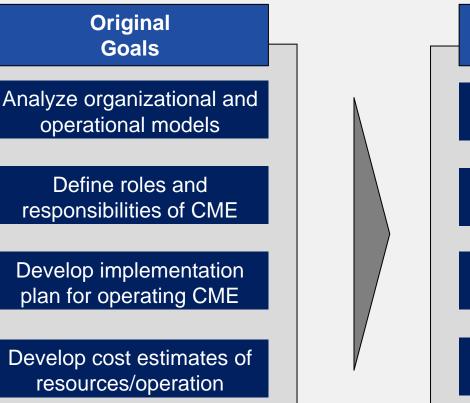
Operational and Organizational Models for Certificate Management Entities

April 19, 2012 Washington, DC

Table of Contents

- Overview of Project
- CME Functions
- Security Baselining
- Organizational Models
- Connected Vehicle Environment
- Comparative Analysis
- Oversight Options
- Cost Approach
- Summary of Outstanding Questions
- Next Steps



Project Description

- Analyze alternative approaches and models for Certificate Management Entities (CMEs) for the Connected Vehicle Program
- All approaches balance the security of communications with protection of the system's users' privacy
- CMEs perform the back-end processes to ensure the security of communications and protect the privacy of system users
- User trust is built by system users receiving valid messages from other system users
- > Any viable CME structure must be cost-effective, efficient, and scalable

Project Goals

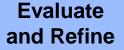
Additional Goals

Identify baseline to analyze security risks

Identify policies needed to drive decisions

Identify ways to integrate into existing organizations

Identify missing technical specifications


Project Approach

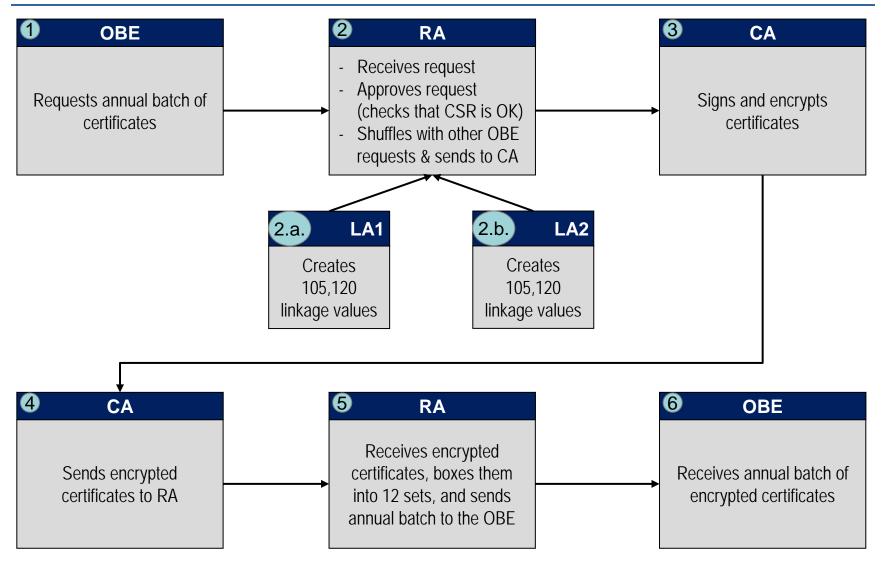
Review and Integrate Feedback

- Reviewed all documentation
- Documented the perspectives of multiple stakeholder groups:
- Researched comparative industry practices and organizations
 - Federal PKI Policy Authority
 - International Registration Plan
 - E-ZPass toll system
 - Smart Grid

