

Software Assurance: A Curriculum Guide to
the Common Body of Knowledge to Produce,
Acquire and Sustain Secure Software

Software Assurance Workforce Education and
Training Working Group

Draft Version 1.2
October 2007

Version 1.2 29 October 2007

This document is offered for informative use; it is not intended as a policy or standard.

When referring to, quoting, or excerpting from this document please always ensure proper acknowledgement is
given.

Citation: Samuel T. Redwine, Jr. (Editor). Software Assurance: A Guide to the Common Body of
Knowledge to Produce, Acquire, and Sustain Secure Software Version 1.1.

US Department of Homeland Security, September 2006.

How to Make Contact, Find out More, and Contribute

Through a jointly sponsored working group on Software Assurance Workforce Education and Training, the
Department of Homeland Security (DHS) Software Assurance Program is seeking additional input and
participation in further developing this Secure Software Assurance Common Body of Knowledge document
and related materials. Representatives from government, academia, and the private industry have identified key
information needed to educate and train on the developing, sustaining, and acquiring of secure software. This
document is offered for informative use; it is not intended as a policy or standard.

If you would like to interact regarding this document, participate in the Workforce Education and Training
Working Group, or find out more information about software security and the DHS efforts to improve it; visit
the “Build Security In” website at https://buildsecurityin.us-cert.gov.

NO WARRANTY

This material is furnished on an “as-is” basis. The authors, contributors, members of the working group on
workforce education and training, their employers, the United States Government, other sponsoring
organizations, all other entities associated with this report, and entities and products mentioned within this
report make no warranties of any kind, either expressed or implied, as to any matter including, but not limited
to, warranty of fitness for purpose or merchantability, exclusivity, or results obtained from use of the material.
No warranty of any kind is made with respect to freedom from patent, trademark, or copyright infringement.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder. No warranty is made that use of the guidance in this document will result in software that is secure.
Examples are for illustrative purposes and are not intended to be used as-is or without undergoing analysis.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

Foreword
Dependency on information technology makes software assurance a key element of national security and
homeland security. Software vulnerabilities jeopardize intellectual property, consumer trust, business
operations and services, and a broad spectrum of critical applications and infrastructure, including everything
from process control systems to commercial application products. In order to ensure the integrity of key assets,
the software that enables and controls them must be reliable and secure. However, informed consumers have
growing concerns about the scarcity of practitioners with requisite competencies to build secure software. They
have concerns with suppliers’ capabilities to build and deliver secure software with requisite levels of integrity
and to exercise a minimum level of responsible practice. Because software development offers
opportunities to insert malicious code and to unintentionally design and build exploitable software, security-
enhanced processes and practices – and the skilled people to perform them – are required to build trust into
software.

The Department of Homeland Security (DHS) Software Assurance Program is grounded in the National
Strategy to Secure Cyberspace which indicates: “DHS will facilitate a national public-private effort to
promulgate best practices and methodologies that promote integrity, security, and reliability in software code
development, including processes and procedures that diminish the possibilities of erroneous code, malicious
code, or trap doors that could be introduced during development.”

Software Assurance has become critical because dramatic increases in business and mission risks are now
known to be attributable to exploitable software: system interdependence and software dependence has
software as the weakest link; software size and complexity obscures intent and precludes exhaustive test;
outsourcing and use of un-vetted software supply chain increases risk exposure; attack sophistication eases
exploitation; reuse of legacy software interfaced with other applications in new environments introduces other
unintended consequences increasing number of vulnerable targets; and the number of threats targeting software
are increasing. These all contribute to the increase of risks to software-enabled capabilities and the threat of
asymmetric attack. A broad range of stakeholders now need confidence that the software which enables their
core business operations can be trusted to perform (even with attempted exploitation).

DHS began the Software Assurance (SwA) Program as a focal point to partner with the private sector,
academia, and other government agencies in order to improve software development and acquisition processes.
 Through public-private partnerships, the Software Assurance Program framework shapes a comprehensive
strategy that addresses people, processes, technology, and acquisition throughout the software lifecycle.
Collaborative efforts seek to shift the paradigm away from patch management to achieving a broader ability to
routinely develop and deploy software products known to be trustworthy. These efforts focus on contributing
to the production of higher quality, more secure software that contributes to operations that are more resilient.

In their report to the President, Cyber Security: A Crisis of Prioritization (February 2005), in the chapter
entitled “Software Is a Major Vulnerability”, the President’s Information Technology Advisory Committee
(PITAC) summed up the problem of non-secure software concisely and accurately:

Network connectivity provides “door-to-door” transportation for attackers, but vulnerabilities in the
software residing in computers substantially compound the cyber security problem. As the PITAC noted
in a 1999 report, the software development methods that have been the norm fail to provide the high-
quality, reliable, and secure software that the Information Technology infrastructure requires. Software
development is not yet a science or a rigorous discipline, and the development process by and large is not
controlled to minimize the vulnerabilities that attackers exploit. Today, as with cancer, vulnerable
software can be invaded and modified to cause damage to previously healthy software, and infected
software can replicate itself and be carried across networks to cause damage in other systems. Like
cancer, these damaging processes may be invisible to the lay person even though experts recognize that

Foreward

their threat is growing. And as in cancer, both preventive actions and research are critical, the former to
minimize damage today and the latter to establish a foundation of knowledge and capabilities that will
assist the cyber security professionals of tomorrow reduce risk and minimize damage for the long term.
Vulnerabilities in software that are introduced by mistake or poor practices are a serious problem today.
In the future, the Nation may face an even more challenging problem as adversaries - both foreign and
domestic – become increasingly sophisticated in their ability to insert malicious code into critical
software.

The DHS Software Assurance (SwA) program goals promote the security of software across the development
life cycle and are scoped to address:

Trustworthiness – No exploitable vulnerabilities exist, either maliciously or unintentionally inserted;

Predicable Execution – Justifiable confidence that software, when executed, functions in a manner in
which it is intended;

Conformance – Planned and systematic set of multi-disciplinary activities that ensure software processes
and products conform to requirements and applicable standards and procedures.

Initiatives, such as the DHS “Build Security In” web site (https://buildsecurityin.us-cert.gov) and the
developers’ guide entitled Security in the Software Lifecycle: Making Application Development Processes –
and Software Produced by Them – More Secure, will continue to evolve and provide practical guidance and
reference material to software developers, architects, and educators on how to improve the quality, reliability,
and security of software – and the justification to use it with confidence.

This document, “Software Assurance: A Curriculum Guide to the Common Body of Knowledge to Produce,
Acquire, and Sustain Secure Software,” (referenced, in short, as SwA CBK) provides a framework intended to
identify workforce needs for competencies, leverage sound practices, and guide curriculum development for
education and training relevant to software assurance. Because Software Quality Assurance (SQA) and
Software Engineering have evolved bodies of knowledge that do not explicitly address security as a quality
attribute, and the “National Strategy to Secure Cyberspace” Action/Recommendation 2-14 relating to Software
Assurance (SwA) focused on security, integrity and reliability, the initial focus of the SwA education has been
to “complete” relevant academic programs. As such, SwA’s initial focus has been on persons with knowledge
of SQA and Software Engineering but not security.

The SwA CBK introduces the field software-security-related knowledge; points to references for further
knowledge, and supplies the background needed to meaningfully select which references might be of interest.

A series of CBK working group sessions have involved participation from academia, industry and federal
government to develop this document to address three domains: “acquisition,” “development,” and post-release
“sustainment.” Several disciplines contribute to the SwA CBK, such as software engineering, systems
engineering, information systems security engineering, safety, security, testing, information assurance, and
project management. While SwA is not a separate profession, SwA processes and practices should contribute
to enhancing these contributing disciplines. In education and training, Software Assurance could be addressed
as: a “knowledge area” extension within each of the contributing disciplines, a stand-alone CBK drawing upon
contributing disciplines, or as a set of functional roles drawing upon the CBK, allowing for more in-depth
coverage, depending on the specific roles. At a minimum, SwA practices should be integrated within
applicable knowledge areas of relevant disciplines.

The SwA working group has reviewed the CBK extensively in the past 18 months, including a separate session
held to specifically address the community-accepted Software Security Principles from which the SwA CBK
sections were mapped to each principle. Several academic organizations (such as James Madison University,
the University of North Carolina, Mississippi State University, the University of Detroit, and the Information

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

Resouces Management College at the National Defense University) have begun using the draft versions of the
SwA CBK to develop their SwA-related courses.

The SwA CBK is a part of the Software Assurance Series, and it is expected to contribute to the growing
Software Assurance community of practice. This document is intended solely as a source of information and
reference, and is not a proposed standard, directive, or policy from DHS. Because this document will continue
to evolve with use and changes in practices, comments on its utility and recommendations for improvement are
always welcome. Stakeholders are encouraged to provide lessons learned and sample SwA curriculum.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

i

Authorship and Acknowledgements
The Department of Defense (DoD) and Department of Homeland Security (DHS) Software Assurance efforts
encompass software safety, security, reliability, and dependability; yet initially they are concentrating on
achieving and assuring security properties and functionality. Their Software Assurance (SwA) Workforce
Education and Training Working Group is composed of government, industry, and academic members. This
Working Group produced this document as its first step towards achieving adequate US education and training
on software assurance. It identifies the additional body of knowledge necessary to develop, sustain, and acquire
secure software beyond that normally required to produce and assure software where safety and security are
not concerns. The knowledge areas identified and their related references provide a foundation for producing
education and training curricula and products as well as being useful to standards developers, evaluators and
testers, and others wishing to be knowledgeable in all or part of software-related security.1

This document was written and edited by Samuel T. Redwine, Jr. Additional authors included Rusty O.
Baldwin, Mary L. Polydys, Daniel P. Shoemaker, Jeffrey A. Ingalsbe and Larry D. Wagoner. Additional
contributors included Martin Croxford of Praxis High Integrity Systems Ltd; John McDermid, University of
York; Jim Moore, MITRE; Mary Ann Davidson, Oracle; Karen Goertzel, Booz Allen Hamilton; and the Ford
Motor Company, whose staff helped in the production of the section on Sustainment, particularly its reference
list.

The editor and authors would like to thank their co-authors for mutual help, the Working Group members for
the review comments received and the helpful issue discussions that occurred, and external reviewers who
contributed their valuable time to improve this guide. In part, James Madison University and its Institute for
Infrastructure and Information Assurance supported Mr. Redwine’s work.

Reviews of all or parts of drafts of this document were provided by Mark R. Blackburn, Systems and Software
Consortium, Inc.;Florian P. Buchholz, James Madison University; J. Katharine Burton, Institute for Defense
Analyses ; Mary Ann Davidson, Oracle ; Robert Dupuis, Université du Québec à Montréal; Christopher Fox,
James Madison University; Karen Goertzel, Booz Allen Hamilton; Frank Herman, Fraunhofer Center for
Experimental Software Engineering, Maryland; George Huber, SRI; David Jackson, QinetiQ; David Ladd,
Microsoft; Seok-Won Lee, University of North Carolina Charlotte; Glen Logan, OUSD (AT&L); Vic
Maconachy, National Security Agency; Nancy Mead, Software Engineering Institute, Carnegie Mellon; James
W. Moore, The MITRE Corporation; Sarah Nash, Institute for Defense Analyses; Ken Nidiffer, Systems and
Software Consortium, Inc.; Ioana Rus, Fraunhofer Center for Experimental Software Engineering, Maryland;
Joseph M. Saur, Georgia Tech Research Institute, Joint Systems Integration Command; Gary R. Stoneburner,
Johns Hopkins University Applied Physics Laboratory; John Viega, MacAfee; Larry Wagoner, National
Security Agency; James Walden, Northern Kentucky University; David A. Wheeler, Institute for Defense
Analyses; and Stan Wisseman, Booz Allen Hamilton.

Special thanks go to:

Joe Jarzombek, Director of Software Assurance, Department of Homeland Security - National Cyber
Security Division, without whose leadership and support this report would not exist.

Mitchell Komaroff, Office of the Chief Information Officer, Information Management and Technology,
US Department of Defense for his DOD-related efforts.

Joseph Saur, who championed and managed early efforts to produce the Acquisition portion.

1 See page ii for more information on the Working Group or to contact or join the group.

Authorship and Acknowledgements

ii

Jim Moore of The Mitre Corporation was particularly helpful. He personally discussed many aspects of
the document, provided detailed reviews and links into the standards community, and made extensive
interaction time available with the Process and Practices Working Group.

David Ladd of Microsoft, who attended all the early meetings and made his extensive expertise and advice
freely available inside and outside of the meetings. The WG’s continuing enlargement of participation
owe much to his championing of this need.

Robert Dupuis, who identified many areas where the text presumed more knowledge than exists in the
Guide to the Software Engineering Body of Knowledge in which he has been instrumental (any
remaining difficulties are solely the responsibility of the authors).

David Wheeler, for pointing out convincingly that the need to be concerned about security is now the
“normal” case for software.

Jeff Voas, Shareli Zadeli, Antonio Drommi who provided comments and/or useful participation for the
Sustainment portion,

Nancy Mead, Robert Ellison, and others at the Software Engineering Institute, and Gary McGraw and
others at Cigital who shared their efforts in this area.

John McDermid of the University of York, who not only contributed quoted text but also generously
provided an especially useful discussion one hot afternoon/evening in Washington, as well as pointing
the authors to a number of useful references.

Chuck Howell of The MITRE Corporation, who spent an evening providing the benefit of his experience
with assurance cases, including discussing the workshop he chaired on the subject.

Mark Vanfleet of NSA for useful discussion and identification of experts

Gary Stoneburner of John Hopkins University, for providing stimulating and useful discussion and
comments that were particularly appreciated.

The students in CS480 Secure Software Engineering at James Madison University who helped identify
places where the text could be improved.

Lisa Enders, Ginna Baker, Kelly Rote, Christine Jones, and Jeniffer Leahy, James Madison University
student assistants who toiled diligently on the many unglamorous tasks that needed to be done

Kimberly Caraway and Cindy Gagliano of Booz Allen Hamilton,(BAH) for administrative assistance and
Holly Mckinley and Karen Goertzel, also of BAH, for editing assistance.

Matt Bishop, Cynthia Irvine, Carol Taylor, and Joe Jarzombek, for help organizing a summer 2006
workshop for educators at the Naval Postgraduate School, hosted by Cynthia Irvine. The attendees
deserve thanks for their helpful participation and follow-up comments

The Working Group members were Lawrence Baker, Defense Acquisition University; Rusty O. Baldwin,
Air Force Institute of Technology; Paul E. Black, Michael Kass, and Michael Koo, National Instituted
of Standards and Technology (NIST); Blaine Burnham, University of Nebraska at Omaha; J.
Katharine Burton, Sarah Nash, Edward A. Schneider, and David A. Wheeler, Institute for Defense
Analyses; Djenana Campara, Klocwork Inc.; Mary Carroll and Linda Polydys, Information Resources
Management College at National Defense University; Martin Croxford, Praxis High Integrity Systems
Ltd.; Mary Ann Davidson, Oracle; Antonio Drommi, University of Detroit Mercy; Robert Dupuis,
Université du Québec à Montréal; Frank Herman, Fraunhofer Center for Experimental Software
Engineering, Maryland; Jeffrey A. Ingalsbe, Ford Motor Company; Arthur King, IBM Business
Consulting Services supporting OASD(NII) DIAP; l David Ladd, Microsoft Research; Barbara
Laswell, Software Engineering Institute, Carnegie Mellon; Seok-Won Lee, University of North

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

iii

Carolina Charlotte; Tom McGibbon, ITT Industries; James W. Moore, The MITRE Corporation;
Samuel T. Redwine, Jr., James Madison University; Joseph M. Saur, Georgia Tech Research Institute,
Joint Systems Integration Command; Dan Shoemaker, University of Detroit Mercy; Frank Stomp and
Sherali Zeadally, Wayne State University; Jeffrey Voas, Science Applications International
Corporation; and Larry Wagoner, National Security Agency.

The (IEEE) International Symposium on Secure Software Engineering and the Software Assurance Forum
provide opportunities for additional information in this area. The Workshop on Secure Software
Engineering Education and Training is specifically on the topic.

The Working Group’s life extends beyond the production of this guide, and its goals remain the same, to
help create a workforce capable of developing, sustaining, assuring, and acquiring (more) secure
software – but its specific activities may vary. The Working Group welcomes participation in its
ongoing activities.2

2 See page ii for directions on how to find out more about, contact, or join the Working Group.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

v

Editor’s Preface

Introduction
In June 2005, we took on the task of developing a document intended to provide educators, trainers, and others
possessing knowledge of software, but not of security, a companion reference to guide them across the surface
of the software security1 field and point out locations where they can obtain further knowledge by digging into
the identified references. We have progressed through a series of publicly reviewed iterations to reach this
version. We hope this guide inspires and aids the development of products and services from academia,
industry, and government, especially those developing and evolving applicable curriculum, by helping people
identify relevant items in the existing body of knowledge.

Along the way, a number of individuals and organizations gave comments both large and small on the many
interim drafts providing feedback that I and the other authors greatly appreciated – though we were always
eager for more. In the end, this document is the result of those individuals and organizations willing to put in
their own resources and step up to do a needed task, and I greatly appreciate them all. In the future, this guide’s
evolution will benefit from the involvement of even more of the community, including feedback from users.

In selecting the guide’s contents and organization, we intended to supply a background and contextual
software-security-related or assurance-related knowledge for persons already possessing good software
engineering knowledge. While we did not attempt to produce a textbook, and this guide is not one, some may
choose to use its text as a high-level introduction to the topic. However, in its primary role, educators, trainers
and others will use this text to guide them to the references containing the more detailed software-security-
related knowledge relevant to their work. Therefore, its design allows users – after reading the first four
introductory sections– to move directly to additional section(s) of interest. Any related knowledge is then
cross-referenced. The guide also reads properly front to back with prerequisite knowledge being introduced
before it is required.

The primary audiences for this guide are educators and trainers to help them identify both appropriate
curricular content and references that detail it. Other audiences include evaluators and testers, acquisition
personnel, and standards developers for whom it can help provide a better appreciation of the breadth of
subject matter and issues involved. Given the unanticipated accessibility of this guide, studious practitioners
could use it to obtain overviews or to guide their learning.

This preface provides a history of the development this guide to the secure software engineering common body
of knowledge and guidance on the paths within the document that readers with different interests may take.
Those without interest in this history can proceed directly to “How to Read this Document” on page ix or to the
Introduction on page 3.

1 Because of potential confusion among software security, security software, secure software, and the security of software; in
addition to using “software security” and “software system security” as inclusive terms, this document sometimes uses the
more awkward phrase “software-security-related” to emphasize this inclusiveness. All three inclusive terms certainly include
security software and the security of software but also other issues such as the security of additional kinds of computing
resources associated with or accessed by software. The phrase “secure software” is used in the same inclusive way but in
referring to software or software product, which results in or might affect security.

Editor’s Preface

vi

Some History
In 2003, the US Department of Defense (DoD) launched a Software Assurance Initiative led by Joe
Jarzombek,2 and this was joined in 2004 by the Department of Homeland Security (DHS). In March 2005, Mr.
Jarzombek moved to become Director for Software Assurance, National Cyber Security Division within DHS
and retains his leadership role in the collaborative interagency Software Assurance efforts including overseeing
the development of this document, the SwA CBK.

The DoD and DHS Software Assurance initiatives have submitted internal, interim reports and held jointly
sponsored Software Assurance Forums and a number of individual working group (WG) meetings. Among the
working groups is one on education and training which includes the individuals from government, industry,
and academia that produced this guide. In hopes of soliciting further participation, Joe Jarzombek and others
also made a number of appearances at professional events to publicize the efforts and the problems they are
addressing.

Driven by an awareness of the rampant worldwide explosion in exploitation of software vulnerabilities,
demand is growing for low-defect, secure software systems, in both the defense and commercial sectors.
Current, commonplace software specification, design, implementation, and testing practices provide users with
software containing numerous defects and security vulnerabilities.3 Government and industry need processes
that effectively and efficiently acquire, develop, and sustain secure software; means to justify confidence in
these processes and their products; and practitioners that are motivated, disciplined, and proficient in their
execution.

Currently, other Working Groups are concentrating on other aspects of achieving and assuring security
properties and functionality4 including standards, measurement, and tools. The Workforce Education and
Training Working Group is addressing the issues related to achieving adequate US software-security-related
education and training, including skill shortages within government and industry, and curriculum needs within
universities, colleges, and trade schools.5

The WG asked the following questions:

1. What are the engineering activities or aspects of activities that are relevant to achieving secure
software?

2. What knowledge is needed to perform these activities or aspects?

The early meetings addressing these questions were sometimes uneven and involved brainstorming sessions
producing lists of terms and topics – sometimes without shared definitions or understanding. Starting any effort
involving a number of people of disparate backgrounds and skills can be hard, and, luckily, the document
managed to benefit from these early efforts and progressed well beyond any potential ill effects on its quality.

2 Then Deputy Director for Software Assurance, Information Assurance Directorate, Office of Assistant Secretary of Defense
(Networks and Information Integration)
3 The February 2005 President’s Information Technology Advisory Committee (PITAC) Report to the President, Cyber
Security: A Crisis of Prioritization, identified the top ten areas in need of increased support, including ‘secure software
engineering and software assurance’. The findings indicated: Commercial software engineering today lacks the scientific
underpinnings and rigorous controls needed to produce high-quality, secure products at acceptable cost. Commonly used
software engineering practices permit dangerous errors, such as improper handling of buffer overflows, which enable
hundreds of attack programs to compromise millions of computers every year. In the future, the Nation may face even more
challenging problems as adversaries – both foreign and domestic – become increasingly sophisticated in their ability to insert
malicious code into critical software.
4 Such software must, of course, also be satisfactory in other aspects as well such as usability and mission support.
5 The National Software Strategy includes educating and fielding the software workforce to improve software trustworthiness
(see report at www.cnsoftware.org/nss2report).

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

vii

Deciding what knowledge to presume of the readers of this guide took several twists and turns. Initially, the
subgroup addressing software development took the Guide to the Software Engineering Body of Knowledge
(SWEBOK6) [Abran 2004] as a starting point for establishing its presumption of knowledge already identified.
The WG knew, however, that the intended readership did not necessarily know this much, and it always tried
not to presume more of readers than could be reasonably expected. The WG’s and this SwA CBK’s goal was
to identify the “additional” knowledge needed for developing, sustaining, and acquiring secure software while
recognizing that a clear boundary for what is “additional” does not always exist. For some knowledge
elements, the difference is mainly in the extremely detailed knowledge or level of rigor required for secure
software.

The subgroups on Acquisition and Supply and on Sustainment and Operations had even more difficult
problems in finding existing descriptions as bases for their “presumed” bodies of knowledge. As partial
answers, the acquisition subgroup used federal acquisition documents and sustainment used the Maintenance
section of the SWEBOK Guide and any relevant standards.

Fortunately, the efforts to answer the question “What are the engineering activities or aspects of activities that
are relevant to achieving secure software?” benefited from a number of prior efforts and products including:

 National Cyber Security Partnership Taskforce Report on Processes to Produce Secure Software
[Redwine 2004]

 Safety and Security Extensions for Integrated Capability Maturity Models [Ibrahim et al, 2004]

 IEEE Software and Systems Engineering Standards Committee (S2ESC) collection of IEEE standards

 ISO/IEC JTC1/SC7 WG9 Redefined its terms of reference to software and system assurance (part of
Systems Engineering System Life Cycle Processes)

 ISO/IEC 15026 to address management of risk and assurance of safety, security, & dependability
within context of system and software life cycles [ISO 15026]

 National Institute of Standards and Technology (NIST) Federal Informaition Security Management
Act (FISMA) Implementation Project

 The Common Criteria for evaluating the security of software including the new version 3.0 issued in
July 2005 [CC 2005]

 The SafSec effort in the UK7 combining concern for safety and security [SafSec Introduction],
[SafSec Standard], and [SafSec Guidance]

 A variety of safety-related standards efforts as they address a number of issues shared by safety and
security in which the safety community has useful, relevant experience

Members of the WG include editors and authors within several of these efforts. Even with these prior efforts,
answering the question about relevant activities occupied much of the initial effort. The WG has also benefited
from the work of other Software Assurance Working Groups, such as the one on Software Assurance Processes
and Practices, which are also interested in the activities involved in producing and assuring secure software.

For development, the resulting lists needed to be consolidated into some set of categories to form the structure
of this document. Among the candidate sets of categories were those from:

 ISO/IEC 15288 – System Life Cycle Processes

 ISO/IEC 12207 – Software Life Cycle Processes

6 SWEBOK® is an official service mark of the IEEE
7 By the UK Ministry of Defence and Praxis High Integrity Systems

Editor’s Preface

viii

 IEEE Computer Society – Guide to the Software Engineering Body of Knowledge8

 ISO harmonization proposal for ISO/IEC 15288 and ISO/IEC 12207

 IEEE Std 15288-2004 – Adoption of ISO/IEC 15288:2002 System Life Cycle Processes

 IEEE/EIA 12207.0-1966 – Industry Implementation of ISO/IEC 12207:1995

Early discussions revolved around the first two of these. In the end, to facilitate future work and acceptance,
the WG picked a set of generic categories easily mapped to the categories used in a number of standards,
curricula, and body of knowledge efforts. These are possibly close to the categories used in the SWEBOK
Guide – see Table 1.

Answering the second question, moving from activities to required knowledge, is sometimes easy and
sometimes difficult. While one is often tempted to state what the knowledge is “The knowledge of activity X,”
this is usually unsatisfactory except in quite specific cases.

The WG decided to what extent the knowledge included in this body of knowledge document excludes
knowledge identified by the second question but already identified by existing standards for software
engineering. In the end, the question of what to leave out or make only a passing mention of was answered
pragmatically by what was believed to be known (or at least known of) by most of the members of the intended
audience for this guide.

In 2005, the WG began efforts to identify the knowledge needed by the previously identified activities.
Considerable effort was required before it finally established a satisfactory scope for the knowledge set.
Review by experts not
intimately involved with
the original draft set was
crucial to this effort.

In addition to the more
direct sources of
knowledge, the software
safety community was
found to have more
experience in some areas
than the software security
community; these included
correctness and assurance.

The WG has benefited
from the experiences of
the SWEBOK project. For
example, the WG has
established only one lead
author for each section
because the SWEBOK
experience showed that arrangements with more co-authors worked poorly.

The WG began with the guiding principle that the text should straightforwardly supply the background and
contextual knowledge that persons already possessing good software engineering knowledge need to become

8 Available at http://www.swebok.org
9 The SWEBOK Guide does have a subsection 11.1.1 on Software Engineering Culture and Ethics as a Software Quality
Fundamental

Table 1: Comparison with SWEBOK Guide

SWEBOK Guide This Document
 Nature of Dangers

 Fundamental Concepts and Principles

 Ethics, Law, and Governance9

Software Requirements Secure Software Requirements …

Software Design Secure Software Design …

Software Construction Secure Software Construction …

Software Testing Secure Software Verification, Validation and
Evaluation Software Quality

Software Engineering Tools and Methods Secure Software Tools and Methods

Software Engineering Process Secure Software Processes

Software Engineering Management Secure Software Project Management

Acquisition of Secure Software

Software Maintenance Secure Software Sustainment

Software Configuration Management

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

ix

familiar enough with, in addition to the relevant software-security-related or assurance-related knowledge.
Next, the group decided that its initial output should have a level of exposition between that used by the
SWEBOK Guide (a prose format), and that used by DoD information assurance standards Committee on
National Security Systems (CNSS) Training Standards 4011 and 401210 (a list format). Members of the WG
felt that lists would be too sparse for an audience that lacked prior knowledge of the area, but that lists were
adequate for the lowest level of detail and more amenable to production within the short time frame available
for its initial product.

In this first version, the Workforce Education and Training Working Group’s aim is to be inclusive in
enumerating the knowledge needed to acquire, develop, and sustain secure software including assurance
(objective grounds for reduced uncertainty or increasing confidence) of its security properties and
functionality. To help industry, government, and academia to target their education and training curricula, as
well as to aid self-study efforts, the WG may eventually need to provide indications of what knowledge is
needed by different roles and other supplementary materials.

The WG aimed to ensure adequate coverage of requisite knowledge areas in contributing disciplines to enable
instructors and professionals in several disciplines, such as software engineering (including its many sub-
disciplines), systems engineering, project management, etc., to identify and acquire competencies associated
with secure software. Because of this wide coverage and applicability as well as historical reasons, the guide’s
subtitle includes the phrase “Common Body of Knowledge.” Indeed, no individual practitioner would probably
ever be expected to know all the knowledge identified in this guide, and the guide is designed so that after
reading the first four sections readers can go to the sections of their choice.

How to Read this Document
The first major section is an Introduction that explains the scope and purpose and lists the twelve common
references that are cited throughout the document. Immediately following the Introduction, Section 2 covers
the dangers secure software systems face. Section 3 covers a number of fundamental terms, concepts, and
principles. This section, along with Section 4, which is on Ethics, Law, and Governance, is relevant to all the
Sections that follow them. Because it provides one set of inputs to requirements, the short section addressing
laws, regulations, policies, and ethics related to secure software systems precedes the more technical sections
on requirements, design, construction and verification, validation, and evaluation activities. Sections 5-12
follow a nominal lifecycle, plus management and support, with Section 12 addressing the unique
considerations after initial deployment.

10 See http://www.cnss.gov/full-index.html

Editor’s Preface

x

Figure 1: Possible Paths for Readers

First Read Sections 1-4
then any other

5
Requirements

9
Tools &
Methods

6
Design

10
Processes

7
Construction

11
Project Mgt.

8
V&V and
Evaluation

12
Sustainment

13
Acquiring

14
Document

Use

Some lifecycle aspects are further detailed in
a tools and methods section before a process
section covers their arrangement,
introduction, and improvement. Section 11
addresses differences in managing secure
software developments. These sections cover
the additional technical, managerial, and
supporting activities and interactions related
to producing secure software. Section 13
covers the use of existing software, or
software externally produced for an
organization, including several kinds of
sources, commercial and otherwise. The final
section gives tips on using this document for
several kinds of intended audiences. Thus,
depending on one’s interests, one can take a
number of paths within this guide, as shown
in Figure 1.

All readers could also benefit from Section 5,
which is on Requirements, and managers
could directly benefit from Section 10, which
is on Processes.

Because of the iterative nature of many
software production efforts, one cannot
always draw a clear boundary between
“development” including assurance and
“sustainment.” In addition, acquisition
activities require an understanding of
software production and sustainment; thus, to
maintain coherence, some overlap is
inevitable. This overlap is kept to a
reasonable level by not having an in-depth
treatment of a sub-area in multiple sections,
but rather having the other sections reference
one another for the details. This may result in
some switching back and forth for the
readers, but avoids excessive duplication or
conflict.

A bibliography follows these content sections, listing the items referenced throughout the document and the
entries in the lists of further readings (for those who want to pursue areas even further) that appear at the end of
each major section. Additionally, the document closes with an Index.

Security Principles of Software Assurance
The sections in this document are organized follow the software development life cycle, providing easy
reference for those involved in the development of software. While the primary goal of this document is to aid
educators in including software assurance concepts in software development and computer science curricula, it
is equally useful for educators wishing to include software assurance concepts in existing information and

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

xi

systems security curricula. As such, this section provides readers an overview of software security principles
and where they are addressed.

This set of Software System Security Principles and Guidelines are organized in a fashion that should aid in
understanding them individually, as well as how they relate to each other. The organization aims to identify
ones that are more basic, abstract, or inclusive than others and provide grounds for arguing completeness, at
least at the higher levels. Its underlying purpose is to bring intellectual coherence to an area where items have
originated for over thirty-plus years, and authors have tended to provide flat lists, usually organized topically
or by importance.11

Scope
What various authors have meant by the words “principle” and “guideline” has often been unclear, and this
section does not attempt to draw any boundary. Characteristically, each item included in this section is
essentially intended to be an “ideal” and usually contains guidance for certain aspects of a secure software
system or how activities related to producing secure software should be performed.

Semantically, the principles or guidelines vary from absolute commands to conditional suggestions. However,
following the long tradition with computing security started in Saltzer and Schroeder’s seminal 1975 article,
the list below is in noun phrases not as commands or suggestions. Generally, you can implicitly place one of
the following in front of each noun phrase

 Strive to

 Use

 Find and use

At the higher levels, completeness is a goal, and the items listed aim for intellectual coherence and
completeness of coverage. At the middle and lower levels an attempt was made to include a substantial number
of items derived from a variety of sources in part to verify the completeness of the higher levels.12 However, no
attempt was made to include every item someone ever labeled a “principle” much less a “guideline”.

Purpose
The ultimate goal of systems or software security is to minimize real-world, security-related, adverse
consequences. In practice, this often means to limit, reduce, or manage security-related losses or costs. All
secure software issues can fall naturally into three streams and their interaction and can change or vary over
time. These streams are labeled:

1. The adverse

2. The system, and

3. The environment

The organization groups around these three streams and within each by their relevant size or nature, plus the
streams’ efforts motivated by a number of factors, including a desire for benefits, a dislike of losses, and a
yearning for confidence. Occasionally, multiple motivations will exist for the same item. Thus, the principles

11 These principles are derived from a set of principles or guidelines compiled by Redwine and appearing first topically
organized in a 2005 technical report [Redwine 2005].
12 Due to the process used by some of the secondary sources used and the emphasis in this section on organization, some
principles or guidelines are individually labeled as to their source of publication (possibly secondary), but most are not.
However, an attempt was made to ensure all the sources used be listed in the bibliography. The author welcomes help in
better identifying origins.

Editor’s Preface

xii

and guidelines often concern limiting, increasing, reducing, or managing something or the chance or
opportunity of something.

Each stream involves sets of entities, potentially overlapping. Usually these can be identified by where their
interests or desires lie. For example, stakeholders with interests in adequate/better system security would
belong (at least) in the system stream.

Figure 2 gives a simplified conceptual view of a
system (blue) and its adverse (red) interaction
on field of conflict (green) and suggesting
“time,” or cause and effect.

To achieve benefits, avoid losses, and have
confidence in these, the entities in each stream
need the proper wherewithal and decision-
making to use it successfully. Generally, better
decisions result from possession of the relevant
kinds of information and it having less
uncertainty. In addition, decisions are arrived at
more quickly and easily (and with less anxiety).
Thus they have a need for relevant information with less uncertainty combining to make conclusions with
adequately low uncertainty suitable for the decisions they need to make.

They also want the other two streams to facilitate and not harm them. When conflicts are involved, this usually
means they also wish to hinder and discourage their opponents and to find, cooperate with, and encourage
allies. Thus, the needed wherewithal also depends on other entities and conditions that go beyond one’s control
and includes tangibles and intangibles, such as morale, mental agility, persistence, and discipline.

Unsurprisingly, the motivations and needs of the entities involved, along with their nature and the nature of
their often competitive relationships and their situation, influence the principles and guidelines organized
below.

Organization
The principles and guidelines stated below are from the viewpoint of and intended to communicate directly to
stakeholders interested in an adequate or better system security. This is often the viewpoint of software system
analysts, designers, or their clients.

The principles and guidelines often concern limiting, reducing, or managing the amount or kind of offense,
defense, or the environmental attributes or aspects. For brevity, often only one of these words is used, even
though more than one might apply. Note that “reduce” only applies if something to reduce already exists, but
this term is sometimes used more loosely.

The three streams, each covered in a separate section, are:

 The Adverse

 The System

 The Environment

Each stream is organized into subsections that are concerned with the following:

 Number, size, or amount involved (usually of entities, opportunities, or events)

 Benefits

Figure 2: The Three Oversimplified

Violators Try to
Violate Consequences

Develop Operate Consequences

Ill-use

Respond

Environment

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

xiii

 Losses

 Uncertainties

Security Principles
This section lists the security principles of software assurance, in their current form, along with references to
the sections of this document that address each principle. These security principles represent a first attempt at
providing an alternate structure for viewing the common body of knowledge; as such, they may change in
future versions of this document. For those interested in how this document maps to these principles, Section
15 provides a matrix illustrating how they relate to one another.

