Human Factors for Connected Vehicles

Chris Monk

Federal Highway Administration

(on behalf of the National Highway Traffic Safety Administration)

August 4, 2011

Drivers/Operators

Wireless Devices

Human Factors for Connected Vehicles

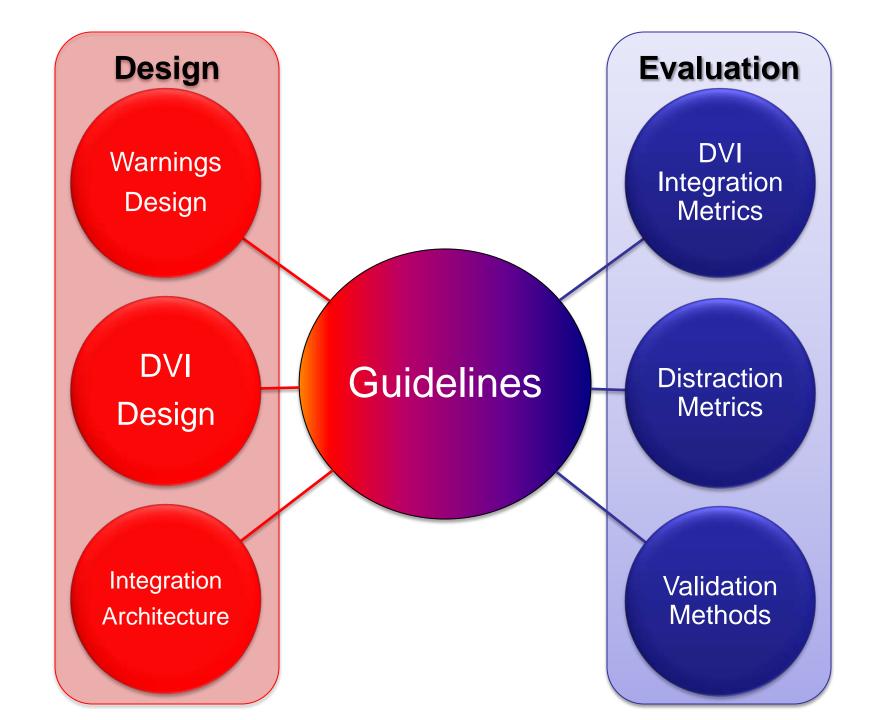
Outcome Goal

 Connected Vehicle technologies and applications will have Driver Vehicle Interfaces (DVI) that effectively communicate safety information while managing workload and minimizing distraction

Product Goal

 Human Factors Guidelines to ensure interfaces are effective without increasing distraction or creating high workload

Key Human Factors


- What makes an effective safety application interface?
 - Attracts the driver's attention
 - Directs it to the threat in time
 - Invokes correct and quick driver response
- Driver distraction is the diversion of attention from activities critical for safe driving to a competing activity.