Additional Research and Analyses

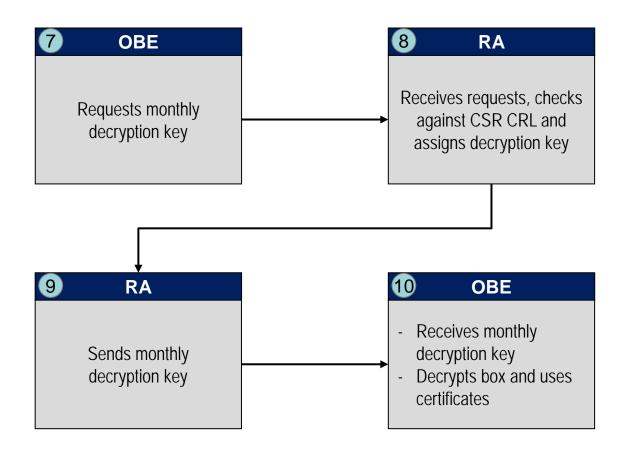
- Analyzed sub-functions and activities
- Narrowed list of acceptable models
- Built in requisite elements to models:
- Analyzed different oversight structures
- Developed policy and technical assumptions
- Defined outstanding questions and decisions

- Detailed development of three models
- Analyzed security baseline and privacy protections for:
 - Electronic Health Records
 - Electronic Voting
 - Standard PKI systems
- Detailed all implications of outstanding questions
- Evaluated each model against DOT criteria


Principles of Certificate Management

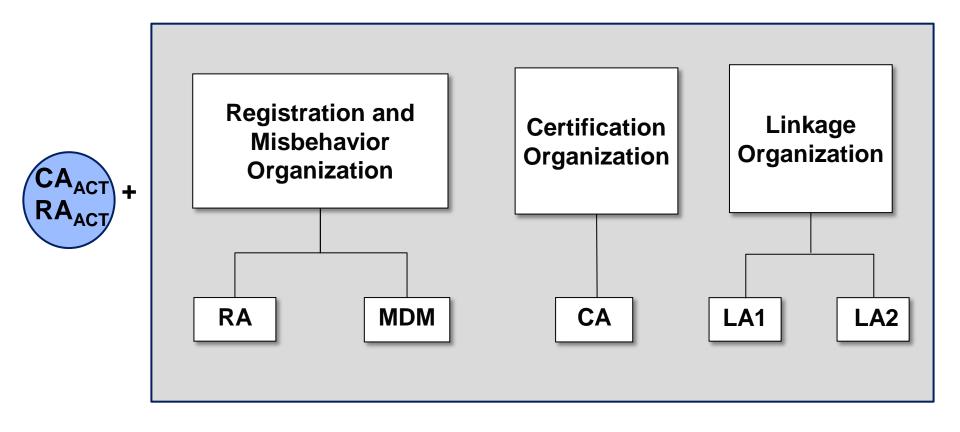
- A CME is an organization responsible for some of the functions and activities of certificate management
- A Public Key Infrastructure (PKI) scheme was selected for communications security
- The Activation system is the only part of the system that may collect PII, if that decision is made

Certificate Authority (CA)	Registration Authority (RA)	Linkage Authority (LA)	Misbehavior Detection & Mgmt (MDM)
 Central signing authority for all certificates Distributes certificates to RA 	 Communicates directly with On Board Equipment (OBE) Coordinates with CA and LA to distribute certificates to OBE 	 Creates linkage values Encrypts and sends linkage values to RA 	 Reviews misbehavior reports to identify malfeasance and malfunction Reviews Certificate Revocation Lists (CRLs)

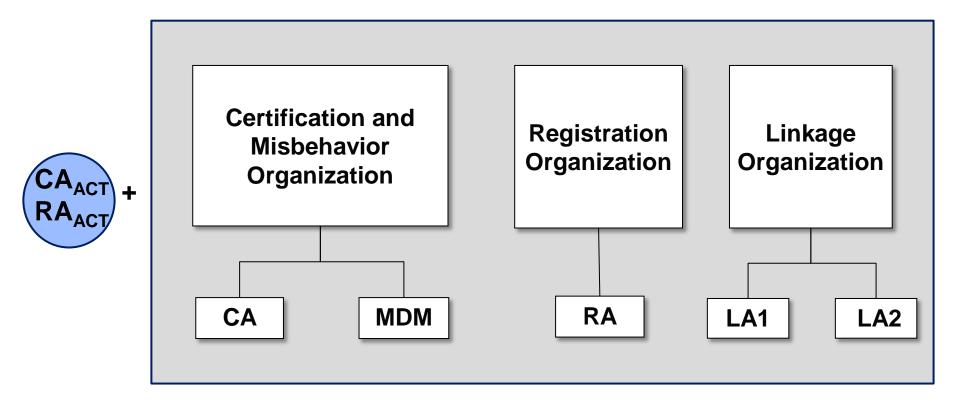


CME Process Flow (Certificate Batch Development)