Table 2: The Security Principles of Software Assurance

Principle Section
1 The Adverse 2.3.1-2.3.2

1.1 Adversaries Intelligent and Malicious 2.3-2.4, 2.6

1.1.1 Potential for significant benefit to attacker will attract correspondingly capable
attacker 2.3-2.4, 2.6

1.2 Limit, Reduce, or Manage Benefits to Violators or Attackers 6.3.2

1.2.1 Unequal attacker benefits and defender losses 6.3.2

Attacker’s context is different 6.3.2

Think like an attacker 3.4.13, 6.3.2

1.3 Increase Attacker Losses 3.4.12

1.3.1 Increase expense of attacking 3.4.7, 3.4.12

1.3.2 Increase attacker losses and likely penalties 3.4.12

1.3.2.1 Adequate detection and forensics 3.4.12, 6.17

Follow and provide support for legal processes, which lead to successful
prosecution 3.4.12

1.4 Increase Attacker Uncertainty 6.15

1.4.1.1.1 Conceal information useful to attacker 6.15

1.4.1.1.2 Exploit deception 6.15

1.5 Limit, Reduce, or Manage Set of Violators

1.5.1 Users 4.2

1.5.1.1.1 Ensure users know proper use

1.5.1.1.2 Ensure users know what is abuse

1.5.1.1.3 Reduce number of malicious insiders

1.5.2 Limit, reduce, or manage set of attackers

1.5.2.1 Limit, remove, and discourage aspiration to be attacker 4.2, 4.3

Prevent or discourage each step towards becoming attacker

Hinder and breakup attacker alliances, association networks, and communications

Discourage others motivating someone to attempt to violate

1.6 Limit, Reduce, or Manage Attempted Violations

1.6.1 Discourage violations

11.6..1 By Non-malicious Humans

Editor’s Preface

xiv

Principle Section
1.6.1.1.1 Ease secure operation

1.6.1.1.2 Acceptable Security

1.6.1.1.3 Psychological Acceptability 3.4.6, 6.18

1.6.1.1.4 Ergonomic Security

1.6.1.1.5 Sufficient User Documentation

1.6.1.1.6 Administrative controllability

1.6.1.1.7 Manageability

By Malicious Humans

1.6.1.2.1 Exploit deception and hiding

1.6.1.2.2 Appear less attractive than other potential victims

1.6.2 Limit, reduce, or manage violators’ ease in taking steps towards fruitful
violation

Detect scouting and information collection

Hinder entities suspected of bad intent

1.6.2.2.1 Block sources of prior attempts

1.6.3 Increase losses and likely penalties of attempted attacks

Detect attempted attacks

2 The System

2.1 Limit, Reduce, or Manage Violations 3.3.5

2.1.1 Limit, reduce, or manage origination or continuing existence of opportunities
or possible ways for performing violations throughout system’s lifecycle/lifespan 3.3.5, 6.14

2.1.1.1 Accurate Identification 3.3.5, 6.8.1, 6.14

2.1.1.1.1 Positive Identification 3.3.5, 6.14

2.1.1.1.2 Adequate authentication 3.3.5, 6.14

2.1.1.1.3 Valid, tamper-proof identification-related data 3.3.5, 6.14

Separate Identity from Privilege 3.3.5, 3.4.1, 3.4.5, 6.8.1, 6.8.2, 6.14

Positive Authorization 3.3.5, 3.4.3, 3.6.6, 6.8.2, 6.14

Least Exposure 3.3.5, 6.14

2.1.1.4.1 Broadly Eliminate Exposure 3.3.5, 6.14

2.1.1.4.1.1 Isolation from Source of Danger 3.3.5, 6.14

2.1.1.4.1.1.1 Isolation of user groups 3.3.5, 6.14

2.1.1.4.1.1.1.1 Isolate publicly accessible systems from mission-critical resources
(e.g., data, processes). 3.3.5, 6.14

2.1.1.4.1.1.2 Domain isolation 3.3.5, 6.14

2.1.1.4.1.2 Continuous Protection of Assets 3.3.5, 6.14

2.1.1.4.1.3 Complete Mediation of Accesses 3.3.5, 3.4.2, 6.14

2.1.1.4.1.4 Separate Policy from Mechanism 3.3.5, 6.14

2.1.1.4.1.5 Least Privilege 3.3.5, 3.4.1, 6.14

2.1.1.4.1.6 Tamper Proof or Resistant 3.3.5, 6.14, 6.16

2.1.1.4.2 Eliminate in Each Situation 3.3.5, 6.14

2.1.1.4.2.1 Secure defaults 3.3.5, 3.4.3, 6.14

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

xv

Principle Section
2.1.1.4.2.2 Secure Failure 3.3.5, 3.4.3, 6.14

2.1.1.4.2.3 Secure Shutdown 3.3.5, 6.14

2.1.1.4.2.4 Secure Disposal 3.3.5, 6.14

2.1.1.4.2.5 Secure Diagnosis 3.3.5, 6.14

2.1.1.4.2.6 Secure System Modification 3.3.5, 6.14

2.1.1.4.2.7 Trusted Communication Channels 3.3.5, 6.9, 6.14

2.1.1.4.2.8 Limited Access Paths 3.3.5, 6.14

2.1.1.4.2.9 Minimize Sharing 3.3.5, 6.14

2.1.1.4.2.10 Least Common Mechanism 3.3.5, 3.4.4, 6.14

2.1.1.4.2.11 Limit Trust 3.3.5, 6.14

2.1.1.4.2.11.1 Trust Only Components Known to be Trustworthy 3.3.5, 6.14

2.1.1.4.2.11.2 Hierarchical Trust for Components 3.3.5, 6.14

2.1.1.4.2.11.2.1 Do not invoke less trusted programs from within more trusted ones. 3.3.5, 6.14

2.1.1.4.2.11.2.2 Do not invoke untrusted programs from within trusted ones. 3.3.5, 6.14

2.1.2 Hierarchical Protection 3.3.5, 6.14

2.1.3 Learn, Adapt, and Improve 3.3.5, 6.14

2.1.4 Limit, reduce, or manage undetected violations 3.3.5, 6.14

2.1.4.1.1 Detection of Violations 3.3.5, 6.14

2.1.4.1.1.1.1 Effective Detection 3.3.5, 6.14

2.1.4.1.1.1.2 Self Analysis 3.3.5, 6.14

2.1.4.1.1.1.3 No Need to Detect 3.3.5, 6.14

2.1.4.1.1.1.3.1 Universal Action 3.3.5, 6.14

2.1.4.1.1.1.3.2 Inevitable Action 3.3.5, 6.14

2.1.4.1.2 Recording of Compromises 3.3.5, 6.14

2.1.5 Limit, reduce, or manage lack of accountability 3.3.5, 3.7.4, 6.14

2.1.5.1.1 Accountability and Traceability 3.3.5, 3.7.4, 6.14

2.1.5.1.2 Support Investigation of Violations 3.3.5, 3.7.4, 6.14

2.1.5.1.3 Accurate Clock 3.3.5, 3.7.4, 6.14

2.1.6 Limit, reduce, or manage violations unable to respond to acceptably or learn
from 3.3.5, 6.14

2.1.7 Defense in Depth 3.3.5, 3.4.12, 6.14

2.1.7.1.1 Design to defend perfectly, then assume this defense will fail and design
to defend after initial security violation(s) 3.3.5, 3.4.12, 6.14

2.1.7.1.2 Diversity in Defenses 3.3.5, 3.4.12, 6.14

2.1.7.1.3 Measures Encounter Countermeasures 3.3.5, 3.4.12, 6.14

2.1.7.1.4 Survivable Security 3.3.5, 3.4.12, 6.14

2.1.7.1.5 Secure Recovery 3.3.5, 3.4.12, 6.14

2.2 Avoid Adverse Effects on System Benefits

2.2.1 Authorizations Fulfill Needs and Facilitate User

2.2.2 Encourage and ease use of security aspects 3.4.6

Editor’s Preface

xvi

Principle Section
Acceptable Security 3.4.6

Psychological Acceptability 3.4.6

Sufficient User Documentation 3.4.6

Ergonomic Security 3.4.6

Quickly Mediated Access 3.4.6, 3.4.8

Ease secure operation 3.4.6, 3.4.8

2.2.2.6.1 Administrative controllability 3.4.6

2.2.2.6.2 Manageability 3.4.6

2.2.3 Articulate the desired characteristics and tradeoff among them [jabir 1998] 3.4.14, 3.5.1, 5.2, 5.3.3

2.2.4 Economic Security 3.5.1, 5.3.2

Efficiently Mediated Access 3.4.8

2.2.5 High-Performance Security

2.2.6 Provide Privacy Benefit

2.2.7 Provide Reliability 3.3.1

2.3 Limit, Reduce, or Manage Security-related Costs

2.3.1 Limit, reduce, or manage security-related adverse consequences

Exclusion of Dangerous Assets 3.3.4

Retain minimal state

Tolerate Security Violations 3.3.5, 6.3.2, 6.14

2.3.1.3.1 • Limit damage 3.3.5, 6.3.2, 6.14

2.3.1.3.2 • Be resilient in response to events 3.3.5, 6.3.2, 6.14

2.3.1.3.3 • Limit or contain vulnerabilities’ impacts 3.3.5, 6.3.2, 6.14

2.3.1.3.4 • Choose safe default actions and values 3.3.5, 6.3.2, 6.14

2.3.1.3.5 • Self-limit program consumption of resources 3.3.5, 6.3.2, 6.14

2.3.1.3.6 • Design for survivability [Ellison 2003] 3.3.5, 6.3.2, 6.14

2.3.1.3.7 • Fail securely 3.3.5, 6.3.2, 6.14

2.3.1.3.7.1 • Ensure system has a well-defined status after failure, either to a secure
failure state or via a recovery procedure to a known secure state [Avizienis 2004] 3.3.5, 6.3.2, 6.14

12.3..4 Recover 6.3.2, 6.14

2.3.1.4.1.1 Recover rapidly• 6.3.2, 6.14

2.3.1.4.1.2 Be able to recover from system failure in any state 6.3.2, 6.14

2.3.1.4.1.3 • Be able to recover from failure during recovery (applies recursively) 6.3.2, 6.14

2.3.1.4.1.4 • Make sure it is possible to reconstruct events 3.4.11, 3.7.4, 6.3.2, 6.14

2.3.1.4.1.5 o Record secure audit logs and facilitate periodical review to ensure
system resources are functioning, confirm reconstruction is possible, and identify
unauthorized users or abuse 3.4.11, 3.7.4, 5.2.13, 6.3.2, 6.14

2.3.1.4.1.6 o Support forensics and incident investigations 3.4.11, 3.7.4, 5.2.13, 6.3.2, 6.14, 6.17

2.3.1.4.1.7 o Help focus response and reconstitution efforts to those areas that are
most in need 6.3.2, 6.14

Avoid Single-Point Security Failure 3.4.12

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

xvii

Principle Section
2.3.1.5.1 • Eliminate “weak links”

2.3.1.5.2 Avoid Multiple Losses from Single Attack Success 6.3.2

2.3.1.5.3 Separation of Privilege 3.4.5

2.3.1.5.3.1 Separation of duties 3.4.5

2.3.1.5.4 Defense in Depth 3.4.12

2.3.1.5.4.1 • Implement layered security (no single point of vulnerability). 3.4.12

Allocation of Defenses according to Consequences 3.4.7, 3.5.1, 5.3.1-5.3.4

2.3.1.6.1 Inverse Modification Threshold 3.4.7

2.3.1.6.2 Work Factor 3.4.7

2.3.2 Limit, reduce, or manage security-related developmental and operational
expenses

Ease Downstream Security-related Activities

2.3.2.1.1 Ease Preserving Security while Performing Changes in Product and
Assurance Case

2.3.2.1.2 Ease (cost-effective and timely) Certification and Accreditation 5.2.13

2.4 Limit, Reduce, or Manage Security-related Uncertainties

Those of stakeholders with interests in adequate/better system security

2.4.1 Limit, reduce, or manage security-related unknowns

2.4.2 Limit, reduce, or manage security-related assumptions

An assumption must have a good reason

Avoid critical assumptions

2.4.3 Limit, reduce, or manage unpredictability of system behavior

Analyzability 3.4.10

2.4.4 Limit, reduce, or manage consequences or risks not addressed in assurance
case

2.4.5 Limit, reduce, or manage consequences or risks related to uncertainty

Risk Sharing

2.4.6 Increase Assurance Regarding Product 3.3.6

System Assurability 3.3.6

Reduce Danger from other software or systems 3.3.6, 3.4.5

2.4.6.2.1 Avoid and workaround environment’s security endangering weaknesses 3.3.6, 3.4.5

2.4.6.2.2 System does what the specification calls for and nothing else 3.3.6, 3.4.5

Reduce Complexity 3.3.6 3.4.8

2.4.6.3.1 Make Small 3.3.6 3.4.8

2.4.6.3.1.1 Minimized Security Elements 3.3.6 3.4.8

2.4.6.3.2 Simplify 3.3.6 3.4.8

2.4.6.3.2.1 Control complexity with multiple perspectives and multiple levels of
abstraction 3.3.6 3.4.8

2.4.6.3.2.1.1 Use information hiding and encapsulation 3.3.6 3.4.8

Editor’s Preface

xviii

Principle Section
2.4.6.3.2.1.2 Clear Abstractions 3.3.6 3.4.8

2.4.6.3.2.1.3 Partially Ordered Dependencies 3.3.6 3.4.8

2.4.6.3.3 Straightforward Composition 3.3.6 3.4.8

2.4.6.3.3.1 Trustworthy Components 3.3.6 3.4.8

2.4.6.3.3.2 Self-reliant Trustworthiness 3.3.6 3.4.8

2.4.6.3.4 To improve design study previous solutions to similar problems [jabir
1998] 3.3.6 3.4.8

2.4.6.3.4.1 Use known security techniques and solutions 3.3.6 3.4.8

2.4.6.3.4.2 Use standards 3.3.6 3.4.8

Change Slowly 3.3.6

2.4.6.4.1 Use a stable architecture 3.3.6, 6.7

2.4.6.4.1.1 To eliminate possibilities for violations – particularly of information flow
policies 3.3.6, 6.7

2.4.6.4.1.2 To facilitate achievement of security requirements and evolution 3.3.6, 6.7

2.4.6.4.1.3 Amendable to supporting assurance arguments and evidence 3.3.6, 6.7

Assure Security of Product 3.3.6, 8.2

2.4.6.5.1 Create and Maintain an Assurance Case 3.3.6

2.4.6.5.2 Ensure security preserving composition at all levels of detail 3.3.6

2.4.6.5.3 Secure Distributed Composition 3.3.6

2.4.6.5.4 Ease production of an accompanying assurance case for the security
preserving correctness of compositions 3.3.6

2.4.6.5.5 Design to ease traceability, verification, validation, and evaluation 3.3.6

2.4.6.5.6 Analyzability 3.3.6, 3.4.10

2.4.6.5.7 Chain of Trust 3.3.6

2.4.6.6 Use Production Process and Means that Ease and Increase Assurance 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.1 Ease creation and maintenance of an assurance case 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.2 Use Repeatable, Documented Procedures 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.3 Procedural Rigor 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.4 Engineering Rigor 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.5 Open Design 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.5.1 Review for use of design principles (and guidelines 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.6 Chose notations and tools that facilitate achieving security and its
assurance 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.7 Have expertise in technologies being used and application domain 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.8 Avoid Known Pitfalls 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.8.1 Avoid common errors and vulnerabilities 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.8.2 Avoid and workaround tools’ security endangering weaknesses 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

2.4.6.6.8.3 Avoid non-malicious pitfalls 3.3.6, 3.4.9, 3.6.5, 3.6.8, 10

Continuous Risk Management 3.3.6, 3.6.8

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

xix

Principle Section
2.4.6.7.1 Consider security or assurance risks together with other risks 3.3.6, 3.6.8

3 The Environment 5.2.4, 5.2.5

3.1 Nature of Environment 5.2.4, 5.2.5, 6.4.1

3.1.1 Security is a system, organizational, and societal problem 5.2.4, 5.2.5, 6.4.1

3.2 Benefits to Environment 5.2.4, 5.2.5

3.2.1 Do not cause security problems for systems in the environment 5.2.4, 6.3.2

3.2.2 Learn, Adapt, and Improve Organizational Policy 5.2.4, 5.2.5

3.3 Limit, Reduce, or Manage Environment-Related Losses 5.2.4, 6.3.2, 6.14

3.3.1 Avoid assumptions about environment 5.2.4, 6.3.2, 6.4.1, 6.14

Make only weak non-critical assumptions about environment 5.2.4, 6.3.2, 6.4.1, 6.14

3.3.2 Trust only services or components in environment known to be trustworthy 5.2.4, 6.3.2, 6.14

3.3.3 More trustworthy components do not depend on less trustworthy services or
entities in environment 5.2.4, 6.3.2, 6.14

Do not invoke untrusted services from within system. 5.2.4, 6.3.2, 6.14

3.3.4 Avoid dependence on protection by environment 5.2.4, 6.3.2, 6.14

3.4 Avoid Environment-Related Uncertainties 5.2.4, 5.2.5

3.4.1 Do not rely only on obfuscation or hiding for protection from entities in
environment 5.2.4, 5.2.5

3.4.2 Need adequate assurance for dependences 5.2.4, 5.2.5

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

xxi

Table of Contents
FOREWORD .. V

AUTHORSHIP AND ACKNOWLEDGEMENTS ... I

EDITOR’S PREFACE .. V

INTRODUCTION .. V
SOME HISTORY .. VI
HOW TO READ THIS DOCUMENT .. IX
SECURITY PRINCIPLES OF SOFTWARE ASSURANCE .. X

Scope xi
Purpose xi
Organization ... xii
Security Principles .. xiii

TABLE OF CONTENTS .. XXI

PART 1: INTRODUCTION .. 1

1 INTRODUCTION ... 3

1.1 PURPOSE AND SCOPE ... 3
1.2 MOTIVATION .. 3
1.3 AUDIENCE ... 4
1.4 SECURE SOFTWARE .. 6

1.4.1 Security Properties ... 6
1.4.2 Secure Software Knowledge ... 7
1.4.3 Boundaries of Document Scope ... 7
1.4.4 Related Areas .. 9

1.5 SELECTION OF REFERENCES.. 9
1.5.1 Common References .. 10

1.6 CONCLUSION ... 10
1.7 COMMON REFERENCES SPANNING ALL SECTIONS .. 10
1.8 FURTHER READING .. 11

PART 2: SECURITY FOUNDATIONS .. 13

2 DANGERS AND DAMAGE ... 15

2.1 INTRODUCTION .. 15
2.2 DANGEROUS EFFECTS ... 15
2.3 ATTACKERS .. 17

2.3.1 Types of Attackers.. 17
2.3.2 Motivations of Attackers .. 18

2.4 METHODS FOR ATTACKS ... 19
2.4.1 Malicious Code Attacks ... 19
2.4.2 Hidden Software Mechanisms ... 21
2.4.3 Social Engineering Attacks ... 22
2.4.4 Physical Attacks ... 22

2.5 NON-MALICIOUS DANGERS TO SOFTWARE ... 22
2.6 ATTACKS ACROSS LIFECYCLE .. 24

2.6.1 Attacks during Software Production .. 24
2.6.2 Attacks Against Operational Systems.. 26
2.6.3 Attacks after Retirement .. 28

2.7 INFORMATION ABOUT KNOWN VULNERABILITIES AND EXPLOITS .. 28
2.8 CONCLUSION ... 28

Table of Contents

xxii

2.9 FURTHER READING ... 29
2.9.1 General .. 29
2.9.2 Attackers ... 29
2.9.3 Methods of Attack .. 30

3 FUNDAMENTAL CONCEPTS AND PRINCIPLES ... 31

3.1 INTRODUCTION .. 31
3.2 VARIATIONS IN TERMS AND MEANING .. 31
3.3 BASIC CONCEPTS ... 33

3.3.1 Dependability .. 33
3.3.2 Security ... 34
3.3.3 Software and other Security-related Concerns ... 35
3.3.4 Assets .. 35
3.3.5 Security-Violation-related Concepts .. 36
3.3.6 Assurance ... 36

3.4 BASIC SOFTWARE SYSTEM SECURITY PRINCIPLES ... 43
3.4.1 Least Privilege .. 43
3.4.2 Complete Mediation ... 43
3.4.3 Fail-Safe Defaults ... 44
3.4.4 Least Common Mechanism ... 44
3.4.5 Separation of Privilege .. 44
3.4.6 Psychological Acceptability .. 44
3.4.7 Work Factor .. 44
3.4.8 Economy of Mechanism .. 44
3.4.9 Open Design ... 44
3.4.10 Analyzability ... 45
3.4.11 Recording of Compromises .. 45
3.4.12 Defense in Depth .. 45
3.4.13 Treat as Conflict ... 45
3.4.14 Tradeoffs ... 46

3.5 SAFETY AND SECURITY ... 47
3.5.1 Probability versus Possibility ... 47
3.5.2 Combining Safety and Security .. 47

3.6 SECURE SOFTWARE ENGINEERING .. 48
3.6.1 Stakeholders ... 48
3.6.2 System Security Policy .. 49
3.6.3 Specification Properties .. 50
3.6.4 Security-Related Architectural Concepts .. 50
3.6.5 Secure Software Development Activities .. 55
3.6.6 Security Functionality .. 57
3.6.7 Database Security .. 57
3.6.8 Security Risk Management for Software ... 58
3.6.9 Domain Knowledge .. 60
3.6.10 Product, Vendor, or Technology Specific Knowledge ... 60

3.7 SECURITY PROPERTIES ELABORATED.. 60
3.7.1 Confidentiality .. 60
3.7.2 Integrity ... 62
3.7.3 Availability .. 62
3.7.4 Accountability... 63

3.8 CONCLUSION .. 64
3.9 FURTHER READING ... 64

3.9.1 General .. 64
3.9.2 System Engineering ... 65
3.9.3 Information Security .. 65
3.9.4 Security Functionality .. 66

4 ETHICS, LAW, AND GOVERNANCE ... 67

4.1 SCOPE .. 67
4.2 ETHICS ... 67

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

xxiii

4.3 LAW .. 67
4.4 GOVERNANCE: REGULATORY POLICY AND GUIDANCE .. 68

4.4.1 Policy ... 68
4.4.2 Laws Directly Affecting Policy .. 68
4.4.3 Standards and Guidance ... 69
4.4.4 Organizational Security Policies ... 69

4.5 FURTHER READINGS .. 70

PART 3: APPLICATION TO SECURE SOFTWARE .. 71

5 SECURE SOFTWARE REQUIREMENTS ... 73

5.1 SCOPE .. 73
5.2 REQUIREMENTS FOR A SOLUTION ... 73

5.2.1 Traceability .. 74
5.2.2 Identify Stakeholder Security-related Needs ... 74
5.2.3 Asset Protection Needs ... 74
5.2.4 Threat Analysis ... 76
5.2.5 Interface and Environment Requirements ... 77
5.2.6 Usability Needs ... 78
5.2.7 Reliability Needs ... 78
5.2.8 Availability, Tolerance, and Survivability Needs ... 79
5.2.9 Sustainability (Maintainability) Needs .. 79
5.2.10 Deception Needs... 79
5.2.11 Validatability, Verifiability, and Evaluatability Needs ... 79
5.2.12 Certification Needs ... 80
5.2.13 System Accreditation and Auditing Needs .. 81

5.3 REQUIREMENTS ANALYSES .. 82
5.3.1 Risk Analysis .. 82
5.3.2 Feasibility Analysis .. 82
5.3.3 Tradeoff Analysis.. 83
5.3.4 Analysis of Conflicts among Security Needs .. 83

5.4 SPECIFICATION .. 83
5.4.1 Document Assumptions .. 83
5.4.2 Specify Software-related Security Policy ... 84
5.4.3 Security Functionality Requirements ... 84
5.4.4 High-Level Specification .. 85

5.5 REQUIREMENTS VALIDATION .. 86
5.6 ASSURANCE CASE .. 86
5.7 FURTHER READING .. 86

6 SECURE SOFTWARE DESIGN .. 89

6.1 SCOPE .. 89
6.2 DESIGN OBJECTIVES ... 90
6.3 PRINCIPLES AND GUIDELINES FOR DESIGNING SECURE SOFTWARE .. 91

6.3.1 General Design Principles and Guidelines for Secure Software Systems ... 91
6.3.2 Damage Confinement and System Resilience .. 93
6.3.3 Vulnerability Reduction ... 94
6.3.4 Viewpoints and Issues ... 95

6.4 DOCUMENTATION OF DESIGN ASSUMPTIONS .. 95
6.4.1 Environmental Assumptions ... 96
6.4.2 Internal Assumptions ... 96

6.5 DOCUMENTATION OF DESIGN DECISIONS AND RATIONALES .. 96
6.6 SOFTWARE REUSE .. 96
6.7 ARCHITECTURES FOR SECURITY .. 97

6.7.1 Access Control Issues ... 98
6.7.2 Cross-Domain Control ... 98

6.8 SECURITY FUNCTIONALITY ... 98
6.8.1 Identity Management .. 99

Table of Contents

xxiv

6.8.2 Access Control Mechanisms .. 99
6.9 PROPER USE OF ENCRYPTION AND ENCRYPTION PROTOCOLS .. 100
6.10 FRAMEWORKS .. 101
6.11 DESIGN PATTERNS FOR SECURE SOFTWARE ... 101
6.12 DATABASE SECURITY .. 101
6.13 SPECIFY CONFIGURATIONS.. 101
6.14 METHODS FOR TOLERANCE AND RECOVERY .. 101
6.15 DECEPTION AND DIVERSION .. 102

6.15.1 Purposes of Deception .. 102
6.15.2 Purposes of Obfuscation and Hiding ... 102
6.15.3 Principles of Deception ... 103
6.15.4 Particular Techniques for Deception ... 103

6.16 SOFTWARE PROTECTION ... 103
6.17 FORENSIC SUPPORT.. 104
6.18 USER INTERFACE DESIGN .. 104
6.19 ASSURANCE CASE FOR DESIGN... 105

6.19.1 Design for Easier Modification of Assurance Argument after Software Change 105
6.19.2 Design for Testability ... 106

6.20 SECURE DESIGN PROCESSES AND METHODS ... 106
6.21 DESIGN REVIEWS FOR SECURITY ... 107
6.22 FURTHER READING ... 107

7 SECURE SOFTWARE CONSTRUCTION .. 109

7.1 SCOPE .. 109
7.2 COMMON VULNERABILITIES ... 109

7.2.1 Buffer Overrun .. 110
7.2.2 Resource Exhaustion .. 111
7.2.3 Operating Environment ... 111
7.2.4 Race Conditions ... 112
7.2.5 Canonical Form .. 112
7.2.6 Violations of Trust .. 112

7.3 CONSTRUCTION OF CODE .. 113
7.3.1 Language Selection ... 113
7.3.2 Annotations and Add-ons ... 113
7.3.3 Using Security Principles in Secure Coding ... 114
7.3.4 Coding Standards for Secure Software ... 114
7.3.5 Secure Coding Practices ... 114
7.3.6 Sound Practices ... 115

7.4 CONSTRUCTION OF USER AIDS .. 117
7.5 SECURE RELEASE ... 117
7.6 CONCLUSION .. 117
7.7 APPENDIX A. TAXONOMY OF CODING ERRORS ... 117
7.8 FURTHER READING ... 124

8 SECURE SOFTWARE VERIFICATION, VALIDATION, AND EVALUATION .. 127

8.1 SCOPE .. 127
8.2 ASSURANCE CASE .. 127
8.3 ENSURE PROPER VERSION .. 130
8.4 TESTING ... 130

8.4.1 Test Process ... 130
8.4.2 Test Techniques ... 131

8.5 DYNAMIC ANALYSIS .. 134
8.5.1 Simulations ... 134
8.5.2 Prototypes ... 134
8.5.3 Mental Executions .. 134

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

xxv

8.5.4 Dynamic Identification of Assertions and Slices .. 134
8.6 STATIC ANALYSIS .. 134

8.6.1 Formal Analysis and Verification .. 134
8.6.2 Informal Analysis, Verification, and Validation ... 135

8.7 USABILITY ANALYSIS ... 136
8.8 VERIFICATION AND VALIDATION OF USER AIDS ... 136
8.9 SECURE SOFTWARE MEASUREMENT .. 137
8.10 THIRD-PARTY VERIFICATION AND VALIDATION AND EVALUATION .. 138

8.10.1 Independent Verification and Validation .. 138
8.10.2 Software Certification .. 139
8.10.3 System Accreditation ... 139

8.11 ASSURANCE FOR TOOLS .. 139
8.12 SELECTING AMONG VV&E TECHNIQUES ... 140
8.13 FURTHER READING .. 141

9 SECURE SOFTWARE TOOLS AND METHODS ... 143

9.1 SCOPE .. 143
9.2 FORMAL METHODS .. 143
9.3 SEMI-FORMAL METHODS .. 144
9.4 COMPILERS ... 144
9.5 STATIC ANALYSIS .. 145
9.6 DYNAMIC ANALYSIS ... 146
9.7 DEVELOPMENT TOOL SUITES ... 147
9.8 SELECTING TOOLS .. 147
9.9 FURTHER READING .. 148

10 SECURE SOFTWARE PROCESSES ... 149

10.1 HEAVYWEIGHT PROCESSES ... 149
10.2 LIGHTWEIGHT PROCESSES... 150
10.3 LEGACY UPGRADE PROCESSES ... 152
10.4 CONCERN FOR SECURITY OF DEVELOPMENTAL PROCESS ... 153
10.5 IMPROVING PROCESSES FOR DEVELOPING SECURE SOFTWARE .. 154

10.5.1 Introducing Secure Software Engineering Processes .. 154
10.5.2 Improving Secure Software Engineering Processes .. 154

10.6 FURTHER READING .. 156

11 SECURE SOFTWARE PROJECT MANAGEMENT ... 159

11.1 INTRODUCTION .. 159
11.2 START UP ... 160
11.3 SCOPING PROJECT .. 160
11.4 PROJECT RISK MANAGEMENT .. 161
11.5 SELECTING A SECURE SOFTWARE PROCESS .. 161
11.6 SECURITY MANAGEMENT ... 161

11.6.1 Personnel Management ... 162
11.6.2 Development Work Environment .. 162
11.6.3 Using Software from Outside the Project .. 162

11.7 ASSURING SECURITY LEVEL OF SOFTWARE SHIPPED ... 163
11.8 SECURE CONFIGURATION MANAGEMENT .. 163

11.8.1 Using CM to Prevent Malicious Code Insertion During Development .. 164
11.9 SOFTWARE QUALITY ASSURANCE AND SECURITY .. 165
11.10 FURTHER READING .. 165

11.10.1 Secure Software Engineering Management .. 165
11.10.2 Secure Configuration Management .. 166
11.10.3 Software Quality Assurance and Security ... 166

Table of Contents

xxvi

12 SECURE SOFTWARE SUSTAINMENT ... 167

12.1 INTRODUCTION .. 167
12.2 BACKGROUND... 168

12.2.1 Types of Response .. 168
12.2.2 Representation ... 169

12.3 OPERATIONAL ASSURANCE (SENSING) .. 169
12.3.1 Initiation .. 169
12.3.2 Operational Testing ... 170
12.3.3 Environmental Monitoring ... 170
12.3.4 Incident Reporting.. 170
12.3.5 Reporting Vulnerabilities ... 170
12.3.6 Operational Process Assurance ... 171
12.3.7 Assurance Case Evidence for Operational Assurance .. 171

12.4 ANALYSIS ... 171
12.4.1 Understanding .. 172
12.4.2 Impact Analysis .. 172
12.4.3 Reporting .. 173

12.5 RESPONSE MANAGEMENT (RESPONDING) .. 174
12.5.1 Responding to Known Vulnerabilities ... 174
12.5.2 Change Control .. 175
12.5.3 Post-Change Analysis ... 176
12.5.4 Change Assurance ... 176
12.5.5 Assurance Case Evidence for Response Management ... 177
12.5.6 Change Re-integration ... 177
12.5.7 Configuration Management ... 178
12.5.8 Recertification and Accreditation ... 178
12.5.9 Secure Migration, Retirement, Loss, and Disposal .. 178

12.6 INFRASTRUCTURE ASSURANCE ... 179
12.6.1 Security Architecture ... 179
12.6.2 Policy, Process, and Methodology Assurance ... 180
12.6.3 Assurance Case Evidence for Infrastructure Assurance ... 181

12.7 FURTHER READING ... 181
12.7.1 General .. 181
12.7.2 Operational Assurance .. 182
12.7.3 Analysis ... 185
12.7.4 Response Management ... 188
12.7.5 Infrastructure Assurance .. 190

PART 4: USING THE SOFTWARE ASSURANCE COMMON BODY OF KNOWLEDGE 193

13 ACQUIRING SECURE SOFTWARE .. 195

13.1 INTRODUCTION .. 195
13.2 CONCEPTS, TERMS, AND DEFINITIONS ... 196

13.2.1 Acquisition .. 196
13.2.2 Off the Shelf Software (OTS) ... 196
13.2.3 Information Assurance Architecture .. 196
13.2.4 US NIAP ... 196
13.2.5 Security Accreditation ... 196
13.2.6 Security Certification ... 197

13.3 PROGRAM INITIATION AND PLANNING–ACQUIRER... 197
13.3.1 Scope ... 197
13.3.2 Determining the Need (Requirements) and Solution Approaches .. 198
13.3.3 Making the Decision to Contract .. 198
13.3.4 Risk Management ... 198

13.4 ACQUISITION AND SOFTWARE REUSE – ACQUIRER/SUPPLIER .. 200
13.4.1 Scope ... 200
13.4.2 Reusable Software in the Acquisition Process ... 200
13.4.3 Acquirer Only.. 201
13.4.4 Supplier Software Reuse as Part of Acquirer’s Solution ... 201

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

xxvii

13.4.5 Evaluating Reusable Software .. 201
13.5 REQUEST FOR PROPOSALS – ACQUIRER .. 202

13.5.1 Scope ... 202
13.5.2 Software Assurance Terms and Conditions .. 202
13.5.3 Software Assurance and the Common Criteria (CC) in the Acquisition Process 203
13.5.4 Software Assurance Measures and Metrics in the Acquisition Process .. 204
13.5.5 Software Assurance Language for a Statement of Work to Develop Secure Software, Including

Incentives .. 204
13.5.6 Develop Software Assurance Language for a Statement of Work to Acquire COTS or Commercial

Items .. 205
13.5.7 Software Assurance Language for the Instructions to Suppliers ... 205

13.6 PREPARATION OF RESPONSE--SUPPLIER ... 206
13.6.1 Scope ... 206
13.6.2 Initial Software Architecture .. 206
13.6.3 Initial Software Assurance Plan .. 206

13.7 SOURCE SELECTION–ACQUIRER .. 207
13.7.1 Scope ... 207
13.7.2 Develop Software Assurance Evaluation Criteria ... 207
13.7.3 Software Assurance in the Source Selection Plan ... 208

13.8 CONTRACT NEGOTIATION AND FINALIZATION .. 208
13.8.1 Scope ... 208
13.8.2 Contract Negotiations .. 208

13.9 PROJECT/CONTRACT MANAGEMENT – ACQUIRER/SUPPLIER .. 208
13.9.1 Scope ... 208
13.9.2 Project/Contract Management ... 208

13.10 FURTHER READING .. 209
13.10.1 General .. 209
13.10.2 OTS .. 210
13.10.3 Software Security Accreditation and Certification .. 213
13.10.4 Secure Requirements Approaches ... 214
13.10.5 Acquisition Risk Management .. 215
13.10.6 Reusable Software in the Acquisition Process ... 215

13.11 APPENDICES ... 216
13.11.1 APPENDIX A: NOTIONAL Language for the Statement of Work .. 216
13.11.2 APPENDIX B: NOTIONAL Language for Instructions to Suppliers .. 218

14 TIPS ON USING THIS BODY OF KNOWLEDGE ... 221

14.1 PURPOSE AND SCOPE ... 221
14.2 GENERAL CONSIDERATIONS .. 221
14.3 USE FOR LEARNING ... 222

14.3.1 Use in Higher Education Instruction .. 222
14.3.2 Using in Training .. 223
14.3.3 Some Topics that May Require Special Attention from Instructors .. 226
14.3.4 Training Educators and Trainers .. 228
14.3.5 Education and Training Literature .. 228
14.3.6 Use by Practitioners for Professional Development ... 229

14.4 USING TO DEVELOP STANDARDS AND GUIDELINES ... 229
14.4.1 Curriculum ... 230
14.4.2 Professional Personnel .. 230
14.4.3 Professional Practice and Processes... 230
14.4.4 Product Evaluation ... 231

14.5 USE IN EVALUATION AND TESTING ... 231
14.6 TIPS ON USING THE ACQUISITION SECTION ... 231

14.6.1 Introduction ... 231
14.6.2 About the Sample Language ... 232
14.6.3 Software Acquisition Education and Training ... 232
14.6.4 Standards Developers .. 232
14.6.5 Buyers and Suppliers ... 232

14.7 FINAL REMARK .. 232

Table of Contents

xxviii

14.8 FURTHER READING ... 233

15 MAPPING TO THE SECURITY PRINCIPLES OF SOFTWARE ASSURANCE 234

16 BIBLIOGRAPHY ... 277

17 INDEX ... 311

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

1

Part 1: Introduction

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

3

1 Introduction

1.1 Purpose and Scope
For persons with knowledge of software but not security, this document introduces them to the surface of the
field software-security-related1 knowledge and points to references for further knowledge. It supplies the
background they need to meaningfully recognize the topic a reference covers and which references might be of
interest. Given this, while a guide and not a textbook, this document’s text can function as a high-level
introduction -- and some may choose to use it that way. However, in its primary role, this high-level
description and context combines with the numerous references to serve as a guide for educators and trainers as
well as others to the software-security-related knowledge relevant to their work (no job requires it all).

