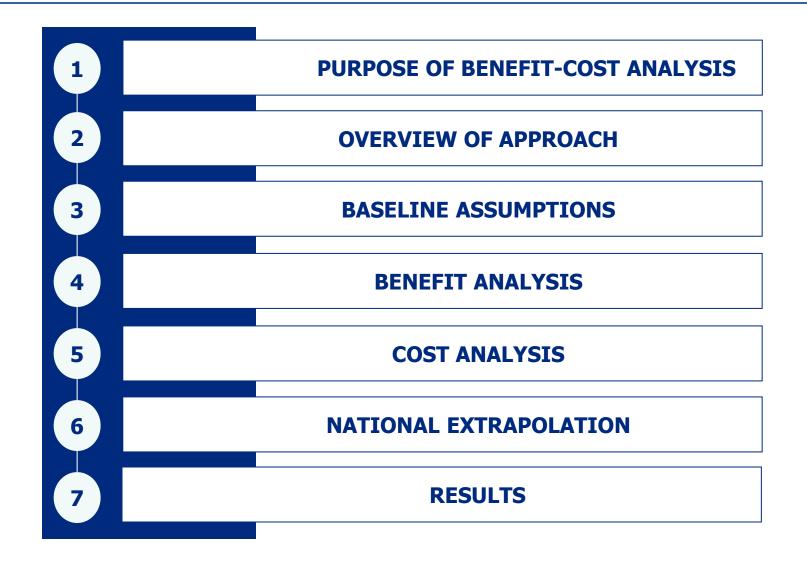


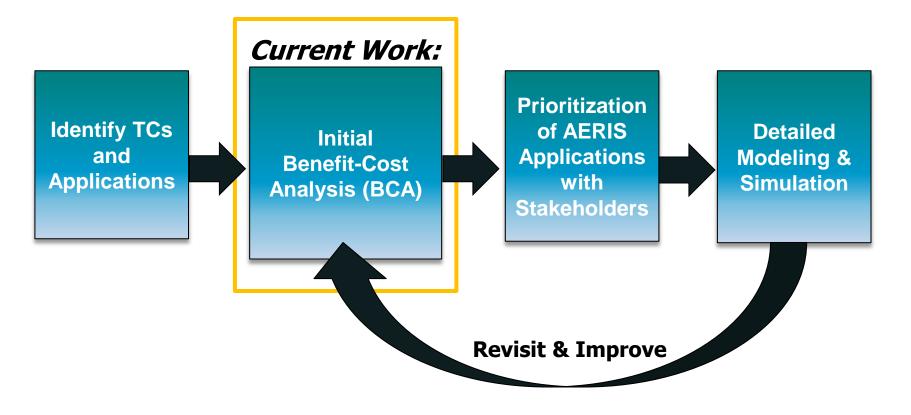
UNITED STATES DEPARTMENT OF TRANSPORTATION


## Applications for the Environment: Real-Time Information Synthesis (AERIS) – Benefit-Cost Analysis

**Emily Pindilli** 

On behalf of: AERIS Program




#### Agenda





# **Evaluation of AERIS Applications**

Identify, evaluate, and prioritize applications that leverage connected vehicle technologies that have the potential of providing significant environmental benefits





## **Transformative Concepts and Applications**

| Transformative Concept             | AERIS Application                                          |  |  |  |  |  |
|------------------------------------|------------------------------------------------------------|--|--|--|--|--|
|                                    | Eco-Traffic Signal Timing                                  |  |  |  |  |  |
|                                    | Eco-Freight Signal Priority                                |  |  |  |  |  |
| Eco-Signal Operations              | Eco-Transit Signal Priority                                |  |  |  |  |  |
|                                    | Eco-Approach and Departure at Signalized Intersections     |  |  |  |  |  |
|                                    | Connected Eco-Driving                                      |  |  |  |  |  |
|                                    | Dynamic Eco-Lanes                                          |  |  |  |  |  |
|                                    | Eco-Speed Harmonization                                    |  |  |  |  |  |
| Dynamic Eco-Lanes                  | Eco-Cooperative Adaptive Cruise Control                    |  |  |  |  |  |
|                                    | Eco-Ramp Metering                                          |  |  |  |  |  |
|                                    | Multi-Modal Traveler Information                           |  |  |  |  |  |
|                                    | Dynamic Emissions Pricing                                  |  |  |  |  |  |
| Dynamic Low Emissions Zones        | Connected Eco-Driving                                      |  |  |  |  |  |
|                                    | Multi-Modal Traveler Information                           |  |  |  |  |  |
| Support AFV Operations             | AFV Charging/Fueling                                       |  |  |  |  |  |
|                                    | AFV Engine Performance Optimization                        |  |  |  |  |  |
|                                    | Dynamic Eco-Routing                                        |  |  |  |  |  |
|                                    | Flexible Eco-Transit Routing                               |  |  |  |  |  |
| Eco-Traveler Information           | Dynamic Eco-Freight Routing                                |  |  |  |  |  |
|                                    | Eco-Smart Parking                                          |  |  |  |  |  |
|                                    | Connected Eco-Driving                                      |  |  |  |  |  |
|                                    | Multi-Modal Traveler Information                           |  |  |  |  |  |
| Eco-Integrated Corridor Management | Eco-Integrated Corridor Management Decision Support System |  |  |  |  |  |



## **Purpose of Benefit-Cost Analysis**

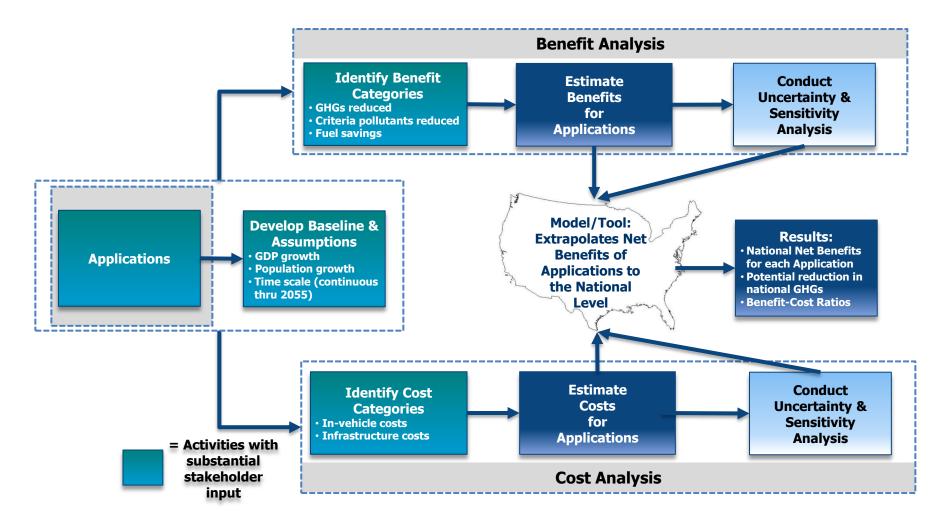
- What magnitude of benefits can be expected from AERIS applications?
- What costs will be incurred by deploying these applications?
- Do the benefits outweigh the costs?
- Which applications provide the highest benefit to cost ratio?

