

- Address Goals in 2009 Strategic Plan
 - Commitment to advance deployment readiness
 - Commitment to better understanding deployment Issues
- Identify a practical approach for infrastructure deployment
- Provide insights into what the future holds for applications, vehicles and communications
- Identify a phased deployment strategy with regional deployments
- Establish a foundation to conduct benefit assessments and business model development
- Provide insights on agency deployment and operations

Plan Approach

- Set of building block tasks
 - 1) Applications Defined (the benefits)
 - 2) Market assessment of:
 - Vehicles trends
 - Communications infrastructure what's available
 - After market devices role and emergence
 - Consumer devices presence impact on AASHTO community

Plan Approach

- 3) Survey of state activities in "connected vehicle space"
 - Actions demonstrate what is important
 - Provides possible locations for phased deployment
- 4) DSRC Assessment
 - What is current state of readiness
 - What are deployment issues

Plan Approach

- 5) Controller Assessment
 - Dimensions of upgrading nations controllers to DSRC operations
- 6) Deployment scenarios 2010 2035
- 7) Policy & Business Issues

Applications

- Intersection Safety
 - Collaborated with FHWA accident analysis
 - 2020 time frame for OEM equipped vehicles based on NHTSA timeline
 - Value of early infrastructure for first vehicles
- Agency Operations
 - Traffic Control, including emergency vehicles
 - Commercial vehicle transactions
 - Fleets, Transit
- Mobility
 - Travel information ~ public package
 - Travel information ~ private package
 - In-vehicle signing

Market assessment

- Embedded vehicle systems
 - Safety & Mobility ~ High potential ~ 200 million vehicles
 - Rollout curves
- After market vehicle systems
 - Primarily Mobility ~ unsure of market penetration?
 - New OnStar Offers
 - Ford Synch
 - New devices?
- Consumer electronics products ~ potentially big market?
 - Primarily mobility
 - smart phones ~ a lot
- Communications
 - Cellular
 - DSRC

Impacts of Distraction Issue unknown

State Activities

- Emergency vehicles –AZ
- Intersection safety, mobility CA
- Rural intersection safety, fuel taxes MN
- Test beds, data management, infrastructure management MI
- Commercial vehicles NY
- Test bed ITSWC FL
- Pooled fund study, SSOM Leadership VA
- Rural corridors ID
- Active traffic management WA

DSRC Assessment

- How will a national program be implemented and operated
- Only 16 states currently hold licenses for the frequency, and not all of these are held by the transportation agency within the state.
- there are over 100 companies that have license to the frequency The majority of companies are telecoms or television stations.
- each state gets 1 license for the entire state. A county license covers the county and so on.
- A commercial company would get a license for installation anywhere in the country.
- The FCC didn't see any problems as they feel individual licensees can address any interference issues between themselves and it also isn't a problem because the range is so limited
- DSRC is one of the more ambiguous elements

Controller Assessment

	Controller Type	<u>Speed</u>	<u>Comm</u>	<u>OS</u>	<u>API</u>	In Service
1	ATC 5.2b	Yes	Yes	Yes	Yes	8,000
2	Model 2070LX	Yes	Yes	Yes	Yes	0
3	Model 2070E	Yes	Yes	Yes	No	0
4	Model 2070L	Yes	Yes	Yes	No	52,000
5	NEMA, Modern	Yes	Yes	33%	No	36,000
6	NEMA, Legacy	No	Adaptor	Yes	No	91,000
7	Type 170, Modern	Yes	Yes	No	No	12,000
8	Type 170, Legacy	No	Adaptor	No	No	102,000
9	Electromechanical & Other	No	No	No	No	6,000
					Total:	307,000

Controller Assessment

Line	Controller Type	Upgrade Necessary for RSE
1	ATC 5.2b	None
2	Model 2070LX	None
3	Model 2070E	None
4	Model 2070L	None
5	NEMA TS-2 Ethernet (modern)	Standard OS (33%): None Non-Standard OS (67%): Port App, Cross-compile, Test
6	NEMA TS-1 (legacy)	Replace Controller
7	Type 170 controllers (modern)	Port App, Cross-compile, Test
8	Type 170 controllers (legacy)	Replace Controller
9	Electromechanical controllers	Replace Controller

Controller Assessment

	Controller Type	Replaced	Cost EA	Cost Total
1	ATC 5.2b	0	\$ 0	\$ 0
2	Model 2070L	0	\$ 0	\$ 0
3	NEMA TS-2 Ethernet (modern) Standard OS (33%) Non-Standard OS (67%)	0 0	\$ 0 \$ 0	\$ 0 \$ 0
4	NEMA TS-1 (legacy shelf)	91,000	\$ 1,350-\$2350	\$ 122,850,000-\$213,850,000
5	Type 170 controllers (modern)	0	\$ 0	\$ 0
6	Type 170 controllers (legacy rack)	102,000	\$ 2,200	\$ 224,400,000
7	Electromechanical controllers	6,000	\$ 900	\$ 5,400,000
	The cost estimate presented in this table includes only the direct costs for controller upgrade and Additional costs could be significant!		Totals:	\$ 352,650,000-\$443,650,000