The primary audiences for this guide are educators and trainers who can use this guide to help identify both
appropriate curricular content and references that detail it. Other audiences include evaluators and testers,
acquisition personnel, program managers, and standards developers for whom it can help provide a better
appreciation of the breadth of subject matter and issues involved. In addition, studious practitioners could use it
to obtain overviews or to guide their learning. In turn, this document’s evolution can benefit from obtaining
feedback from users and experts on how it might best be improved or supplemented to become more useful.

This guide concentrates on the additional knowledge associated with producing and obtaining secure software.2
It mentions only in passing physical, operational, communication, hardware, and personnel security. These are
important topics in cyber security but are outside the scope of this guide. Concentrating on software still covers
the much of the technical security vulnerabilities being exploited today.

1.2 Motivation
The need for a workforce with better software-security-related skills is clear. The substantial costs of a
vulnerability3 to software producers result from a number of activities – initial testing, addressing multiple
versions (for other platforms and prior versions still in use), patching, remediation testing, and distribution, as
well as negative impact on reputation.4 Thus, producers can suffer serious costs and consequences.

Applying a patch can cost large enterprises tens of millions of dollars. One result of this expense is many
computers are not patched and become vulnerable to a known vulnerability. Increasingly, losses of confidential

1 The terms “software security,” “software system security,” and “software-security-related” are used as inclusive terms.
“Software security,” “software system security,” and the more awkward but explicitly inclusive phrase “software-security-
related” vary only in context and emphasis. They certainly include security software and the security of software but also
encompass the security of all kinds of computing resources associated with or accessed by software and topics related to
secure software including possible consequences and related uncertainties. The reader needs to avoid confusion among
terms such as software security, security software, secure software, and the security of software; in this document usage and
context hopefully allow the reader to avoid this confusion.
2 This document uses the phrase “secure software” in an inclusive way to refer to software or software product, which results
in or might affect security. This document uses “security software” for software that performs security functionality.
3 Ignoring definitional complications, the following definition is useful. “Vulnerability: A flaw or weakness in a system's design,
implementation, or operation and management that could be exploited to violate the system's security policy.” SANS Glossary
of Terms Used in Security and Intrusion Detection, SANS Institute, 2001
4 During an earlier period, a study showed that among a set of major vendors announcing a product vulnerability was followed
by an average 0.6 percent fall in stock price, or an average $860 million fall in the company’s value. This article appears in
new scientist magazine issue, 25 June 2005, written by Celeste Biever http://www.newscientist.com. Today, however, the
market probably has already factored in expectations of these announcements.
This and similar questions have been explored at Workshops on Economics of Information Security since 2002.
http://infosecon.net/workshop/index.php.

1 Introduction

4

data result in identity theft and significant fraud losses to firms and customers. Changes in laws and
regulations, such as California SB 1386 requiring California citizens whose individual data is compromised to
be notified,5 now result in such data losses becoming public, and established firms have lost business.6

In addition to the actual costs for producers and users generated by software-security-related problems, both
suffer opportunity costs because valuable resources could be producing added value rather than doing rework
and patching.

The problem is not only the result of attempted attacks and insertion of malicious software from both inside
and outside organizations, but also other issues as well. An overwhelming majority of security incidents result
from defects in software requirements, design, code, or deployment. This combination of attacks and defects
means that today’s security problems involving computers and software are frequent, widespread, and serious;
and since cyber security is an imperative concern for Department of Homeland Security (DHS) and
Department of Defense (DoD), initially the choice was made to concentrate their Software Assurance efforts
on security and to develop this guide.

Although their joint efforts are recent, the DoD and the DHS Software Assurance initiatives and efforts have
encompassed software safety and security and combined a number of disciplines. Currently, the efforts are
concentrating on achieving and assuring security properties. The Software Assurance Workforce Education
and Training Working Group, composed of government, industry, and academic members, produced this
document.

By identifying and providing references for the additional knowledge needed to develop, maintain or sustain,7
and reuse or acquire either custom or off-the-shelf (OTS) secure software beyond that required to produce and
assure software where safety and security are not concerns; the Working Group is taking a first step toward
achieving adequate education and training in this area. The knowledge identified spans a number of roles, so
no one practitioner would be expected to know it all. Therefore, this guide is designed so that after reading the
first four sections readers can go to the sections of their choice.

While the public prominence of software-security-related problems is a recent development, the combination
of software and security has long been studied, and, while open questions remain, considerable bodies of
relevant research and practice exist.

1.3 Audience
Produced by the Software Assurance Workforce Education and Training Working Group, this compilation is a
needed preliminary step toward addressing the issues related to achieving adequate United States (US)
education and training on software-security-related knowledge and skills. These issues include the skill
shortages within government and industry and curriculum needs within universities, colleges, and trade
schools.

The ultimate goal for this document is to improve the software development workforce, as mentioned above;
yet, the intended primary audiences go beyond software practitioners. While the most emphasis is on the first
two, the intended audiences and the document-related goals for them include:

 Educators – influence and support curricula

5 See section 4 for more about this and other legal considerations.
6ChoicePoint’s stock falling 20 percent in the period an incident was disclosed shows another potential impact, even though in
this incident, losses resulted from deception, not necessarily faulty software.
7 While not an attempt to have the software community cease its overly broad use of the term “maintenance,” nevertheless, in
the interest of better usage, this report generally avoids this overly broad use by using the terms “sustain” or “sustainment”
when actions such as adding new functionality are included.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

5

 Trainers – extend/improve contents of training of current workforce

 Acquisition personnel – aid in acquiring (more)8 secure software

 Evaluators and testers – recognize any relevant content beyond that currently in their evaluations and
consider its implications for evaluations of persons, organizations, and products

 Standards developers – encourage and facilitate inclusion of security-related items in standards

 Experts – supply feedback: modifications or validation to document authors

 Practitioners – provide a guide for learning or a high-level introduction to field

 Program managers – help to understand supplying or obtaining secure software and its assurance,
including possible approaches, risks, prioritization, and budget

Educators and trainers wishing to develop specific curricula and curricular material will benefit from this
comprehensive summation of the topics, facts, principles, and practices within software security including
assurance. These represent a body of knowledge (BOK) that provides a benchmark, which will let educators
and trainers target and validate detailed learning objectives, develop coherent instructional plans, and structure
their teaching and evaluation processes to effectively teach specific content across the wide range of relevant
audiences and roles. To be fully effective, these need to be built upon a prerequisite solid foundation in
software engineering and quality [Redwine 2004] [Abran 2004].

Evaluators, standards developers, and practitioners including testers will benefit from being able to identify
weaknesses or gaps in their personal knowledge that they might address by additional study as well as
weaknesses in their organization’s processes or products. They will be able to judge their performance against
minimum to advanced levels of practice. Finally, aided by the numerous references, they will be able to tailor
specific operational recommendations and processes and to ensure the development, acquisition, deployment,
operation, and sustainment or maintenance of (more) secure software within their professional setting.

While the text of this document provides broad coverage, a reader interested in self-education in secure
software engineering or acquisition of secure software will, of course, find this guide leads to more depth of
knowledge when reading the references.

Thus, this document’s text can provide a high-level introduction, and this text combined with its numerous
references can serve to guide, inspire, and support readers in performing their work.

After covering the foundation material in the next three major sections of this document, read the portions of
this guide relevant to you, consider what it means for you, and decide if you can use it in its present form or
transform it into a form useful to you. You might choose to use this guide or decide to wait until the US
government’s software assurance efforts or others expand its contents into a product more useful for your
purposes – e.g., one including competencies or mappings into existing curricula. In any case, feedback from
you is important to improving future versions and future related products.

Specific initial targets for influence include universities and training organizations willing to be trial users or
early adopters, and influencing content of the Institute of Electrical & Electronics Engineers (IEEE) Computer
Society’s Guide to the Software Engineering Body of Knowledge [Abran 2004]9.

8 Following a common practice (used for example by Microsoft) this document uses “more secure software” to mean software
better than the prior version or better than would other otherwise be acquired, produced or used, but not necessarily providing
a high level of security.. Such improvement reflects the current goals of many involved in software.
9 Other bodies of knowledge that are potential targets are listed in Section 14 on use of this document.

1 Introduction

6

1.4 Secure Software
After discussing the meaning of security, this section describes the scope of the “additional” knowledge
included in this report, outlining what is needed but not available elsewhere. It covers

 Software-security-related properties

 Secure software knowledge

 Boundaries of document scope

 Related subject matter areas

1.4.1 Security Properties
The security-related objectives of software are the preservation of security properties, including confidentiality,
integrity, and availability (CIA); and accountability if their preservation fails. Confidentiality, preventing
unauthorized disclosure, and integrity, preventing unauthorized alteration, require mechanisms to firmly
establish identities – authentication – and to allow only authorized actions – e.g., access control. Preserving
availability includes preventing unauthorized destruction and ensuring adequate access or service.

Accountability includes the ability to later reestablish the acts that occurred and their related actors and
ensuring relevant actors are unable to deny an act occurred – non-repudiation. Thus, software system security
is a question of systems properties. The items being protected by the preservation of these properties may be
information, software, executing processes, or other computing resources.

Consequently, security is not just a question of the security mechanisms or functionality; the properties desired
must be shown to hold wherever required throughout the system – e.g. the security functionality cannot be
bypassed anywhere. In other words, security properties are systems properties.10

Security is an omnipresent issue throughout the software lifecycle. [McGraw 2003] Likewise, potential
security attacks or difficulties exist throughout the lifecycle of software systems and can result in a variety of
security-related requirements for the software and its environment. Deciding upon the required security
properties may be intertwined with decisions on the extent of security-oriented development effort and
functionality into an overall risk management decision.11

Neither in the physical world nor in software can one absolutely guarantee security. Thus, when this guide
speaks of “secure software,” the actual meaning is “highly secure software realizing – with justifiably high
confidence but not guaranteeing absolutely – a substantial set of explicit security properties and functionality
including all those required for its intended usage.” [Redwine 2004, p. 2] One can also state this in a negative
way as “justifiably high confidence that no software-based vulnerabilities exist that the system is not designed
to tolerate”. Not withstanding these definitions’ emphasis on high security, the material in this document
covers issues important not just for producing highly secure software but ones important to the many
organizations under pressure to produce software merely more secure than the current version.

10 These are often characterized as emergent properties where an emergent property is one emerging after the system is
composed, i.e., a property of the system as a whole.
11 Much of the risk management concerns in this document address decisions by or effecting software producers.
Unfortunately, often current buyers of software do not know what “risk management decisions” the producer made and are
thereby hampered in making their decisions.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

7

1.4.2 Secure Software Knowledge
Secure software knowledge falls naturally into three categories: the nature of attacks, how to defend, and the
computing system’s environment in which the conflict takes place. The guide also concerns itself with secure
software acquisition. Thus, the coverage includes

 Attack: entities, objectives, strategies, techniques, and effects

 Defense: roles, objectives, strategies, techniques, and how to develop and sustain software to defend
and survive

 Arena: aspects of environments for software across its lifespan with security implications

Because of third-party software’s important role in today’s software systems, obtaining it has a dedicated
section.

 Acquiring secure software: security issues in reuse, selection, and acquisition of software

Defending software includes the entire secure software system lifecycle with approaches and pitfalls from
concept through disposal covering all aspects:

 Technical

 Managerial

 Work environment and support

The bulk of needed engineering knowledge remains unchanged throughout original development and
sustainment, as well as whether the system is “acquired” or developed for in-house use (e.g., the knowledge of
ethics, and legal and regulatory concerns). Sustainment and acquisition both have unique aspects. In addition,
the acquisition phase has a large impact on the success of the system, and much of the funds expended on
software go toward sustainment. Therefore, in addition to a Preface and this Introduction, this guide contains
five main parts:

1. Dangers – attacks and non-malicious acts in conflict that may threaten security – Section 2

2. Fundamental Concepts and Principles; and Ethics, Law, and Governance – needed knowledge across
all areas – Sections 3 and 4

3. Development and Sustainment – engineering, management, and support directly involved in
producing and sustaining secure software – Sections 5-12

4. Acquiring – reusing, purchasing, or otherwise acquiring secure software – Section 13

5. Use of this Document – tips, thoughts, and suggestions to help the various audiences use this
document in their work, including some tips from the first limited usage of drafts – Section 14

Thus, the organization of this guide reflects this division. The Preface discusses the special interest paths a
reader can take when reading this guide. Sections 1-4 (this Introduction and parts 1 and 2 above) are essential
prerequisites for all readers before going to the later sections that interest them.

1.4.3 Boundaries of Document Scope
Because knowledge for software development is recorded elsewhere in bodies of knowledge, de facto and
official standards, curricula standards, and textbooks, this document only covers the “difference” between
software produced without concern for security or safety versus with concern for security. It presumes a
baseline of currently generally accepted knowledge and identifies a new layer with an upper boundary above
this baseline that includes additional the knowledge needed for secure software. In practice, the working group
(WG) tried not to presume more of readers than could be reasonably expected. This causes the presumed

1 Introduction

8

knowledge about “unsecured” software to vary across the three parts – development12, sustainment13, and
acquisition14.

The “additional” secure software knowledge identified includes:

 Knowledge for doing the most rigorous approaches, including using formal methods

 Some knowledge relevant to less rigorous approaches

 An outline of the knowledge often relevant for dealing with legacy software deficient in security

 Knowledge that spans multiple technologies, application domains, or vendors

 Proven knowledge – although the degree of prior use may vary

 Knowledge currently useful or expected to be needed or useful in the near future

While this last bullet calls for well-informed judgments, in a rapidly changing field all such compendiums as
this must look ahead to avoid being outdated when published. On the other hand, experts should find little here
to surprise them – in part, because much of the knowledge necessary has existed for more than 15 years.

Knowledge descriptions do not cover details of particular products or operational activities since such coverage
exists elsewhere. Examples of areas not addressed in detail include

 Specific details of Windows, Unix, Linux, router, and telephone switching operating systems

 Static and dynamic routing tables, network operations, and TCP/IP protocol operations, and routing
protocols as they relate to traffic flow on the internet over access provided by common carriers

 The Java-oriented J2EE framework and Microsoft’s .NET

 Rules of evidence or search and seizure, surveillance laws, and investigative methods and procedures

In practice, the WG tried not to presume more of readers than could be reasonably expected and to organize the
document recognizing that knowledge from several disciplines is necessary and, as stated above, that it covers
knowledge used by a number of roles and no one practitioner would be expected to know all of it.

12 Any development knowledge presumed can be found in these three sources:

• Knowledge identified in the Guide to the Software Engineering Body of Knowledge (SWEBOK) [Abran 2004]
• The knowledge contained in the SW-CMMI document through Level 5 – while not a body of knowledge, significant

knowledge is in the document text itself
Knowledge identified as required in the ACM/IEEE-CS undergraduate curriculum for Software Engineering [ACM 2004]
13 Any knowledge taken for granted in the Sustainment section can be found by the reader in

• SWEBOK Guide Maintenance chapter
• Relevant sections of ISO/IEC 12207 Information Technology - Software Life Cycle Processes
• ISO/IEC Std. 14764 Information Technology – Software Maintenance

14 Basic knowledge presumed in acquisition area is knowledge of how to reuse or acquire “unsecured” software and can be
found in
• Coverage of reuse throughout SWEBOK Guide [Abran 2004]
IEEE Std 1517-1999, IEEE Standard for Information Technology-Software Life Cycle Processes-Reuse Processes, IEEE,
1999. [IEEE 1517-99]
• Official regulations, standards and guidelines; and in the curricula of the National Defense University or similar master’s

level civilian universities.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

9

1.4.4 Related Areas
While the term “software assurance” potentially refers to the
assurance of any property or functionality of software, the
emphases currently encompass safety and security and integrate
practices from multiple disciplines, while recognizing that
software must, of course, be satisfactory in other aspects as
well, such as usability and mission support.

As mentioned previously, the knowledge to develop, sustain,
and acquire “unsecured” software is not included in this guide.
In addition, a number of areas related to, or included in, the
knowledge needed to produce secure software are not included
in detail. Some underlying fundamentals are simply presumed,
such as

 Discrete mathematics

 Probability theory

 Organizational studies

Three related areas have a number of aspects mentioned, but are not covered in their entirety.

 Systems engineering

 Security engineering

 Quality

In many situations, relevant concerns in secure software development, sustainment, and acquisitions could
easily be labeled “systems” concerns. With this in mind, this document sometimes uses the term “software
system.”

Other more directly related areas include those in the text box on the right. For these, aspects that are directly
relevant are noted, although sometimes briefly or at a high level of abstraction. Finally, domain knowledge of
the area applied, be it operating systems or banking, is quite important in practice, but out of the scope of this
guide.

While always recognizing the limits of their own expertise, persons producing secure software need to be able
to communicate with persons in multiple, related disciplines as well as with stakeholders of many kinds,
including users and owners of protected assets and the owners and operators of the software and systems
involved.

1.5 Selection of References
Choosing references confronted problems not often encountered within other bodies of knowledge. With a few
exceptions such as secure coding, secure software engineering and assurance do not have a set of
comprehensive or specialty textbooks that can be used as references. Though the field started in the 1960s, it
suffered from the lack of commercial interest during the 1990s and early 2000s. For example, possibly the last
introductory text on highly secure software systems was [Gasser 1988].

Thus, today, many of the most relevant references pre-date 1990 or appear in conferences, workshops,
technical journals, or even less accessible places. Efforts were made to provide good, recent references, but
many older references are still the relevant ones. For this reason, this guide also references several works that
might appear, on the surface, to be “old” or “obsolete”, but which in fact remain the best or most useful. Even a

Related Areas
• Systems engineering

• Security engineering

• Quality

• Computer engineering

• Network security

• Personnel security

• Operational security

• Criminology, legal system, and law and
regulatory enforcement

• Intelligence

• Counter-intelligence

• Military strategy and tactics

• Usability engineering

• Executive management

1 Introduction

10

topic’s most useful references for educators and trainers are not necessarily instructional materials or
practitioner-oriented – but still useful. In addition, because many of the practices established in the discipline
of software safety are being adapted or extended and applied to achieve software security objectives, several
software safety references are also included in this guide.

While the authors would have preferred to fill readers needs by directing them to only a few references, the
fragmented state of the literature results in many sections having a substantial number of references.

1.5.1 Common References
Despite these problems, 13 common references for use across all sections (to partially reduce the number of
items users need to acquire) are listed below in subsection 1.7. Six of these are available free, including three
of the books and another is free if one has access to the IEEE Computer Society digital library. Uniform
resource identifiers (URI) are listed with the references.

While not as extensively referenced in this guide, the items below under Further Reading are also of interest as
general references. The first provides context, the second a software application lifecycle view, and the third
important, early seminal work.

1.6 Conclusion
Primarily aimed at educators and trainers but useful to many others, this document defines the additional body
of knowledge needed to develop, sustain, and acquire (more) secure software beyond that needed for software
where safety and security are not concerns. It first addresses the knowledge needed by all, including dangers to
software systems, fundamentals, and ethics and legal issues. After covering the areas of knowledge needed to
produce and sustain (more) secure software, it finishes with sections on acquiring secure software and using
this document followed a unified bibliography and an index.

1.7 Common References Spanning All Sections
[Abran 2004] Abran, Alain, James W. Moore (Executive editors); Pierre Bourque, Robert Dupuis,

Leonard Tripp (Editors). Guide to the Software Engineering Body of Knowledge. 2004 Edition. Los
Alamitos, California: IEEE Computer Society, Feb. 16, 2004. Available at http://www.swebok.org.

[Avizienis 2004] Avizienis, Algirdas, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,” IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 1, pp. 11-33, Jan.-Mar. 2004. Available at
http://csdl.computer.org/dl/trans/tq/2004/01/q0011.pdf.

[Berg 2005] Berg, Clifford J. High-Assurance Design: Architecting Secure and Reliable Enterprise
Applications, Addison Wesley, 2005.

[Bishop 2003] Bishop, Matt. Computer Security: Art and Practice, Addison-Wesley, 2003.

[Gasser 1988] Gasser, M. Building a Secure Computer System. Van Nostrand Reinhold, 1988. Available at
http://nucia.ist.unomaha.edu/library/gasser.php.

[Howard 2006] Howard, Michael, and Steve Lipner. The Security Development Lifecycle. Microsoft Press,
2006.

[Ibrahim et al, 2004] Ibrahim, Linda, et al, Safety and Security Extensions for Integrated Capability
Maturity Models. Washington D.C.: United States Federal Aviation Administration, Sept. 2004.
Available at http://www.faa.gov/ipg/pif/evol/index.cfm.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

11

[McGraw 2006] McGraw, Gary. Software Security: Building Security In. Addison Wesley, 2006.

[Meier 2003] Meier, J.D., Alex Mackman, Srinath Vasireddy, Michael Dunner, Ray Escamilla, and
Anandha Murukan, Improving Web Application Security: Threats and Countermeasures, Microsoft,
2004. Available at: http://download.microsoft.com/download/d/8/c/d8c02f31-64af-438c-a9f4-
e31acb8e3333/Threats_Countermeasures.pdf.

[Redwine 2004] Redwine, Samuel T., Jr., and Noopur Davis (Editors). Processes for Producing Secure
Software: Towards Secure Software. vols. I and II. Washington, D.C.: National Cyber Security
Partnership, 2004. Available at
http://www.cigital.com/papers/download/secure_software_process.pdf.

[Sommerville 2006] Sommerville, Ian. Software Engineering, 8th ed., Pearson Education, 2006.

[Viega 2005] Viega, J., The CLASP Application Security Process, Secure Software, 2005. Available at
http://www.securesoftware.com.

[Whittaker and Thompson 2004] Whittaker, J. A. and H. H. Thompson. How to Break Software Security:
Effective Techniques for Security Testing. Pearson Education, 2004.

1.8 Further Reading
[Anderson 2001] Anderson, Ross J., Security Engineering: A Guide to Building Dependable Distributed

Systems. John Wiley and Sons, 2001.

[Goertzel 2006] Goertzel, Karen Mercedes, et al: Security in the Software Lifecycle: Making Application
Development Processes—and Software Produced by Them—More Secure, Version 1.0 DRAFT.
Washington, DC: Department of Homeland Security, 2006. Available at https://buildsecurityin.us-
cert.gov/daisy/bsi/89.html.

[Seminal Papers] Seminal Papers - History of Computer Security Project, University of California Davis
Computer Security Laboratory
Available at: http://seclab.cs.ucdavis.edu/projects/history/seminal.html

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

13

Part 2: Security Foundations

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

15

2 Dangers and Damage

2.1 Introduction
Software and the data it handles face numerous sources and types of damage and risk. This introduction
provides the necessary background to understand these threats and risks, which underlie the need for software
security. This section is relevant to persons developing, sustaining, and acquiring (more) secure software.

The definition and subtleties of security will be explored at length in subsequent sections. To begin
understanding the dangers being addressed, the reader needs to remember that as covered in the Introduction,
security is often spoken of as a composite of the three attributes: confidentiality, integrity, and availability.
Security often requires the simultaneous existence of (1) confidentiality, (2) availability for authorized actions
only, and (3) integrity with absence of ‘unauthorized’ system alterations [Avizienis 2004, p. 13].

2.2 Dangerous Effects
Probes as a prelude to attacks are continually increasing. Systems in large organizations such as DoD and
Microsoft are probed several hundred thousand times per month. Actual attacks are increasing as well. Many
attackers exploit already identified vulnerabilities – often as soon as they can compare the old versions to fixed
(patched) versions of the software and analyze what changed. They can then attack any non-patched copies of
the software. The time between the announcement of a vulnerability and attempted exploits of the vulnerability
has diminished from months to a few days, if even that long.1 Some vulnerabilities are even exploited as “zero-
day,” meaning that the exploit appears before the vulnerability is formally disclosed. Attacks have moved from
primarily targeting widely used software from major vendors to more frequently targeting Web applications.2
Network traffic to and from Web applications bypasses many traditional network security protections – even
though the Web application interfaces directly with an organization’s databases or other internal systems.

The amount of malicious software in the wild, spam, phishing, and spyware (all of which are defined in
Section 2.4) is increasing, leading to a draining of resources, potential identify theft and loss of sensitive
information.3

Though the effects of attacks on software security can range from irritating to devastating, no accurate
measurements exist to determine the national or worldwide costs of an attack. A Gartner analyst, Avivah
Litan, testified the costs of identity theft at a Senate hearing related to the Department of Veterans Affairs loss
of 26.5 million veteran identities in May 2006. According to Litan, “a company with at least 10,000 accounts
can spend, in the first year, as little as $6 per customer account for just data encryption, or as much as $16 per
customer account for data encryption, host-based intrusion prevention, and strong security audits combined.”
In contrast, Litan said that companies could spend “…at least $90 per customer account when data is
compromised or exposed during a breach.”4 The identity theft at the Department of Veterans Affairs was not
the result of a software security breach—but many identity thefts are. Regardless, many organizations are
starting to realize that the cost of a security breach can far outweigh the costs of security. According to a 2003
CERT/CC report on incident and vulnerability trends, attackers include teenage intruders, industrial spies,
foreign governments, criminals, and insiders.5 Attacks are becoming more sophisticated: targeting specific

1 Recent estimates say the vulnerability-to-exploit window is now approximately 6 days, but this has been changing rapidly.
2 Symantec Corp., “Internet Security Threat Report” (September 20, 2004)
3 For descriptions of cyber crimes see the US Justice Department at http://www.cybercrime.gov/ccdocs.htm and the ACM
Risks Forum archives at http://catless.ncl.ac.uk/Risks
4 Gregg Keizer, “Cleaning Up Data Breach Costs 15x More Than Encryption” (TechWeb, June 9, 2006)
5 CERT/CC, “CERT/CC Overview: Incident and Vulnerability Trends” (7 May, 2003)

2 Dangers and Damage

16

organizations. Security intelligence experts believe that many of these sophisticated and targeted attacks are
being performed by organized crime and government espionage.6 In order to truly understand the
repercussions of inadequate software security, some example incidents are provided below.

The earliest known exploitation of a buffer overflow, a common software vulnerability, was in 1988. It was
one of the several exploits used by the Morris worm to propagate itself over the Internet. It took advantage of
software vulnerabilities in the Unix service, fingerd. Since that time, several Internet worms have exploited
buffer overflows to compromise increasingly large numbers of systems. In 2001, the Code Red worm
exploited a buffer overflow in Microsoft’s Internet Information Service (IIS) 5.0, and in 2003, the
SQLSlammer worm compromised machines running Microsoft SQL Server 2000. In 2004, the Sasser worm
exploited a buffer overflow in the Local Security Authority Subsystem Service (LSASS), which is part of the
Windows operating system that verifies users logging into the computer.

In 2004, a 16-year-old hacker found a few systems on the San Diego Supercomputer Center (SDSC) that had
been patched for a software vulnerability but not yet rebooted. He exploited the unpatched software still
running on those machines to gain access to the network and install a sniffer to detect users’ login sessions and
capture login data, such as usernames and passwords.7

In May 2006, a large number of spam messages were disseminated from a .de email address. The messages
contained a password-stealing Trojan horse8 called “Trojan-PSW.Win32.Sinowal.u” along with text in German
claiming the attachment was an official Microsoft Windows patch. The new Trojan is a member of the
Sinowal family of malware first detected in December 2005. The original versions install themselves onto
systems using browser exploits while this new variant tricks users into installing it. The malware acts as a
man-in-the-middle that captures usernames and passwords when users access certain European bank Web
sites.9

In May 2006, a zero-day vulnerability in Microsoft Word XP and Microsoft Word 2003 enabled attackers to
plant the backdoor provided by the Ginwui Trojan on PCs of users who received emails with malicious Word
documents attached. The Trojan enables an attacker to connect to and hijack the compromised PC by
installing additional software.10

In 2005, security researchers discovered a rootkit distributed by Sony BMG in its compact discs (CDs) that
acted as digital rights management (DRM) for the music contained within the CDs. The rootkit installed itself
on users’ PCs after inserting the CD into the optical drive. The DRM rootkit contained spyware that
surreptitiously transmitted details about the user back to Sony BMG. In addition, the rootkit contained
software security vulnerabilities that made the PCs vulnerable to malicious code and other attacks. This
spurred 15 different lawsuits against Sony BMG to cease selling the audio CDs containing the rootkits.11

In 2005, students discovered a weakness in the third-party software used to manage Harvard Business School
applications. Students who use the same third-party software at other schools observed that when an
application decision is made, applicants visit a series of pages with the final decision appearing at a URL with
certain parameters. By using similar parameters on the Harvard Business School Web site, students could
view the application decisions before receiving official notice. The applications of students who used this

6 Paul Stamp, “Increasing Organized Crime Involvement Means More Targeted Attacks” (Forrester, 12 October 2005)
7 Bill Brenner, “Security Without Firewalls: Sensible or Silly?” (SearchSecurity.com, 5 January 2006)
8 Trojan House: Program containing hidden code allowing the unauthorized collection, falsification, or destruction of
information. [CNSS 4009]
9 Jeremy Kirk, “Password Stealing Trojan Spreads” IDG News Service (PC World, 30 May 2006)
10 Jay Wrolstad, “Trojan Targets Microsoft Word Vulnerability” (Top Tech News, 22 May 2006)
11 Priyanka Pradhan, “New Settlement in Sony BMG Rootkit Case” (CNBC TV 18, 23 May 2006)

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

17

technique to view decisions in advance were refused due to an inappropriate ethical mindset for future
leaders.12

In late 2003, Nicolas Jacobsen accessed T-Mobile’s Web site using a vulnerability in BEA WebLogic. While
the patch was released in early 2003, T-Mobile had not applied the patch to its own servers. Using this
vulnerability, the attacker installed an interface to T-Mobile’s customer service database. He had access to
numerous T-Mobile account details—including social security numbers.13

Even more damage can be caused when the resources of a nation state are directed towards subversion of
software or exploitation of software vulnerabilities. Thomas C. Reed, former Secretary of the Air Force and
special assistant to President Reagan, detailed one such example in his book At the Abyss: An Insider’s History
of the Cold War. In 1981, it became apparent that the Soviet Union was stealing American technology. Instead
of shutting down the Soviet operation, CIA director William Casey and National Security Council staffer Gus
Weiss came up with a plan in which the U.S. would intentionally subvert the microchips and software that the
Soviets were stealing. According to Reed, “every microchip they stole would run fine for 10 million cycles,
and then it would go into some other mode. It wouldn’t break down; it would start delivering false signals and
go to a different logic.” Similarly, the software the Soviets stole to run their natural gas supply systems were
programmed to include a “time bomb” that changed processing to a different logic after a set period of time. In
1982, the failure of the gas system software caused the explosion of a major gas pipeline, resulting in “the most
monumental non-nuclear explosion and fire ever seen from space.” [Reed 2004] The whole U.S. sabotage
operation resulted in a huge drain on the Soviet economy. Moreover, the Soviets had based a huge number
systems on stolen software and hardware. The realization that some of this stolen technology had been
compromised made it virtually impossible for them to determine which equipment was safe and which was
untrustworthy.14

The pipeline explosion occurred over two decades ago. Since then, the emergence of the internet, coupled with
the exponential growth in size, complexity, and ubiquity of software, has made such sabotage operations much
easier, and it is feared, much more likely. For example, a recent well-resourced, set of incidents showing a
professional-level of skill and sophistication see the Time magazine September 5, 2005 cover story on Titan
Rain [Thornburgh 2005].

2.3 Attackers
The Russian pipeline explosion demonstrated what a well-resourced attacker could accomplish. The Titan
Rain attacks were also by sophisticated attackers. At the other end of the attack spectrum are the novice
hackers, also referred to as script kiddies. Understanding attackers’ motivations and capabilities helps in
adequately defending against them. Understanding an attacker’s motivations may allow identification of those
portions of a system most likely to be attacked while understanding an attacker’s capabilities may allow
identification of potential methods of attack and predictions concerning success of attacks. This subsection
describes the range and nature of attackers.

2.3.1 Types of Attackers
The spectrum of attackers includes two characteristics:

 Sophistication of technical knowledge – from attackers who develop attacks to ‘script kiddies’ who
must rely on attack scripts provided by someone else

12 Sverre H. Huseby, “Common Security Problems in the Code of Dynamic Web Applications”
(http://www.webappsec.org/projects/articles/062105.shtml, 1 June 2005)
13 Kevin Poulsen, “Known Hole Aided T-Mobile Breach” (Wired News, 28 February 2005)
14 Steve Kettman, “Soviets Burned by CIA Hackers?” (Wired News, 26 March 2004)
David Hoffman, “CIA Slipped Bugs to Soviets” (Washington Post, 27 February 2004)

2 Dangers and Damage

18

 Ability to cause harm – from those able to determine and execute actions causing significant harm to
an organization to those for whom just gaining entry (and perhaps notoriety) is the purpose for the
attack.

Script kiddies use what they can glean from hacker web sites to try to attack systems. Their attack operations
tend to be very crudely orchestrated and "noisy." Given the low barrier of entry consisting of a computer
connected to the Internet, a few exploits gleaned from simply using Google to search for an autorooter (scripts
or programs for trying to obtain complete administrative privileges) and a little free time, and the script kiddie
is in business.

Their attacks can be conducted from anywhere in the world – even from locations where their activities are not
illegal. They realize that their chances of ever being identified, much less being convicted, are extremely low.
This is true even if the owners of the system being attacked deem it worthwhile to pursue them and are willing
to risk the potentially adverse publicity of acknowledging the success of the attack once arrests are made. The
attacks by script kiddies are a drain on resources and provide good cover for the sophisticated adversaries.
Script kiddies represent the lower-end of a continuum of attackers with a variety of skill levels, resources, and
organization. At the higher-end are technically sophisticated attackers who are able to discover vulnerabilities
and exploit them, and have the support and direction of a large organization for which cyber attack is not an
end in itself, but rather a means of achieving their desired goals. An example of a high-end attacker would be
those executing nation state directed computer network attack.

For the entire range of attacker expertise, it is important to distinguish between the sophistication of the
attacker and the sophistication of the attack. Persons with very limited technical ability can now launch very
sophisticated attacks thanks to the availability of highly sophisticated, point-and-click attack tools.

Between the script kiddies and the well-resourced adversaries is a continuum of attackers with a variety of skill
levels and motivations. These types of attackers and their motivations are explored in the next subsection.