#### **Benefits vs. Costs**



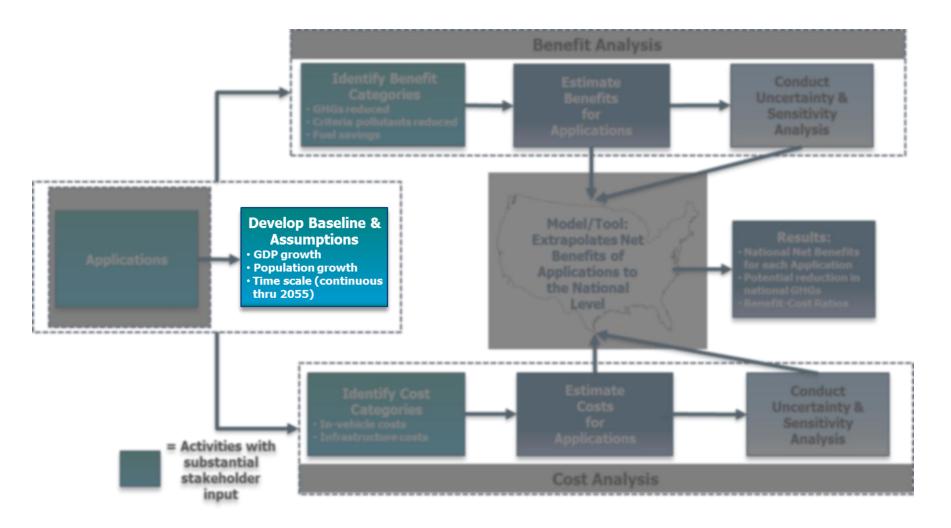


## **Key Assumptions & Scope**


- Only *incremental* costs were evaluated; connected vehicle infrastructure is assumed to be in-place
- Only *environmental* benefits were considered:
  - Greenhouse gas reductions
  - Criteria pollutant reductions
  - Fuel savings
- Costs and benefits data were derived from literature:
  - ITS Cost-Benefit Database
  - AERIS Broad Agency Announcement (BAA) Projects
  - Environmental Protection Agency Vehicle Emissions Factors

In most cases, the AERIS team made the most conservative assumptions




## **AERIS BCA Summary Approach**

#### Systematic approach to project nationwide benefits and costs

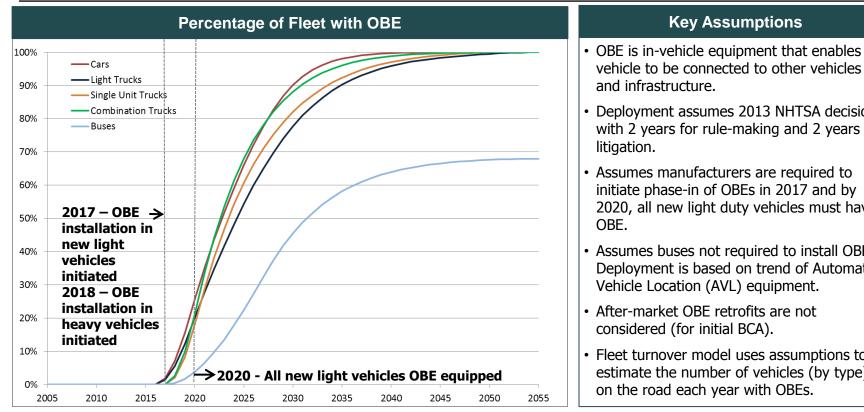




#### **Baseline Development**






## **Baseline Assumptions**

- On-Board Equipment (OBE) Deployment Rate
- Roadside Equipment (RSE) Deployment Rate
- AERIS Application Deployment Rate
- AERIS Application Compliance Rate
  - Driver Compliance
  - Agency (or Jurisdiction) Compliance
- Other Key Variables
  - Fuel Price
  - Vehicle Miles Travelled



# **On-Board Equipment (OBE) Deployment Rate**

| Vehicle Class      | Phase-In<br>Start | Phase-In<br>Duration | Installed at<br>Maturity | Source                                                                                                                                                |  |  |  |  |  |  |
|--------------------|-------------------|----------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Cars               | 2017              | 3                    | 100%                     | Vakiele Infractive Internation (VIII) Initiative Depart Coast Applying Varian                                                                         |  |  |  |  |  |  |
| Light Trucks       | 2017              | 3                    | 100%                     | Vehicle-Infrastructure Integration (VII) Initiative Benefit-Cost Analysis Ve<br>2.3 (Draft); US DOT ITSJPO; Prepared by Volpe National Transportation |  |  |  |  |  |  |
| Single Unit Trucks | 2018              | 3                    | 100%                     | Systems Center; May 8, 2008.                                                                                                                          |  |  |  |  |  |  |
| Combination Trucks | 2018              | 3                    | 100%                     | Systems Center, May 0, 2000.                                                                                                                          |  |  |  |  |  |  |
| Buses              | 2018              | 10                   | 68%                      | Automatic Vehicle Locator deployment used to estimate. Source - DOT RITA ITS, "Transit Management Deployment Statistics", April 2011                  |  |  |  |  |  |  |



#### vehicle to be connected to other vehicles and infrastructure. Deployment assumes 2013 NHTSA decision with 2 years for rule-making and 2 years for

- Assumes manufacturers are required to initiate phase-in of OBEs in 2017 and by 2020, all new light duty vehicles must have
- Assumes buses not required to install OBEs. Deployment is based on trend of Automatic Vehicle Location (AVL) equipment.
- After-market OBE retrofits are not considered (for initial BCA).
- Fleet turnover model uses assumptions to estimate the number of vehicles (by type) on the road each year with OBEs.



# Road Side Equipment (RSE) Deployment Rate

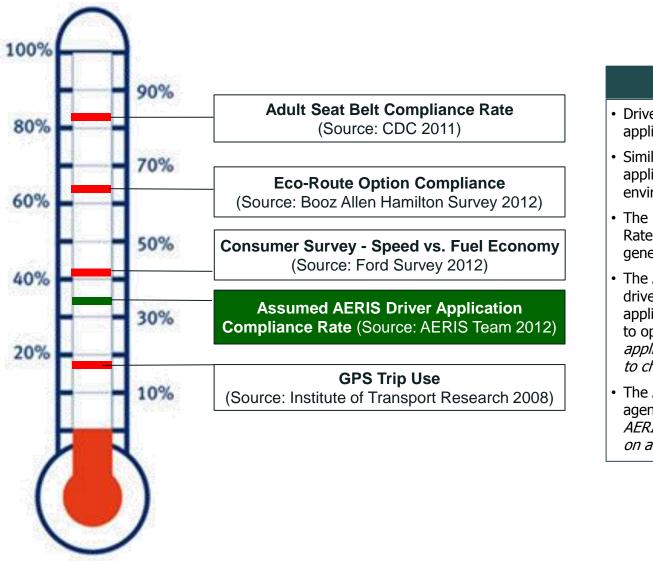
| RSE Location  | Phase-<br>In Start | Phase-In<br>Years | Installed at Maturity                  | Source                                                                                                                  |
|---------------|--------------------|-------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Urban Freeway | 2015               | 25                | 2 per 10 miles (one in each direction) | Started with Volpe Center Vehicle-Infrastructure Integration (VII) Initiative Benefit-Cost Analysis Version 2.3 (Draft) |
| Rural Freeway | 2015               | 25                | 2 per 10 miles (one in each direction) | assumptions; based on internal AERIS team meeting, made                                                                 |
| Urban Signal  | 2015               | 25                | 1/3 of signals                         | RSE deployment more conservative ; based on JPO June 20 <sup>th</sup> brief further revised down deployment.            |