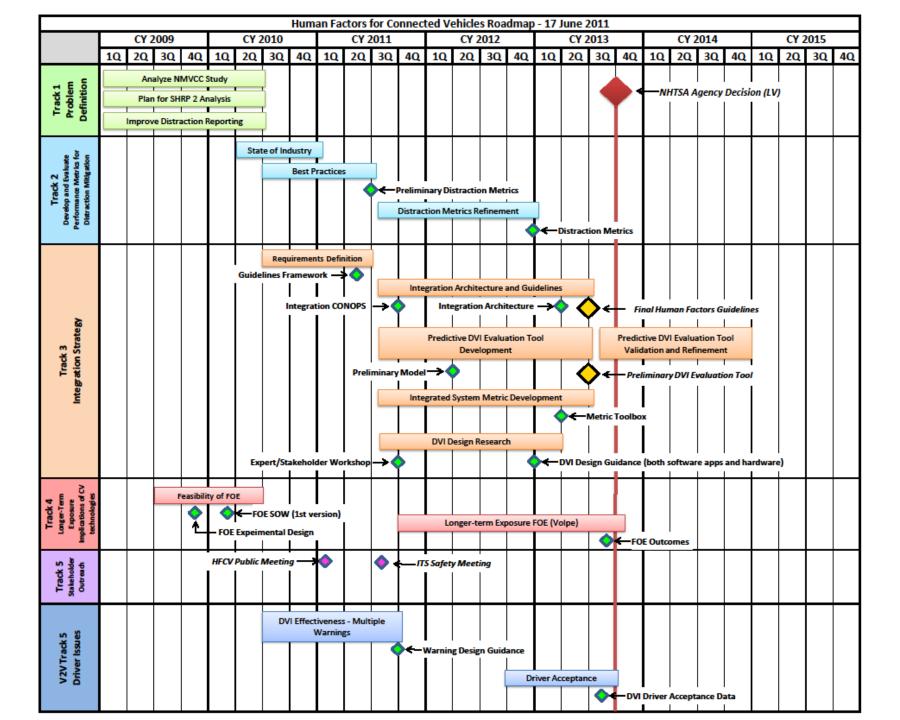
Human Factors Guidelines

- Provide designers with guidance supported by the best available empirical evidence
- Some guidelines are stated as general principles and practices at a functional level
- Other guidelines are highly specific and quantitative, like design criteria
- Greater incorporation of performance-based criteria

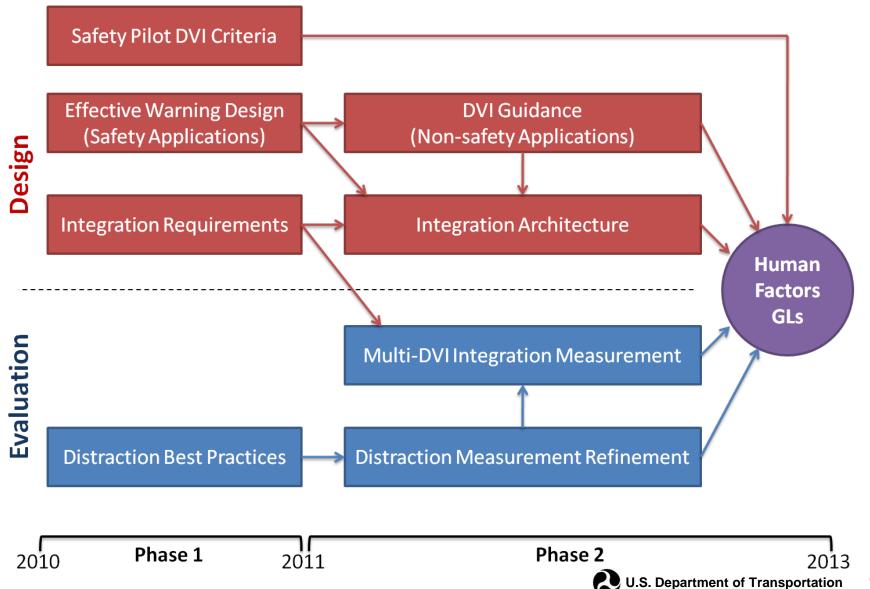
Program Scope

Multiple User Groups:

- Light vehicles
- Commercial Vehicles
- Transit operators
- Age groups: Older and Younger drivers



Multiple Applications:


- V2V and V2I
- Safety, Mobility, Sustainability
 - Special concern about nonsafety applications
- Original equipment,
 Nomadic (carry-in)
 devices, software "Apps"

Focus is on "Connected" Applications

Path to the Guidelines

Phase 1 Activities

- Safety Pilot DVI Design Criteria
- Effective Warnings
 - Data for improving warning design
- Integration Requirements Definition
 - Integration requirements based on preliminary test-track study
 - Framework for the Guidelines Document
- Best Practices for Distraction Mitigation
 - Preliminary Distraction Measurement Protocol for Connected Vehicle systems