2.3.2 Motivations of Attackers
Attackers have many motivations. Some of the primary reasons that an attacker would attack a system are that
the attacker wants something that is on the target system, that the attacker wants to use or control the system,
the attacker’s plans to perform a denial of service against the system, or destroy information on the system or
the system itself. In general, attackers engage in two types of attacks: preserving attacks and destructive
attacks.

Preserving attacks must maintain a low profile and the system must continue to appear to work as expected to
the users in order not to be discovered since, if the attack were to be discovered, the access would likely
terminate. Where does this information come from? What is the source?

Preserving attacks may be contrasted with a destructive attack that is intent on destroying either the integrity of
the data accessible from the system or the system itself. These are very dangerous attacks, as the attacker may
not ultimately care that the attack is discovered as in the case of a time or logic bomb. Via a time bomb or
logic bomb (see Section 2.4.2 for definitions) intentionally implanted in software, an attacker can, with relative
ease, target a system on an isolated network (air-gapped) network. Destructive attacks can have long-term
impacts through corrupted data or destroyed files or a loss of confidence even after the recovery of the system.

For either type of attack, many motivations exist ranging from ego, intellectual challenge, or desire for
acceptance to revenge, theft, psychopathy, espionage, and information warfare. Particular kinds of attackers,
however, tend to have certain motivations. Some categories of attacks and their typical motivations are
described in Table 1.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

19

Table 3: Attackers and their Motivations

Amateur hackers recreation, reputation, sense of belonging, malevolence, and learning

Insiders vengeance (e.g., revenge through sabotage), vindictiveness, to gain sympathy,
whistle blowing, vigilantism, stalking or intimidation, embezzlement, “job
security” through extortion

Psychopath or sociopath as a form of destructive or anti-social behavior

Individual criminals, small
criminal groups

money including credit card fraud, insider fraud, and identity theft

Social protestors (hactivists) publicity, hindering and disruption, patriotism, vigilantism, and social or political
policy change, or chnage in corporate behavior

Commercial competitors competitive intelligence for competition or negotiation, industrial espionage,
recruitment, subversion, commercial advantage or damage, tacit collusion, and
misinformation

Organized crime syndicates money including fraud, extortion, blackmail; theft, and identity theft; recruitment,
corruption, and subversion; intimidation and influence including extortion and
blackmail; intelligence on politics, law enforcement, criminal competition, and
opportunities and risks for criminal activities; and industrial espionage

Terrorists intelligence including target identification and information, publicity and
propaganda, recruiting, political action, disruption, intimidation, and damage

Nation states intelligence and counter-intelligence, economic espionage, training, preparation
for information warfare, misinformation, sabotage, law enforcement and
deterrence, political influence, blocking illegal or subversive content, and
general hindering and disruption.

Thus, no shortage exists of attackers and motivations. This list, however, is not exhaustive and attackers vary
in their capabilities, resources, intentions, persistence, and degree of risk aversion. They also may be outsiders
or someone inside – someone having a significant relationship with the individual or organization that is the
target of the attack.

2.4 Methods for Attacks
Attacks can occur during any phase of the software life cycle: from the development, testing, deployment,
operation, sustainment, to decommissioning and disposal. The ability to conduct an attack can be made
significantly easier if the software being attacked contains vulnerabilities, malicious code, or back doors that
were placed intentionally during its development for exploitation during its operation.

Probes are often preludes to attacks. Systems in large organizations such as DoD and Microsoft are probed
several hundred thousand times per month. Analysis of software by attackers is also a common prelude to
identification of points to attack. Many attackers exploit already identified vulnerabilities, often as soon as they
can compare the old versions to fixed (patched) versions of the software and analyze what has changed. They
can then attack any non-patched copies of the software. The time between the announcement of a vulnerability
and attempted exploits of the vulnerability has diminished from months to a few days.

2.4.1 Malicious Code Attacks
One means by which attackers attempt to achieve their objectives is by inserting malicious software code
within a software program, or planting it on an operational system. Malicious code, also referred to as
malicious software or malware, is designed to deny, destroy, modify, or impede the software’s logic,
configuration, data, or library routines.

2 Dangers and Damage

20

Malicious code can be inserted during software’s development, preparation for distribution, deployment,
installation, and or update. It can be inserted or planted manually or through automated means. Regardless of
when in the software lifecycle the malware is embedded, it effectively becomes part of the software and can
present substantial dangers.

Viruses, worms, spyware, and adware are all rampant on the Internet, and some names of malware, such as
Code Red and Nimda, have entered the popular vocabulary. Everyone from home computer owners to Fortune
500 information technology (IT) infrastructure system managers is waging a constant battle to protect their
systems against these threats.

A software producer clearly needs to be concerned about preventing and handling malicious actions directed
against the software he or she develops or sustains, as well as the assets that software protects once it is in
operational use. As previously noted, malicious actions can occur at other times as well.

Certain categories of malicious code are more likely to be planted on operational systems, while others are
more likely to be inserted into software before it is deployed. The malware categories described below are
therefore divided into categories that are likely to “inserted” versus categories that are likely to be “planted”.

Increasingly, Malware is combined with deceptive “social engineering” techniques to accomplish complex
attacks on unsuspecting users. In some cases, malware is used to enable a deception, as in pharming. In other
cases, deception is used to trick the user into downloading and executing malicious code. Another popular
deception technique, phishing, is worth noting though it does not require malicious code to succeed. “Social
engineering” attacks are described in later.

2.4.1.1 Categories of Malware Likely to Be Inserted During Development or
Sustainment

 Back door or trap doors – a hidden software mechanism that is used to circumvent the system's
security controls, often to enable an attacker to gain unauthorized remote access to the system. One
frequently used back door is a malicious program that listens for commands on a particular
Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) port.

 Time bomb – a resident computer program that triggers an unauthorized or damaging action at a
predefined time.

 Logic bomb – a resident computer program that triggers an unauthorized or damaging action when a
particular event or state in the system's operation is realized, for example when a particular packet is
received.

2.4.1.2 Categories of Malware Likely to Be Planted on Operational Systems
 Virus – a form of malware that is designed to self-replicate (make copies of itself) and distribute the

copies to other files, programs, or computers (and sometimes used for malware that replicates both by
being copied and copying itself). A virus may attach itself to and becomes part of another executable
program, for example to become a delivery mechanism for malicious code or for denial of service
attack.

There are a number of different types of viruses, including (1) boot sector viruses, that infect the master boot
record (MBR) of a hard drive or the boot sector of removable media; (2) file infector viruses, that attach
themselves to executable programs such as word processing and spreadsheet applications and computer games;
(3) macro viruses, that attach themselves to application documents, such as word processing files and
spreadsheets, then use the application's macro programming language to execute and propagate; (4) compiled
viruses, that have their source code converted by a compiler program into a format that can be directly
executed by the operating system; (5) interpreted viruses, composed of source code that can be executed only
by a particular application or service; (5) multipartite viruses, which use multiple infection methods, typically

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

21

to infect both files and boot sectors. More recently, a category of virus called a morphing virus has emerged; as
its name suggests, a morphing virus changes as it propagates, making it extremely difficult to eradicate using
conventional antivirus software because its signature is constantly changing.

 Worm – a self-replicating program that is completely self-contained and self-propagating. a self-
replicating computer program similar to a computer virus. Unlike a virus, a worm is self-contained
and does not need to be part of another program to propagate itself. Worms frequently exploit the file
transmission capabilities found on many computers: self-propagating delivery mechanism for
malicious code or for a denial of service (DoS) attack that effectively shuts down service to users.
Types of worms include a network service worm, that spreads by taking advantage of a vulnerability
in a network service associated with an operating system or application, and a mass mailing worm,
that spreads itself by identifying e-mail addresses (often located by searching infected systems) then
using either the system's email client or a self-contained mailer built into the worm to send copies of
itself to those addresses..

 Trojan, or Trojan Horse – a non-replicating program that appears to be benign but actually has a
hidden malicious purpose.

 Zombie – a program that is installed on one system with the intent of causing it to attack other
systems.

Operational software can be modified by the actions of malware. For example, some viruses and worms insert
themselves within installed executable software binary files where they trigger local or remote malicious
actions or propagation attempts whenever the software is executed.

One noteworthy “delivery” technique for malicious code within Web applications is the cross-site scripting
attack:

 Cross-site scripting (abbreviated as "XSS", or less often “CSS”) – an attack technique in which an
attacker subverts a valid Web site, forcing it to send malicious scripting code to an unsuspecting
user’s browser. Because the browser believes the script came from a trusted source, it executes it. The
malicious script may be designed to access any cookies, session tokens, or other sensitive information
retained by the browser for use when accessing the subverted Web site. XSS differs from pharming in
that in XSS, the Website involved is a valid site that has been subverted, whereas in pharming, the
Website is invalid but made to appear valid.

2.4.2 Hidden Software Mechanisms
There are categories of “hidden” or “surreptitious” software mechanisms that were originally designed for
legitimate purposes but which are increasingly being used by attackers to achieve malicious purposes. When
this happens, these mechanisms, for all practical purposes, operate as malware.

Like viruses and worms, these hidden software mechanisms are most likely to be planted on operational
systems rather than inserted into software during its development or sustainment. The most common hidden
software mechanisms are: 15

 Bot (abbreviation of robot) – an automated software program that executes certain commands when it
receives a specific input. Bots are often the technology used to implement Trojan horses, logic bombs,
back doors, and spyware.

 Spyware - any technology that aids in gathering information about a person or organization without
their knowledge. Spyware is placed on a computer to secretly gather information about the user
andreport it. The various types of spyware include (1) a web bug, a tiny graphic on a Web site that is

15 For more information see the Spyware Coalition website http://www.antispywarecoalition.org/

2 Dangers and Damage

22

referenced within the Hypertext Markup Language (HTML) content of a Web page or e-mail to
collect information about the user viewing the HTML content; (2) a tracking cookie, which is placed
on the user's computer to track the user's activity on different Web sites and create a detailed profile of
the user's behavior.

 Adware Any software program intended for marketing purposes such as including to deliver and
display advertising banners or popups to the user’s screen or tracking the user’s online usage or
purchasing activity.

2.4.3 Social Engineering Attacks
The main categories of social engineering attacks are:

 Spam – unsolicited bulk e-mail. Recipients who click links in spam messages may put themselves at
risk of inadvertently downloading spyware, viruses, and other malware.

 Phishing – the creation and use of fraudulent but legitimate looking e-mails and Web sites to obtain
Internet users’ identity, authentication, or financial information, or to trick the user into doing
something he/she normally wouldn’t. In many cases, the perpetrators embed the illegitimate Web
sites’ universal resource locators (URLs) in spam – unsolicited bulk e-mail – in hopes that the curious
recipient will click on those links and trigger the download of the malware or initiate the phishing
attack.

 Pharming – the redirection of legitimate Web traffic (e.g., browser requests) to a illegitimate site for
the purpose of obtaining private information. Pharming often uses Trojans, worms, or other virus
technologies to attack the Internet browser's address bar so that the valid URL typed by the user is
modified to that of the illegitimate website. Pharming may also exploit the Domain Name Server
(DNS) by causing it to transform the legitimate host name into the invalid site’s IP address; this form
of pharming is also known as "DNS cache poisoning".

2.4.4 Physical Attacks
Purely physical attacks can be devastating to an organization. Simply cutting critical cables, stealing computers
containing critical information, or stealing or destroying the only copies of critical information could
potentially ruin an organization. Physical attacks require very little skill to accomplish and can simply be the
result of a poorly planned backhoe operation or other simple mistakes. Although it is impossible to predict and
defend against all possible physical attacks, proper planning such as off-site backups and redundancy can
mitigate many of the consequences or risks posed by physical attacks.

Theft particularly of laptops containing sensitive information is a serious problem leading some to encrypt such
data on laptops, “thumb drives”, and other media used to transport data.

2.5 Non-Malicious Dangers to Software
Software in operation may be made vulnerable by a number of unintentional, non-malicious events. However,
because these events are unintentional, does not mean they cannot constitute a threat to the software’s security.

Some of these events threaten the availability of software. Because one can say security is about maliciousness,
one could say that availability is correctly categorized as a security property only when:

 The compromise of availability is intentional, i.e., the result of a denial of service attack; or

 The compromise of availability leaves the software (or system) vulnerable to compromise of any of its
other security properties (for example, denial of service in a software component relied on to validate

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

23

code signatures could leave the software’s integrity vulnerable to compromise through insertion of
unsigned malicious code).

In practice, the maliciousness or lack thereof has limited impact as the event must be considered in any case,
and when a service is unavailable it makes no difference to the users’ abilities or in its consequences. It may,
however, influence investigation, repair, recovery, and other follow-up activities.

[MoD DefStan 00-56 Part 2/3 2004, page 31] lists a number of unintentional events that may threaten the
security of operational software. These include:

 Systematic and random failures;

 Credible failures arising from normal and abnormal use in all operational situations;

 Scenarios, including consequential credible failures (accident sequences);

 Predictable misuse and erroneous operation;

 Faulty interactions between systems, sub-systems, or components;

 Failure in the software operation environment (e.g., operating system failure);

 Procedural, managerial, human factors, and ergonomics-related activities.

In addition, there are physical events that can result in hardware failures (and, by extension, software failures);
other physical events may render the hardware unstable, which can cause common mode failures in operational
software, or render software in development vulnerable to physical access by unauthorized persons. Such
physical events include:

 Natural disasters, e.g., hurricanes, earthquakes;

 Failure in the physical operating environment (hardware failures, power failures);

 Mechanical, electro-magnetic, and thermal energy and emissions;

 Explosions and other kinetic events (kinetic events are those that involve movement of the hardware
on which software operates);

 Chemical, nuclear, or biological substance damage to the hardware or network;

 Unsafe storage, maintenance, transportation, distribution, or disposal of physical media containing the
software.

On analysis many of these events may not result in a security requirement, but some may. Examples of the
effects that must usually be considered are

 Corruption of the software may leave it vulnerable to attacks to which it was not subject before;

 Sudden physical accessibility to the systems or media containing the software may increase the ability
of attackers to obtain a copy of the software’s source code (in order to study it, or to insert malicious
code and produce a subverted version of the software) or binary (with the intention of reverse
engineering).

Three additional unintentional event categories may have the same effects on the software as malicious code
attacks:

 Unintentional software defects: these can have the same effects as malware – currently the most
common source of vulnerabilities

 Intentional extra functionality: can provide additional paths of attack, defects and vulnerabilities, or
surprises – particularly unused/unadvertised functionality

2 Dangers and Damage

24

 Easter eggs: code placed in software for the amusement of its developers or users

Protecting from or reacting to all the events listed above will seldom fall to a single piece of software, but any
could be relevant to a given product. Nevertheless, the list provides insight into the kinds of compromising
events that may occur.

2.6 Attacks across Lifecycle
This subsection takes a lifecycle view and goes through the lifecycle surveying concerns, problems, and
events. It discusses attackers and methods of attack and when they may occur as well as some of the
consequences.

2.6.1 Attacks during Software Production
This subsection addresses conditions and events in the software’s lifecycle that can make software vulnerable
to malicious code insertions and other compromises.

2.6.1.1 Authorized Access
During the development of software, an inside attacker could intentionally implant malicious code. The
malicious code could be an intentional backdoor to allow someone to remotely log in to the system running the
software or could be a time or logic bomb. Alternatively, the malicious code could be an intentionally
implanted vulnerability16 that would allow the attacker to later exploit the vulnerability. This method would
provide the software company with plausible deniability of intent should the vulnerable code be found.

Inserting the malicious code during the software development process places the malicious code in all copies
of the software. There are advantages and disadvantages to placing the malicious code in all copies of the
software rather than a targeted few. If the malicious code is in all copies, then wherever the software is
running, the malicious code will be present. This averts the danger to the attacker of there existing "pure" and
"altered" versions of the software so that a simple comparison of checksums will reveal differences between
copies of software that should be the same.

The easiest and most effective time to insert a malicious mechanism into a software product is during its
requirements phase. Because the malicious code is conceived at the beginning of the software development
process, it can be designed either as an integrated and visible feature or as an unadvertised feature. Stating
malware intentions in the requirements phase causes many people become aware of the malicious feature,
possibly raising the probability of public disclosure. However, conceivably the requirements could be crafted
appropriately to obscure the malicious intent of the software (e.g., backdoor to permit remote observation as a
user support feature).

Inserting the vulnerability or malicious functionality at a later stage of software development would potentially
expose it to fewer people. In situations where organizations are not taking precautions, inserting the malicious
mechanism during the design or implementation phase could be relatively easy and in many organizations
would only require the actions of a rogue programmer. The likelihood of the attack being exercised and
discovered during testing is not high since normal testing is based on the unmodified specifications.17
Historically, testing does not look for added functionality, which is one of the reasons Easter eggs (recreational

16 Such as the buffer overruns or race conditions discussed in Section 7 on Secure Software Construction.
17 Trying to break software security through testing such as that suggested by [Whittaker and Thompson 2004] has also been
rare except among major software vendors and users. This trend has been improving.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

25

insertions)18 and backdoors have been able to become part of final products relatively easily. Code inspection
may reveal the malicious code, but in many shops a part of the code is not likely be examined late in the
process unless a problem is discovered during testing. Even then, the same programmer who put the malicious
code in the product may be the person asked to fix the problem.

Once coding is complete and testing is in progress, the level of difficulty facing an insider inserting malicious
code depends on the environment in which the testing is conducted. If the testers have access to the source
code and development environment, inserting malicious code could be easy. Having access only to the
compiled binary could make inserting a malicious mechanism much more difficult.

Other avenues of insider attacks can occur when placing the product on a CD or a website, or during
sustainment such as when developing or releasing upgrades or patches for the software. The original software
or updates could also be modified during the delivery and installation or after it has been installed.

To summarize, an attacker who is part of the software development process might alter the product during any
phase of the software development process.

During deployment an attacker might:

 Change the product or update it after approval and before distribution;

 Usurp or alter the means of distribution;

 Change the product at user site before or during installation.

2.6.1.2 Unauthorized Access
For outsiders and insiders, the later in the software development process that the attack is inserted, the less
likely it is to be found. Usually, the initial release of a software product receives more analyses and testing than
an upgrade or patch. Inserting an attack as part of an upgrade or patch would thus be less likely to be
discovered. But, on the other hand, not all systems would perform the upgrade or patch, and the lifespan of the
vulnerability or attack would be shorter than if the attack had been in the software initially.

An unauthorized attacker could alter the product electronically by hacking into the distribution site for the
software. Performing an attack in this manner would likely be difficult and require substantial skill. Also, as
mentioned previously, danger of detection increases when both pure and altered copies exist.

Others who may be unauthorized to change the software, but who have a degree insider access, include
secretaries, janitors, and system administrators. Being insiders to the company, they are more likely to be
trusted and less closely watched. In the case of system administrators, they might even be the ones responsible
for detecting any attacks. These or other trusted insiders might be self-motivated, either an inserted agent of an
outside entity or as a subversive, e.g., bribed. They may perform the actions themselves or provide access for
an unauthorized outsider.

One danger that was not mentioned was disclosing a vulnerability to attackers or to the public, either by an
insider or someone not connected to the development, sustainment, or operation of the secure software system.
Knowledge of the vulnerability may be known to the company, but until a patch is available, reasons exist for
the details of the vulnerability to be closely held. This time window of opportunity could be valuable to an
attacker.

To summarize, attackers during development might:

18 An Easter egg is hidden functionality within an application program that is activated when an undocumented, often
convoluted set of commands and keystrokes is entered. Easter eggs are typically used to display the credits of the
application’s development team. Easter eggs are intended to be innocuous; however, because Easter eggs are virtually
identical in implementation, if not in intent, to logic bombs, many organizations have adopted policies that forbid the use of
software that contains easter eggs. NIST SP 800-28: Guidelines on Active Content and Mobile Code. October 2001.

2 Dangers and Damage

26

 Change a product from outside by

– Initiating electronic intrusion

– Allowing physical intrusion (combined with electronic)

 Change a product from inside by

– Inserting an agent

– Corrupting someone already in place

– Having an insider who is self-motivated

 Change or disrupt development process by

– Failing to run or report a test

– Categorizing a vulnerability’s defect report as not a vulnerability

In summary, the means to conduct an attack can take several forms. Also, attacks do not have to compromise
the security of a system to be successful at denying the continued operation of a system. An outsider can
simply overwhelm critical resources (e.g., communication paths) that a system depends upon. Such an attack
can be as effective as a successful intrusion if the objective is to deny the use of the system.

Many paths of attack exist including:

 Intrusion: gaining illegitimate access to a system

 External or Perimeter Effects: acts that occur outside or at the defense perimeter but nevertheless have
a damaging effect; the most common one is denial of service from overload of a resource

 Insider: a person with existing authorization uses it to compromise security possibly including
illegitimately increasing authorizations

 Subversion: changing (process or) product so as to provide a means to compromise security19

 Malware: software placed to aid in compromising security

Attempts to prevent attacks against software during its operation fall into the realm of operational security
rather than software security.

2.6.2 Attacks Against Operational Systems
The typical attack on an operational system consists of the following steps:

 Target Identification and Selection: The desirability of a target depends to a great extent on the
attacker's motivations, and any evidence of the target's vulnerability that can be discovered through
investigation of news reports, incident and vulnerability alerts, etc.

 Reconnaissance: Can include technical means, such as scanning and enumeration of systems and
ports, as well as social engineering and "dumpster diving" to discover passwords, and investigation of
"open source intelligence" using DNS lookups, Web searches, etc. to discover the characteristics of
the system being attacked, and particularly to pinpoint any potentially exploitable vulnerabilities.

 Gaining access: Exploits the attack vectors and vulnerabilities discovered during reconnaissance.

19 “Subversion” is used to describe subversion of people (e.g. developers), subversion of machines or network nodes,
subversion of software, and of other things. [Anderson 2004]

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

27

 Maintaining access: Often involves escalation of privilege in order to create accounts and/or assume a
trusted role. May also involve planting of rootkits, back doors, or Trojan horses. Depending on the
attacker's goal, maintaining access may not be necessary.

 Covering tracks, which may include hiding, damaging, or deleting log and audit files, and other data
(temp files, cache) that would indicate the attacker's presence, altering the system's output to the
operator/administrator console, and exploitation of covert channels.

Attacks and malicious behavior may be undertaken not only by outsiders [Berg 2005, Chapter 5] but by
insiders, including authorized users. The specific techniques used to access systems change on a routine basis.
Once a vulnerability has been patched, attackers must use a different technique to gain attack the system.
Nevertheless, these attacks can be generalized into certain types of attacks, which are (derived from [NSA
2004]):

Attacks performed by an unauthorized attacker:

 Eavesdrops on, or captures, data being transferred across a network.

 Gains unauthorized access to information or resources by impersonating an authorized user.

 Compromises the integrity of information by its unauthorized modification or destruction.

 Performs unauthorized actions resulting in an undetected compromise of assets.

 Observes an entity during multiple uses of resources or services and links these uses to deduce
undisclosed information.

 Observes legitimate use when the user wishes kept private their use of that resource or service.

Attacks performed by an authorized user:

 Accesses without permission from the person who owns, or is responsible for, the information or
resource.

 Abuses or unintentionally performs authorized actions resulting in undetected compromise of the
assets

 Consumes shared resources and compromises the ability of other authorized users to access or use
those resources.

 Intentionally or accidentally observes stored information not authorized to see.

 Intentionally or accidentally transmits sensitive information to users not authorized to see it.

 Participates in the transfer of information (either as originator or recipient) and then subsequently
denies having done so.

Users or operators with powerful privileges can be especially dangerous. Administrators or other privileged
users can compromise assets by careless, willfully negligent or even hostile actions. Finally, in certain
situations a physical attack may compromise security (e.g. breaking and entering, theft of media, physically
tapping cables).

Each of the preceding technical events may result in bad security-related outcomes. The severity of the
consequence ranges from the annoying to the severe.

A number of other common attack techniques are described in Appendix C of Security in the Software
Lifecycle, which can be downloaded from the DHS BuildSecurityIn Web portal.

2 Dangers and Damage

28

2.6.3 Attacks after Retirement
Even software in disposal may be subject to attack. By gaining physical access to software when it or the
computer or media containing it is disposed of, the attacker may find it easier to recover residual sensitive data
stored with or embedded in the software—data that could not be easily recovered when the operational
software was protected by environment security controls and mechanisms. Or the attacker may wish to copy
disposed software that has been replaced by a later but derivative version of the same program, in order to
reverse engineer the older version, and use the knowledge gained to craft more effective attacks against the
new version.

To be completely safe, one must carefully make sensitive data of all kinds unreadable before disposal. Given
increasing forensic capabilities, this may be non-trivial. Encrypted data may not be adequately protected if
weakly encrypted or if sensitive for a sustained future period.

2.7 Information about Known Vulnerabilities and
Exploits

Current information on vulnerabilities and the exploits that target them can be found in a number of sources,
including books (in which the information may be better organized as an introduction to the subject, but will be
less current), articles, vendors’ and independent “alert” services, and databases. For examples, see [Whitaker
2004] and [Hoglund 2004], as well as the following:

 OWASP Top Ten - http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

 SANS Top Twenty - http://www.sans.org/top20/

 NIST National Vulnerability Database - http://nvd.nist.gov/

 US-CERT Vulnerability Notes Database - http://www.kb.cert.org/vuls/

 Open Source Vulnerability Database - http://www.osvdb.org/

 MITRE Corporation dictionary of Common Vulnerabilities and Exposures -
http://www.cve.mitre.org/

 MITRE Corporation Common Weaknesses Enumeration - http://www.cve.mitre.org/cwe/

 Internet Security Systems (ISS) X-Force Database - http://xforce.iss.net/xforce/search.php

 SecurityFocus Vulnerabilities - http://www.securityfocus.com/vulnerabilities

 Secunia Vulnerability and Virus Information - http://secunia.com/

 Purdue University Center for Education and Research in Information Assurance and Security
(CERIAS) Cooperative Vulnerability Database - https://cirdb.cerias.purdue.edu/coopvdb/public/

 DoD’s Joint Task Force-Global Network Operations (JTF-GNO) Information Assurance Vulnerability
Alert (IAVA) program - http://www.cert.mil/.

What is publicly known, however, may be less than is known to producers or researchers. Potential attackers
may know exploits no one else knows. In addition, even after shipment some software vendors make
significant efforts to discover vulnerabilities through internal efforts whose results are often not publicized.

2.8 Conclusion
Computing systems can suffer security violations and “internal” damage – e.g. disclosure, tampering, and
crashes. However, security problems involving computing systems can have significant consequences in the

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

29

real world of people, organizations, physical objects and activities, wealth, and power; and have the potential
to cause even greater future disruption and damage.

Software plays a central role in today’s computing systems and in their security. However, software is in
danger throughout its lifespan, and systems can be in danger both when operating and when not operating, e.g.,
a laptop containing sensitive information could be stolen. Security, both at the individual software component
and whole system levels, is about dealing with these dangers and preserving properties such as confidentiality,
integrity, and availability in the face of attacks, mistakes, and mishaps. Protection needs are based on the risk
or consequences resulting from the threatening dangers and the value of the items being protected. A rational
approach to protection must anticipate dangers and provide defensive, tolerance, and resilience measures based
on the potential damage inside and outside the system.

No system can be protected perfectly. Much commonly used software is far from vulnerability free, and attacks
based on social deception or physical means can happen at any time as can accidents. Nonetheless, without
confidence in the security being adequate, one cannot – as the Soviets could not – rationally rely on software
being secure or dangers not becoming realities. The software must not only be adequately secure, but evidence
must exist to justify rational confidence that it is secure.

Much of this document is about producing software that can block or tolerate and then recover from attacks
while sounding alarms and keeping worthwhile records – and the case for having confidence in it. Before
continuing into the details, however, some fundamental concepts and principles need to be covered and the
legal and organizational context must be set. These topics are covered in the sections 3 and 4, respectively.

2.9 Further Reading

2.9.1 General
[NIPP 2006] Department of Homeland Security. National Infrastructure Protection Plan. Department of

Homeland Security, 2006. Available at www.dhs.gov/nipp.

Leeson, Peter T. and Christopher J. Coyne, "The Economics of Computer Hacking", in Journal of Law,
Economics and Policy, Vol. 1, No. 2, pp. 473-495, 2006. Available at
http://www.ccoyne.com/Economics_of_Computer_Hacking.pdf.

Frank Swiderski and Window Snyder. Threat Modeling. Microsoft Press, 2004).

2.9.2 Attackers
Alexander, Steven. "Why Teenagers Hack: A Personal Memoir", in Login, Vol. 10, No. 1, pp. 14-16,

February 2005. Available at http://www.usenix.org/publications/login/2005-02/pdfs/teenagers.pdf.

Besnard, Denis, "Attacks in IT Systems: a Human Factors-Centred Approach". University of Newcastle
upon Tyne, 2001. Available at
http://homepages.cs.ncl.ac.uk/denis.besnard/home.formal/Publications/Besnard-2001.pdf.

Denning, Dorothy E. Information Warfare and Security, pp 46-50. Reading MA: Addison-Wesley, 1999.

Fötinger, Christian S. and Wolfgang Ziegler, "Understanding a Hacker's Mind - A Psychological Insight
into the Hijacking of Identities". Krems, Austria: Donau-Universität Krems, 2004. Available at
http://www.donau-
uni.ac.at/de/studium/fachabteilungen/tim/zentren/zpi/DanubeUniversityHackersStudy.pdf.

2 Dangers and Damage

30

Garfinkel, Simson L., "CSCI E-170 Lecture 09: Attacker Motivations, Computer Crime and Secure
Coding". Cambridge, MA: Harvard University Center for Research on Computation and Society, 21
November 2005. Available at http://www.simson.net/ref/2005/csci_e-170/slides/L09.pdf.

Jordan, Tim, “Mapping Hacktivism: Mass Virtual Direct Action (MVDA), Individual

Kleen, Laura J. Malicious Hackers: A Framework for Analysis and Case Study. Master's Thesis,
AFIT/GOR/ENS/01M-09. Wright-Patterson Air Force Base, OH: Air Force Institute of Technology,
March 2001. Available at http://www.iwar.org.uk/iwar/resources/usaf/maxwell/students/2001/afit-
gor-ens-01m-09.pdf.

Krone, Tony, "Hacking Motives", in High Tech Crime Brief. Australian High Tech Crime Centre, June
2005. Available at: http://www.aic.gov.au/publications/htcb/htcb006.pdf.

Lakhani, Karim R. and Robert G Wolf, "Why Hackers Do What They Do: Understanding Motivation and
Effort in Free/Open Source Software Projects", in Perspectives on Free and Open Source Software.
Cambridge, MA: MIT Press, 2005. Available at http://ocw.mit.edu/NR/rdonlyres/Sloan-School-of-
Management/15-352Spring-2005/D2C127A9-B712-4ACD-AA82-
C57DE2844B8B/0/lakhaniwolf.pdf.

Lin, Yuwei. Hacking Practices and Software Development. Doctoral Thesis. York, UK: University of
York, September 2004. Available at http://opensource.mit.edu/papers/lin2.pdf.

Rattray, Gregory J., "The Cyberterrorism Threat", Chapter 5 in Smith, James M. and William C. Thomas
(editors), The Terrorism Threat and U.S. Government Response: Operational and Organizational
Factors. U.S. Air Force Academy, Colorado: March 2001. Available at
http://www.usafa.af.mil/df/inss/Ch%205.pdf.

Thomas, Douglas. Hacker Culture. Minneapolis, MO: University of Minnesota Press, 2002.

Virtual Direct Action (IVDA) and Cyberwars”, in Computer Fraud & Security. Issue 4, 2001.

Wong, Kelvin, "Friend Or Foe: Understanding The Underground Culture and the Hacking
Consciousness". Melbourne, Australia: RMIT University, 20 March 2001. Available at
http://www.security.iia.net.au/downloads/friend_or_foe.pdf and
http://www.security.iia.net.au/downloads/new-lec.pdf.

2.9.3 Methods of Attack
[Hoglund 2004] Hoglund, Greg, and Gary McGraw. Exploiting Software: How to break code. Addison-

Wesley, 2004.

[Howard 2005] Howard, Michael, David LeBlanc, John Viega, 19 Deadly Sins of Software Security.
McGraw-Hill Osborne Media, 1st edition, 2005.

Bruce Schneier. "Attack Trees: Modeling Security Threats", Dr. Dobb’s Journal, December 1999.

Herbert Thompson, Scott Chase. The Software Vulnerability Guide. Charles River Media, 2005.

James Whittaker, Herbert Thompson. How to Break Software Security. Addison Wesley, 2003.

Sverre H. Huseby. Innocent Code: A Security Wake-up Call for Web Programmers. John Wiley & Sons,
2004).

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

31

3 Fundamental Concepts and Principles

3.1 Introduction
Anyone who wishes to develop, sustain, evaluate, or acquire software that is (more) secure needs to know
several terms, concepts, and principles that span multiple activities and roles. This section covers those that are
prerequisites for understanding the remainder of the guide.1

The history of computer security goes back at least into the 1960’s, and a substantial amount of important work
was done in the 1970’s and early 1980’s. Luckily, a project at the University of California Davis collected
many of these seminal works and placed on the Internet [Seminal Papers].2 While their contents may be
reflected in later publications, these works are still relevant today – for example, [Ware 1970], [Anderson
1972], and [Saltzer and Schroeder 1975].

Over time, many terms have come to be used in within and across the software, information security, software
security, and other communities, with each community giving the term a different meaning or nuance. These
differences can cause confusion that hinders productive communication as conversations revolve around
clarification of someone is using a term in a particular situation, debates over competing dictionaries and
ontologies, and arguments about which meaning is the “right” one. This guide aims to present the varying
usages of terms while also helping the reader obtain a clear understanding of the underlying concepts, and
more subtly, to recognize the differences between what is true versus what is known and how well it is known.
Readers should also be able to discern the assumptions implicit in various concepts and statements.

After first covering some basic terms and properties, this section introduces the concept of a software security
assurance case including one means of gaining partial assurance, software certification and accreditation. This
is followed by a number of basic software system security principles and concepts. Secure software
engineering subsection includes the many kinds of security-related stakeholders in the software lifecycle,
anintroduction to system security policies, and aspects of system architecture. The section ends by elaborating
on security properties.

3.2 Variations in Terms and Meaning
The concepts and properties covered in this section tend to fall into groups or change the related term’s
effective meaning depending on whether they are about:

 What is needed,

 What is specified,

 What is actually true (e.g. about the software),

 What has been measured, observed, inferred, etc.,

 The uncertainty in these measurements, estimates, conclusions, etc.,

 The degree of confidence one has,

 The related decisions one makes.

1 Additional concepts and terms that need to be known by all readers appear in Sections 1, 2, and 4.
2 The gap in attention to software security in the 1990’s has reputedly led to many articles being submitted for publication
today that repeat this early work because the authors are unaware of it.

3 Fundamental Concepts and Principles

32

Roughly, [NIST Special Publication 800-33 2001] calls the first two of these security goals and security
objectives. Others call the security properties specifications “constraints”. The third, “What is actually true,”
about the software or its environment may be referred to but seldom known exactly. Rather one has, “What is
measured, observed, inferred, etc.” regarding items relevant to the software’s security – when properly
achieved and organized including the
uncertainties about them, these constitute its
assurance case.

Each item’s uncertainty may have assurance
steps taken to reduce it, but ultimately the
result is the combined residual
uncertainty(ies) that is a basis for an
individual’s or organization’s level of
confidence (and any uncertainty in it). These
uncertainties are about values that might, for
example, lead to the conclusion that the
software is adequate or – possibly more
commonly today – that it is inadequate.

Thus, one has values, say of technical
characteristics or sampling results, and
uncertainty about them. One must make
decisions such as whether to use a software
system in a particular sensitive situation.
Human judgment is involved. Is the software
system worthy of being trusted to preserve
certain security properties in a given
situation – a delineated trustworthiness?3
Are potential consequences and risks
acceptable? Knowing these is generally not
enough, as the most important consideration
is often, “What choices does one have?”
Making the decision to have sufficient
confidence in a system’s adequacy or to use
it (with or without that confidence) are of a
different nature from the more engineering and objective issues in the assurance case.