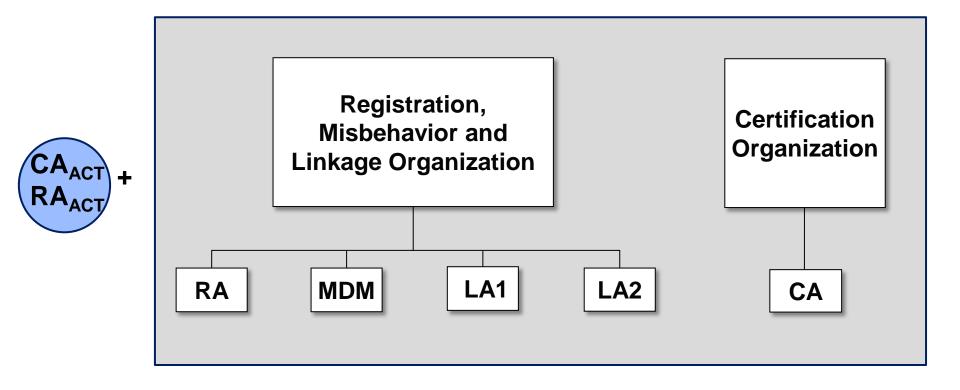
CME Process Flow (Certificate Decryption)

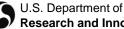


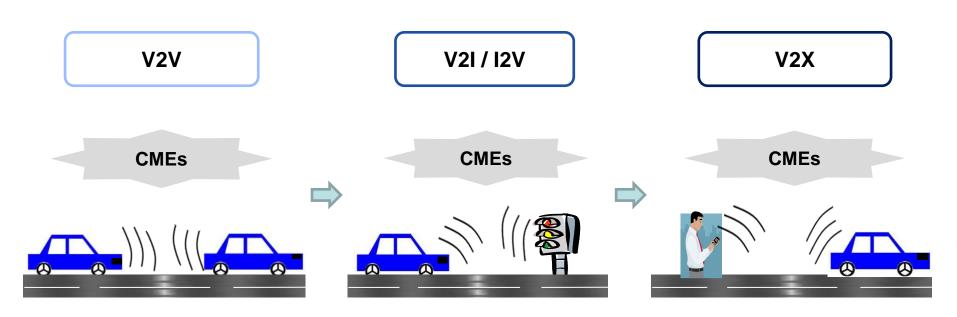
Security Baselining for CME


PKI Design Baseline		Vulnerability Baseline		
 CMEs feature a separated CA and RA function and the LA functions 		 PKI design in vulnerability is 	dicates that no level of acceptable	
 This adds complexity to traditional PKI design 		 Comparative industries protect against vulnerabilities in different ways 		
ICAO (ePassports) The International Civil Aviation Organization • Passive Authentication is the Baseline Security Method • Advanced Security Methods include Extended Access Control, Data Encryption	Indust The PCI Data Standard (PC • Routine au vulnerabili specific SV • Merchants transaction	CI DSS) udits, external ty scans, and W/HW controls	 Department of Defense The Dept. of Defense certificate policy (CP) Subscribers have certification practice statements (CPS) Can trust outside participants by cross certifying with Federal PKI Policy Authority 	
			ent of Transportation I Innovative Technology Administration	9