Safety Pilot DVI Design Criteria

- Develop DVI Design Criteria for Safety Pilot developers
 - Completed in March 2011
 - Contractor will assess adherence at Driver Clinics and for Model Deployment

Effective Warning Design

- Six studies investigating a range of critical issues for warning design
 - User-based structure for message coding
 - 2. Urgency coding within and across modalities
 - 3. Comparison of alternative warning modalities
 - 4. Multiple warning events
 - 5. Message prioritization, display and information management (preliminary)
 - 6. Nomadic device requirements
- All studies in data collection except Nomadic devices
- Project will be completed in Fall 2011

Integration Requirements Definition

Objective:

 Explore the range of potential integration strategies that impact the human's interaction within the CV system

Major Activities:

- Identification of multi-DVI integration knowledge gaps
- Conduct experiment on key issues
- Human Factors Design Guidelines Framework development

Product:

- Initial integration study results to inform Requirements
- Human Factors Design Guidelines Framework

Experimental Approach

Test track study conducted on VTTI's Smart

Road

- Instrumented Vehicle
 - Data Acquisition System
 - Application Emulator

Device Locations and Applications

Device locations

Applications (all Android-based)

- Imminent Safety
- Emerging Hazards
- Public Safety/Emergency Management
- Mobility: Traffic Routing
- Public Transit Options
- Environmental Stewardship
- Weather Advisory
- Advertising/Marketing
- Social Networking

Integration Requirements Conclusions

Display Location:

 The mobile device was less effective at presenting imminent safety information and was less favorable

• Unexpected Finding:

- Lower "Glance times to Device" and shorter "Maximum Glance
 Duration" to mobile device compared to fixed and integrated
 - Not indicative of safer performance; rather, too hard to look/too unsafe to look
 - Supported by subjective results

Application-specific findings:

 The Internet and environmental applications resulted in the longest maximum glance durations and Internet, environmental and advertising applications received the lowest preference ratings.

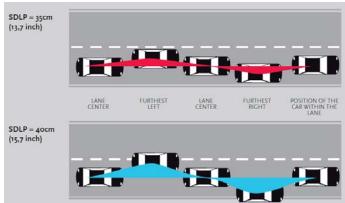
Best Practices for Distraction Mitigation

Objective:

 Develop test procedures that can be used with production vehicles and nomadic technologies to assess distraction potential and usability.

Major activities:

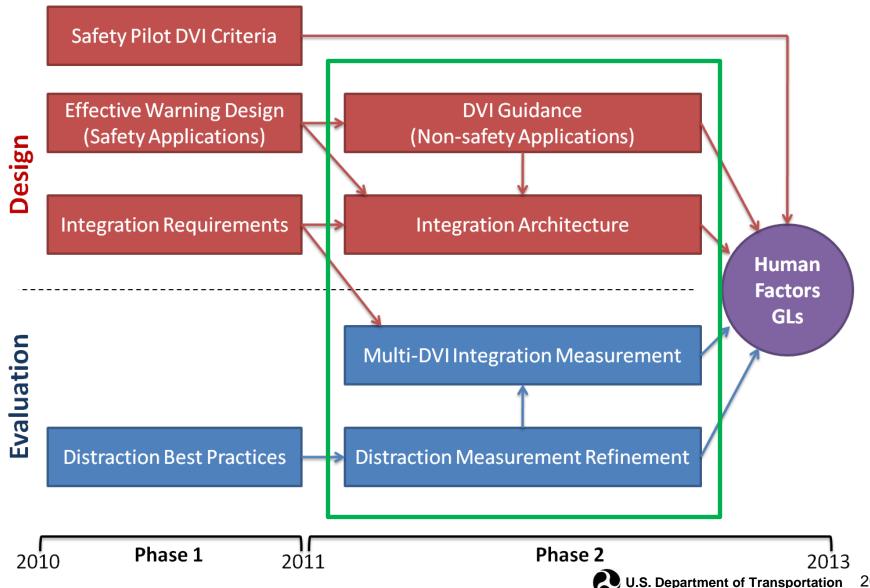
- Expert/Stakeholder interviews
- Experiments