The meaning of a statement about a property also depends on the situational assumptions behind a particular
specification or claim. Examples of these assumptions include:

 The bits constituting the software constitute the entirety of what is within an environment where
everything it depends on (including assumptions) will work exactly as (completely) specified – say,
that the software is the only software on a computer or device whose hardware will work as specified.

 The software in question is not alone within its machine environment with possibly multiple trust
domains.

 The environment of the software is or is not predictable and is or is not trustworthy.

3 “Trustworthiness” is thus dependent on the situation and the entity extending the trust (e.g. entity’s degree of risk aversion)
and not an invariant characteristic of the software

Table 4: Alternative Sources of Definitions

Abbreviated Name Bibliography
Reference

CNSSI 4009 National Information
Assurance Glossary

[CNSSI 4009]

Common Criteria [Common Criteria Part 1]
[Common Criteria Part 2]

DCID 6-3 Protecting Compartmented
Information Appendices

[DCID 6/3 2000]

IATF IS Security Engineering [NSA 2002]

ISO 9126 Quality Characteristics [ISO/IEC 9126:1991]

ISO IEC TR 15443 IT Security
Assurance

[ISO TR 15443 - 1]

DIMACS Workshop 2002 [McGraw 2003]

FIPS PUB 199 Security Categorization [FIPS PUB 199]

NIST Special Publication 800-33
Underlying Technical Models for
Information Technology Security

[NIST Special Pub 800-33
2001]

NIST Special Publication 800-64 [NIST Special Pub 800-64]

NSTISSI 1000 NIACAP [NSTISSP No. 11]

OWASP Guide [OWASP 2005]

Trusted Software Methodology [SDI 1992]

SafSec Standard [SafSec Standard]

NRL Handbook [NRL Handbook 1995]

Safety and Security CMM Extentions [Ibrahim et al, 2004]

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

33

 The environment of the software potentially allows attempts (or actual) changing of or tampering with
the software either readily or with some “resistance” from the environment.

The first of these is an ideal situation that is nevertheless a useful assumption for some analyses and a relevant
goal for systems design. The meaning often derives from how much is included in the “system” and the truths
(or assumptions) about its environment’s interactions with it. The more the software must depend on its
environment, the more its environment is undependable or hostile, and the more uncertainties enter into the
situation; then the more:

 Difficulties may exist in showing the desired properties are established and maintained;

 Residual uncertainties may exist about whether they really are established and preserved.

Finally, it is important to understand the context in which terms that are used within the security community
such as threat4 or assurance are being used, i.e., whether the speaker (or writer) is referring to an entity,
capability, condition, event, consequence (computing or real-world), physical or mental state, action, or
process.

Numerous dictionaries and glossaries for security, information assurance, and software engineering exist and
varying in their definitions of both basic and advanced terms.5 A number of these are listed in

. While several have strong proponents and persons who will claim a particular glossary’s definition of a term
is the only right one, these vary on organization and individual bases.

The variety of usages and subtleties are numerous for many terms. Thus, one needs to carefully keep firmly in
mind the underlying concepts while understanding the relevant aspect, assumptions, and definitions behind any
statement about security properties or characteristics.

3.3 Basic Concepts

3.3.1 Dependability
Dependability is a qualitative “umbrella” term. Avizienis et al. offer a concise set of definitions for the
properties related to dependability, including security [Avizienis 2004, p. 13].

“As developed over the past three decades, dependability is an integrating concept that encompasses the
following attributes:

 Reliability: continuity of correct service.

 Safety: absence of catastrophic consequences on the user(s) and the environment.

 Maintainability: ability to undergo modifications and repairs. …

 Integrity: lack of improper modification, alteration, or destruction.

 Availability: continually, reliably accessible and usable in a timely manner6.

4 Here is an example of conflicting definitions with entity versus condition or event (emphasis added) – Threat: an adversary
that is motivated to exploit a system vulnerability and capable of doing so. National Research Council (NRC) Computer
Science and Telecommunications Board (CSTB): Cybersecurity Today and Tomorrow: Pay Now or Pay Later. Washington,
DC: National Academies Press, 2002. – VERSUS – Threat: Any circumstance or event with the potential to adversely
impact an IS through unauthorized access, destruction, disclosure, modification of data, and/or denial of service. [CNSSI
4009]
5 For some sources on the WWW, see for example, Google’s “Definitions on the web” feature and Microsoft’s list of resources
to Decode Technical Jargon available at http://www.microsoft.com/learning/start/terms.asp.
6 Availability may include availability to share.

3 Fundamental Concepts and Principles

34

When addressing security, an additional attribute has great prominence,

 Confidentiality: Preservation of authorized restrictions on information access and disclosure,
including means for protecting personal privacy and proprietary information.”

3.3.2 Security
 “Security is a composite of…three…attributes – confidentiality, integrity, and availability. Security [of
information] often requires the simultaneous existence of 1) availability for authorized actions only, 2)
confidentiality, and 3) integrity with ‘improper’ meaning ‘unauthorized’.”7 [Avizienis 2004, p. 13]

While exhibiting reliability, safety, and maintainability may not directly result in secure software, the last can
contribute to keeping security “up to date.” All may make it easier to show that software is secure.8

Security is not as simple as this sounds. Neither confidentiality nor integrity can be achieved unless identities
can be firmly established – authenticated – and only allowable actions are permitted or possible – access
control or in some situations encryption. Two related properties are also important [Landwehr 2001]

 Accountability: being able to associate actors with their acts; to include non-repudiation (ensuring
actors are unable to effectively deny (repudiate) an action)

Security properties are properties of the whole system. This means that these properties are determinable or
observable only9 in the context of how the multiple components of the system interact among themselves, and
how the system responds to stimuli from external entities (e.g., input from users) – thus said to emerge or be
“emergent” with system composition.

While necessary in the majority of systems, the mere presence of security functionality does not make a system
secure. To provide security for an item, individual pieces of security functionality must be impossible to
bypass, corrupt, or cause to fail. Given accurate facts about its environment, these inabilities to corrupt, cause
to fail, and bypass can emerge from the inherent properties of the software itself, but dependencies including
those on hardware mean these inabilities must ultimately (also) be achieved at the system level.

Since secure software is preserving what might be considered systems level properties and may protect many
kinds of computing resources such as data, software, and running processes; and does so in a systems context;
the distinction between software- and system-level security concerns is fuzzy and frequently irrelevant. Thus,
this document generally avoids trying to label topics with these terms. On the other hand, system-subsystem
relationships and differences in levels of abstraction are important within software security.

When attacks occur, the software may also be required to detect those attacks and alert users, continue service,
confine damage, rapidly recover, and aid in diagnosis and repair to prevent future problems.

Another central issue concerning security properties is

 Assurance: addressing the question of the amount of uncertainty one should have regarding whether
the software system will preserve these properties.

It will be covered in some detail in subsection 3.3.4.

7 Another definition of security is, “All aspects related to defining, achieving, and maintaining confidentiality, integrity,
availability, accountability, authenticity, and reliability.” [ISO/IEC13335-1].
8 For further information on this topic, see Security in the Software Lifecycle, Section 3.1.3, “Other Desirable Properties of
Software and Their Impact on Security”.
9 This does not mean that (1) similar or analogous properties may not exist at lower levels or that (2) one might not design a
system so a guarantee can be derived from the behaviors of only a portion of a system and a lack of opportunities (to violate
or help violare security) for the remainder.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

35

Security was defined in terms of general kinds of properties. However, a specific software system requires
specific specified properties within these categories. These specific properties reflect the greater or lesser
concern for each kind of general property related to the system and portions or aspects thereof – for example,
confidentiality may only be relevant to a portion of the system’s data and integrity concerns relevant to certain
operations involving certain data. In addition, the level of assurance (uncertainty) desired regarding each may
vary with the level or seriousness of each concern that in turn usually reflects the possible consequences in the
real world as well as the digital one.

3.3.3 Software and other Security-related Concerns
In addition to a software system’s preservation of required security properties within its digital domain, it can
contribute to other systems, organizational, or societal security goals including:

 Establishing the authenticity of users and data;

 Establishing accountability of users;

 Providing usability including transparency to users to gain acceptance and resulting security;

 Providing the abilities to:

– Deter and mislead attackers,

– Force attackers to overcome multiple layers of defense,

– Support investigations to identify and convict attackers.

 Aiding physical security, such as in monitoring and entrance control

 Protecting privacy

Privacy needs are one of the key reasons for security. Privacy is a motivation for confidentiality, anonymity,
and not retaining data. Avoiding falsehoods that could damage reputations requires data accuracy and integrity.
See the Ethics, Laws, and Governance section for mention of some relevant laws and regulations.

Thus, software can help address security concerns at a number of levels.

3.3.4 Assets
An asset may be information or data,10 an executing process, or anything else that is of value to stakeholders.11
Often, the relevant stakeholders are its owner and attacker, but may also be society or the entity about which
the data relates. Developers of secure software must identify assets and their protection needs. These asset-
protection needs derive from needs to protect or benefit stakeholders.

Assets may be categorized by attributes related to their confidentiality (e.g., Top Secret, Secret, Confidential,
or Unclassified); by their degree of integrity (e.g., accurate and up to date versus old and with unknown
accuracy); or by criticality of availability or acceptable level of unavailability (e.g., unavailable less than one
minute in every 30 days).

10 Federal Information Processing Standard (FIPS) 199, Standards for Security Categorization of Federal Information and
Information Systems. Gaithersburg, MD: NIST, February 2004, defines a standard methodology for categorizing information
(or data) assets according to their security attributes. FIPS 199 is available at http://csrc.nist.gov/publications/fips/index.html
(February 2004).
11 Assets about whom security-releted properties are to be preserved, do not necessarily include everything that might be at
risk or damaged. Examples include the wealth and reputations of persons about whom information is kept and those assets
about which the contents of the system could facilitate malicious actions of any kind – e.g. spies, soldiers, shareholder value,
facilities, infrastructure, and potential objects of safety hazards, terrorism, or criminality.

3 Fundamental Concepts and Principles

36

3.3.5 Security-Violation-related Concepts
Threatening entities, also referred to as threat sources, threat agents, and attackers, may possess capabilities,
resources, and intentions that enable them to pose threats to system-related assets (including software
components of systems).12 To perform their attacks, attackers use their capabilities to take advantage of, or
exploit, vulnerabilities – “weaknesses…that could be exploited or triggered by a threat source” [NIST FIPS
200] – in the system.13 Attackers use specific kinds of attacks or “exploits”, often falling within recognizable
patterns referred to as “attack patterns”, to take advantage of particular vulnerabilities in a system. Systems
may employ countermeasures to reduce the ability to exploit vulnerabilities (or weaknesses) and others to
reduce the extent and intensity of the damage that would result from a successful or partially successful attack.

3.3.6 Assurance
As shown the aftermath of the Soviet pipeline explosion described in the prior section, we need justifiable
confidence prior to depending on a system, especially a software system. The greater the dependence, the
greater the need for objective grounds for confidence that this dependence is well placed. One needs the
appropriate valid arguments and evidence to establish a rational basis for justified confidence for any claims.
The greater the dependence on a system, the greater the need for objective grounds justifying confidence that
this dependence is well placed.

Assurance is a term whose usage varies, but they all relate to reducing the level of uncertainty in estimation,
prediction, information, inference, or the achievement of a goal. Such a reduction may provide an improved
basis for justified confidence.14 For example, the effort spent in reducing uncertainty about the value assigned
to a parameter—thereby increasing assurance in that value—can often be cost-effective in that it improves the
basis for decision-making even if the value remains unchanged.

Examples of ways in which the word “assurance” is sometimes used include:

 Actions taken to provide a basis for justified confidence – these actions may constitute how something
is done, or the evaluations of something or how it is/was done;

 Arguments and evidence that reduce uncertainty or provide grounds to justify confidence;

 Degree an individual or organization has of justified confidence in something such as the justifiable
confidence that a system exhibits all of its required properties and satisfies all of its other
requirements.

Assurance may relate to any characteristic of software or systems. This document primarily addresses security
assurance of software systems.

To be usable in hazardous or hostile environments, a secure software product needs two parts: (1) the
“operational product,” accompanied by (2) the “assurance case” for that product. The assurance case provides a
basis for the confidence end-users need in the product before they feel comfortable using it and it may provide
the basis for confidence that the producer needs before releasing the product. These two levels of confidence –

12 While the literature often does so, this guide seldom uses the term “threat” without a modifier because when used alone it is
may have several different meanings
13 For many purposes such as creating coding standards the meaningfulness and need to separate “vulnerability” causing
items from other weaknesses may be low or non-existent. In addition, a question always exists about the current and future
contexts that are relevant for “could be exploited or triggered”.
14 According to the Merriam-Webster Dictionary, confidence is “the quality or state of being certain”. Trust is related to
confidence, but trust is often bestowed without explicit justification for confidence. The entity trusted may or may not be
trustworthy. In order to prepare for violations of trust, computer systems enforce accountability. Moreover, an entity’s history of
behavior will directly affect that entity’s reputation. Particularly in e-commerce, mechanisms exist for publicizing each buyer’s
and seller’s accountability, history, and reputation in order to provide evidence that others can then use in making their own
determinations of whether confidence in the entity is justified, and thus whether they should trust the entity.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

37

to release the product or to use it – and the evidence required to obtain each, might be different. The user
relying only on claims made by the producer’s assurance case requires the case for releasing to be at least as
strong as that for use.15 The assurance case can provide reduced uncertainty leading to justified confidence in a
software system’s adequacy, or if the situation warrants, it might provide grounds for rational lack of
confidence. This “assurance case” is discussed below in subsection 3.3.6.1.

To support the assurance case, software assurance commonly needs the execution of a planned and systematic
set of activities to provide grounds for confidence in software properties. These activities are designed to
ensure that both software processes and products conform to their requirements, standards, and defined
procedures [NASA Guidebook, I.A]. "Software processes", in this context, include all of the activities involved
in the design, development, and sustainment of software; "software products" (sometimes referred to as
"artifacts") include the software itself, the data associated with it, its documentation, and supporting and
reporting paperwork produced as part of the software process (e.g., test results, assurance arguments). In the
case of secure software, the "requirements" will include requirements for the security properties that should be
exhibited by the software. The “standards” may be technical, defining the technologies that can be used in the
software, or they may be non-technical, defining aspects of the process that are further delineated by the
“procedures” that make satisfaction of the software’s requirements possible.

One could think of three mutually supportive and sometimes overlapping sets of activities in the software life
cycle – management, engineering, and assurance. Software management is the set of activities for planning,
controlling, and directing the software engineering and assurance activities. In many if not most software
projects, engineering includes not just production of software products and their evaluation but evaluation and
selection of reusable software components (these may commercial software products, open source programs,
legacy components, or software stored in a purpose-built reuse repository). Software assurance ensures the
management and engineering efforts result in a total product that satisfies all of its requirements or claims and
can be shown to do so.

3.3.6.1 Assurance Case
As mentioned above, a secure software product that is rationally usable in dangerous situations has two
aspects, (1) the “operational product” part accompanied by (2) the “assurance” part providing the grounds for
the confidence required.16 This confidence-justifying second part of the “total product” is called its “assurance
case.” Such a case needs to exist whether written or not – otherwise an essential element needed for use is
missing – as highlighted by the aftermath of the Soviet gas pipeline explosion. Thus, the assurance case is
central to rational use of software where security is a serious concern.

An Assurance Case17 is “a reasoned, auditable argument created to support the contention that a defined system
will satisfy the…requirements,” UK Ministry of Defence Standard 00-42. [Ministry of Defence 2003b, section
4.1] Most assurance cases include:

1. one or more claims about the required properties of the system,

2. a body of evidence supporting those claims,

15 It has been suggested by comments that: While it is possible to add grounds for confidence with activities such as
independent evaluation, the bulk of the wherewithal for assurance might be expected to be satisfied as a by-product from
processes that produce high assurance product for how else would the producers and their superiors rationally have and
maintain high confidence themselves. (And that the absence of such by-products is grounds supporting a determination of
lower confidence.)
16 While the term “operational product” is used here, concern for understanding, use, and evolution (as well as assurance)
result in the need for a number of engineering artifacts such as specifications and designs that although some might not
consider “operational” are nevertheless part of the “product” during its operational period.
17 Sometimes called an “assurance argument;” in this guide the term “assurance argument” or just “argument” is used for the
arguments that connect the evidence to the assurance claims/conclusions.

3 Fundamental Concepts and Principles

38

3. arguments that clearly link the evidence to the claims.

In this document, the required properties that are relevant are the system’s security properties. [Williams 1998]
provides an extensive introduction to security assurance cases for software systems.18

The assurance case’s argument must, of course, be supported by evidence that supports each part of the
assurance case. Such evidence comes in many forms including results from tests, mathematical proof checkers,
analyses, and reviews as well as process and personnel quality. (See Table 5: Kinds of Evidence and the
Verification, Validation, and Evaluation section for further information.) Though not covered, a combined
assurance case could include security and safety [SafSec Standard]19 as well as possibly other related
requirements.

An assurance case addresses the reasons to expect and confirm successful production of the software system
and the possibilities and risks identified as difficulties or obstacles to developing and sustaining a secure
software system. The assurance case provides significant stakeholders with an objective basis for their justified
degree of confidence and decision making. To convince them successfully, the possibilities and risks they
perceive must be addressed – whether developers believe them to be merited or not.

Starting with the initial concept and requirements, the assurance case subsequently includes experienced or
postulated possibilities and risks; avoidance and mitigation strategies; and an assurance argument referring to
associated and supporting evidence from design and construction activities, verification activities, tests and
trials, etc. This may eventually include in-service and field data. Any substantive modifications in the software
system or its security requirements will necessitate changes to the assurance case.

The assurance case provides a structure of goals and sub-goals (or claims and sub-claims) with evidence and
connecting arguments that show the achievement of the top-level security goal(s) (or claim(s)). The [SafSec
Standard] and [SafSec Guidance] documents address this structuring of the assurance case. Crudely, the two
principal argument patterns are (1) everything necessary went or is right or close enough and (2) nothing
significant went or is too wrong. SafSec primarily uses the latter. Other sources include [Ministry of Defence
2003b] and [Howell 2003].

Any sound approach to producing (or using) secure software must address three points,

1. Specified security properties are valid and meeting them will result in meeting real world intentions
and expectations

2. System as designed, built, deployed, and executed will meet its specified security properties

3. Valid, justified knowledge of the degree to which 1 and 2 have or are being achieved and the
uncertainty related to this knowledge

The third point is addressed by assurance cases. This point can be important not only for contribution towards
gauging feasibility or suitability for release or use but also for corrective action, learning, and improvement.
The first two points are the principal potential objectives whose achievement assurance cases address. In
practice, depending on its criticality and risk, the first may or may not be the subject of a formalized assurance
case. The second is normally complex enough to be difficult to comprehend and ensure its correctness, unless
it is systematically recorded and reviewed.

18 Internet sites with material aiding in learning about assurance cases – albeit with a safety emphasis – include
http://adelard.co.uk/iee_pn/ and http://www.esafetycase.com/
19The objective of SafSec, developed by Praxis High Integrity Systems is to provide a systems certification and accreditation
(C&A) methodology that addresses both safety and security acceptance requirements. SafSec was originally developed for
C&A of the United Kingdom Ministry of Defense (UK MOD) Integrated Modular Avionics, and other advanced avionics
architectures. SafSec is an example of how approaches from assurance of safety as a required property of software have
been successfully applied to the assurance of security properties of software.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

39

In the second, the top goal(s) must include the security properties required and could perhaps include the
software system’s entire set of security-related requirements for the system. One example might have top goals
composed of the combination of required security functionality and properties (e.g. that this functionality
cannot be bypassed) as in the Common Criteria v. 3.0 [CC 2005] discussed below.

To address feasibility or suitability for a use, knowledge concerning a fourth point is also needed.

1. Valid knowledge concerning the potential consequences or risks related to point 3 (degree and
uncertainty regarding achievement of points 1 and 2)

Risk management and the assurance case factor these in to establish the comprehensive, net or residual
potential consequences or risk. These may be balanced against benefits in making decisions.

As a living, top-level control document, an assurance case needs to be managed with its status reported
periodically including progress in arguments and linked evidences. The case remains with the software system
throughout its life through disposal. An assurance case contains, therefore, a progressively expanding body of
evidence built up during development, and responds as required to all changes during development and
sustainment.

A large variety of kinds of evidence can be relevant to improving the grounds for justified confidence. Table 5
lists a number of them.

Issues arising from the assurance case arguments for security and the different qualities can highlight tradeoffs
of other qualities or functionality against security.

3 Fundamental Concepts and Principles

40

Table 5: Kinds of Evidence

1. The quality and history of people
2. The characteristics, suitability, and history of

processes used
3. Data on the quality and fidelity of use of process
4. The quality and suitability of the development

environment
5. Production organizational structure characteristics

and suitability
6. Security of production
7. The realism of the assumptions made
8. Quality of safety or security policy
9. Agreement of informal and formal statements of

security properties (and/or other properties, e.g.
safety)

10. Specification quality and consistency with these
properties

11. Consistency from representations have
confidence in (e.g. specification) through
intermediate representations (e.g. design, source
code) to the released software

12. Security of deployment
13. Security of installation
14. Security of updating the software
15. Software executed is same as what was installed

(and updated)
16. And on across lifespan and possible situations

(e.g. stolen laptop)
17. Lack of non-required or unspecified functionality
18. Analysis of structure of system and its interactions
19. Chain of evidence: valid creation and collection of

evidence with its integrity maintained until and
during its use

20. Proper use of assurance argument and evidence
21. Design including defense in depth and tolerance
22. Characteristics of the code including good

practices and use of a safe programming
language (subset)

23. Static analysis of code for relevant aspects such
as

a. Vulnerability-prone features
b. Exceptions
c. Information flow
d. Conformance to coding standards
e. Correctness of proofs

24. Nature and results from
a. Reviews
b. Audits
c. Tests
d. Measurement (direct or surrogate)
e. Analyses
f. Simulations
g. Proofs

25. Data on the execution history of the software itself
– particularly for post-update assurance

26. Ease of recovery and repair
27. Quality of support (particularly response to

discovery of defects or vulnerabilities)
28. Evidence from suppliers or other sources
29. Warranty or risk sharing agreement and its

creditability

An assurance case will be more complete if it includes consideration for possibilities and risk values that are:

 Known items – ensuring none are overlooked;

 Known kinds of items with unknown existence or characteristics

For completeness, one might also consider the possibility of unknown unknowns – items not known to exist (or
be relevant) and nobody knows their value.

What are sometimes called “security assurance activities” for software overlap (possibly entirely) with
engineering activities and include those directed towards security evaluations of both the software product and
the processes used to develop and sustain it. Security evaluations of the product ensure its security
requirements are appropriate and have been satisfied in the product. Security evaluations of the process ensure
that none of the development or sustainment activities have compromised the software product’s security, and
that the software product (including all of its artifacts), and its development and support tools and supporting
control and report data have been consistently controlled and protected. The configuration management and
corrective action activities within the software's engineering and management processes should be evaluated to
ensure they protect all software artifacts and supporting data from modification or deletion by unauthorized
persons at all times, and from modification or deletion by authorized users at inappropriate times. Changes to

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

41

the software should also be evaluated and should be checked to ensure that no change has allowed a security
violation to occur or a vulnerability to be introduced. Finally, physical security protection of the software
product (all artifacts), control data, development environment (including tools, systems, and network), and the
information the software accesses, manipulates, and creates should all be ensured to be adequate at all times
[NASA Guidebook, VIII.C].

The activities related to creating and evaluating the assurance case obviously must also be identified in the
project plans. Finally, a description of the proposed assurance case would normally appear in a proposal
document during acquisition.20

3.3.6.2 Levels of Assurance and Confidence
The degree of confidence that can be justified based on a specific assurance case may vary by individual or
organization. The less residual uncertainty the higher the level of assurance and presumably the higher the
degree, or level, of justifiable confidence. Conceptually, this conversion of an amount of uncertainty into a
level of justified confidence is not straightforward or well understood. The term, “assurance” is often prefixed
with the modifier “high”, “medium”, or “low,” and sometimes people use it where (level of) “confidence” or
(amount or restrictiveness of) “protection” (mechanisms) should have been used.

Arguably, “high-confidence” is not a synonym for “high-assurance”. It is possible to have a high level of
unjustifiable confidence. “High confidence”, then, indicates a level of actual confidence placed in the system,
and not necessarily the lower uncertainty (higher “assurance”) that would justify such confidence. To avoid
confusion, this guide seldom uses the word “assurance” alone or without explanation.

3.3.6.3 Information Assurance
The term “information assurance” (sometimes referred to as IA) is often used as:

1. A catch-all term for all that is done to assure security of information;

2. The levels of uncertainty or justifiable confidence one has in that security.

The information assurance community (also sometimes labeled “information security” community) defines the
term as referring to the collective set of measures that protect and defend information and information systems
by ensuring their availability, integrity, confidentiality, and access control, and the authentication,
authorization, and accountability of their users, as well as non-repudiation by those users of actions for which
they are responsible. Information assurance measures include providing for restoration of information systems
and the information they contain by incorporating protection, detection, and reaction capabilities. [CNSSI
4009]

To be considered “high assurance” by many people in this community, an information system would
implement mechanisms judged to significantly hinder unauthorized parties from accessing the information, and
authorized parties from using the information in unauthorized ways. Some high-assurance systems might be
referred to as “trusted systems” although this term might better be used related to the act of placing trust rather
than characteristics of the system.

While concern for the engineering, production, and internals of software fall naturally within these concerns;
many in the discipline of “information assurance” do not consider them. This can sometimes lead to
communication problems across disciplines. Nevertheless, the communities share many concepts and concerns.

3.3.6.4 Security Evaluations, Certifications, and Accreditations
A number of certifications for software system security and accreditations of operational systems – software,
hardware, polices and procedures, facilities, physical safeguards (e.g. protective casings), user aids, and people

20 Also see the Assurance Case section of the Build Security In website [DHS BSI].

3 Fundamental Concepts and Principles

42

– exist. Historically, these have been applied primarily to government systems. Professional certifications for
individuals exist but usually target network security or “unsecure” software engineering. These activities are
discussed again in Section 8, Secure Software Verification, Validation, and Evaluation.

3.3.6.4.1 Common Criteria Certification

This certification process uses first an authorized laboratory to do an assessment followed by a government
validation of any recommended certification. [Prieto-Diaz 2003] [Merkow 2005] The criteria are “common” in
that they are shared internationally as the result of agreement among a number of countries that formerly had
differing criteria.

The Common Criteria standard [CC 2005] contains

 Enumeration of security functionality (e.g. authentication, logging)

 Evaluation Assurance Levels (EAL) 1 (low) through 7 (high) calling for increased levels of
documentation, formality, and testing

 Methods to be used by those doing the evaluations and certification

Associated with the Common Criteria are a set of Protection Profiles – standard minimal security requirements,
usually lists of required functionality – for a number of kinds of software.

Historically, the Common Criteria and associated Protection Profiles have identified security-oriented
functionality to be required of systems [Common Criteria v.3.0, Part 2] – along with an assessment and
valuation process. The Common Criteria now also calls for self-protection and non-bypassability of security
functionality as well as protection for the boundaries between trust domains – that is between areas with
different required security properties or, in practice, different ownership (or different top-level entity
responsible for security). [CC 2005, Part 3 pages 96-101]

3.3.6.4.2 FIPS 140 Certification of Cryptographic Software

The US Government National Institute for Standards and Technology (NIST) performs certifications of
cryptographic software to standards set by Federal Information Processing Standard (FIPS) 140. This has
become a de facto standard for cryptographic software even beyond the US government and considered
essential by almost all knowledgeable users of such software.

3.3.6.4.3 BITS Certification

The Financial Services Round Table BITS certification program aims at achieving a set of security
functionality suitable for banking and financial services and a certification process simpler than that of the
Common Criteria. See http://www.bitsinfo.org/c_certification.html.

3.3.6.4.4 System Accreditation

The US DoD accreditation process applies to operational systems and is governed by DoD Instruction 5200.40,
DoD Information Technology Security Certification and Accreditation Process (DITSCAP)21 supplemented by
the DoD8510.1-M Application Manual.

On the civilian side of the US government, the National Institute for Standards and Technology has produced
NIST Special Publication 800-37 Guide for the Security Certification and Accreditation of Federal Information
Systems. [NIST Special Pub 800-37]

Internationally, ISO/IEC 17799:2005 Information technology. Code of Practice for Information Security
Management22 combined with ISO/IEC 27001 (formerly with UK standard BS7799-2:2002) form a basis for
an Information Security Management System (ISMS) certification (sic) of an operational system.

21 NIACAP covered in Section 5 is also used within DoD

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

43

3.3.6.4.5 Professional Certification

The safety community (e.g. commercial aviation) has utilized certification (or licensure) of key personnel as
part of its approaches. A number of computer security certifications exist from management-oriented ones to
technical ones about specific products – for example, certifications from the International Information Systems
Security Certification Consortium (ISC)2 and the SANS Institute. Unfortunately, these so far have concentrated
on network and organizational security.

Likewise, several software engineering-related certifications exist but have no significant coverage of security
issues. Security, however, is beginning to take a more prominent place in vendor certifications such as the
Microsoft Certified Application Developer (MCAD) and Solution Developer (MCSD) certifications where
optional examinations now exist specifically focused on security.

3.4 Basic Software System Security Principles
Saltzer and Schroeder published their list of principles in 1975, and they remain valid. [Saltzer and Schroeder
1975] Everyone involved in any way with secure software systems needs to be aware of them. Most of the list
below follows the principles proposed by [Saltzer and Schroeder 1975] and liberally quotes edited selections
from that text. [Viega and McGraw 2001] has a particularly accessible discussion of many of them. These
principles have relevance throughout secure software development and sustainment including requirements;
design; construction; and verification, validation, and evaluation.

They cover a number of topics. Several principles help in reducing the number of opportunities for violations.
As opportunities or possibilities for violations cannot always be eliminated, steps need to be taken to ensure
users properly utilize security and efforts toward security are expended in the best places. To reduce the
uncertainties related to the adequacy or correctness of the software system, the portion of the system and
mechanisms ensuring security should be as small and simple as practicable and the be thoroughly reviewed
and analyzed.

Defenses and protection may not be perfect, and violations will occur. For follow-up, learning, and
improvement records of what occurred are needed. In addition, requiring multiple successes by an attacker
before substantial damage results can increase time or effort attacker needs to expend and provide some
tolerance for vulnerabilities or weaknesses.

3.4.1 Least Privilege
Least privilege is a principle whereby each entity (user, process, or device) is granted the most restrictive set of
privileges needed for the performance of that entity’s authorized tasks. Application of this principle limits the
damage that can result from accident, error, or unauthorized use of a system. Least privilege also reduces the
number of potential interactions among privileged processes or programs, so that unintentional, unwanted, or
improper uses of privilege are less likely to occur.

3.4.2 Complete Mediation
Every access to every (security-sensitive) object must be checked for proper authorization; and access denied if
it violates authorizations. This principle, when systematically applied, is the primary underpinning of the
protection system, and it implies the existence and integrity of methods to (1) identify the source of every
request, (2) ensure the request is unchanged since its origination, and (3) check the relevant authorizations. It
also requires that design proposals to allow access by remembering the result of a prior authority check be
examined skeptically.

22 Expected to become part of the 27000 series.

3 Fundamental Concepts and Principles

44

3.4.3 Fail-Safe Defaults
This principle calls for basing access decisions on permission rather than exclusion. Thus, the default situation
is lack of access, and the protection scheme identifies conditions under which access is permitted. To be
conservative, a design must be based on arguments stating why objects should be accessible, rather than why
they should not.

3.4.4 Least Common Mechanism
Minimize the security mechanisms common to more than one user or depended on by multiple users or levels
of sensitivity. Whenever the same executing process services multiple users or handles data from multiple
security levels or compartments, this potentially creates an opportunity for illegitimate information flow. Every
shared mechanism (as opposed, for example, to non-communicating multiple instances) represents a potential
information path between users or across security boundaries and must be designed with great care to ensure
against unintentionally compromising security. Virtual machines each with their own copies of the operating
system are an example of not sharing the usage of the operating system mechanisms – a single instance is not
common across the users of the virtual machines. Thus, one desires the least possible sharing of common
mechanisms (instances).

3.4.5 Separation of Privilege
A protection mechanism that requires two keys to unlock it is more robust and flexible than one that allows
access to the presenter of a single key. By requiring two keys, no single accident, deception, or breach of trust
is sufficient to compromise the protected information.

Redundancy is also used in the traditional “separation of duties” in human financial processes, e.g. the persons
who fill out the check and sign it are two different people.

3.4.6 Psychological Acceptability
It is essential that the human interface be designed for ease of use, so that users routinely and automatically
apply the protection mechanisms correctly.23

3.4.7 Work Factor
The cost of performing to a hiher level of quality or of a countermeasure to eliminate or mitigate a
vulnerability should be commensurate with the cost of a loss if a successful attack were to otherwise occur.
Generally, the more valuable the asset targeted by an attacker, the more effort and resources that attacker is
willing expend, and therefore the most effort and resources the defender should expend to prevent or thwart the
attack.

3.4.8 Economy of Mechanism
 “Keep the design as simple and small as possible” applies to any aspect of a system, but it deserves emphasis
for protection mechanisms, since design and implementation errors that result in unwanted access paths may
not be noticed during normal use.

3.4.9 Open Design
Security mechanisms should not depend on the ignorance of potential attackers, but rather on assurance of
correctness and/or the possession of specific, more easily protected, keys or passwords. This permits the

23 Usable security is a significant issue and is addressed in both the Requirements and Design sections.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

45

mechanisms to be examined by a number of reviewers without concern that the review may itself compromise
the safeguards.

The practice of openly exposing one’s design to scrutiny is not universally accepted. The notion that the
mechanism should not depend on ignorance is generally accepted, but some would argue that its design should
remain secret since a secret design may have the additional advantage of significantly raising the price of
penetration. The principle still can be applied, however, restricted to within an organization or a “trusted”
group.

3.4.10 Analyzability
Systems whose behavior is analyzable from their engineering descriptions such as design specifications and
code have a higher chance of performing correctly because relevant aspects of their behavior can be predicted
in advance. In any field, analysis techniques are never available for all structures and substances. To ensure
analyzability one must restrict structural arrangements and other aspects to those that are analyzable.24

3.4.11 Recording of Compromises
If a system’s defense was not fully successful, trails of evidence should exist to aid understanding, recovery,
diagnosis and repair, forensics, and accountability. Likewise, records of suspicious behavior and “near misses”,
and records of legitimate behaviors can also have value.

3.4.12 Defense in Depth
Defense in depth is a strategy in which human, technological, and operational capabilities are integrated to
establish variable protective barriers across multiple layers and dimensions of a system. This principle ensures
that an attacker must compromise more than one protection mechanism to successfully exploit a system.
Diversity of mechanisms can make the attacker’s problem even harder. The increased cost of an attack may
dissuade an attacker from continuing the attack. Note that multiple less expensive but weak mechanisms do not
necessarily make a stronger barrier than fewer more expensive and stronger ones.

3.4.13 Treat as Conflict
Because many software-security-related issues and activities concern a conflict pitting the system and those
aiding in its defense against those who are attacking or may attack in the future, one needs to bring to the
situation all that one can of what is known about conflicts. This includes recognizing when attacks in the
computer security arena are part of a wider conflict. Below are some of the key concepts.

3.4.13.1 Intelligent and Malicious Adversary
As enumerated in Section 2, the threats or hazards faced may come from a number of sources including
intelligent, skilled adversaries. When possession, damage, or denial of assets is highly valuable to someone
else, then considerable skill and resources could be brought to bear. When poor software security makes these
actions relatively easy and risk free, even lower value assets may become attractive.

One cannot simply use a probabilistic approach to one’s analyses because, for example, serious, intelligent
opponents tend to attack where and when you least expect them – where your estimate of the probability of
such an attack is relatively low.25

24 Certainly one would never want a critical structure such as a bridge to be built using a structural arrangement whose
behavior could not be analyzed and predicted. Why should this be different for critical software?
25 In theory, game theory techniques that do not require the probabilities to be known could be applicable, but little progress
has been made in practice.