|           | Numb                           | er of RSEs | (by type) |                                    |                |
|-----------|--------------------------------|------------|-----------|------------------------------------|----------------|
| 120,000 - |                                |            |           |                                    |                |
| 100,000 - | Urban Signal F<br>Urban Freewa | y RSEs     |           |                                    |                |
| 80,000 -  |                                | 'S RSES    |           | →All new url<br>→signals hav       | ban<br>ve RSEs |
| 60,000 -  | RSE<br>installation            | /          |           | All new urb<br>→freeways h<br>RSEs |                |
| 40,000 -  | for all RSEs<br>initiated      |            |           | ▲ All new rul                      | ral            |
| 20,000 -  |                                |            |           | freeways h<br>RSEs                 |                |
| 0 -       |                                |            |           |                                    |                |
| 20        | 005 2015                       | 2025       | 2035      | 2045                               | 2055           |

- RSE is equipment on road or at traffic signal that enables information to be passed to OBEs.
- Deployment assumes no readily available federal funding for RSEs.
- RSEs are needed to enable DSRC communication. AERIS applications that are not signal based do not rely on RSEs; rather they utilize cellular communication.
- RSE number based on freeway road miles and number of traffic signals.
- At full deployment, 30% of urban traffic signals will have an RSE.
- At full deployment, urban and rural freeways will have 2 RSEs every 10 miles (one for each direction).



## **AERIS Application Deployment Rate**


| Application              | Short  | Medium      | Long   | Source                  |
|--------------------------|--------|-------------|--------|-------------------------|
| All Applications         | 15%    | 50%         | 75%    | AERIS team              |
| Short Term = 2015 – 2022 | Medium | Term = 2023 | - 2032 | Long Term = 2033 - 2055 |

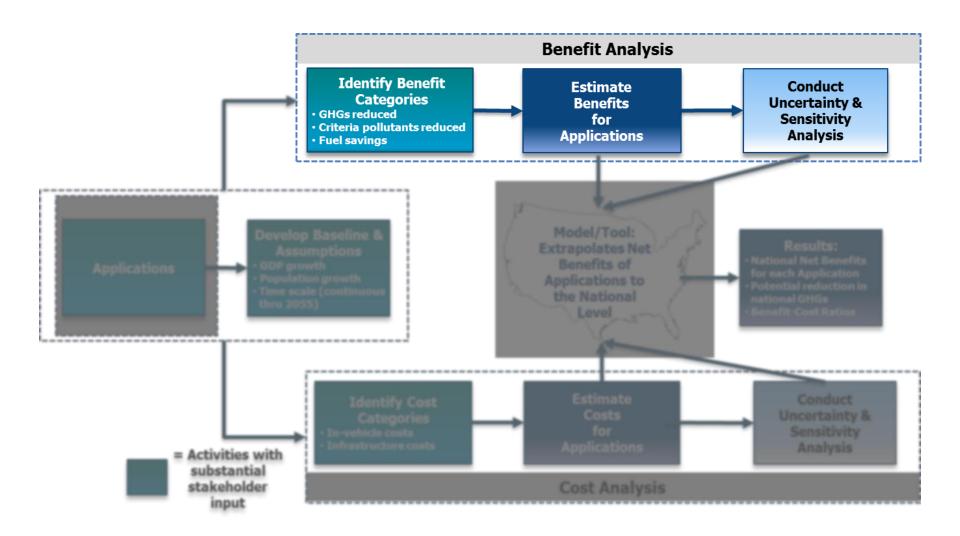


- AERIS application benefits will only be realized if connected vehicle system is inplace.
- All AERIS applications are deployed at the same rate. This assumption may be revised in future iterations when more information becomes available.
- In the short term, 15% of the available connected vehicle system will have AERIS applications.
- In the medium term, 50% of available connected vehicles system will have AERIS applications and 75% in the long term.
- Application deployment doesn't reach 100%, even in the long-term.
- Traffic signal-based applications are only deployed in urban areas (RSEs are only deployed at urban traffic signals).

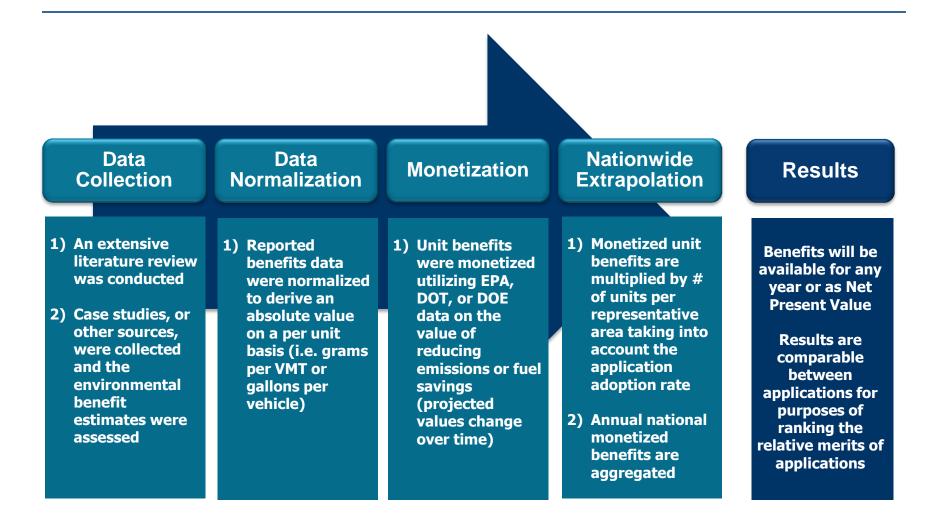


### **Compliance Rates: Driver & Agency**




- Drivers are not likely to use applications 100% of the time.
- Similarly, agency's may not use applications optimized for the environment 100% of the time.
- The Driver and Agency Compliance Rates directly impact benefits generated.
- The AERIS Team used 33% for driver compliance rate for applications that drivers can choose to opt-in or use. *Four AERIS applications allow driver the ability to choose extent of usage.*
- The AERIS Team used 30% for agency compliance rate. *Seven AERIS applications can be turned on and off by agencies.*

### **Other Key Variables**


|      | Variable                                           | Impact on Model                                                                           | Source                                   |
|------|----------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------|
|      | Fuel Price                                         | Value of fuel savings in benefit estimate<br>Impacts number of vehicle miles<br>travelled |                                          |
| 9. · | Vehicle Miles<br>Traveled                          | Many AERIS applications yield benefits<br>per vehicle mile traveled                       |                                          |
|      | Vehicle Fuel<br>Efficiency<br>(on-road)            | As fuel efficiency increases, AERIS application benefits decrease                         | DOE EIA<br>AEO 2011<br>Reference<br>Case |
|      | Greenhouse Gas<br>Emissions from<br>Transportation | Reference point to measure impact of applications on baseline GHG emissions               | Case                                     |
|      | Population<br>Growth                               | Impacts cost of outreach and education                                                    | ]                                        |
|      | Miles (freeway,<br>arterial, local)                |                                                                                           | FHWA<br>Highway<br>Statistics            |
|      | Traffic Signals                                    |                                                                                           | 2007                                     |