Scenarios 2011 Setting the Direction

- Define a "General Concept for Deployment"
 - No DSRC equipped vehicles until 2019
 - Support applications on aftermarket & consumer devices
 - Deploy RSE for selected applications and users
 - Mobility & agency operations
 - Commercial vehicle transactions
 - Emergency Vehicle pre-emption
 - Safety applications at isolated intersections
 - Establish specific applications & desired outcomes
 - Begin broadening coverage and use of RSE's
 - Share results with AASHTO community & others

Scenarios 2012 Showing Success

- Individual agency programs advancing
 - Michigan probe data from a controlled fleet of test vehicles
 - California major corridor demonstrating "green wave" in Palo Alto
 - Minnesota gathering User Fee data from public volunteers
 - I-95 Coalition demonstrating aftermarket device for road side inspection
 - Florida ITSWC Demonstrations
- USDOT Safety Pilot

Scenarios 2012 Showing Success

- Develop a "National DSRC Footprint Analysis"
 - Provide more specific direction for RSE infrastructure
 - Corridors Defined
 - Intersections selected for safety
 - Analysis of denser urban RSE pockets
 Signal control
 - *safety
 - Certificate management requirements

Scenarios 2013 – 2014 Jumpstarting Deployment

- USDOT
 - NHTSA Agency decision
 - Safety Pilot results
 - Practioner's Toolbox
- AASHTO
 - Definitive plan for infrastructure
 - Policy and Funding statements
 - Peer Deplorers' Forum
 - Best practices workshops
- VIIC & OEM's
 - Closer AASHTO collaboration

2015 – 2019 Expanding the Field

- Light vehicles equipped with DSRC start to appear ~ 7% of fleet
- AASHTO begins to shift from commercial and agency emphasis to light vehicle emphasis for RES deployments
- Now RSE foot print shifts to a nation wide network
- Agency selected applications advancing

Scenarios 2020 – 2023 Taking Solutions to Market

- Model year zero for DSRC Vehicle Introduction
 In four years 30% of vehicles equipped with DSRC safety
- Begin RSE expansion to prepare for early embedded vehicles
 - ♦ VIIC analysis 5000 RSE initial for certificate management
 - High priority intersections, safety zones, commercial and emergency vehicle sites
- Applications supporting agency operations maturing
- AASHTO "Green Book" Design Guidelines used to guide installations and operations
- AASHTO Application store for agency applications?

Scenarios 2020 – 2023 Taking the Solutions to Market

- Widespread 4G (& newly available 5G) services increasingly widespread along with a large national DSRC infrastructure
- Variety of connected vehicle applications available through the public and private sector resulting in improved safety and agency operations

Scenarios 2024 – 2029 Growing to Meet Demand

- Vehicle fleet equipped with DSRC grows from 30% -70%
- V2V & V2I benefits becoming apparent to all
- Agencies operating a large national infrastructure of DSRC communications
- DSRC infrastructure explicit part of design, construction, operations
- Applications fully integrated into agency operations

AASHTO Strategies 2011

- Information Exchange Program
 - Semi annual workshops through SSOM
 - Technical briefings papers, web calls
- Advice Memorandums to USDOT
- Procurement Guidance phase 1
 - USDOT qualified product list
- Formal education & outreach program
- Establish Joint planning committee for national DSRC footprint

AASHTO Strategies 2012

- Broaden awareness through education & outreach program
- Joint AASHTO/VIIC Committee publishes national DSRC footprint requirements to prepare for initial deployments
- AASHTO policy on minimum infrastructure deployment levels by all members
- AASHTO develops formal "Connected Vehicle" Infrastructure Design Guides

AASHTO Strategies 2013 - 2014

- Adopt policy for minimum levels of deployments in each state
- To ensure above can be achieved AASHTO adopts a national funding approach
- Creation of a Deployment Support program
 - Peer Deployer's program
 - Formal Association relationship for deployment
 &USDOT, VIIC, NACo, Etc

AASHTO Strategies Beyond 2014

- Prepare for national build out
 - Reasonable to assume that the NHTSA agency decision will be combined with a national infrastructure decision?
- Update design guides
- Policies on public private investments for capital and operations

Companion Activities

- Pooled Fund
 - States traffic ctrl, pavement assessment, SPaT
 - DMA FHWA; 1) SE, 2) Field test for traffic management & control
 - Certification HW/SW
 - OBE Aftermarket Device
- JPO Activities
 - Safety Pilot learn
 - Regional pilots ~ 2014
- NCHRP G03 (101) Benefit Assessment & DSRC
- VIIC Discussions & Collaboration

Next Steps

- AASHTO WG Meeting
 - Report discussion
 - Start on General Concept for Deployment
 - Establish commitments
- Brief AASHTO/NACo committees
- AASHTO Annual meeting Session
- Executive Leadership Team briefing