3 Fundamental Concepts and Principles

46

Where judging risks is difficult, one possible approach is to make them at least not unacceptable (tolerable)
and “as low as reasonably practicable” (ALARP).26 In employing the ALARP approach, judgments about what
to do are based on the cost-benefit of techniques – not on total budget. However, additional techniques or
efforts are not employed once risks have achieved acceptable (not just tolerable) levels. This approach is
attractive from an engineering viewpoint, but the amount of benefit cannot always be adequately established.

3.4.13.2 Security is a System, Organizational, and Societal Problem
Security is not merely a software concern, and mistaken decisions can result from confining attention to only
software. Attempts to break security are often part of a larger conflict such as business competition, crime and
law enforcement, social protest, political rivalry, or conflicts among nation states, e.g. espionage. Specifically
in secure software development, the social norms and ethics of members of the development team and
organization as well as suppliers deserve serious attention. Insiders constitute one of the most dangerous
populations of potential attackers, and communicating successfully with them concerning their responsibilities
and obligations is important in avoiding subversion or other damage.

3.4.13.3 Measures Encounter Countermeasures
Despite designers’ positive approach to assuring protection, in practice one also engages in a software
measure-countermeasure cycle between offense and defense. Currently, reducing the attackers’ relative
capabilities and increasing systems’ resilience dominates many approaches. Anonymity of attackers has led to
asymmetric situations where defenders must defend everywhere and always,27 and attackers can chose the time
and place of their attacks. Means for reducing anonymity – thereby making deterrence and removal of
offenders more effective – could somewhat calm the current riot of illicit behavior.

3.4.13.4 Learn and Adapt
The attack and defense of software-intensive systems is a normal but not a mundane situation; it is a serious
conflict situation with serious adversaries such as criminal organizations, terrorist groups, and nation states,
and competitors committing industrial espionage. Serious analyses of past and current experience can improve
tactics and strategy.

One should not forget how to be successful in conflicts. While it is difficult to state the principles of conflict in
a brief manner, some principles exist such as exploiting the arenas in which the conflict occurs; using initiative,
speed, movement, timing, and surprise; using and trading-off quality and quantity including technology and
preparation; carefully defining success and pursuing it universally and persistently but flexibly; and hindering
adversaries.

3.4.14 Tradeoffs
Tradeoffs exist between security and efficiency, speed, and usability. For some systems, other significant
tradeoffs with security may also exist. Design decisions may exacerbate or ease these tradeoffs. For example,
innovative user interface design may ease security’s impact on usability. [Cranor 2005]

Attempting defense in depth raises the tradeoff between fewer layers of defenses each constructed with more
resources or more layers each costing less resources. An attacker may overcome several weak lines of defense
with less difficulty than fewer but stronger lines of defense.

26 ALARP is a significant concept in UK law, and an excellent engineering-oriented discussion of it appears in Annex B of DEF
STAND 00-56 Part 2 [Ministry of Defence 2004b]
27 Defending everything may not be possible or may waste resources. “He who defends everything defends nothing.” –
Frederick II

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

47

Business tradeoffs also exist (or are believed to exist) for software producers between effort and time-to-
market, and security. Finally, producers want users and other developers to use features, especially new
features, of a product but the likelihood of this is reduced if these are shipped “turned off”.

3.5 Safety and Security
In recent years, the software safety community has more examples of successful experience with producing
high-confidence software than does the software security community. The safety community’s experience
provides lessons for software security practitioners, but the engineering safety problem differs from the
security one in a critical way – it presumes non-existence of maliciousness. Today, security is a concern for
most systems as software has become central to the functioning of organizations and much of it is directly or
indirectly exposed to the Internet or to insider attack as well as to subversion during development, deployment,
and updating. While safety-oriented systems so exposed now must also face the security problem, this
subsection speaks of traditional safety engineering that does not address maliciousness.

3.5.1 Probability versus Possibility
The patterns of occurrences of “natural” events relevant to safety are described probabilistically for
engineering purposes. The probability of a natural event contrasts with the need for concern for the possibility
of an intelligent, malicious action. This distinction is central to the difference between facing safety hazards
versus security threats (threatening entities, events, and consequences).28

3.5.2 Combining Safety and Security
When both are required, a number of areas are candidates for partially combining safety and security
engineering concerns including:

 Goals,

 Solutions,

 Activities,

 Assurance case:

– Goals/claims,

– Assurance arguments,

– Evidence,

 Evaluations.

The SafSec effort provides guidance on one way to do this. [SafSec Standard] [SafSec Guidance]

28 To some in the safety community, a main distinction is not just probability/accidents vs. possibility/attacks but rather,
whether human life (or substantial assets outside the system under scrutiny) is threatened in case of a malfunctioning system
(which may malfunction due to accidents, attacks, or whatever). Since spies and soldiers have died because of security
compromises, this clearly is a thought emphasizing the asset of most immediate concern. On one hand (safety), the system is
visualized as affecting the real world causing hazards to be actualized and, on the other hand (security), as protecting the
integrity, confidentiality, or availability of computerized data or computing processes. However, since in both cases the key
cost elements are the real-world consequences, this distinction can be overstated.

3 Fundamental Concepts and Principles

48

3.6 Secure Software Engineering
The subsection covers several specific areas of fundamental knowledge about secure software engineering
required across development, sustainment, reuse, and acquisition. [Gasser 1988, Chapters 1-4] [Bishop 2003,
Chapters 1-2] Generally, engineering disciplines have knowledge of (1) the “right ways” to perform and (2)
pitfalls or weaknesses – this is true for both the engineers and their products. While much of recent attention in
software security has been on the latter, those doing secure software need to know both..

3.6.1 Stakeholders
Software system security-related development or evolution decisions can have a number of stakeholders who
impose constraints or otherwise have a “stake” in the security of the system. A given development will
typically have stakeholders from several of the following categories:

 National (possibly multiple nations’) and international laws, regulations, treaties, and agreements

 Specific communities (such as government or the banking industry)

 Integrators of the software system into a larger product (e.g. OEMs or enterprise-wide application
developers)

 Authorized units within an organization

 Sources of security-related policies (e.g. security, personnel, procurement, and marketing policies)

 Decision makers regarding acquisition and usage for software systems (including RFP writers and
issuers as well as makers of final decision to acquire)

 System owners and custodians

 Owners and custodians of items in the system (e.g. data)

 Entities about whom the system contains information (e.g. customers and suppliers)

 System administrators

 Incident investigators, counter-intelligence, and forensic personnel

 End users

 Any non-users whose computational performance, results, or property might be impacted – e.g.
entities whose software is executing on the same computer or on computers networked with it

 Standards bodies

 Software certifiers and system accreditors

 Software developers

 The general public

 The attackers

The stakeholders mentioned in the last bullet are important stakeholders who certainly “impose constraints or
have interests involved”. The existence and characteristics of potential or actual attackers strongly influences
decisions. A given development effort may have more or less of these stakeholders involved, but it is the
potential attackers and loss sufferers who make security a concern.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

49

3.6.2 System Security Policy
Security policies for a system specify legitimate, secure states (or sometimes histories) of a system – or,
alternately, illegitimate, insecure states. Conceptually, the required security properties determine these
constraints on the software system states or behavior. For software, however, since the required security
properties typically concern assets and actors plus conditions and context, they may require restatement or
derivations in terms of the systems contents and the software’s role and design.

In addition, organizations may have security policies where some contents do not map to these emergent
properties of the system, but instead require, constrain, or prohibit the use of certain mechanisms, techniques,
or products. While the system must also conform to these policies, they do not present the same design and
verification difficulties as emergent properties such as integrity or non-bypassability.

The security policy for a system is partially derived from the societal (e.g., laws and regulations),
organizational, and larger, encompassing system policies as well as the effects of interfacing systems. The
remainder of a system’s security policy is composed of particular policies needed for a specific system.

System security policies are based in part on organizational security policies that may address a long list of
areas, including a policy requiring use of a secure software engineering process. Organizational security
policies are covered in Section 4, Ethics, Law, and Governance.29

System security policies usually define the ways in which information processed by the system is allowed to
(constrained to) be handled and the ways in which the system are allowed to interact with users. System
security policies cover such areas as:

 Confidentiality of the information, and integrity
and availability of both the system and the
assets it contains;

 Identification and authentication of users (which
may be humans or software processes);

 Access control (i.e., control of access to
information and other system resources) and
authorization of users (i.e., granting and
revoking of rights/privileges to access system
resources and information assets);

 Accountability of users for actions they perform
while using the system, and non-repudiation by users of their actions

 Administration of system

 Self-protection of software

 Use of cryptography in the system;

 Forensics for tracing user activities.

The security policy for a system often includes elements stated in access control policies. A number of
conceptual access control policies exist. [Bishop 2003, p. 381-406] These policies can be used individually or
in combination and may have a variety of mechanisms to support them. Some well-known kinds of generic
access control policies include those shown in the text box at the right.

From a requirements viewpoint, important areas addressed by the software system’s security policy may
include:

29 Areas potentially covered by organizational security policies are listed in subsection 4.4.4.

Generic Access Control Policies
• Discretionary access control (user control or

ownership of privileges, e.g. control of access
privileges for items user creates)

• Mandatory access control (privileges never
changeable by users – as opposed, for example. to
system administrators)

• Role-based access control

• Workflow access control

• Chinese wall access policy (once one accesses on
one side of the wall one cannot access on the other
thereby avoiding conflicts of interest)

• High latency transactions with
provisions/prerequisites and obligations (e.g. credit
card transactions)

3 Fundamental Concepts and Principles

50

 Data protection.

 Identification and authentication.

 Communication security.

 Accountability.

 Self-protection of the system’s software and hardware.

 Underlying functionality such as random number generation and time stamping.

A single system may be governed by several security policies.

System security policies may be layered from the more general to the more (application) specific. The
mechanisms supporting policy enforcement may also be layered, for example, with a bottom separation layer
providing information flow and data isolation facilities that higher layers can use to define and enforce
policies—such as application specific policies.

Separate policies may exist across a distributed system requiring their composition or reconciliation.

3.6.3 Specification Properties
Security properties in the software system’s security policy may be stated in terms of assets and entities – often
by categories of assets or entities. At the technical level, a software system functionality or property might be
formally reflected in a specification as a:

 Safety property: restriction on allowed system states;

 Liveness property: system states that it must reach; required progress or accomplishment;

 Information flow property: restricting flows of information.

Often it is necessary or convenient to state some security specifications in terms of information flow
constraints or specifications [McLean 1994] including:

 Access control mechanisms and policies,

 Restrictions on information communicated,

 Noninterference,

 Separation properties,

 Covert channels limitations.

Thus, specifications of required security properties can be stated as properties (conditions or constraints) that
must be true of the system, and the system’s functionalities’ behaviors might be specified as comparable
properties allowing verification of the compliance of behavior with required security properties.30

3.6.4 Security-Related Architectural Concepts
General security-related architecture concepts include:

 Identities should be known for the entities involved and their privileges or authorizations must be
known or able to be established

30 If specified formally, this can allow static analysis of conformity of designs and code potentially adding creditable assurance
evidence.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

51

 Software systems should detect legitimate and illegitimate actions, recording both, and report, block,
hinder, or make other effective responses to illegitimate actions: e.g., notification (e.g., alarm) and
audit log.

 Tolerance may exist for some bad events including security violations: e.g. intrusion tolerance, fault
tolerance, robustness (input tolerance), and disaster recovery. Achieving tolerance is discussed several
places in this document.

While it provides no guarantees, deception may be useful for aiding concealment, intelligence gathering, and
wasting an attacker’s resources.

3.6.4.1 Identification and Authentication
Preservation of properties that specify who is allowed to do what requires good identification of the entities
involved particularly the actors (e.g. user, process, or device). An initial identification might be done by the
entity claiming an identity, by inference, from meta-data, or by recognition. Authentication is the verification
of the initial identification of an entity, often as a prerequisite to determining the entity’s authorization to
access resources in a system. Authentication involves evidence used for the verification – authenticators. An
authenticator may be something the entity knows or possesses the context or location of the entity, or an
inherent characteristic of the entity. Authentication may be strengthened by requiring additional authenticators
of the same or different kinds (e.g. two passwords or a password and a smartcard).

Neither confidentiality nor integrity can be achieved unless the identities of all actors (human and process) that
interact with or operate on the object to be secured (software or data) can be firmly established – i.e.,
authenticated – and only allowable actions conforming to their access privileges or authorizations are possible.

3.6.4.2 Detect and Respond
Detection of an error state, or attempted or actual security policy violation is needed before action, e.g.
notification or logging as such. A mechanism identified early in the history of software security is the

 Reference monitor – software module that enforces the authorized access relationships on every
access request (reference) and whose implementation must be [Anderson 1972]

– Tamper proof

– Always invoked

– Small enough to be subject to analysis and tests, the completeness of which can be assured

The idea was to have every request for access in the system (Complete Mediation) checked by a relatively
small part of the system (Economy of Mechanism). Using only a single module or centralizing authorization
information has scalability and manageability problems. This has lead to:

 Distributed access control,

 Layered access control.

The latter may rely on a

 Layered software system structure.

 Distributed access control

 Layered access control

The latter may rely on a

 Layered software system structure

Table 6: Tolerance-related Activities

• Forecasting violations

• Detection of violations

• Notification

• Damage isolation or confinement

• Continuing service although possibly degraded

• Diagnosis of vulnerability

• Repair

• Recovery of the system to a legitimate state

• Recording

• Tactics that adapt to attackers’ actions

3 Fundamental Concepts and Principles

52

With or without layered access control mechanisms, such layered structure is often considered critical to
effective software system assurance.

Related mechanisms deriving from network security include firewalls, intrusion detection systems, and
intrusion prevention systems. [NSA 2002, Chapter 4]

3.6.4.3 Tolerance
Despite best efforts, one’s software may not able to perform correctly or be suitable in unforeseen
circumstances. For this reason, intrusion tolerance, fault tolerance, and input error tolerance (called by some
robustness) are important concepts. [Avizienis 2004] The principles of Failsafe Defaults and Separation of
Mechanisms are aimed at providing kinds of tolerance. Table 6 lists general Tolerance. Thus, one has

 Tolerance to (partial) attacker success – including “self healing” approaches

This may include automated system recovery.

3.6.4.4 Adaptive Response
Run-time adaptive defense can include moving processing elsewhere, switching to another copy of data, and
changing levels of trust of objects and subjects including changing access rights because of their behavior.
Intrusion tolerance can be aided by adaptive defenses. This includes

 Adaptive distributed reconfiguration responses to attacks [MAFTIA]

These adaptive responses approaches can be a possible approach to tolerance.

3.6.4.5 Deception
While deception should never be relied on exclusively, it has useful purposes such as gathering intelligence
and misleading attackers to deter or confuse them or to cause wasting of their time and resources.

3.6.4.6 Sensitivity-related Separation
Many approaches attempt to keep data with different levels or compartments of sensitivity separated logically,
physically, or by different encryptions. Users or access requestors are also often grouped by shared privileges
or “levels of trust”. Different rules or policies regarding security may be applied in different “trust domains”
separated by explicit boundaries.

Several schemes exist for hierarchical multi-level or “horizontal” multi-lateral security where each level or
compartment differs in the sensitivity or degrees of integrity of the assets it contains. Mandatory access control
is often used for levels. [Neumann 1995] discusses a number of approaches.

 Multi-Level Security (MLS): both a generic term for multiple levels of sensitivity being involved
within the same system and a name sometimes given to a specific scheme where all accesses are
checked by a single software trusted computing base;

 Multiple Independent Levels of Security (MILS): bottom separation layer providing information flow
and data isolation facilities so higher layers can define and enforce policies themselves [Vanfleet
2005];

 Multiple Single Levels of Security (MSLS): no intermixture,

To avoid the need for sensitivity-related separation some systems have been operated as

 System high – the entire system contents are treated as if they have the sensitivity of the most
sensitive

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

53

In addition, information crossing the boundary between security domains with different policies (or in practice
ownership) raises potential problems for both the originating domain (Should it be allowed to leave? Does it
need to be encrypted first?) and the receiving one (Can it be trusted? How should it be handled?).

 Guards may be placed on one or both sides of a trust domain boundary (e.g. filters, guardians, or
firewalls)

One particular problem is that information already encrypted – say to gain the benefits of end-to-end
encryption – cannot be directly inspected at the boundary. Providing cross-domain solutions has become a
niche area.

3.6.4.7 Damage Confinement and Isolation
If error states or damage occurs, one mitigation approach is to limit the potential damage by localizing it or
reducing its size or effects. This may be done by detecting errors and ensuring correct values rather than the
errors propagate to the rest of the system or externally. It can also be done, for example, by making valuable
assets unavailable online.

3.6.4.8 Information Flow
Systems that must support information flow between two or more domains (with different security policies – or
in practice ownership) must also control information flow among multiple security or sensitivity levels or
divisions.

Consistent with the Bell-LaPadula
security model [Bell-LaPadula] in
multiple-level information systems
information is allowed to flow freely
from lower (less sensitive)
confidentially domains to higher
confidentiality ones and from higher
integrity ones to lower integrity ones.
The diagram at right shows the
combined effects of these rules by
showing the legitimate directions for
information flows. Flowing the other
ways, however, normally requires
explicit actions to downgrade
confidentiality level (e.g.
declassification) or upgrade known integrity level (e.g. validation of input).

The following are mechanisms that may be used for information flows or accesses within or across domain
boundaries.

 Compartmentalization via:

– Virtual machines,

– Separation via encryption,

– Physical separation,

– Separation except at point of use,

– Filters, guardians, and firewalls

– Access control sub-system (e.g. reference monitor module)

Legitimate
Dataflow

Directions
High Integrity Low Integrity

High Confidentiality

Low Confidentiality

3 Fundamental Concepts and Principles

54

3.6.4.9 Access Control
There are a number of access control concepts, policies, and issues. [Bishop 2003, p. 381-406] [Gasser 1988,
Chapter 6] Policies can be used individually or in combination. In addition to the generic access policies listed
earlier, concepts and issues include:

 Access control process and mechanisms;

 Access control in distributed systems/databases;

 Disclosure by inference;

 Potential exploitation of access control to create possibilities for disclosure by unusual or covert
channels (e.g. variations in the timings of actions).

See above in System Security Policy for generic access control approaches.

3.6.4.10 Cryptography
Basic cryptographic concepts include [Anderson 2001 p. 5] [Bishop 2003 Chapter 9-11]:

 Symmetric key encryption: same key used to encrypt and decrypt;

 Public key encryption: publicly known key used to encrypt and secret key used to decrypt;

 Key management: methods used to originate, distribute, and revoke keys; and identify their
possessors;

 Hashing: applying a difficult to reverse function;

 Non-repudiation: impossible to deny performing action, e.g. message encoding contains undeniable
evidence identifying who sent it;

 Secret sharing: method of splitting secret among parties31.

Cryptographic techniques can help preserve confidentiality and integrity as well as ensuring authenticated
entities and non-repudiation. These capabilities are also provided through access control and audit logging.
Thus, one can sometimes substitute encryption for access control (e.g. during network transfer of data where
access control of eavesdropping may be impossible) or serve as a second line of defense.

At least three types of cryptographic expertise are essential. These are:

1. Producing software to encrypt, decrypt, sign, etc.,

2. Cryptographic protocols,

3. Cryptographic issues in system design.

All of these are areas of specialization. Experience shows the first two contain excessive risks if performed by
non-specialists.32 As a result, the domain knowledge for producing cryptographic software was deemed out the
scope of this guide.

Experience shows the third may also have dangers if done by non-experts. The security problems of early
versions of the IEEE 802.11 wireless protocol are an example. Developers of secure software, therefore,
necessarily need significant knowledge of the third. In situations new to the developer, however, expert help
can reduce risks as can review by experts.

31 “Secret sharing” is actually secret splitting in such a way that one must know t out of n parts to know the secret and, if one
knows fewer parts, one knows nothing about the secret.
32 While presumably produced by specialists and ready for certification, the US Federal government certifiers of cryptographic
software report that substantial fractions of submittals have serious problems and 90% have some problem. (CCUF II 2005)

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

55

3.6.5 Secure Software Development Activities
Three things aid in reliably producing secure software: [Redwine 2004, p. 3]

1. Outstanding software engineering (including development, testing, and sustainment) performed by
skilled people using sound techniques and tools;

2. A sound mastery of the relevant security expertise, practices, and technology;

3. The expert management required to ensure the resources, organization, motivation, and discipline for
success.

These implicitly imply an organizational culture that integrates concerns, activities, and rewards for secure
software.

Across these aspects, skilled people may be the most significant. Achieving these skills, however, requires
considerable knowledge beyond that already required for simply a good software engineering process.

Determining whether developers have the requisite knowledge and expertise in secure software development,
however, is still a challenge. With a few exceptions, there are no professional certifications for secure software
engineering or secure programming33. By contrast with software security practitioners, the safety community
(e.g., commercial aviation) has used certification (or licensure) of key personnel for quite a while in order to
ensure the qualification of its system developers, managers, and maintainers.

Similarly, in the information security realm, a number of certifications exist for managers, auditors, and
engineers. These include both general information security certifications, and security certifications related to
specific products. The former include such certifications as those from the International Information Systems
Security Certification Consortium (ISC)2 and the SANS Institute, as well as a number of other certifying
bodies34. So far, these certifications have concentrated on network and organizational security, though (ISC)2
now offers an Information Systems Security Engineering Professional (ISSEP) concentration for holders of its
Certified Information Systems Security Professional (CISSP) certification.

Finally, several software engineering-related certifications exist but include no significant coverage of security
issues. Security, however, is beginning to take a more prominent place in specific vendors' certifications, such
as the Microsoft Certified Application Developer (MCAD) and Solution Developer (MCSD) certifications;
optional examinations specifically focused on security now exist for aspirants to these certifications.

This guide presumes knowledge of software engineering activities where security and safety are not concerns.
For secure software development, however, a number of activities are new or significantly modified. Table 7
lists activities used by one or more secure software processes.

33 Noteworthy exceptions include the EC-Council Certified Secure Programmer (ECSP) and Certified Secure Application
Developer (CSAD) certifications offered by the International Council of Electronic Commerce Consultants (E-Council).
34 The Information Systems Security Association lists a number of professional security certifications on their website, at
http://www.issa.org/certifications.html.

3 Fundamental Concepts and Principles

56

In practice these vary depending whether a heavyweight development process is used [Hall 2002a] [NSA 2002,
Chapter 3], a lightweight one as in [Viega 2005], [Lipner 2005a], [Howard 2002], and [Meier 2003] or one
especially for the problems of legacy software [Viega 2005, p. 40] and [Meier 2003, p. lxxxi].35 See the
Process section for details.

Generally, the kinds of activities done in heavyweight processes are a modest superset of lightweight processes
but with many activities performed with considerably more rigor. The activities used remedially for legacy
software are usually similar to a subset of the lightweight ones. [Viega 2005, p. 40] [Meier 2003, p. lxxxi] Note
that legacy software may eventually require more serious rework such as major redesign.

Some activities on the list primarily are performed for systems with high security requirements, e.g. covert
channel analysis. This list does not reflect the full impact of security on activities. In practice, concern for
security affects performance of virtually every activity including, for example, consideration of security in all
technical reviews. These activities and effects on other activities must be included in planning and tracking.

Furthermore, production needs to be performed in an appropriately secure work environment and a well-
secured development system with the appropriate controls. Two aspects of producing secure software are the
security of production and the security provided by the finished product. The former needs to be at least as
good as the intentions for the latter. While this guide addresses the latter part in greater length, the first part –
subverting the software during production and deployment – as explained in the Dangers section, software
producers may not neglect this. Thus, production and deployment need to be:

 Done in a secure environment operated securely, preferably providing counter-intelligence and
forensic support;

35 The first books enumerating steps to produce software appeared in the early 1960’s – if not earlier. Software process has
been an active area of work in industry, research, and government ever since – within this has been significant work on
processes for high-dependability systems. Today, a plethora of books contain general-purpose practices and processes.
These range from lightweight processes placing few requirements on developers to heavyweight ones that provide a high
level of guidance, discipline, and support. [Boehm 2003] Generally and not surprisingly, success in producing high-
dependability systems aimed at safety or security has been greater with software processes closer to the heavyweight end of
the spectrum and performed by highly skilled people.

Table 7: Secure Software Engineering Activities

• Adequately identify and characterize assets, and possible
dangers or threats to them

• Analyze dangers or threats, and defenses or mitigations

• Develop security policy(ies) that meets user,
organizational, and societal requirements; and formalize
them

• Develop a formal top-level specification

• Show top-level specification agrees with security policy

• Develop a security test plan

• Develop an implementation of the system based on the
top-level specification providing assurance case with
argument and evidence (preferably including proofs) that
 Design

 Agrees with top-level specification and security
policy

 Contains only items called for in top-level
specification

 Lacks vulnerabilities to identified threats
 Code

 Correspondences to design and security policy
 Contains only items called for in design

 Lacks vulnerabilities to identified threats

• Perform penetration testing and test security functionality

• Provide a covert channel analysis

• Perform ongoing monitoring of security threats, needs,
and environment

• Provide assurance case including arguments and
evidence showing software system meets security
requirements

• Perform changes securely maintaining conformance to –
possibly revised – security requirements while continuing
to provide complete assurance case

• Deploy securely
 Initially
 Updates

• Certify software

• Accredit operational system

• Provide for secure
 Support services
 Outsider reporting of vulnerabilities

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

57

 Possessed of an adequate set of trustworthy tools that have been received, installed, stored, updated,
and executed securely;

 Performed by trustworthy people;

 Placed under appropriate controls against inside and outside mistakes, mishaps, and malicious actions.

In addition, adequate assurance must exist that these are true.

Security-related aspects also need to be assessed and improved, for example by:

 Collecting and analyzing security-related measurements;

 Improving security-related:

– Processes,

– Personnel-related activities and skills,

– Artifact quality.

Merely a strong desire for suitable and correct products and services would be sufficient motivation for many
of these activities. However, security needs such as privacy provide even more motivations as well as new
requirements for production and products. Because of this, some effective organizations establish processes
across the organization that integrate security concerns and reuse them.

3.6.6 Security Functionality
Certain kinds of functionality are usually required in secure systems. Among the most common are:

 Identity management of users,

 Access control mechanisms,

 Cryptographic functionality,

 Logging and auditing,

 Control of data flows (e.g. in and out),

 Security administration,

 Malware detection

 Facilities for secure installation and updating,

These other kinds of security functionality identified in [SCC Part 2 2002] and [Common Criteria v.3.0 2005,
Part 2]. Common Criteria also calls for self-protection and non-bypassability of security functionality, and
protection for boundaries to domains of trust. [Common Criteria v.3.0 Part 3, page 96-101]

Design of security functionalities needs to consider whether the security functions will operate individually or
in combination, and whether there are any potential conflicts between the security functions. Security functions
may be centralized or decentralized. If COTS and other reusable software or systems are available that
implement required security functionality, the characteristics, and appropriate use of those reusable functions
need to be carefully considered. See Section 13, Acquisition, for a discussion of this.

3.6.7 Database Security
Databases are parts of many systems with security requirements. Many of the design issues involve
establishing proper security access policies. Secure databases are their own subject. [Bertino 2005] provides an
introduction to database security concepts as does [Guimaraes 2004] on teaching database security.

3 Fundamental Concepts and Principles

58

3.6.8 Security Risk Management for Software
Producing software that is (more) secure is easier to if risk management activities and checkpoints are
integrated throughout the development lifecycle. As discussed earlier software is in danger all its life, and the
assurance case provides a framework for organizing and addressing risks.

A risk is an expectation of loss expressed in terms of the probability that a particular bad event or consequence
will occur. Although in security-oriented situations the probability may be unknown or unknowable and
calculations must be simply from consequences, this is usually, nevertheless, folded under the rubric of “risk
management”. Software in which the damage an exploit might cause is quite substantial – i.e., the result would
be financial devastation, loss of personal freedom, damage to health, or loss of life – is sometimes referred to
as life-critical or mission-critical software, or “high-consequence software”. Such software may include
software in large systems, and restitution or recovery could be prohibitively expensive or practically
impossible such as in electronic voting or military command and control.

Security-related risks or consequences exist across the entire lifespan of software. Two ways exist to address
these. One is to identify all those items or activities that must be performed properly to ensure meeting security
requirements. The second is to attempt to identify all the (significant) things that might go wrong. These
parallel the knowledge mentioned above of (1) the “right ways” to perform and (2) pitfalls or weaknesses. As
labeled in the discussion of assurance cases, these are positive and negative approaches.

The assurance case is the underpinning for software-related security risk management. It addresses claims or
goals and risks or consequences related to them attempting to explicitly, rationally, and validly arrive at
conclusions regarding them – values and their uncertainties.

3.6.8.1 Assessment of Operational Risks
In discussing risks, risks during the operation of the software have often received the most attention. Attacks
on software during operations can lead to compromise either the data the software processes, the software
itself, or elements in the software's execution environment. The risk is often viewed as a threat entity will
exploit a particular vulnerability with a (harmful) result.

Threat analysis and vulnerability analysis will be discussed at length in the Requirements and Design section
respectively. As overview of one approach to risk management is provided next. This approach takes the
negative viewpoint and emphasizes identifying vulnerabilities over positively ensuring preservation of security
properties.

The objectives of this operational- and vulnerability-oriented software security risk assessment approach are to:

1. Identify all potential threats to the software, and rank them according to likelihood of exploitation and
severity and magnitude of impact. The potential of each identified vulnerability to compromise the
software itself, or to be exploited to compromise something else, should be captured in the risk
assessment;

2. Identify any residual vulnerabilities in the software and identify the changes to the software
requirements, design, implementation, or installation configuration that would eliminate or minimize
exposure of those vulnerabilities;

3. Estimate the cost of implementing each identified change compared to the amount of potential loss
that would result were the vulnerability to be exploited.

Information considered during the security risk assessment process might include:

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

59

 The nature of threats36 to software,

 How those threats manifest as attacks,

 The nature of the vulnerabilities that they are likely to target or exploit,

 The measures necessary to prevent the threats from targeting/exploiting those vulnerabilities,

 The nature of the computing environment in which the conflict takes place,

 The potential consequences both technical (e.g. disclosure) and real-world (e.g. loss of money or life)

The results of the risk assessment guide the risk management process, i.e., the process of identifying,
controlling, and eliminating or minimizing (i.e., “mitigating”) the uncertain events that may affect the security.
Eliminate the vulnerabilities identified in the risk assessment or minimize their exploitability or consequences.

Risk assessments should be performed iteratively throughout the software's lifecycle to maintain an accurate
understanding of current risk. Additional security requirements discovered during the design, implementation,
testing, and operation phases should be incorporated back into the requirements specification. Security
vulnerabilities found during testing should be analyzed to determine whether they originated with the system's
requirements, design, implementation, or operational configuration. Similar vulnerabilities should be looked
for throughout the software system (and elsewhere), Their root causes should be corrected to remove or
mitigate the risk associated with each kind of vulnerability. Risk assessment can also help prioritize and focus
resources.

Several software and system security risk assessment methods exist with some having supporting toolsets,
Methods include

 Microsoft’s threat modeling as described in [Swiderski 2004]

 Microsoft's ACE Threat Analysis and Modeling

 European Union-funded Consultative Objective Risk Analysis System (CORAS) and Research
Council of Norway-funded Model-Driven Development and Analysis of Secure Information Systems
(SECURIS)

 PTA Technologies' Calculative Threat Modeling Methodology (CTMM),

 Trike

 NASA Reducing Software Risk program's Software Security Assessment Instrument (SSAI)

 CMU SEI's OCTAVE and OCTAVE-Secure (OCTAVE-S) [OCTAVE 2001]

 Siemens' and Insight Consulting's Central Computer and Telecommunications Agency (CCTA) Risk
Analysis and Management Method (CRAMM).

While not primarily intended for software, NIST's Draft SP 800-26 Revision 1, “Guide for Information
Security Program Assessments and System Reporting Form” (August 2005) and SP 800-30 “Risk Management
Guide for Information Technology Systems” (July 2002), supported by the NIST Automated Security Self-
Evaluation Tool (ASSET), may also be useful for performing software security risk assessments.

Some risks can be avoided or eliminated, for example by changing the software's design, components, or
configuration, or the configuration of its environment. However, unacceptable risks are likely to remain
become requirements that must be adequately handled by the software system.

36 The malicious developer who plants a Trojan horse back door and the hacker who exploits a buffer overflow vulnerability in
executing software are two examples of threats to software.

3 Fundamental Concepts and Principles

60

A combination of risk assessment methods can be applied to software throughout the development lifecycle.
After an initial risk assessment, deeper targeted assessments can be used to determine which components of the
software contribute to the existence of each risk, and which contribute to risk avoidance. Forward analysis can
identify the potentially dangerous consequences of a successful attack on the software, while backward
analysis can determine whether a hypothesized attack is credible. Applied iteratively through the development
lifecycle phases, these methods can help refine the understanding of risk with increasing degrees of detail and
granularity.

Specifically, the following aspects of the software should be examined and compared during its risk
assessment:

 Mission or business purpose, as captured in its needs statement;

 Objectives, as captured in its requirements specification;

 Structure and interfaces, as depicted in its architecture and design specifications;

 Behaviors, as revealed through analysis, history, or its security testing or evaluation.

After the initial risk analysis is performed, subsequent software lifecycle activities include the objective of
minimizing and managing those risks. This includes iteratively re-verifying that the risks have been correctly
understood and their required eliminations or mitigations have been adequately addressed. The outcome of
these re-verifications will refine the security specifications with specific security properties and mechanisms
that must be incorporated into the design, and implemented to mitigate acceptably these security risks.

Even after it has gone into production, periodic risk analyses can ensure that it continues to operate within
acceptable risk levels, or to determine whether changes need to be made to the requirement specification,
design, or implementation to mitigate or remove risks that may have developed over time or to address new
threats.

3.6.9 Domain Knowledge
This guide cannot, of course, enumerate the knowledge needed in all possible fields in which secure software is
needed. Nevertheless, adequate application domain knowledge is required of developers, sustainers, and
acquirers for proper evaluation of risks and production of a suitable secure system.

3.6.10 Product, Vendor, or Technology Specific Knowledge
Although detailed product or vendor-specific knowledge is not emphasized in this guide, computer and
software security are subjects where often “the devil is in the details.” Thus, projects must often have persons
with detailed product, vendor, or technology specific knowledge if adequately secure software is to result from
their efforts.

3.7 Security Properties Elaborated
Beyond what has been covered so far, this section covers additional conceptual material that should be part of
the knowledge of everyone involved or interested in software security. Progressively more in-depth treatments
of security properties are available in [Landwehr 2001], [Redwine2005a], and [Bishop 2003]. [Avizienis 2004]
contains information on characterization and categorization.

3.7.1 Confidentiality
Computing-related confidentiality topics include access control, encryption, hiding, intellectual property rights
protection, traffic analysis, covert channels, inference, and anonymity. The last four are discussed here.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

61

3.7.1.1 Traffic Analysis
The levels, sources, and destinations of communications traffic can sometimes be revealing even if the content
is encrypted. For example, traffic increases in organizations tend to foreshadow major events. The main issues
in traffic analysis are ease of detection and analyzability. Factors include concealment of origin and destination
of communications and the leveling or randomization of traffic volumes and message sizes. [Pfleeger and
Pfleeger 2003, p. 410, 453]

3.7.1.2 Covert Channels
Covert channels are “abnormal” means of communication using such means as timing of overt messages,
locations in messages not normally used (e.g. unused bits in packet headers), or (un)availability of resources to
convey messages. These may be ignored in low or moderate security situations. While covert channels based
on resources can potentially be eliminated, the objectives in high-security systems are usually to identify and
minimize covert channels of all kinds. Covert communication channels are measured by the bit rate that they
can carry. See [Bishop, p. 462-469], [NCSC 1993], and [NRL Handbook 1995, Chapter 8].

3.7.1.3 Data Aggregation Inference
Potential can exist to violate confidentiality or privacy by aggregating data whose individual disclosure would
not result in harm. Identity theft is often facilitated by the attacker aggregating data.