#### **Benefit Analysis**



#### **Benefit Analysis Approach**





### **Derivation of Benefit Estimates from Literature**

#### Extensive Analysis of Benefit Estimates Available in the Literature

| Application                                                                                                                                                                                                                                                                                                                              | Benefits Reported                                                                                                                                                                                                                                                                 | Source                                                                                                                                                                                                                                                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                          | Reduced transit delay up to 40% (not clear what the wait time for other traffic is);<br>Second study reduction of 15% (3 minutes) in running time; in LA - bus running time was reduced by 25%.                                                                                   | Transit Signal Priority (TSP): A Planning and<br>Implementation Handbook; May 2005                                                                                                                                                                          |  |  |
| Fuel consumption decreased by 3.6%, Newere reduced by 4.9%, CO decreased by<br>1.8%, HC declined by 1.2 %, and PM<br>decreased by 1.0%.Eco-Transit Signal<br>PriorityFuel consumption increased from 0.3 % t<br>2.9%; HC emissions ranged from a<br>decrease of 0.3% to an increase of 0.7%;<br>CO decreased between 0.6 percent and<br> | The Benefits of a Pilot Implementation of Public<br>Transport Signal Priorities and Real-Time<br>Passenger Information; Lehtonen, Mikko and Risto<br>Kulmala; Paper presented at the 81st Annual<br>Transportation Research Board Meeting;<br>Washington, DC; 13-17 January 2002. |                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                          | decrease of 0.3% to an increase of 0.7%;<br>CO decreased between 0.6 percent and 1.0<br>percent; NOx emissions increased between                                                                                                                                                  | Evaluation of Transit Signal Priority Benefits Alon<br>A Fixed-Time Signalized Arterial; Dion, Francois,<br>et al.; Paper presented at the 81st Annual<br>Transportation Research Board Meeting.<br>Washington, District of Columbia; 13-17 January<br>2002 |  |  |
|                                                                                                                                                                                                                                                                                                                                          | were reduced up to 30%, non-transit vehicle                                                                                                                                                                                                                                       | Transport Research Laboratory. (1999).<br>Monitoring and Evaluation of a Public Transport<br>Priority Scheme in Southampton. Publication<br>Report No. 413, University of Southampton and<br>University of Portsmouth.                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                          | Fuel reductions up to 10% and CO2 and NOx reductions of 3%. PM increased by 3% in one pilot.                                                                                                                                                                                      | Mahmod, M. et el. (2009). Modeling reduced traffic<br>emissions in urban areas.TRB 2010 Annual<br>Meeting. Washington, DC: TRB.                                                                                                                             |  |  |
| Eco-Adaptive<br>Cruise Control                                                                                                                                                                                                                                                                                                           | Simulated results of one ICC vehicle in a line of 10 manually operated vehicles yielded CO reduction from 18.4% to 60.6%, CO2 reduction from 8.1% to 60.6%, NOx 13.1% to 1.5%, HC from 15.5% to 55.4%, fuel consumption 8.5% to 28.5%.                                            | Evaluation of the Environmental Effects of<br>Intelligent Cruise Control (ICC) Vehicles; Bose, A.<br>and P. Ioannou; Paper presented at the 80th<br>Annual Transportation Research Board Meeting.<br>Washington, District of Columbia; 7-11 January<br>2001 |  |  |
|                                                                                                                                                                                                                                                                                                                                          | 27% savings in fuel consumption.                                                                                                                                                                                                                                                  | Eco-Driving Application Development and Testing;<br>Hesham A. Rakha                                                                                                                                                                                         |  |  |

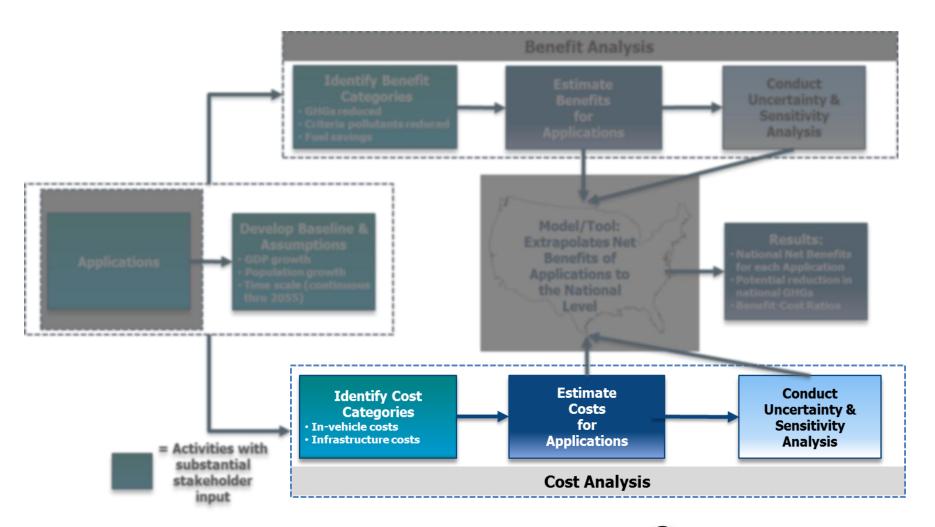
#### Key Sources

- Government reports including: DOT and National Academies
- Scholarly journals from: University and other sources of private transportation research.
- AERIS Broad Agency
  Announcement Reports
- ITS Cost-Benefit Database
- Examples include:
  - Georgia Regional Transportation Authority. *Atlanta Smart Corridor Project Evaluation Report; TransCore for the Georgia Regional Transportation Authority.* June 2010.
  - Department of Transportation, Federal Transit Administration. *Transit Signal Priority (TSP): A Planning and Implementation Handbook.* May 2005.
  - Wang, Z., & Walton, C. M. *An Investigation on the Environmental Benefits of a Variable Speed Control Strategy.* National Technical Information Service. 2006.