Model 1: Registration Authority/Misbehavior Integrated


Model 2: Certificate Authority/Misbehavior Integrated




12

Model 3: Registration/Misbehavior/Linkage Integrated

Connected Vehicle Environments

 V2V communication represents the base level environment
 CMEs' structures may not have to change for future expansion
 V2I / I2V communication involve both safety messages and exchanges of data
 V2X communication involve the incorporation of devices such as cell phones into the communication system

Personal Privacy Protection and Auditing

- Each industry has standards for security systems that participants are required to abide by
- Audits determine what levels of security breaches are unacceptable
- Some industries require extra security levels based on affiliation

Electronic Voting Systems

- Generally required that ex-convicts are screened to be able to vote
- Real time audit logs ensure vote count accuracy by producing a printout of individual votes without PII for recounts

Electronic Health Records

- Protections such as Wireless Intrusion and Prevention Systems (WIPS) and file integrity monitoring identify and prevent unauthorized data access
- Compliance audits can lead to license revocation/fines

Payment Card Industry

- Payment Card Industry Data Security Standards calls for routine audits, external vulnerability scans, and specific software and hardware controls
- Merchants with high transactions require more security measures and face greater penalties for non-compliance

Physical, Technical, and Procedural Controls

 Controls are implemented in PKI systems to address risk associated with both internal and external threats

Physical Controls

- Address the physical design elements of PKI equipment and security of facilities and stored data
 - Department of Defense

Procedural Controls

- Address the methods by which processes are carried out by the PKI. Other controls (such as personnel controls) were rolled into this category during analysis
 - Federal Bridge Certification Authority

Technical Controls

- Address the specific hardware and software security specifications as well as how certain technical processes, such as those associated with public and private keys, are carried out
 - SAFE-BioPharma
 - CertiPath

Large Scale Implementations

Analog to Digital TV

- Estimated 70-80 million TVs
- Customers who did not switch to DTV would no longer receive channels
- Authorized list of coupon-eligible converter boxes provided by the National Telecommunications Information Administration (NTIA) for DTV transition

Seatbelts

- Mandatory for all vehicles since the mid 1960's
- Drivers who do not participate by using a seatbelt are usually fined
- DOT "Safety incentive grants" for use of seat belts are available to states for having a higher rate of seatbelt usage than the national average and for engaging in innovative projects related to seatbelt safety

Emissions

- Mandatory for all vehicles beginning in 1967
- Drivers without valid emissions inspection stickers can be fined or have their licenses revoked (applies to states that require frequent emission checks)
- Tax credits for drivers of hybrid cars were created by the Energy Policy Act of 2005

CME Oversight Options

Public (Federal) Oversight

- Increased costs
- Increased approvals
- Possible streamlined coordination among dispersed
- Increased resistance
- Difficult to leverage commercial industry and opportunities

Hybrid Oversight

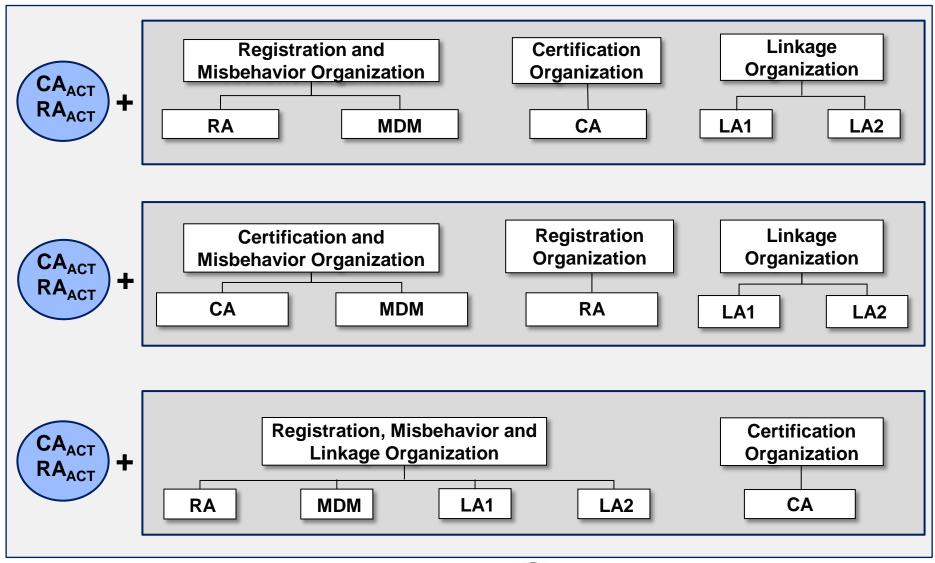
- Combination of public and private standards, regulations, policies, and oversight
- Can leverage the most effective models and funding sources
- Can also be leveraged with state and local options and systems
- May not imply same standards across entire system