3.7.1.4 Inference
Confidential data may be inferable from other data that is available. One example is inferring individual data
by comparing data for different groups – an individual’s grade in a course can be calculated from the average
grade in the course and the average grade of everyone but the individual.

3.7.1.5 Anonymity
Anonymity can involve concealing one’s identity, activities, attributes, relationships, and possibly existence.
Issues include concealing the identity associated with particular data and who is communicating with whom
including determining that the same (but unidentified) entity is involved in two communications – linkage.
Desired or required privacy37 is one motivation for anonymity. [Cannon 2005]

3.7.1.6 Formal Security Models for Confidentiality
A formal security model is a mathematically precise statement of a security policy. Such a model must define a
secure state, an initial state, and how the model represents changes in state. The model must be shown to be
secure by proving the initial state is secure and all possible subsequent states remain secure. David Bell and
Leonard LaPadula of the MITRE Corporation defined the first formal model of confidentiality38, which stated
that if multiple hierarchical levels of confidentiality exist, then one cannot write higher confidentiality data into
lower confidential areas and one cannot from a lower confidentiality area read something at a higher level. See
[Bishop 2003, Chapter 5] for an extended exposition also including definitions of “basic” and “simple”
security.

A more modern (1980’s) model is non-interference. The two concepts are that no one at a lower level of
confidentiality should see behavior that (1) results in any way from any behavior at a higher level – non-
interference [Bishop 2003, p. 448-50] – or alternately (2) from which any information can be derived about
behavior at a higher level – probabilistic non-interference [Gray 1990].

37 Including protection from cyberstalking
38 David Elliott Bell and Leonard J. LaPadula, "Secure computer systems: mathematical foundations". MITRE Corporation,
1973 - and - "Secure computer systems: unified exposition and MULTICS interpretation". MITRE Corporation, 1976.

3 Fundamental Concepts and Principles

62

3.7.2 Integrity
To maintain system integrity one needs to keep the system in legitimate states or conditions. “Legitimate” must
be specified – an integrity security policy could be conditional. For example, it might be allowable for the
system to enter otherwise illegitimate states during a transaction, as long as it returns to a legitimate state at the
end of the transaction. Early on Biba establish a fundamental integrity property [Biba 1977] and [Clark and
Wilson 1987] provides a discussion of commercially relevant integrity.

Two key sub-problems within integrity are:

 Has something changed?

 Were all of the implemented changes authorized?

Checking that data is unchanged can only have meaning in terms of the question, “Since when?” In practice,
this usually means that one must query, “Since in whose possession?” (This possession may or may not be at a
specified time.)

Kinds of items where proper privileges and authorization can be of concern include:

 Creating,

 Viewing,

 Changing,

 Executing,

 Communicating,

 Sharing

 Encrypting/decrypting

 Deleting/destroying.

In discussing integrity-related change authorizations, changes commonly concern:

 Credentials (evidence of identity and possibly other attributes),

 Privileges,

 Data,

 Software (possibly considered data),

 The point(s) or paths of execution,

 Time (e.g. resetting the system clock).

Sequence and structure can also be the concern of “integrity” properties. For example, transactional integrity
ensures that all parts of a transaction succeed, or none do—it is atomic. Relational integrity (in relational
databases) enforces that master-detail relationships are correctly maintained (e.g., if you delete a purchase
order, you delete related “detail” records such as purchase order lines enumerating items and quantities
ordered.). As mentioned, in 1977, K.J. Biba of the MITRE Corporation defined a mandatory integrity policy
model that provided a corollary to the Bell-LaPadula mandatory security model.39

3.7.3 Availability
Along with reliability, engineering for availability has a long history in computing. Many traditional
approaches and means of prediction exist, but all presume lack of maliciousness. (This is no longer so common
in the related area of disaster recovery.) As with all security properties, achieving a specified level of
availability is a more difficult problem because one must consider maliciousness. Some of the old approaches
and almost all the means of calculation no longer work.

39 K. J. Biba. “Integrity Considerations for Secure Computer Systems” (in MITRE Technical Report TR-3153). The MITRE
Corporation, April 1977.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

63

Denial of service attacks from outside – particularly distributed ones originating from many computers
simultaneously – can be difficult to successfully overcome. Non-distributed attacks that attempt to take over,
exhaust, or destroy resources (e.g. exhaust primary storage) also are a threat. Interestingly, any mechanism
designed to deny illegitimate access can tempt attackers to discover a way to use it to deny legitimate access
(e.g. locking accounts after a certain number of incorrect passwords tries would allow a malicious person to
lock one out of one’s account by multiple tries to log as one with random passwords). Speed of repair or
recovery can affect availability.

From a security viewpoint, systems need not only to remain available but preserve their other required security
properties, e.g. confidentiality, whether available are not.

3.7.4 Accountability
For entities that interact with the system to be held accountable for their actions, those entities must be
identified. “Each access to information must be mediated based on who is accessing the information and what
classes of information they are authorized to deal with. This identification and authorization information must
be securely maintained by the computer system and be associated with every active element that performs
some security-relevant action in the system.”40

Audit information enables actions affecting security to be traced to the responsible party. The system should be
able to record the occurrences of security-relevant events in an audit log or other protected event log. The
ability to select the audit events to be recorded is necessary to minimize the expense of auditing and to allow
efficient analysis.

Audit data must be protected from modification and unauthorized destruction and, in some environments, their
confidentiality must be protected. Because they permit detection and after-the-fact forensic investigations of
security violations41, audit logs can become the targets of attacks that attempt to modify or delete records that
could indicate an attacker’s or malicious insider’s actions. In systems that process sensitive data, the audit logs
may contain portions of that data, and thus would need to be protected as appropriate for the sensitivity level of
that data. In addition, the design of intrusion detection and auditing mechanisms must avoid allowing the
exhaustion of log storage space to become a form of attack.

3.7.4.1 Non-Repudiation
Non-repudiation provides proof that any entity that uses a system or acts upon data cannot later deny those
actions. Non-repudiation forces users to assume responsibility for their actions so that they cannot disclaim
those actions “after the fact” nor deny any event related to themselves—for example, they cannot deny (or
repudiate) having been the sender, authorizer, or recipient of a message. Several means of achieving non-
repudiation involve cryptographic signatures (more frequently called digital signatures).

ISO/IEC 13888 Information technology – Security techniques – Non-repudiation addresses both symmetric
and asymmetric techniques. In symmetric non-repudiation, both the sender and recipient of information are
provided with proofs: the sender receives proof that the information was received by the recipient; the recipient
receives proof of the identity of the sender. In asymmetric non-repudiation, proof is provided to only one of the
parties in a two-party transaction regarding an action of the other party (e.g., sender receives proof of delivery,
or recipient receives proof of sender identity, but not both).

40 Source: DOD 5200.28-STD, Department of Defense Trusted Computer Evaluation Criteria, December 1985.
41 Other forensic support includes support for identifying suspects and investigating insiders and outsiders. For insiders where
the identity of the user may be known, automated recognition of use in an unusual fashion could help support identification of
suspects.

3 Fundamental Concepts and Principles

64

3.8 Conclusion
Table 8 provides a high-level list of attributes to limit or in most cases reduce if a software system’s
description or instance exists. It does not cover all the topics in this section, but does list many of the security-
related concerns that decision makers need to address while developing, sustaining, acquiring, and operating
software systems.

Table 8: Limits to Aid Software System Security

Limit security-related costs
Limit adverse effect on system benefits
Limit security-related developmental and operational expenses
Limit security-related (adverse) consequences

Limit violations
Limit origination or continuing existence of opportunities or possible ways for performing violations
throughout system’s lifecycle/lifespan
Limit undetected violations
Limit lack of accountability
Limit violations unable to respond to acceptably or learn from

Limit violators or attackers
Limit set of potential violators
Limit violators’ ease of violation
Limit motivation for violations

Limit security-related uncertainties of stakeholders with interests in adequate/better system
security

Limit security-related unknowns
Limit security-related assumptions
Limit unpredictability of system behavior
Limit consequences or risks not addressed in assurance case
Limit consequences or risks related to uncertainty

Source: Sam Redwine

The table includes items related to security-related costs, security violations, violators, and uncertainties. Some
entries such as, “Limit origination or continuing existence of opportunities or possible ways for performing
violations throughout system’s lifecycle/lifespan,” cover a broad swath across software security others are
narrower but still significant concerns. Since the Table is about a software system, it does not include a
limit/reduce entry for the important overall need, “Limit/reduce the existence or usage of systems with
inadequate security.”

3.9 Further Reading

3.9.1 General
[Abran 2004] Abran, Alain, James W. Moore (Executive editors); Pierre Bourque, Robert Dupuis,

Leonard Tripp (Editors). Guide to the Software Engineering Body of Knowledge, 2004 Version. IEEE
Computer Society, Feb. 16, 2004. Available at http://www.swebok.org

[Anderson 2001] Anderson, Ross J., Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley and Sons, 2001.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

65

[Bernstein 2005] Bernstein, Lawrence and C. M. Yuhas. Trustworthy Systems through Quantitative
Software Engineering. Wiley-IEEE Computer Society Press, 2005. About reliability not security.

[Bishop 2006] Bishop, Matt, and Sophie Engle. “The Software Assurance CBK and University Curricula.”
Proceedings of the 10th Colloquium for Information Systems Security Education, 2006.

[NASA Guidebook] National Aeronautics and Space Administration (NASA) Software Assurance
Guidebook (NASA-GB-A201). Available at http://satc.gsfc.nasa.gov/assure/agb.txt.

[NIST Special Pub 800-27 Rev A 2004] Stoneburner, Gary, Hayden, Clark and Feringa, Alexis.
Engineering Principles for Information Technology Security (A Baseline for Achieving Security),
Revision A, NIST Special Publication 800-27 Rev A, June 2004.

[NRC 2001] National Research Council (NRC) Computer Science and Telecommunications Board
(CSTB). Cybersecurity Today and Tomorrow: Pay Now or Pay Later. National Academies Press,
2002. Available at http://darwin.nap.edu/books/0309083125/html.

 [Riguidel 2004] Riguidel, Michel, Gwendal Le Grand, Cyril Chiollaz, Sved Naqvi, Mikael Formanek,
“D1.2 Assessment of Threats and Vulnerabilities in Networks”, Version 1.0. European Union
Security Expert Initiative (SEINIT), 31 August 2004. Available at
http://www.seinit.org/documents/Deliverables/SEINIT_D1.2_PU.pdf

[SDI 1992] Department of Defense Strategic Defense Initiative Organization. Trusted Software
Development Methodology, SDI-S-SD-91-000007, vol. 1, 17 June 1992.

3.9.2 System Engineering
[Alexander 2001] Alexander, Ian. Systems Engineering Isn't Just Software. 2001. Available at

http://easyweb.easynet.co.uk/~iany/consultancy/systems_engineering/se_isnt_just_sw.htm.

[Bahill 1998] Bahill, A.T. and B. Gissing, "Re-evaluating Systems Engineering Concepts Using Systems
Thinking". IEEE Transaction on Systems, Man and Cybernetics, Part C: Applications and Reviews,
Vol. 28 No. 4 pp. 516-527, November 1998.

[INCOSE] International Council on Systems Engineering (INCOSE). Guide to Systems Engineering Body
of Knowledge (G2SEBoK). Available at http://g2sebok.incose.org/.

[Rechtin 2000] Rechtin, E. Systems Architecting of Organizations: Why Eagles Can't Swim. Boca Raton,
FL: CRC Press, 2000.

3.9.3 Information Security
[CNSSI 4009] Committee on National Security Systems (CNSS) Instruction 4009: National Information

Assurance (IA) Glossary. Revised May 2003. Available at
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf.

[ISO/IEC 12207] International Standards Organization/International Electrotechical Commission Standard
12207:1995, Software Life Cycle Processes, plus Amendement 1:2002 and Amendment 2:2004.
Available at http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=21208

[ISO/IEC 15026] ISO/IEC Standard 15026:1998, System and Software Integrity Levels. Available at
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26236

[ISO/IEC 15288] ISO/IEC Standard 15288:2002, Systems Engineering - System Life Cycle Processes.
Available at http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=27166

3 Fundamental Concepts and Principles

66

[NIST FIPS 200] NIST: Federal Information Processing Standards Publication (FIPS PUB) 200: Minimum
Security Requirements for Federal Information and Information Systems. March 2006. Available at
http://csrc.nist.gov/publications/fips/fips200/FIPS-200-final-march.pdf.

[NIST SP 800-27] NIST Special Publication 800-27: Engineering Principles for Information Technology
Security (A Baseline for Achieving Security). Revision A, June 2004. Available at
http://csrc.nist.gov/publications/nistpubs/800-27A/SP800-27-RevA.pdf.

[NIST Special Pub 800-33 2001] NIST SP 800-33, Underlying Technical Models for Information
Technology Security, December 2001

[NRC 1999] Committee on Information Systems Trustworthiness, Trust in Cyberspace, Computer Science
and Telecommunications Board, National Research Council, 1999.

3.9.4 Security Functionality
[DoDI 8500.2] Department of Defense Instruction 8500.2 (6 February 2003). Information Assurance (IA)

Implementation. Washington, DC: US Department of Defense, 2003. Available at
http://www.dtic.mil/whs/directives/corres/pdf2/i85002p.pdf.

[NIST FIPS 200] NIST: Federal Information Processing Standards Publication (FIPS PUB) 200: Minimum
Security Requirements for Federal Information and Information Systems. March 2006. Available at
http://csrc.nist.gov/publications/fips/fips200/FIPS-200-final-march.pdf.

[NIST Special Pub 800-53] Ross, Ron et al. Recommended Security Controls for Federal Information
Systems, NIST Special Publication 800-53, Feb. 2005. Available at
http://csrc.nist.gov/publications/nistpubs/800-53/SP800-53.pdf. and its Revision 1 Draft available at
Available at http://www-08.nist.gov/publications/drafts/800-53-rev1-ipd-clean.pdf.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

67

4 Ethics, Law, and Governance

4.1 Scope
This section addresses the ethics, laws, regulations, and standards peculiar to developing secure software and is
intended for all readers. Given the relatively recent interest in the security of software, much of the knowledge
in this section is in a formative stage. Often it is derived from work from a larger domain. For example, no
code of ethics has been proposed specifically for secure software developers, but there are ethical codes for
information security professionals, computing professionals, and software engineers [Bynum and Rogerson
2004].

Legal and regulatory knowledge in the domain of secure software development tends to focus on issues such as
privacy, intellectual property, and liability. Although many laws addressing computer crime have been enacted
within the last two decades, these laws do not involve the development of secure software and are therefore not
included in this section.

Several standards, including international standards, addressing security are important in the development of
secure software. Standards that address the evaluation of secure systems such as the Common Criteria are
included in a separate section.

4.2 Ethics
In defining the ethical BOK that applies to secure software development, the BOK adopts the view of ethics as
a “… branch of professional ethics, which is concerned primarily with standards of practice and codes of
conduct of computing professionals…” [Bynum 2001]. Furthermore, a computer professional is “… anyone
involved in the design and development of computer artifacts...” [Gotterbarn 1991].

Codes of conduct and statements of ethics embody much of the ethical knowledge in developing secure
software. Example codes include the Institute of Electrical and Electronics Engineers (IEEE) Code of Ethics,
the Software Engineering Code of Ethics and Professional Practice,1 Association of Computing Machinery
(ACM) Code of Ethics and Professional Conduct, the British Computer Society Code of Conduct [Bynum and
Rogerson 2004], and the International Information Systems Security Certification Consortium (ISC)2 Code of
Ethics [ISC 2005].

The ethics and codes of conduct share common elements: (1) acting in the public interest, (2) applying duty to
clients insofar as it is consistent with the public interest, (3) ensuring honesty and integrity in the practice of
the profession, and (4) maintaining competence in the profession.

Controversy remains, however, over the ethics of security vulnerability disclosure (see section 12, Secure
Software Sustainment).

4.3 Law
The primary legal issues surrounding the development of secure code include intellectual property and their
associated copyright, patent, trade secrets, and trademarks. Principles of privacy, private and corporate
liability, including the so-called “downstream” liability, are beginning to be codified in law, although these
principles are often spread through various legislative acts [Bosworth and Kabay 2002], [Smedinghoff 2003],
[Smedinghoff 2004]. The most explicit statement of corporate liability in the domain of secure information

1 Available at http://onlineethics.org/codes/softeng.html

4 Ethics, Law, and Governance

68

architectures includes the requirement for “internal control structure and procedures for financial reporting” in
the Sarbanes-Oxley Act of 2002. Important liability principles in this area include the prudent man rule, due
care, and due diligence. A summary of laws and executive orders pertaining to computer security is contained
in [Moteff 2004].

4.4 Governance: Regulatory Policy and Guidance
Regulatory policies and guidance are created by government agencies to set performance levels and compel
certain behaviors in corporations or industries [Harris 2003]. Privacy regulations have the most far-reaching
impact on the development of secure software. Privacy protects the personal information of individuals from
misuse by governments or corporations. Privacy principles include the lawful use of personal information, the
accuracy of that information, and the disclosure, consent, and secure transmission of that information.

4.4.1 Policy
A policy is a statement by an authoritative body intended to determine present and future decisions, actions, or
behaviors. A policy is usually general in nature, yet it requires specific standards, guidelines, and procedures to
be implemented for particular situations. There are three types of policies:: regulatory, advisory, and
informative [Harris 2003]. Regulatory policies are mandatory and carry the force of law; advisory policies
encourage adherence to certain standards and are enforceable; informative policies are intended to make
known a particular policy though they are not enforceable.

For example, Privacy Online: OECD Guidance on Policy and Practice is non-binding to its member
nation states. Focused on the implementation of the OECD Privacy Guidelines online, the policy and
practical guidance offered in this publication fulfill the 1998 OECD Ministerial Declaration on the
Protection of Privacy on Global Networks but are nevertheless non-binding. US Federal Trade
Commission’s Fair Information Practices [FTC 2000] are also relevant. For a wide-ranging but more
technical slant on privacy see [Cannon 2005].

Some policies are created by governments or industry groups and affect the organizations and the software
systems they employ.

4.4.2 Laws Directly Affecting Policy
In part, these security policies are often formulated in response to the requirements of law. In the US these
include the following federal laws. [Moteff 2004]

 Health Insurance Portability and Accountability Act (HIPAA)

 The Sarbanes-Oxley Act of 2002 requires companies to implement extensive corporate governance
policies, procedures, and tools to prevent, respond, and report fraudulent activity within the company.
Effective self-policing requires companies to have the ability to acquire, search, and preserve
electronic data relating to fraudulent activity within the organization.

 The Gramm-Leach-Bliley Act requires financial institutions to safeguard customer information as
well as detect, prevent, and respond to information security incidents.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

69

 California SB 1386 (California Civil Code §
1798.82) addresses how a company responds to a
breach, and has important features based on
cooperation with law enforcement and prompt
notification to affected customers.

 The Federal Information Security Management Act
(FISMA) mandates that federal agencies must
maintain an incident response capability.

In the US, other state and federal laws and regulations may
apply, and the number of state laws is increasing, some
modeled on California SB 1386.2

The European Union (EU) Data Protection Directive3 and
implementing national laws may also be relevant. Indeed, for
many commercial products, “internationalization” of
requirements includes concern for a substantial number of
countries’ legal restrictions. In 2000, the US reached an
agreement with the EU that organizations following a set of
Safe Harbor4 practices could import data from the EU. [Safe
Harbor 2000]

These legal issues, in most cases, deserve attention from legal
counsel.5

4.4.3 Standards and Guidance
Standards6 are usually more specific statements of behavior intended to implement a policy or policies.
Guidance, on the other hand, is suggestions on how one might implement a standard. International standards on
information security include the Information Security Management standards ISO/IEC 17799. Other standards
and guidance on computer security include the NIST 800 series special publications.

4.4.4 Organizational Security Policies
Organizations also establish security policies and possibly internal standards. These can vary from brief,
limited ones to substantial ones covering much of the organization’s activities. Organizational security policies
normally form part of the requirements constraints that software systems must conform to by the software
systems requirements and security policy.

The box on the right lists a number of areas that organizational policies may cover. For a given software
system, some policies may be straightforwardly applied; others may imply subtle requirements. Thus, all must
be carefully analyzed for applicability.

2 A listing of the laws related to cyber security that was passed in 2005 in all the states is available at:
http://www.cscic.state.ny.us/msisac/news/
3 See http://www.cdt.org/privacy/eudirective/EU_Directive_.html
4 See http://www.export.gov/safeharbor/
5 A number of relevant links are given at http://www.cdt.org/privacy/guide/basic/fips.html
6 Standard ... (7) An agreement among any number of organizations that defines certain characteristics, specification, or
parameters related to a particular aspect of computer technology. [IEEE Std 100-1996, The IEEE Standard Dictionary of
Electrical and Electronic Terms, Sixth Edition]

Typical Organizational
Security Policy Areas

• Access control

• Awareness and training

• Audit and accountability

• Certification, accreditation, and security
assessments

• Configuration management

• Contingency planning

• Identification and authentication

• Incident response

• Maintenance

• Media protection

• Physical and environmental protection

• Planning

• Personnel security

• Privacy

• Risk assessment

• Systems and services acquisition

• System and communications protection

• System and information integrity

NIST FIPS-200 Draft 2005

4 Ethics, Law, and Governance

70

4.5 Further Readings
[Bishop 2003] Bishop, Matt., Computer Security: Art and Practice, Addison-Wesley, 2003.

[Cusumano 2005] Cusumano, Michael A., “Who is Liable for Bugs and Security Flaws in Software?
Attempting to determine fault and responsibility based on available evidence”, Communications of the
ACM, March 2004/Vol. 47, No. 3 pp. 25-27.

[Sommerville 2006] Sommerville, I., Software Engineering, 8th ed., Pearson Education, 2006.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

71

Part 3: Application to Secure
Software

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

73

5 Secure Software Requirements

5.1 Scope
This section addresses the knowledge needed in the activities to establish the needs and specifications for
secure software and, while mentioning some of that knowledge for context, presumes the knowledge of how to
do requirements other than for security and safety.

Requirements are in large part about the system’s environment and the system’s interactions with it to achieve
the required effects – and avoid others. Secure software requirements analysts and designers pay special
attention to threats in a software system’s environment and to protecting system assets.

Security requirements cover the properties included in the definition of security and thus contain elements
related to availability; integrity including authentication; confidentiality including anonymity, privacy, and
intellectual property rights; and accountability including audit logs and non-repudiation. These issues can be
accompanied by a number of the associated ones mentioned in sections 3 on fundamentals and 4 on Ethics,
Law, and Governance.

Requirements identify not only what must (or should) be true about the software system for purposes of
directing the producers of the system, but must also identify what should be shown by the assurance case –
evidence tied together by an assurance argument.

Validation of software requirements and verification of consistency within and among its parts and
representations are also of concern and are addressed in part here and in part in section 8, Verification,
Validation, and Evaluation. Traceability, formality, and rigor during requirements will facilitate correctness
and assurance throughout development.

The initial stimulus for a software system effort may come from a variety of sources and in a number of
different forms, such as experiencing a difficulty, observing what is happening in a different industry or at a
competitor, investigating market research, or exploring an idea for exploiting a technology. Formulating the
software system concept that combines needs and software solutions may happen early or late in the process.

Making no presumption on the order in which these activities and decisions take place, this section presumes
only some boundary has been placed on the scope of concern, and first addresses security-related needs and
constraints leading to the establishment of a software system security policy. The section ends with a
discussion of the need to show the specification of the external behavior of the software system meets the
constraints of this policy. While aspects of verification and validation activities are mentioned several times,
the main coverage of these topics is found in section 8, Verification, Validation, and Evaluation. Thus, this
section addresses the knowledge needed in establishing security-related stakeholder needs and constraints, their
analyses, the specification of a system’s security policy and its conforming external behavior, and several
related special areas.

5.2 Requirements for a Solution
Generally, at the beginning of requirements activities, no one individual or group knows the full set of needs,
constraints, and relevant measures of merit. Moreover, different individuals and groups often have different
viewpoints and conflicting thoughts. To address this issue, a process involving and/or considering many
stakeholders normally evolves to an understanding of current and potential security and other needs in light of
possible security solution approaches.

To the extent their systems share the same environment, organizations have found it effective to create
“standard” inputs to security requirements, such as threat identification and security policies harmonizing

5 Secure Software Requirements

74

external and organizational constraints and the organizations’ standard procedures. These organizational
standards can then be tailored as needed to particular software systems.

While a number of specific references are made throughout the section, several more general references are
worthwhile. [Berg 2006, Chapter 2] provides general guidance, and [CERIAS TR 2000-01] and [Meier 2003]
provide specific web- or ecommerce-related guidance. [ISO-15448], [Moffett and Nuseibeh 2003] combined
somewhat redundantly with [Moffett 2004]. [NIST SP 800-64, sections 2.1, 2.2, and 2.3.1-2], [NSA 2002], and
[S4EC] provide more general guidance related to requirements. From the Software Engineering Institute,
[Chen 2004] describes an application of the SQUARE method, and [OCTAVE 2001] provides an eighteen-
volume set of guidance for a method to “Operationally Critical Threat, Asset, and Vulnerability EvaluationSM.”
[NSA 2004] and [Fitzgerald 2002] provide suggestive examples and discussions of security requirements.

5.2.1 Traceability
Assurance is impossible without a way to trace among requirements’ artifacts and to trace later artifacts to
them. Needs, features, system security policies, and other requirements artifacts therefore need to be stated in
unique, single units to ease traceability to design, code, test, and other products. Software cannot be seen in
isolation, so traceability must also be upwards and outwards, to any originating system requirements or other
source documents’ recording needs.

5.2.2 Identify Stakeholder Security-related Needs
Interactions with stakeholders result in a list of needs and preferences for security including privacy and
intellectual property protection. These interactions may also identify standards and guidelines that relate to the
application from which requirements can be derived. (See section 4, Ethics, Law, and Governance.) These may
directly relate to the particular assets involved. Organizations may have existing enterprise architectures,
including security elements.

Of course, initial stakeholder requests may or may not remain to become part of the agreed-upon set of needs
and may or may not later be met by the specification..

5.2.3 Asset Protection Needs
When addressing asset protection needs, developers need to know goals, means, and processes for

 Identifying information and capabilities that might be within scope – whether the solution eventually
puts them in digital form or not

 Estimating potential for damage from private and public disclosure, contamination, reduced
access/capability, lack of accountability, or loss of asset

The latter may, in part, be addressed through asking questions regarding potential consequences of security
violations related to assets such as those in [BSI 100-2 2005, Section 4.2] titled Defining Protection
Requirements. Some discussions in [NIST SP 800-60] may lead one to relevant factors and damages. The
results of estimating potential damage from violations may be reflected by categorizing data or systems by
sensitivity. [Radack 2005] [CJCSM 6510.01 2004, Enclosure C Appendix E] [DoDI S-3600.2]

Assets may need to be protected in many situations across the life of the asset and any copies of it. At various
times, information assets may be located in a number of places, each of which could imply security
requirements including ones for:

 File system security-relevant facilities

 Database security

 Hardware protection

 Communications security

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

75

 Redundancy, backup, archives, and
recovery records, including those for
business continuity

 Media used for mobility, e.g., memory
sticks and CDs

 Location and movement during
computation including

– Primary memory

– Transit

– Registers

– Caching

– Virtual memory paging

 Startup, including attempting to start (and
operate) in a potentially hostile or
damaged environment and the need for
recovery

 Shutdown, including waiting for garbage
collection and physical memory to be
given to another process

 Logs

 Mobile computers and devices

 Disposed or reassigned equipment and
media

 Lost or stolen computers, media, and
devices

The assets to be protected usually can be usefully thought of being of four kinds, implying needs for:

 Data protection

 Software protection

– In operating environment

– Protection of software-related artifacts and supporting data throughout lifecycle

 Human and organization protection for

– Users and operators

– Persons involved in the engineering, supplying, and sustaining of the software, and their
organizations

 Security and safety of physical and computing assets in environment may be involved.

– Operating and user environment

– Physical facilities, environment, and platforms in which software engineering and sustainment
take place

Software protection needs are often driven by needs to

 Avoid loss of intellectual property or its revenues

 Avoid giving an adversary knowledge; for example, insight into a commercial process or a military
weapons system

Special asset-related security considerations generating needs that will be covered below include

 Resolving mistakes, abuse, or failure to follow accepted procedures/use rules

 Determining threat entities’ capabilities to detect deception and hiding of assets

 Helping ensure cost-effective and timely certification of system security and operational system
accreditation

 Aiding administration, operation, and use in a secure fashion

Protecting humans and organizations from harm includes concern for privacy [Cannon 2005], reputation, and
freedom from (cyber) stalking, abuse, and criminal acts.

5 Secure Software Requirements

76

In addition, environments where the software system and its assets reside may have varying levels of security
and threats. The latter will be addressed next.

5.2.4 Threat Analysis
One needs to look at software from the viewpoints of the relevant threatening entities or attackers. In
combination with the defensive stakeholders’ valuation of the assets and the consequences of successful
exploits, attackers’ valuations, decisions, and capabilities will determine the security protection needs of assets.

The threat-analysis process must involve owners of the assets and other stakeholders who might be affected by
the consequences of an incident. Inside attackers come from the user population, so one must consider users
from both offensive and defensive perspectives. [Swiderski and Snyder 2004] [Meier 2003, Chapters 2 and 3]
[Meier 2005a] [Saitta 2005]

5.2.4.1 Identification of Threat Entities
Identifying, analyzing, and forecasting threat entities or categories takes expertise that may only be available
from experts, but a number of resources exist, e.g., [Meier 2005b]. Intentions and resources of threat entities
need to be established. This includes their evaluation of the value of possessing, disclosing, contaminating, and
denying the assets. Insider and outsider threats must be identified. For better results, validation of the threat
analysis should involve stakeholders and expert reviews, including by experts in attack motivations and
capabilities. See section 3, Fundamentals, Concepts, and Principles.

5.2.4.2 Threat Entities’ Capabilities
Both current and future capabilities of threatening entities are of interest. The rate and directions in which
threat entities will improve their capabilities is therefore of interest [Swiderski 2004].

5.2.4.2.1 Skill Available to Threat Entities

Identify or postulate attacker skills, competence, and tools, and the implications of their possession. Defensive
measures need to be a match for attack capabilities now and in future. Once an attacker finds a way in,
however, this originator may automate the attack and make it available to others, thereby increasing attacker
effective skill level.

5.2.4.2.2 Resources

Identify or postulate attacker resources, initial access, and persistence. This identification will help forecast the
size and duration of attacks.

5.2.4.2.3 Added capabilities from partial success

Requirements for tolerance and defense-in-depth can be derived by considering the effects of the possible
partial successes by adversaries and the added potential this provides them. The ability to specify partial
successes – either increasing privileges or control of or causing the failure of portions of the system or its
environment – should evolve with the design [Stroud 2004]. Thus, security requirements continue to be created
in the course of design activities.

Lessons can be learned from the extensive body of experience with fault tolerance and high-availability
systems.1

1 See, for example, http://lcic.org/ha.html

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

77

5.2.4.2.4 Misuse or Abuse Cases

Constructing and using misuse cases appropriately can aid in understanding the concrete nature of threats. One
needs to remain aware of the limitations resulting from their being partial examples [McDermott 1999] [Sindre
2000] [McDermott 2001] [Hope 2004] [McGraw 2006, Chapter 8].

5.2.4.2.5 Attack Trees

Attack trees have the attacker’s goal at the top and branches that identify alternate or combined ways (achieve
subgoal A and subgoal B) that allow achievement of the goal or subgoal. These can provide a graphical way to
portray potential attack paths that can then be investigated [Swiderski 2004].

5.2.4.2.6 Physical Access and Tampering

If the attacker has physical access to the system, then additional possibilities arise. These threats are explicitly
documented either as concerns or non-concerns (assumed not to exist). Common cases of possessing physical
access include insider attacks and stolen portable computers. Other approaches include surreptitious entry into
work or equipment areas and subversion of the equipment maintenance process.

Physical access by an attacker can raise many difficulties for a defender. Physical access may aid
authentication if, for example, the IP address is used as part of authentication or if users have their password
written down somewhere near their computer. A hard disk might be removed and studied using forensic
techniques, thereby bypassing software access control. Techniques to address this last problem are generally
based on cryptology.

Tampering comes in a number of forms. Those concerning the integrity and self-protection of software and
assets are covered elsewhere. Tampering with the physical equipment, however, is a source of additional
threats. These threats must be addressed or explicitly assumed to be nonexistent in a particular situation
[Atallah, Bryant and Sytz 2004]. See section 7, Secure Software Construction, for a discussion on anti-
tampering.

5.2.4.3 Threat Entities’ Intentions
In large part, security is about the issues raised by real or potential malicious intentions, so the practical
importance of intentions is not surprising. In practice, they are critical, particularly for entities that are not
currently exercising their capabilities to cause maximum harm. Also in practice, one extends different degrees
of responsibilities, privileges, and trust to different entities based, in part, on judgments about their intentions
as well as on risk estimates and resource allocation decisions.

Some common advice is, “When in doubt, one should not trust in others’ intentions (or competence) at all,”
and “Where there is capability, the attacker may develop intent.”

Motivations drive intentions. The attackers’ motivations result from such factors as the value they place on the
asset – knowledge, use, or denial – and their willingness to take the risks involved, including discovery and
punishment. Motivations may be individual, organizational, or even secondhand, as in mercenaries hired for
industrial espionage or organized crime extorting experts to perform attacks for them. See section 3,
Fundamental Concepts and Principles.

A template for a threat modeling document is available from Microsoft [Meier 2003, Chapter 3] [Meier
2005c].

5.2.5 Interface and Environment Requirements
Many systems must interface with outside software whose security characteristics are uncertain or run on an
operating system or other infrastructure whose security is known to be questionable. The system then may have
difficult requirements to be secure in an insecure environment. External systems or domains not under trusted

5 Secure Software Requirements

78

control should be considered potentially hostile entities. Connections to such external systems or domains must
analyze and attempt to counter hostile actions originating from these entities. These areas call for careful risk
analysis as well as sound technical solutions.

What are the risks to the owners or operators of the system and/or the risks related to the assets needing
protection? If the system is a commercial one with effective legal protection based on a given authentication or
non-repudiation involved in the commercial interactions, then fiscal risks from these transactions may be
minimized with limited costs caused by the system’s insecure environment. Other situations can be
significantly more difficult. Requirements need to address the need for both an acceptable (or at worst
tolerable) level of risk and the technical feasibility.

Integrity issues always exist for incoming data, and integrity checks are normally a requirement. These checks
include ones for acceptability of data type and size, value possible in real world, likeliness or plausibility,
internal consistency and with other data, proof of origin and legitimacy of origin, and lack of corruption or
interference during transit. Checks for non-repudiation may also be relevant.

Security-inspired requirements on nature and attributes of computing hardware, infrastructure, or other
externally available services must be explicitly recorded as requirements or assumptions and must be assured.
In some cases, these requirements will be the explicit responsibility of others in the organization, but their
accomplishment and/or existence still need to be assured.

The chief security concerns about effects on environment are to:

 Not cause security problems for systems in environment

 Not release any information it should not

 Not issue any information in a risky form, e.g., often risky to send unencrypted output

Care is needed at all boundaries where the level or natures of trust or custody change, including the external
boundary of the software system of concern.

5.2.6 Usability Needs
Acceptable usability is important not only to reduce user mistakes but also to ensure efficient and effective
usage and acceptance of security features. Security is likely to be systematically bypassed by users if it places a
perceived unacceptable impediment between them and accomplishing their tasks.

Process and task analyses and reengineering are the starting points for achieving these objectives. Beyond
using sound user-system interaction techniques and design methods throughout, certain general interaction
concerns have been particularized to security. [Yee 2004] identifies a small set of general needs and principles,
and many more detailed issues are identified in [Cranor 2005] and [Garfinkel 2005]. IEEE Security and
Privacy magazine had a September/October 2004 special issue on usability. A series of research-oriented
workshops exists in this burgeoning research area that addresses practical issues [SOUPS 2005].

5.2.7 Reliability Needs
In the traditional view, the reliability of a software system depends on the distributions of inputs or the patterns
of use. Normally, a seldom executed part of the software could have faults with little or no impact on
reliability. Malicious attackers may, however, seek them out for exploitation (making total correctness a
security issue).