## **Normalization of Benefit Data**

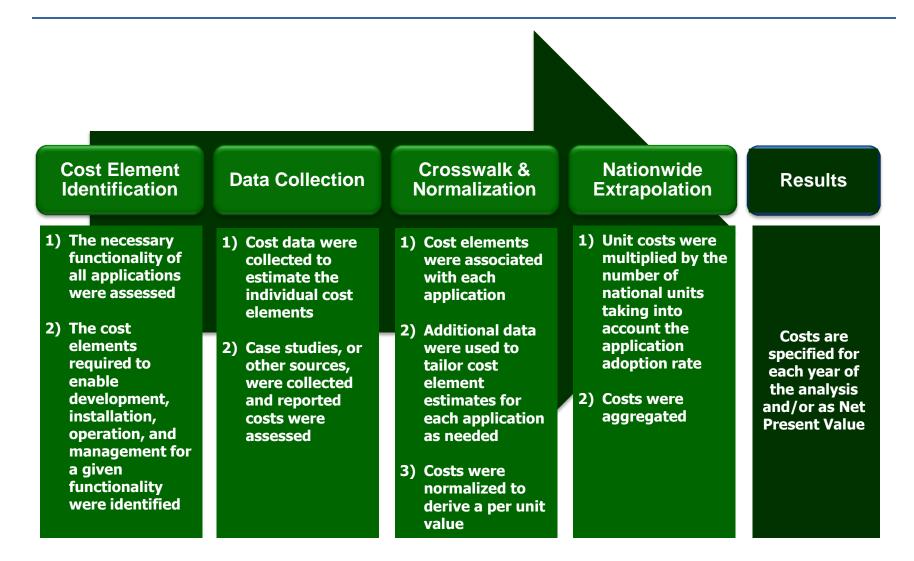
| Benefits Reported*                                   | Conversion                                                                                                                             | Application                                                                                                                                                                                              | Unit Basis<br>(Annual)                                                                                                     |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 1) Benefits reported as %.                           | 1) Used project parameters and outside informationi.e. average idling emissions.                                                       | Eco-Traffic Signal Timing<br>Eco-Freight Signal Priority<br>Eco-Transit Signal Priority<br>Connected Eco-Driving<br>Eco-Speed Harmonization                                                              | Per Intersection Crossing<br>Per Intersection Crossing<br>Per Bus /Region<br>Per Intersection Crossing<br>Per Vehicle Mile |
| 2) Benefits reported at project level.               | 2) Used project parameters to estimate for a unitsuch as grams per mile.                                                               | Eco-Ramp Metering<br>Eco-Adaptive Cruise<br>Control<br>Dynamic Emission Pricing<br>Eco-Smart Parking<br>AFV Charging/Fueling Info                                                                        | Travelled<br>Per Freeway Mile<br>/Vehicle<br>Per Vehicle/VMT<br>Per Vehicle/VMT<br>Per Vehicle/Parking<br>Space            |
| 3) Benefits not reported for all benefit categories. | 3) Used EPA's average vehicle<br>emission/fuel factorsi.e. 1<br>gallon of fuel saved is equivalent<br>to 8,849 grams CO <sub>2</sub> . | AFV Engine Performance<br>Opt<br>Dynamic Eco-Routing<br>Flexible Eco-Transit Routing<br>Eco-Approach & Departure<br>at Signalized Intersections<br>Multi-Modal Traveler Info<br>Eco-Network Decision Sup | Per Vehicle/VMT<br>Per Vehicle/VMT<br>Per Vehicle/VMT<br>Per Bus/VMT<br>Per Intersection Crossing<br>Per VMT<br>Per VMT    |

\*Benefits derived from case studies may introduce optimism bias; to the extent that this is the case, results may be overly optimistic.




### **Monetization of Benefit Data**

| Benefit                 |                           | Val                 | uation                                                                                                                                       |
|-------------------------|---------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Category                | Technique                 | \$/Unit*            | Source of Information                                                                                                                        |
| GHGs (CO <sub>2</sub> ) | Social Cost<br>of Carbon  | \$0.00007 per gram  | Interagency Working Group as reported in DOT<br>NHTSA Preliminary Regulatory Impact Analysis                                                 |
| Criteria Pollutants     |                           |                     |                                                                                                                                              |
| Particulate Matter      | Contingent<br>Valuation   | \$0.2292 per gram   | EPA Regulatory Impact Analysis; Final Rule-making<br>to Establish Light-Duty Vehicle Greenhouse Gas<br>Emission Standards and CAFE Standards |
| Hydrocarbons            | Societal<br>Benefits      | \$0.008271 per gram | NHTSA Office of Regulatory Analysis and Evaluation,<br>National Center for Statistics and Analysis; Lifetime<br>Monetized Societal Impacts   |
| СО                      | Contingent<br>Valuation   | \$0.00416 per gram  | EPA Regulatory Impact Analysis; Final Rule-making<br>to Establish Light-Duty Vehicle Greenhouse Gas<br>Emission Standards and CAFE Standards |
| NOx                     | Contingent<br>Valuation   | \$0.0248 per gram   | EPA Regulatory Impact Analysis; Final Rule-making<br>to Establish Light-Duty Vehicle Greenhouse Gas<br>Emission Standards and CAFE Standards |
| Fuel                    | Price-based<br>Derivation | \$2.92 per gallon   | DOE EIA AEO 2011 Reference Case                                                                                                              |


\*The monetary value displayed is the 2012 value; in the model, the monetary value changes over time in accordance with the source information's predicted values by year.

#### **Cost Analysis**





#### **Cost Analysis Approach**





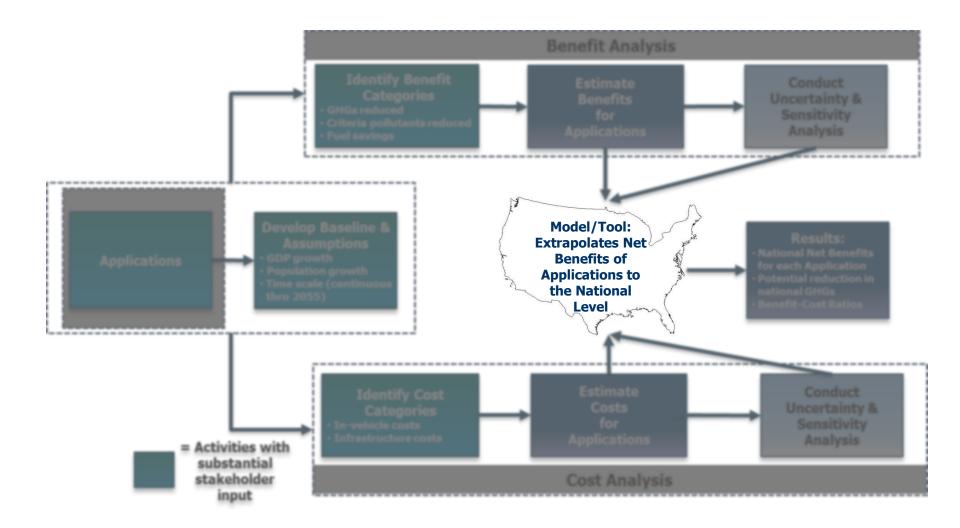
## **Cost Element Identification**

| Category                  | Cost Element                                                                                                                                                                                                            |                                                                                                                                     |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Baseline                  | Roadside Equipment (RSE) units<br>On-Board Equipment (OBE) units<br>Telecom Backhaul<br>The Connected Vehicle Core System<br>Traffic Signal Systems                                                                     | These costs are not<br>included in BCA; as<br>it is assumed that<br>connected vehicle<br>infrastructure exists                      |
| Infrastructure            | Closed Circuit Television (CCTV) Cameras<br>Static Road Signs<br>Dynamic Message Signs (DMS)<br>Environmental Sensors                                                                                                   |                                                                                                                                     |
| In-Vehicle                | On-Board Equipment,<br>(marginal costs to integrate application)                                                                                                                                                        | These costs are<br>attributed to<br>AERIS applications;                                                                             |
| Operation and Maintenance | System Integration & Back Office<br>Online Presence<br>Application Development<br>Education & Outreach<br>Telecom Backhaul,<br>(marginal costs to process environmental data)<br>Non-DSRC communication (i.e. cellular) | Only <i>incremental</i><br>costs to install and<br>operate AERIS<br>applications above<br>and beyond those<br>costs in the baseline |