Product:

 Test Procedures for Evaluating Distraction Potential in Connected Vehicle Systems: Performance Metrics

Best Practices Report

- CV-AWARE: Connected Vehicle Attention Workload Awareness Road Centered Evaluation
 - CV-AWARE method showed good cross platform repeatability
- 14 performance metrics extracted from experimental data building upon distraction metrics developed in non-Connected Vehicle studies
- Cost and resource requirements discussed for each metric
- Future research needs identified



Phase 1 Accomplishments - CY2011

- Safety Pilot DVI Design Criteria
 - Completed in March
- Effective Warnings
 - Five of 6 studies currently collecting data or completed
 - All will be completed Fall 2011
- Integration Requirements
 - Final Report delivered June 2011
 - Design Guidelines Framework completed in June 2011
- Best Practices
 - Final Report delivered May 2011

Path to the Guidelines: Phase 2

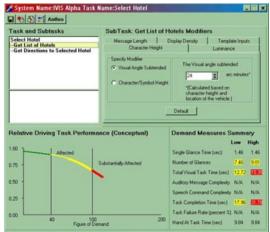
DVI Guidance Research

- Stakeholder/Experts Workshop
 - Bring together key researchers to discuss the outcomes of Phase 1 and plans for Phase 2
- Develop DVI guidance with focus on nonsafety applications and connectivity issues
 - Main activity for addressing key design guidance gaps
 - Light Vehicles, Heavy Vehicles, Transit Operators
 - Age groups
 - Includes vehicle-to-Infrastructure issues

Integration Architecture & Guidelines

- Concept of Operations
- Integration Architecture
 - Message Priority scheme
 - Modality scheme/guidance/conflict matrix
 - Evaluation procedures
- Guidelines
 - Final HF Guidelines produced in this Task

Integrated System Measurement

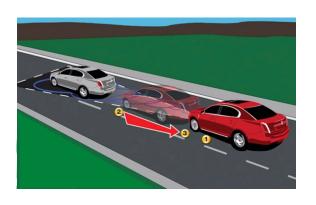

- Overall "Metric Toolbox" for evaluating multiple, integrated DVI-based Connected Vehicle systems and applications
 - Non-safety and safety applications
 - Validation efforts
 - Light Vehicles, Heavy Vehicles, Transit Operators
 - Age groups
 - Includes vehicle-to-Infrastructure issues

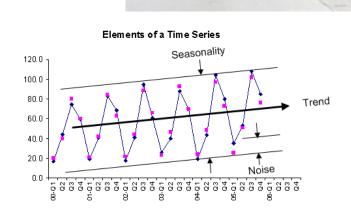
Distraction Metric Refinement

- Follow-on to Phase 1 Best Practices work
- Incorporate expert interview outcomes
- Produce more complete and tested
 Distraction Metrics with emphasis on connectivity issues
 - Situation Awareness
 - Interruption/resumption issues
 - Light Vehicles, Heavy Vehicles, Transit Operators
 - Age groups
 - Includes vehicle-to-Infrastructure issues

Predictive DVI Evaluation Tool - NEW

- Software tool for designers to be able to estimate distraction potential or workload issues for their DVI and system configurations
 - A new program product that does not feed guidelines directly
 - Very useful for designers
 - Will likely produce partially validated tool




Other Phase 2 Activities

Longer-term Exposure Field Operational

Experiment

- Managed by Volpe Center
- To be awarded early this Fall

Phase 2 Accomplishments - CY2011

- Stakeholder/Experts Workshop
- Concept of Operations for Multi-DVI Integration
- Additional Analyses from Phase 1 data
- Literature Reviews and Gap Analyses
- Draft Work Plans for studies
- FOE Kick-off

Contact Information

Chris Monk, FHWA 202-493-3365 chris.monk@dot.gov

Intelligent Transportation Systems Joint Program Office

http://www.its.dot.gov/