Private Oversight

- Must still comply with federal regulations and policies
- More flexibility
- Independent organizations develop standards and practices
- Extensive opportunities for developing commercial applications
- Additional possibilities for investment and funding
- May spur independent economic activity

Challenges and Constraints in Cost Estimation for CMEs

- Size and scope of the program
 - 250 million vehicles at full implementation, five-minute certificates
- Largest PKI set in the world today is ~6.5 million users
- Longest running commercial PKI platform to date has issued 103 million certificates
- Additional security and technical requirements
 - Certificate lifespans require thousands of Hardware Security Modules (HSM) and potentially several hundred thousand servers
- The proposed organizational structures differ largely from current PKI organizations


Major Cost Elements

- Start-up (design, development, and implementation)
- Annual operation and maintenance
- Auditing security and privacy procedures across all functions and resources
- Software acquisition and maintenance
- Hardware and networking infrastructure
- Secure facilities
- Creation and auditing of policies and procedures
- Management of the certificate lifecycle

19

CME Organizational Models

21

Impact of Organizational Models on Cost

- Organizational models may have a limited impact on cost
 - Technical requirements drive software and hardware procurement
 - Combined functions can lead to the sharing of facilities and human resources
 - Cross-training of personnel across functions may be possible within policy, technical, and procedural controls needed

Model 1: RA/MDM Integrated

- RA and MDM could share personnel and facilities costs
- CA and LAs would not realize cost savings

Model 2: CA/MDM Integrated

- CA and MDM would be able to leverage shared personnel
- RA would not realize cost saving efficiencies under this model

Model 3: RA/MDM/LA Integrated

▶ CA may be able to operate in a virtual environment

Outstanding Issues and Decisions to be Made

Credentialing	 Where and how much PII to collect: No PII (policy) PII during Activation (new or existing system) (policy) PII connected to certificates (policy)
Misbehavior	 How malfeasance is identified (global processing) (technical) Penalties (policy) What behavior requires suspension vs. revocation (policy)
Oversight and Ownership	What will the industry oversight structure be: Public (policy) Private (policy)

Hybrid (policy)

Outstanding Issues and Decisions to be Made

Implementation Planning	 Policy decisions over time (policy) Built in versus after market devices (policy) Technological requirements (technical) Roll out strategy – coverage prioritization (policy/technical)
	riten out outdogy obvorage phonicization (poney/teenhout)

Certificate Policy	 What the policy will say regarding roles, rules governing obtaining certificates, technical and audit requirements (policy)

Certificate Length and Download Lifespan of certificates is five minutes (technical)
Certificates are downloaded annually (technical)

Next Steps

Updating and Reporting

- Incorporate DOT feedback into March 2012 Report
- Develop proceedings of April workshops
- Additional analysis of outstanding questions and topics
- Additional cost model scenarios and analysis

Phased Development Approach

- Collaborate with technical teams developing the approach
- Build in requisite elements to phased roll out model:
 - Security baseline
 - Implementation scenarios
 - Governance models
 - Cost estimates
 - Roles and responsibilities

Present and Communicate

- Update analyses and reports based on feedback
- Evaluate all models and updated scenarios against criteria
- Develop public meeting materials for presentation to stakeholders
- Present findings and analyses to USDOT and external stakeholders