## **Derivation of Cost Estimates from Literature**

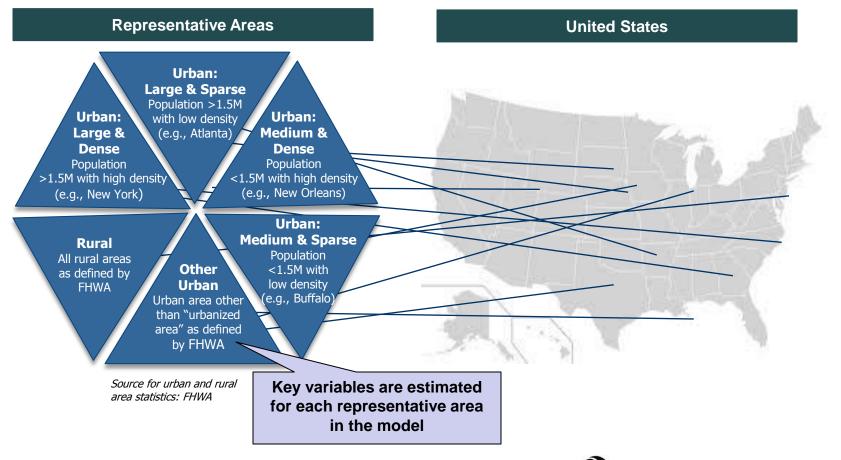
|                                      |                         |           | Un          | it Cos          | ts                                                                                                              |
|--------------------------------------|-------------------------|-----------|-------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
| Cost Element                         | Unit                    | Cap. Cost | O&M<br>Cost | Life<br>(years) | Source                                                                                                          |
| Application<br>Development           | One-time,<br>Nationwide | \$10M     | -           | 35              | "Vehicle-Infrastructure Integration (VII) Initiative Benefit-Cost Analysis", Volpe Center, 2008 (VII BCA 2008). |
| OBE Incremental Cost                 | Per OBE                 | -         | \$0.10      | -               | VII BCA 2008.                                                                                                   |
| Incremental Telecom<br>Backhaul      | Per kbps, Per<br>RSE    | -         | \$7.30      | -               | "Vehicle-Infrastructure Integration (VII) Communications Analysis", July 2006.                                  |
| Non-DSRC<br>Communication            | Per OBE                 | -         | \$0.60      | -               | Compilation of studies found at: http://www.benefitcost.its.dot.gov.                                            |
| Education, Outreach                  | Per Capita              | -         | \$0.045     | -               | "Guidance for Implementation of the AASHTO Strategic Highway Safety Plan", NCHRP.                               |
| Online Presence                      | Per Area                | \$333K    | \$176K      | 15              | Compilation of studies found at: http://www.benefitcost.its.dot.gov.                                            |
| Systems Integration &<br>Back Office | Per Area                |           | \$314,944   |                 | Compilation of studies found at: http://www.benefitcost.its.dot.gov.                                            |
| Closed Circuit TV<br>Cameras         | Each                    | \$7K      | \$500       | 10              | Compilation of studies found at: http://www.benefitcost.its.dot.gov.                                            |
| Ramp Meters                          | Per Ramp                | \$169,800 | \$3,780     | 25              | Compilation of studies found at: http://www.benefitcost.its.dot.gov.                                            |
| Roadside Message<br>Sign             | Per Sign                | \$116     | -           | 7               | Compilation of studies found at: http://www.benefitcost.its.dot.gov.                                            |
| Variable Speed Limit<br>Sign         | Per Sign                | \$3,500   | \$350       | 14              | Compilation of studies found at: http://www.benefitcost.its.dot.gov.                                            |
| Large Dynamic<br>Message Sign        | Per Sign                | \$82,000  | \$4,150     | 10              | Compilation of studies found at: http://www.benefitcost.its.dot.gov.                                            |




### **Cost Element Associated with each Application**

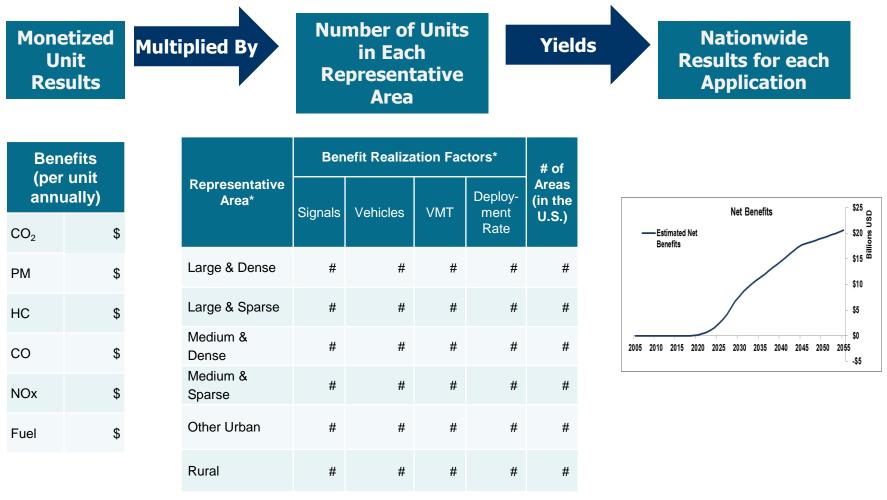
|                                                        |   |                |                              |             | (                     | Cost Ele                     | ements                        |                                         |                 |                         |                      |                      |
|--------------------------------------------------------|---|----------------|------------------------------|-------------|-----------------------|------------------------------|-------------------------------|-----------------------------------------|-----------------|-------------------------|----------------------|----------------------|
| Applications                                           |   | Incr. non-DSRC | Closed Circuit TV<br>Cameras | Ramp Meters | Roadside Message Sign | Variable Speed Limit<br>Sign | Large Dynamic Message<br>Sign | Incr. Sys. Integration &<br>Back Office | Online Presence | Application Development | Education & Outreach | Incremental OBE Cost |
| Eco-Traffic Signal Timing                              | Х | х              |                              |             |                       |                              |                               | Х                                       |                 | х                       | Х                    | Х                    |
| Eco-Freight Signal Priority                            | Х | Х              |                              |             |                       |                              |                               | Х                                       |                 | Х                       | Х                    | Х                    |
| Eco-Transit Signal Priority                            | Х | Х              |                              |             |                       |                              |                               | Х                                       |                 | Х                       | Х                    | Х                    |
| Connected Eco-Driving                                  |   | Х              |                              |             |                       |                              |                               | Х                                       |                 | Х                       | Х                    | Х                    |
| Eco-Speed Harmonization                                |   | Х              |                              |             |                       | Х                            |                               | х                                       |                 | Х                       | Х                    | Х                    |
| Eco-Cooperative Adaptive Cruise Control                |   | Х              |                              |             |                       |                              |                               | х                                       |                 | Х                       | Х                    | Х                    |
| Dynamic Emissions Pricing                              |   | Х              | Х                            |             |                       | Х                            |                               | Х                                       | Х               | Х                       | х                    | Х                    |
| Eco-Smart Parking                                      |   | Х              |                              |             | Х                     |                              |                               | х                                       | Х               | Х                       | Х                    | Х                    |
| AFV Charging/Fueling Information                       |   | Х              |                              |             | Х                     |                              |                               | Х                                       | Х               | Х                       | х                    | Х                    |
| AFV Engine Performance Optimization                    |   | Х              |                              |             |                       |                              |                               | Х                                       |                 | X                       | Х                    | Х                    |
| Dynamic Eco-Routing                                    |   | Х              |                              |             |                       |                              |                               | Х                                       |                 | Х                       | х                    | Х                    |
| Flexible Eco-Transit Routing                           |   | X              |                              |             |                       |                              |                               | X                                       | Х               | X                       | Х                    | Х                    |
| Eco-Approach and Departure to Signalized Intersections | Х | х              |                              |             |                       |                              |                               | X                                       |                 | х                       | Х                    | Х                    |
| Multi-Modal Traveler Information                       |   | Х              |                              |             |                       |                              | х                             | х                                       | Х               | Х                       | Х                    | Х                    |
| Eco-Network Decision Support System                    |   | х              |                              |             |                       |                              |                               | х                                       |                 | Х                       | Х                    | Х                    |
| Eco-Ramp Metering                                      |   | Х              |                              | Х           |                       |                              |                               | Х                                       |                 | Х                       | Х                    | Х                    |




## **Extrapolation**





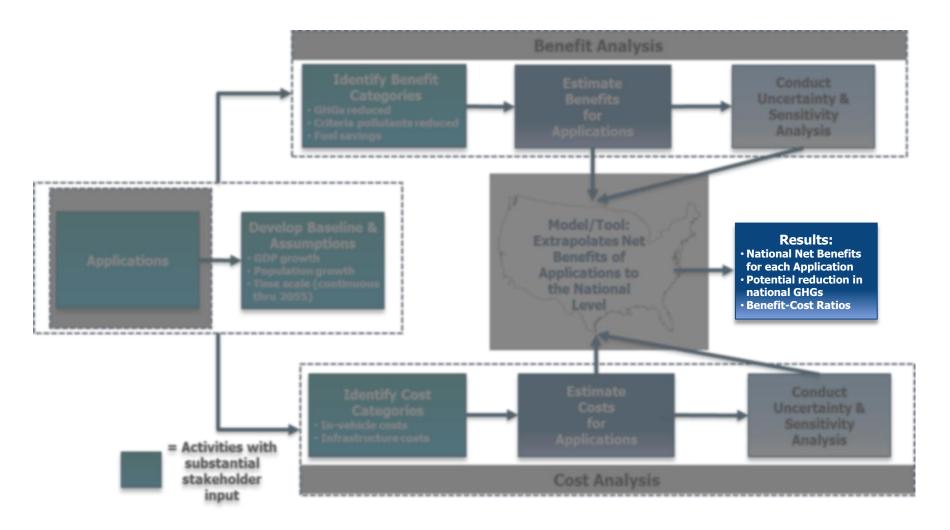

## **National Extrapolation Tool**

- What: Model/Tool that extrapolates unit costs and benefits to the National Level.
- Why: National driving behavior and transportation infrastructure are heterogeneous.
- How: Six "Representative Areas" were used to capture major geographical differences.



26

#### **Nationwide Extrapolation of Unit Benefits**

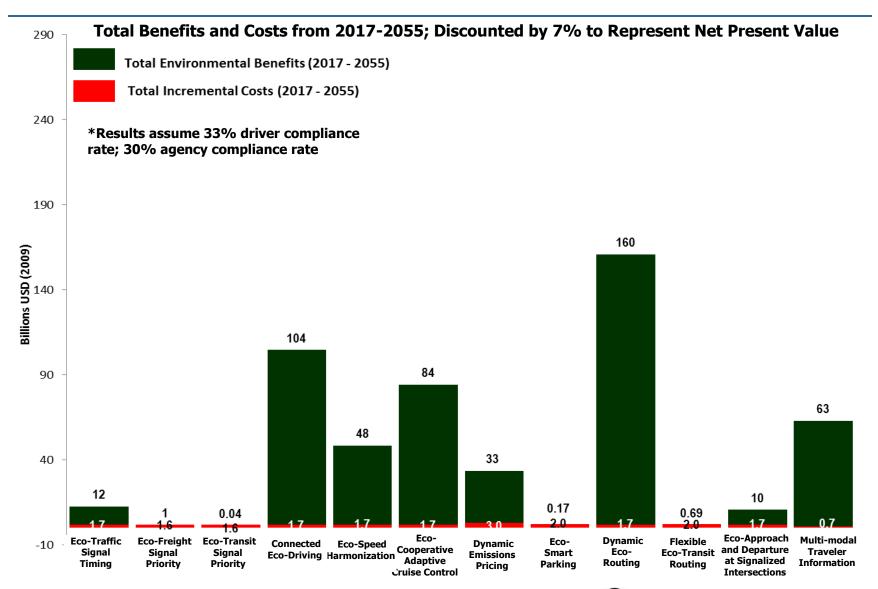



\*Benefit realization factors vary based on the unit basis of individual applications

#### **Nationwide Extrapolation of Unit Costs**

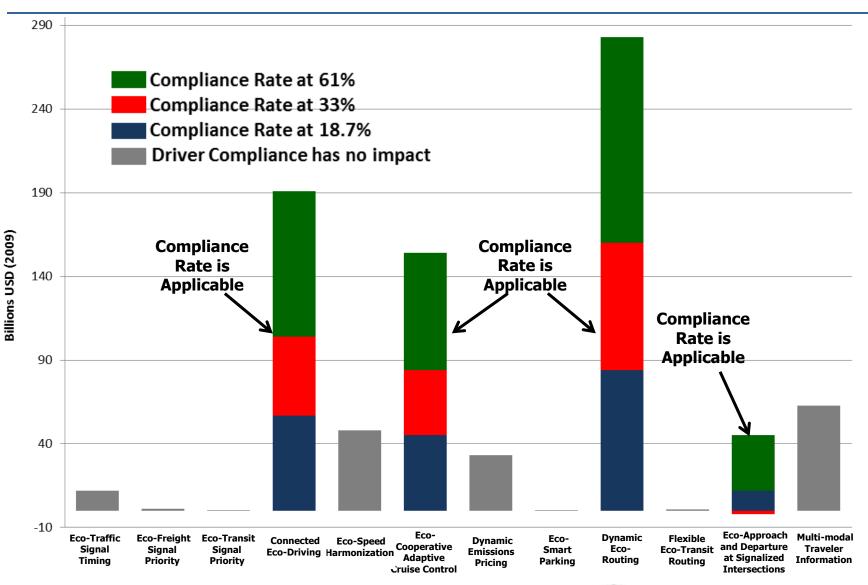
| Unit<br>Costs Multiplied By                             |          | Number of Units<br>in Each<br>Representative<br>Area                                 |                           |          |     | Yiel            | ds Nationwide<br>Results for each<br>Application |                                                                       |
|---------------------------------------------------------|----------|--------------------------------------------------------------------------------------|---------------------------|----------|-----|-----------------|--------------------------------------------------|-----------------------------------------------------------------------|
| Costs<br>(per unit annually)                            |          | Representative<br>Area*                                                              | Cost Realization Factors* |          |     |                 | # of                                             |                                                                       |
|                                                         |          |                                                                                      | Signals \                 | Vehicles | VMT | Deploy-<br>ment | Areas<br>(in the<br>U.S.)                        | Costs 525 520 520 520 520 520 520 520 520 520                         |
| Development                                             | \$       |                                                                                      |                           |          |     | Rate            |                                                  | — Costs                                                               |
| OBE Incremental Cost<br>Incremental Telecom<br>Backhaul | \$<br>\$ | Large & Dense                                                                        | #                         | #        | #   | #               | #                                                | - \$15 <sup>-</sup>                                                   |
| Non-DSRC<br>Communication                               | \$       | Large & Sparse                                                                       | #                         | #        | #   | #               | #                                                | \$5                                                                   |
| Education, Outreach<br>Online Presence                  | \$<br>\$ | Medium &<br>Dense                                                                    | #                         | #        | #   | #               | #                                                | \$0<br>2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055<br>-\$5 |
| Systems Integration &<br>Back Office                    | \$       | Medium &                                                                             | #                         | #        | #   | #               | #                                                |                                                                       |
| Closed Circuit TV<br>Cameras                            | \$       | Sparse                                                                               | #                         | #        | #   | #               | #                                                |                                                                       |
| Ramp Meters                                             | \$       | Other Urban                                                                          |                           |          |     |                 |                                                  |                                                                       |
| Roadside Message Sign                                   | \$       |                                                                                      |                           |          |     |                 |                                                  |                                                                       |
| Variable Speed Limit<br>Sign                            | \$       | Rural                                                                                | #                         | #        | #   | #               | #                                                |                                                                       |
| Large Dynamic<br>Message Sign                           | \$       | *Cost realization factors vary based on the unit basis of<br>individual applications |                           |          |     |                 |                                                  |                                                                       |

#### **Preliminary Results**



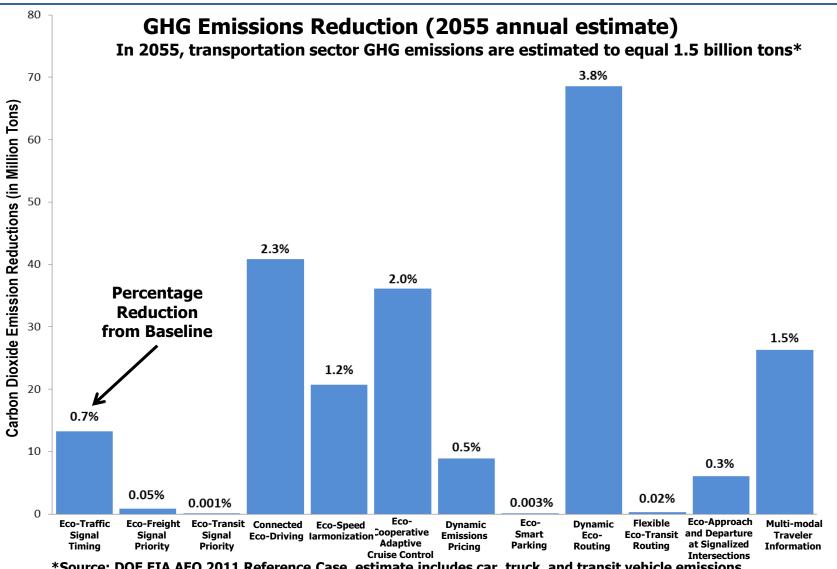



## **Preliminary Results Caveats**


- Net Benefits = Monetized Environmental Benefits Costs
- The results only consider *incremental* costs and *environmental* benefits
- Cumulative values for 2017-2055, discounted (7%), accounts for inflation and time value of money (Net Present Value)
- Values represent national deployment
- Applications evaluated individually, aggregation will change benefits and/or costs
- Benefit estimates derived from literature on similar, but not exact AERIS applications; modeling/simulation of AERIS applications will improve benefit estimates
- Not enough data was available to assess:
  - AFV Charging/Fueling Information
  - AFV Engine Performance Optimization
  - Dynamic Eco-Lanes
  - Eco-Network Decision Support System

#### **Application Results: Total Benefits and Costs**






#### **Sensitivity to Assumptions: Driver Compliance Rate**





#### **Application Results: Annual GHG Reductions (2055)**



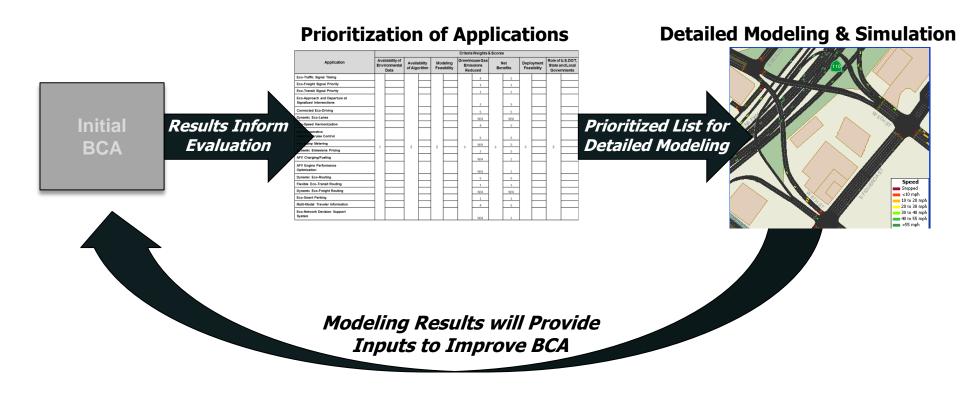
\*Source: DOE EIA AEO 2011 Reference Case, estimate includes car, truck, and transit vehicle emissions



# **Key Findings & Considerations**

The initial BCA evaluates environmental benefits of the applications to compare the magnitude of their benefits; the results provide a number of key findings:

- Magnitude of benefits realized is very sensitive to the compliance rate
- Applications that generate benefits on a VMT basis have highest overall benefits
- Applications may have significant local/regional benefits; however, do not provide substantial nationwide benefits


#### Considerations raised by the BCA:

- The role of dedicated short range communication (DSRC) vs. cellular communication and the implications for deployment
- Agencies may not turn on applications all the time; e.g., eco-speed harmonization may be activated during code orange air quality days



#### **Next Steps**

The initial BCA evaluated the applications individually; detailed modeling and simulation will consider the synergies between applications as TCs and provide information on the cumulative GHG reductions of the program.





#### **Contact Information**

#### **Marcia Pincus**

Program Manager, Environment (AERIS) and ITS Evaluation USDOT Research and Innovative Technology Administration <u>marcia.pincus@dot.gov</u>

http://www.its.dot.gov/aeris/index.htm