Although, strictly speaking, reliability is not a security property, preserving the integrity and availability of
software and data without reliability results in receiving wrong answers and would be, naturally, somewhat
futile.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

79

For these reasons and for economy, reliability’s assurance case is sometimes a natural candidate to include in
an overlapping assurance case with security sharing some arguments and evidence.

5.2.8 Availability, Tolerance, and Survivability Needs
Developers need to know techniques that can improve tolerance to security violations. Robustness, resilience,
and automatic adaptation and recovery are possible parts of security-influenced needs. Separation of duties and
“least common mechanism” might be required, as might avoidance of a single point of total vulnerability,
analogous to the avoidance of a single point of failure. As an additional example, one might require secret
sharing (splitting) across machines for added confidentiality. See also the subsection on Added [Threat]
Capabilities from Partial Success and the Design section [Stroud 2004].

Continued availability of service, business continuity, and disaster recovery generate special security-related
requirements. Survival of the capability to preserve the required security properties is always necessary
regardless of system status.

DoS attacks can make it difficult to continue to serve legitimate users. Requirements can be set for acceptable,
tolerable, and unacceptable sizes and natures of DoS attacks or amounts of degradation of service. These
requirements must be technically and economically feasible, and limits on need may be set by attacks that
would in any case deny service or communication upstream in the paths of requests or downstream for
responses.

Finally, maintainability or sustainability ultimately affects availability and tolerance.

5.2.9 Sustainability (Maintainability) Needs
When sustaining software, software with unrepaired vulnerabilities is insecure software. Software that has yet
to be changed to meet new security requirements is also insecure. Therefore, repair and evolution related
needs, for example, ease of applying “patches,” can become security needs where speed in meeting these needs
is critical. See section 12, Secure Software Sustainment.

5.2.10 Deception Needs
While it is certainly not desirable to rely exclusively on obfuscation, nevertheless, one may wish to employ
deception and hiding. To be effective, one should consider not only intended effects on attackers but also the
measures attackers might take to detect, overcome, or exploit one’s deceptions – possibly generating additional
needs. For concrete examples, see subsection 6.15, Deception and Diversion.

5.2.10.1 Obfuscation and Hiding Needs
While “security through obscurity” should never be relied on exclusively to protect either information or
software, in the case of software particularly obfuscation, deception, and hiding can be effective measures to
increase the difficulty of reverse engineering by attackers seeking vulnerabilities in binary code or bytecode. In
addition, they may decrease the accessibility of information, such as comments in browser-viewable source
code, that may be exploited to more effectively target the software. In the case of information, deception and
hiding techniques may discourage less skilled and casual hackers who are looking for easy targets.

For more specifics, see the Design section’s subsection on Obfuscation and Hiding.

5.2.11 Validatability, Verifiability, and Evaluatability Needs
Because they can ease the diagnosis, repair, and assurance activities, concerns here include:

 Validatability

5 Secure Software Requirements

80

 Verifiability

 Controllability

 Observability

Particularly, one must address analyzability and testability in addition to the need to provide evidence for the
assurance case on conforming to security needs, policy, and correctness of security functionality.

Needs may also be generated by other security-related aspects, including needs to:

 Ease the development and evolution of the assurance case

 Help ensure cost-effective and timely certification of software system security

 Help ensure cost-effective and timely accreditation of operational systems containing the software

If the certification of software systems or accreditations of operational situations are goals, then the needs
generated by these goals should be considered and, whenever relevant, included when establishing
requirements. See below and in section 8, Secure Software Verification, Validation, and Evaluation.

Testability for security or other concerns may lead to desires for additional observability, but no means should
be added that would violate security (e.g., confidentiality) or unduly increase vulnerability. Desirable
additional controllability also should be carefully reviewed to ensure security problems would not be produced.

5.2.12 Certification Needs
A number of needs for certification may apply particularly to government systems, but others also have
certifications available. This section provides several examples:

5.2.12.1 Common Criteria Requirements
Associated with the Common Criteria are a set of Protection Profiles – standard minimal security requirements
– for a number of kinds of software. These can be a required input to establishing security requirements or
provide interesting examples.

Historically, the Common Criteria and associated Protection Profiles have identified the security-oriented
functionality required of systems and are enumerated in [Common Criteria v.3.0 Part 2]. The Common Criteria
now calls for self-protection and non-bypassability of security functionality [Common Criteria v.3.0 Part 3, pp.
96-101]. These two properties change the straightforward functionality requirements of prior versions of the
Common Criteria into software system security property requirements.

5.2.12.2 Sensitive Compartmented Information
Protecting the national security information, classified information, and the highly secret Sensitive
Compartmented Information (SCI) [DoDI S-3600.2], which is often intelligence secrets, within the US
government is covered by [DCID 6/3 2000]. The combination of security safeguards and procedures used for
SCI information systems shall ensure compliance with DCID 6/3, NSA/CSS Manual 130-1 [NSA 1990], and
[DIAM 50-4 1997]. Also potentially useful is [JDCSISSS 2001, p. i]2

5.2.12.3 Certification for Banking and Finance
The Financial Services Roundtable’s BITS certification program aims to achieve a set of security functionality
suitable for banking and financial services and develop a certification process simpler than that of the Common
Criteria. See http://www.bitsinfo.org/c_certification.html.

2 The JDCSISSS is a technical supplement to both the NSA/CSS Manual 130-1 and DIAM 50-4 and provides procedural
guidance for the protection, use, management, and dissemination of SCI.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

81

Two ISO technical reports exist related to financial services

 ISO/TR 13569 Banking and related financial services – Information security guidelines

 ISO/TR 17944:2002(E) Banking – Security and other financial services – Framework for security in
financial systems

The latter includes definitions, lists of applicable standards and ISO technical reports, and mentions items
lacking ISO standards in 2002 when it was published.

5.2.13 System Accreditation and Auditing Needs
Substantive and process-related ISO standards exist as part of an internationally standardized approach to
systems accreditation. The US federal government has different system accreditation processes for national
security materials and civilian ones.

Internationally, ISO/IEC 17799:2005 Information technology. Code of Practice for Information Security
Management, combined with BS7799-2:2002 or ISO/IEC 27001, forms a basis for an Information Security
Management System (ISMS) certification (sic) of an operational system.

The US DoD most general accreditation process is governed by DoD Instruction 5200.40, DoD Information
Technology Security Certification and Accreditation Process (DITSCAP) [DoD1997], supplemented by the
DoD8510.1-M Application Manual, and applies to all DoD entities.

The National Information Assurance Certification and Accreditation Process (NIACAP) applies to National
Security Systems, and, as mentioned above, for the intelligence community protecting SCI within information
systems to which DCID 6/3 applies.

On the civilian side of the US government, NIST has produced NIST Special Publication 800-37, Guide for the
Security Certification and Accreditation of Federal Information Systems, which applies to all civilian US
government Executive Branch departments, agencies, and their contractors and consultants.3

The first three – ISO/IEC, DITSCAP, and NIACAP – are mandatory for their communities, while the NIST
SP provides guidelines for certifying and accrediting information systems supporting the executive agencies of
the federal government. See section 3, Fundamental Concepts and Principles.

As part of its Federal Information Security Management Act (FISMA) Implementation Project, NIST issued a
series of documents relevant to the specification and verification of security requirements in all federal
information systems other than those designated as national security systems (as defined in 44 U.S.C., Section
3542). These documents include NIST Federal Information Processing Standard (FIPS) 200, “Minimum
Security Requirements for Federal Information and Information Systems” (March 2006); NIST SP 800-53
Revision 1, “Recommended Security Controls for Federal Information Systems” (Public Draft, March 2006);
NIST SP 800-53A, “Guide for Assessing the Security Controls in Federal Information Systems” (Second
Public Draft, April 2006); and NIST 800-37, “Guide for the Security Certification and Accreditation of Federal
Information Systems” (May 2004).

Many commercial firms’ systems will face audits by their accountants or others. Government organizations
may also face regular audits. Any additional needs imposed by these that potentially impact security (positively
or negatively) require consideration.

3 Upon publication of SP 800-37, NIST also rescinded the older Federal Information Processing Standards (FIPS) Publication
102, Guidelines for Computer Security Certification and Accreditation (September 1983), which the new SP is intended to
replace. .Note that while use of NIST SP 800-37 is not mandatory, certification of FISMA compliance is required for all non-
national security information systems.

5 Secure Software Requirements

82

As well as anticipating the questions that will be asked during an investigation, forensic-friendly software
needs to ensure that sufficient audit data is logged securely. Logs must be retained with their integrity
maintained suitably for legal evidence as well as for preserving any required confidentiality and accessibility.

The implications for a software system’s requirements deriving from an intention for the software to be
certified or operated in an operational system that requires accreditation or auditing need to be fully identified.

5.3 Requirements Analyses
Requirements analyses are closely involved in the requirements discovery process, as they are relevant to the
evolving decision process that results in agreed-upon requirements.

5.3.1 Risk Analysis
For security risks, the probabilistic approach embedded in the usual risk analyses cannot be based on technical
characteristics of the system. One can, in low and possibly medium threat situations, make some probabilistic
estimates based on humans and organizations that are potential threats. In high threat situations, the attacks are
essentially assured eventual success if even a few vulnerabilities exist. This makes the chance of a successful
attack a certainty for all but the extremely well-designed and rigorously implemented systems. In high threat
situations, one must presume that some vulnerability will be found by a skilled, persistent foe. Nevertheless,
probabilistic estimates may be possible regarding the time until a successful attack and other aspects.

Analyses of possibilities and risks also address the effect of attacks. The effects are not just first order such as
disclosure or corruption of data but what effects this has on organizational mission success4, reputation, stock
price, recovery and repair costs, etc. A risk index (number of occurrences x effect), stakeholder utility
judgments, or sensitivity level classifications of assets can be used to identify security critical concerns to
influence the specifications and design and to help decide the allocation of resources and control the
development process For example, Microsoft’s DREAD approach (see text box) can be useful in deciding the
priorities for fixes. Microsoft also addresses “VR” – Value to attacker and Reputational risk as well as having
an alternative approached called ACE Threat Modeling.

Of course, software is not the only path to success
for an attacker. Social engineering and subversion
may often be part of the easiest attacking path
leading possibly to needs for the software to
somehow mitigate these sources of attack as well.
Ultimately, security is a systems (or even larger
scope) issue, not just a software one.

5.3.2 Feasibility Analysis
Certain security requirements may make the proposed software product either low feasibility or infeasible from
technical, economic, organizational, regulatory, marketing, or societal viewpoints. Feasibility analyses address
these issues which can be partially severe given the difficulties in producing secure software.

One can benefit from a willingness to choose less ambitious goals in return for increased feasibility. Insistence
on highly skilled staff and restrictions on the process, size, and complexity of the software can have quite
positive affects on feasibility.

4 In the US DoD this could include mission impact assessment classified in accordance with DoD 5200.1-R and DoD
Instruction 3600.2.

Microsoft’s DREAD Acronym
Calculate risk by considering defect’s or vulnerability’s

• Damage potential

• Reproducibility: as successful exploit

• Exploitability: effort and expense to mount attack

• Affected users

• Discoverability: by adversary

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

83

5.3.3 Tradeoff Analysis
Producers and stakeholders may prioritize and perform tradeoff studies involving security and privacy
requirements. Additional security may impact usability, performance, or other characteristics to make the
system less desirable. A tradeoff might exist between more security – for example, multiple authentications
rather than single – and acceptability, calling for analysis to resolve the problem. Separation of privilege or
duties requiring multiple people may tradeoff with a single person plus the additional auditing required. As
another example, privacy might benefit from increased granularity of access controls. Thus, many tradeoffs
exist during establishment of requirements.

Tradeoffs occur within many activities such as establishing the security policy and specifying external
behavior. This last area is a product design activity and, as such, can be fraught with tradeoffs, including ones
among qualities. A number of techniques have been created for addressing these trades, such as those in
[Kazman 2000], [Kazman 2002], [Prasad 1998], [Despotou 2004], and [Chung 1999]. In practice, stakeholders
may tolerate a range of results.

5.3.4 Analysis of Conflicts among Security Needs
Conflicting security needs can derive from differing needs or viewpoints, or from differing policy models,
capabilities, or inconsistent possibilities of configurations or settings among components of the system. Some
of these derive from real-world needs and some from designs or components for the software system.

5.4 Specification

5.4.1 Document Assumptions
While they may strive for fewer and weaker assumptions, producers must ultimately identify and document the
assumptions on which their results depend. These are part of the requirements, meaning they must have
agreement and approval.

The following types of assumptions should be included: [ISO-15448, p. 10]

 Aspects relating to the intended usage

 Environmental (e.g. physical) protection of any part

 Connectivity aspects (e.g., a firewall being configured as the only network connection between a
private network and a hostile network)

 Personnel aspects (e.g., the types of user roles anticipated, their general responsibilities, and the
degree of trust assumed to be placed in the user)

 Operational dependencies; for example, on infrastructure [Meier 2003, pp. 101-105]

 Development environment dependencies – for example, correctness assumptions about tools.

Assumptions include statements predicting bad qualities or events as well as good ones. Some assumptions
may be stated conditionally or probabilistically.

Rationales for the assumptions should also be documented, reviewed, and approved. One key question is, “Are
the assumptions appropriate for the environments in which the software system is intended to operate – now
and in the germane future?” A related goal to show the answer is yes may belong in the assurance case.

5 Secure Software Requirements

84

5.4.2 Specify Software-related Security Policy
The software system security policy is part of software system requirements placing constraints on system
behavior. It can include policies related to confidentiality, integrity, availability, and accountability. It is
derived from higher-level policies, laws and regulations, threats, the nature of the resources being protected, or
other sources as described in the prior subsections of this section [Gasser 1988, Chapter 9].

Specifying the properties that the system must preserve separately from the specification of its external
behavior allows the latter to be explicitly verified to be consistent with these security property constraints. In
practice, what is labeled security policy may have in addition to these property constraints, a number of
requirements on usages of components or techniques, e.g., cryptographic techniques. These latter requirements
form parts of the requirements on how the system will be designed and constructed.

5.4.2.1 Convert Security Needs into a System Security Policy
The security protection needs of assets and the identified threats (existing, future, concrete, or postulated) must
be mapped into a stakeholder understandable description of the security policy to govern the software system
that the stakeholders can validate. As a basis for rigorously verifying specification, design, and code
compliance, the security properties portion of this software system’s security policy can then be restated using
formal notation. The other portions of the policy need to be put in at least a semi-formal or structured form
suitable for tracing, verifying, and evaluating compliance with them in the specifications, design, code, and
possibly elsewhere.

5.4.2.2 Informally Specify
As with any critical requirement, the first step is usually creating a carefully expressed, reviewed, and
approved informal or preferably semi-formal policy specification understandable by stakeholders and traced to
its justifications.

The security policy may include requirements for flexibility so users may currently or in the future specify a
given variety of security policies. [ISO-15448]

See section 6, Secure Software Design, for design options that may become an implicit or explicit context such
as kinds of access policies, where some security policies terms are stated [ISO-15448].

To avoid excessive rework of the formal statement, developers must first analyze and stakeholders validate this
user understandable description.

5.4.2.3 Formally Specify
To ensure uniform correspondence, a clear fully documented mapping must exist between the informal or
semi-formal expression of the policy and the formal mathematical one [Giorgini 2005] [NRL Handbook 1995,
Chapter 3]5. To ease the demonstration that external behavior and design specifications are consistent with the
security policy’s constraints, the formal policy specification must be made in a notation or terms that allow
reasoning about this consistency, e.g. [Giorgini 2005]. The obvious choice may be using the same notation to
express the security property. Where possible, revalidation may also be appropriate.

5.4.3 Security Functionality Requirements
The Security Functionality subsections in the Fundamentals and Design sections enumerate functionalities.
[SCC Part 2 2002] provides perhaps the most extensive catalog of security functionality while the most official
is in [Common Criteria v.3.0 Part 2]. The requirements question is to select from the possible functionalities
those that are needed for preserving the security properties in the security policy and are appropriate to the
dangers and risks. [ISO-15448], [CJCSM 6510.01 2004] [S4EC], [Moffett and Nuseibeh 2003], and with some

5 See http://chacs.nrl.navy.mil/publications/handbook/SPM.pdf (Accessed 20050917)

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

85

redundancy [Moffett 2004], all provide some guidance. The Common Criteria community has several
Protection Profiles including lists of functionality for different kinds of software products. Other certification
schemes may also make statements about functionality.

The portion of the security policy that is in addition to the security properties may already contain directions
about some security functionality.

Security functionality specifics and locations can be strongly affected by the degree of assurance required,
compatibility requirements, and architectural decisions as well as development tool choices and decisions to
purchase or reuse. Of course, security functionality behavior visible as external behavior of the software
system must be sufficient to provide conformance to the system’s security policy.

5.4.4 High-Level Specification
The highest level of specification can detail the software system’s external behavior and may do so by treating
the system as a single unit or as the combined behavior of a small number of high-level parts and their
interactions. Just as with any significant software, designing the external behavior of a secure software system
and its required non-functional requirements is often a difficult process [Chung 1999]. Also similarly, the use
of possibly abstract system state values eases writing the specification. In security, however, these state values
– such as where something is stored and if it is encrypted or not – can be a central concern.

While the specification of external behavior is traditionally labeled a requirements activity, it is a product
design activity and much of what is in the Design section is relevant here as well.6 The specification of the
external behavior of a system appears in a top-level specification that may treat the system as a single unit or as
a small number of units composed into the system.

Skills (and methods/tools) are needed for constructing appropriate (unambiguous, complete, etc.) specifications
including formal specification of the software’s external behavior. [Sommerville 2004, Chapters 9 and 10]
[Summerville 1997] Additional skills may be required for specifying the security property constraints and
comparing them to the specifications, e.g. [Hall 2002b] who also addresses formal specification of user
interfaces.

Showing that the behavior specified in the high-level specifications meets the security property constraints and
the remainder of the security policy is a major step in producing the assurance case. The highest practicable
assurance might come from a machine-checked, formal-methods-based logical proof of consistency combined
with thorough reviews possibly including simulated attempts at attacks.

The high-level specification of the software system behavior can be the bedrock by which assurance is first
gained that the system will be consistent with the required security properties and other relevant portions of the
security policy. The remainder of development will then rely on this consistency with security policy,
particularly the required security properties to build a system that agrees with this specification and thereby
with the security policy.

The system can provide flexibility. The specification and design could be consistent with the security policy by

 Having mechanisms that allow a range of user/operator specification of security policies

 Identifying the configurations or settings for the required policy

The high-level specification must be traceable to identified needs, statements of relevant analyses, and design
rationales. Of course, in addition to consistency with security policy requirements, the software system must
also perform its intended purposes and provide acceptable usability, performance, and other qualities.

6 Also remember that – as in “unsecured” systems – while external behavior may be recorded separately from internal design,
the problems are intertwined and humans have legitimate trouble thinking of only one of them without the other.

5 Secure Software Requirements

86

5.5 Requirements Validation
In addition to verifying consistency among requirements artifacts, one needs to ensure they reflect actual needs
and show that a system will work as intended under operational conditions and provide the desired benefits. As
for all aspects of software systems, one must also validate security needs, the security policy, and security-
relevant aspects of the high-level specifications. As mentioned in the subsections above, validation involves
producers, the external stakeholders, and security experts.

Producers and relevant stakeholders should explicitly justify any exclusion of requirements deriving from laws,
regulations, or standards/guides or clearly be identified by stakeholders.

Developers of secure software must know the relevant validation techniques and their applicability. See the
section 8, Secure Software Verification, Validation, and Evaluation; and section 9, Tools and Methods,
respectively.

5.6 Assurance Case
Assurance cases were described at some length in section 3, Secure Software Fundamental Concepts and
Principles, and are also have significant coverage in section 8, Secure Software Validation, Verification, and
Evaluation. The development of the assurance case begins during conception and requirements – and any
related acquisition activities – and continues throughout development and sustainment. It is an integral part of
technical risk management, and its required development and especially its needed contents have important
effects on planning and engineering.

Security policy (particularly security properties), security risks, and assumptions play a central role in the
assurance case. Making the case that the system developed meets the first, security policy, given the latter two,
is the main purpose of the security assurance case. One major first step is showing the consistency of the
behavior specification with the security policy, including required security properties as discussed in the High-
Level Specifications subsection.

An assurance case could also address the suitability of policy and assumptions for the expectations, intentions,
environment, and external requirements. The Requirements Validation subsection addresses some the relevant
steps. Also see section 8, Secure Software Verification, Validation, and Evaluation.

5.7 Further Reading
[Barden 1995] Barden, Rosalind, Susan Stepney, and David Cooper, Z in Practice, Prentice Hall, 1995

[Bejtlich 2005] Bejtlich, Richard, Extrusion Detection: Security Monitoring for Internal Intrusions.
Addison-Wesley Professional, 2005

[Boudra 1993] Boudra, P., Jr., Report on rules of system composition: Principles of secure system design.
Technical Report, National Security Agency, Information Security Systems Organization, Office of
Infosec Systems Engineering, I9 Technical Report 1-93, Library No.
S-240, 330, March 1993.

[Davis 1993] Davis, A.M., Software Requirements: Objects, Functions and States, Prentice Hall, 1993.

[FIPS 188] FIPS 188, Standard Security Labels for Information Transfer, September 1994.

[Fitzgerald 2002] Fitzgerald, Kevin J., “U.S. Defense Department Requirements for Information
Security”, Crosstalk, May 2002.

[Flechais 2003] Flechais, I., Sasse, M. A., and Hailes, S. M., “Bringing security home: a process for
developing secure and usable systems,” In Proceedings of the 2003 Workshop on New Security

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

87

Paradigms (Ascona, Switzerland, August 18 - 21, 2003). C. F. Hempelmann and V. Raskin, Eds.
NSPW '03. ACM Press, New York, NY, pp. 49-57.

[Giorgini 2004] P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zannone, “Requirements Engineering
meets Trust Management: Model, Methodology, and Reasoning.” Proc. of the 2nd Int. Conf. on Trust
Management (iTrust) 2004.

[Goguen and Linde, 1993] J. Goguen and C. Linde, “Techniques for Requirements Elicitation,”
International Symposium on Requirements Engineering, 1993.

[Gutmann 2004] Gutmann, P., Cryptographic Security Architecture: Design and Verification. Springer-
Verlag, 2004.

[HMAC 2002] “The Keyed-Hash Message Authentication Code (HMAC)”, FIPS 198, March 2002.

[Howard 2003b] Howard, M., J. Pincus and J. Wing, “Measuring relative attack surfaces,” Proceedings of
the Workshop on Advanced Developments in Software and Systems Security, Available as CMU-TR-
03-169, August 2003.

[IEEE830-98] IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements
Specifications, IEEE, 1998.

[Karger et al, 1990] Karger, Paul A., Mary Ellen Zurko, Douglas W. Benin, Andrew H. Mason, and
Clifford E. Kahn, “A VMM Security Kernel for the VAX Architecture,” 1990 IEEE Symposium on
Security and Privacy, IEEE, 1990.

[Kotonya 2000] Kotonya, G. and I. Sommerville, Requirements Engineering: Processes and Techniques,
John Wiley & Sons, 2000.

[Manadhata and Wing 2004] Manadhata, P. and J. M. Wing, "Measuring A System's Attack Surface,"
CMU-TR-04-102, January 2004.
Available at: http://www-2.cs.cmu.edu/afs/cs/project/calder/www/tr04-102.pdf

[CC 2005] The National Institute of Standards and Technology, Common Criteria v. 3.0, July, 2005.

[NIST Special Pub 800-27] Stoneburner, Gary, Clark Hayden, and Alexis Feringa, Engineering Principles
for Information Technology Security (A Baseline for Achieving Security), NIST Special Publication
800-27 Rev A, June 2004.

[NIST Special Pub 800-53] Ross, Ron et al. Recommended Security Controls for Federal Information
Systems, NIST Special Publication 800-53, Feb. 2005.

[NIST Special Pub 800-60] Barker, William C., Guide for Mapping Types of Information and Information
Systems to Security Categories, NIST Special Publication 800-60, June 2004.

[Open Group 2004] Open Group, Security Design Patterns (SDP) Technical Guide v.1, April 2004.

[Radack 2005] Radack, Shirley, editor, Standards for Security Categorization of Federal Information and
Information Systems, Federal Information Processing Standard (FIPS) 199, July 10, 2005.

[Riggs 2003] Riggs, S., Network Perimeter Security: Building Defense In-Depth, Auerbach Publications,
2003.

[Robertson 1999] Robertson S. and J. Robertson, Mastering the Requirements Process, Addison-Wesley,
1999.

[Rowe 2004] Rowe, Neil C. “Designing Good Deceptions in Defense of Information Systems,” ACSAC
2004 http://www.acsac.org/2004/abstracts/36.html.

5 Secure Software Requirements

88

[Saltzer and Schroeder 1975] Saltzer, J. H. and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-1308, 1975.
Available online at http://cap-lore.com/CapTheory/ProtInf/

[Schell 2005] Schell, Roger. “Creating High Assurance for a Product: Lessons Learned from GEMSOS.”
(Keynote Talk) Third IEEE International Workshop on Information Assurance, College Park, MD,
USA March 23-24, 2005. Available at http://www.iwia.org/2005/Schell2005.pdf.

[Schneier 1999] Schneier, Bruce, “Attack Trees: Modeling security threats,” Dr. Dobb's Journal,
December 1999.

[SHS 2002] Secure Hash Standard (SHS), FIPS 180-2, August 2002.

[SREIS 2005] Symposium on Requirements Engineering for Information Security (SREIS 2005) Paris,
France, August 29, 2005. See http://www.sreis.org/

[Thompson 2005] Thompson, H. H. and S. G. Chase, The Software Vulnerability Guide, Charles River
Media, 2005.

[US Army 2003] US Army, Field Manual (FM) 3-13: Information Operations: Doctrine, Tactics,
Techniques, and Procedures, 28th Nov., 2003. (Particularly Chapter 4 on Deception)

[US DoD 1996] Joint Chiefs of Staff, DoD JP 3-58, Joint Doctrine for Military Deception, 31 May 1996.

[Wyk and McGraw 2005] van Wyk, Kenneth and Gary McGraw, After the Launch: Security for App
Deployment and Operations, Presentation at Software-related security Summit, April 2005.

[Zwicky et al, 2000] Zwicky, Elizabeth D., Simon Cooper, and D. Brent Chapman, Building Internet
Firewalls (2nd ed.), O'Reilly, 2000.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

89

6 Secure Software Design

6.1 Scope
Software design is the software engineering activity that takes the products of the requirements activity,
particularly the specification of the system’s external behavior, and decomposes the system at possibly
multiple levels into components and their interactions. Design produces the:

 Description of the software’s internal structure that will serve as the basis for

– Assurance of design’s agreement with the specifications

– Its construction

 Constraints regarding aspects of design and future evolution of the design

 Rationale for the design decisions

 Assurance case portion related to design, including argument and evidence for the design’s
conformance to external behavior (or top-level) specifications, the system’s security policy, and other
relevant constraints

Design normally includes descriptions of the architecture, components, interfaces, and other characteristics of a
system or component. Often the constraints mentioned in the second major bullet are embodied in an
architecture description. [Gasser 1988, Chapters 3-6, 9, 11] provides an introduction to design for secure
software systems, and coverage of web application design is provided by [Meier 2003, Chapter 4]. [Berg 2005]
provides excellent coverage of many design issues for secure systems.

Traceability must be monitored between relevant elements of requirements, such as the high-level specification
or external behavior specification and the architecture and be continued throughout design. This traceability is
also reflected in the assurance case.

In addition, design must produce the detail required by the construction activity.

Design of secure software systems is similar to design of any extremely high-assurance software [Neumann
1986] but with such additional concerns as:

 Ensuring consistency with a security policy

 Incorporating necessary security functionality

 Ensuring design does what the specification calls for and nothing else

 Employing separation of mechanisms, duties, and privileges, including the principle of least privilege

 Negating the subversion or maliciousness of designers or other personnel – insiders

 Defending against outside attack on the design infrastructure and artifacts – outsiders

 Creating an assurance case with arguments and evidence that ensure these (or at least the first bullet,
which implies much of the others) and addresses the danger of intelligent, malicious actions as well as
security relevant random misfortunes.

Two important concerns that also exist in high-assurance systems for other purposes are

 Minimizing what must be trusted

 Reliability and correctness

6 Secure Software Design

90

Despite many commonalities where security is not a concern, these differences, along with the other differing
goals raised by security, make designing secure software an exceptional problem for designers with its
particular goals and characteristic design principles.

These goals and principles will be addressed first before covering the other aspects of designing secure
software systems. While covering only the security-relevant elements of design, this knowledge is substantial,
and, to avoid excessive document size, its enumeration leads to the use of several lists. While possibly tedious
to some, the lists contain items meaningful in the design of secure software systems.

6.2 Design Objectives
Table 8: Limits to Aid Software System Security provides a number of design-relevant objectives for software
systems where security is a concern. Designers of secure software systems can have a number of other
distinctive objectives, including: [Gutmann 2004, Chapters 1-4] [Redwine 2005a]

 Design to defend perfectly, then assume
this defense will fail and design to defend
after initial security violation(s)

 Architecturally eliminate possibilities for
violations – particularly of information
flow policies

 Have sound:

– Authentication

– Authorization and access control

– Administrative controllability

– Manageability

– Comprehensive accountability

– Tamper resistance

 Design so the system does what the
specification calls for and nothing else

 Do not cause security problems for
systems in the environment

 Design to tolerate security violations (See
subsection on Confine Damage and
Increase Resilience.)

 Design for survivability [Ellison 2003]

 Avoid and workaround environment’s
and tool’s security endangering
weaknesses

 Design for secure operation [Berg 2005,
Chapters 10 and 18] [McGraw 2006,
Chapter 9]

 Make weak assumptions

 Do not rely only on obfuscation, but
exploit deception and hiding

 Have a design that is open and eases
traceability, verification, validation, and
evaluation

 Provide predictable execution behavior

 Ease creation and maintenance of an
assurance case [Berg 2005, Chapter 17]

 Help ensure cost-effective and timely
certification of software system security
and accreditation of the operational
systems

These objectives (from section 3’s Table 8 as wells here) provide designers with a set of goals to pursue in
developing their (more) secure systems.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

91

6.3 Principles and Guidelines for Designing Secure
Software

This subsection augments the principles in section 3, Fundamental Concepts and Principles.1

Also, see [Meier 2003, Chapters 4 and 5] for designing secure web applications.

6.3.1 General Design Principles and Guidelines for Secure Software
Systems

Developers need to know secure software design principles and how they are employed in design. They also
need to know ways to recognize whether the principles were used in a design and how to evaluate designs and
proposed changes, including improvements. (Also, see section 3, Fundamental Concepts and Principles.)

Design includes using abstraction and decomposing the system using architecture and constraints to facilitate
quality design and achievement of security requirements [Meier 2003, pp. 47-48, p. 70, and p. 100]. This
includes facilitating evolution of required functionality and security policy to address future user needs,
particularly changing threats. Designers may alternate between focusing on design of functionality and on
examining emergent properties.

One needs a sound architecture amendable to supporting assurance arguments and evidence via review and
analysis including formal proofs. To ease production of an accompanying assurance case for the security
preserving correctness of compositions, care concerning composability is needed at all levels of detail
[Neumann 2003] [Berg 2005, Chapter 11]. Achieving these using known security techniques can aid
confidence.

Information hiding and encapsulation are well-established general design principles fundamental to the crucial
activity of minimizing and simplifying the portion of the software that must be trusted. A separate trusted
computing base can isolate security policy and localize reasoning and assurance arguments. This does not
mean that the trusted software must be monolithic, e.g., see [Vanfleet 2005]. To help simplify and minimize
what must be trustworthy, one can minimize the functionality included in the trusted parts in several ways:

 Exclude non-security relevant functionality

 Separate policy and mechanism

 Localize or constrain dependencies

 Maintain minimal retained state – e.g., do not keep startup processes or state after startup, or normal
running ones during shutdown [Schell 2005]

 Virtualize roles of hardware and device drivers

 Minimize support for functionality, which is outside the trusted software component(s)

Attackers cannot compromise information that is not in the system. If software retains minimal state, attackers
will have shorter and fewer opportunities to find information or to execute illegitimate actions.

Among the approaches to modularity, layering has been a crucial information hiding mechanism in secure
systems –see [Gasser 1988, section 11.1] for an introduction and [Karger 1990] for an example. Layered and
distributed protection can be effective. Object orientation has merit; but beware the difficulties of ensuring the

1 This section draws heavily on an existing larger compilation from a number of sources in [Redwine 2005b]. Portions of these
principles were first collected in [SDI 1992] or [Neumann 2003] as well as [NIST Special Pub 800-27] and are described in
more detail there. Discussions of some appear in [Howard and LeBlanc 2003], [Viega and McGraw 2002], and [Bishop 2003].

6 Secure Software Design

92

correctness of inheritance, polymorphism, and generics. Indeed, one may need to avoid these unless adequate
means of analysis and assurance for their use are in place.

The most basic approach is to reduce the possibilities for security violations. Among the techniques and
principles available for this are to:

 Deny access unless explicitly authorized

 Deploy with secure initial defaults

 Check every access

 Implement least privilege

Separation can eliminate or reduce the possibilities of certain kinds of violations via:

 Least common mechanism – avoid shared mechanisms

 Separation of duties

 Separation of privilege

 Separation of roles

 Separation of trust domains [Berg 2005, Chapter 6]

 Constrained dependency

This list identifies the roles/responsibilities that, for security purposes, should remain separate. For example,
they suggest it is better to have several administrators with limited access to security resources rather than one
person with "super user" permissions.2

Isolation of software systems is a variation on this use of separation.

 Public accessibility: to the extent possible, isolate publicly accessible systems from mission-critical
resources (e.g., data, processes).

 Physical isolation: no physical connection exists between an organization’s public access information
resources and the organization’s critical information.

 Logical isolation: layers of security services and mechanisms should be established between public
systems and secure systems responsible for protecting mission-critical resources.

 Domain isolation: use boundary mechanisms and guardian mechanisms to separate computing
systems and network infrastructures to control the flow of information and access across network
boundaries, and enforce proper separation of user groups.

Other ways to reduce possibilities include:

 Reducing the number of input/output points – the attack surface [Howard, Pincus, and Wing 2003]
[Manadhata and Wing 2004]

 Not implementing unnecessary functionality

Unnecessary security mechanisms can add complexity and increase potential sources of additional
vulnerabilities.

2 In current practice, super-users tend to have their behavior as recorded in audit logs that are later audited/reviewed. Of
course, this implies the super-user cannot tamper with the system’s capturing and recording of the data for audit logs or with
the logs.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

93

Where possible within design constraints and ensuring analyzable results, security functionality might best be
based on sound, open standards that aid in evolution, portability, and interoperability, as well as assurance.

Modularity and separation enable a system to:

 Defend in depth

 Have diversity in defenses [Zwicky, et al.]

Possible lack of variety can be indicated not just by items being identical but also by common heritage of
software, common involvement of persons or practices, common settings, and common components. To be
most effective, combine [overlapping] physical, procedural, and software-related security [Moffett and
Nuseibeh 2003]. Defense-in-depth’s success could be more likely if the defenses are diverse in nature.

Designers should avoid exposing assets or weaknesses in any system state including startup, operation,
shutdown, exception handling, system failure, updating, recovery, and loss or disposal.3

To predict execution behavior the design must be analyzable. For security concerns, this means that, at a
minimum, security-relevant behavioral aspects need to be analyzable. This analysis might include sequential
behavior and concurrency for the existence of the potential to violate the required security properties. Almost
all concurrent structures require automated analysis for adequate confidence.

Treating a design as holistically as is practicable avoids an unreasonable combination of seemingly reasonable
local design decisions. To maintain the same level of assurance, one must reuse designs and components only
if they are known to be (or can be shown to be) secure in the fashion required for this system.

6.3.2 Damage Confinement and System Resilience
A designer cannot depend on a software product’s defenses to be perfect. One response to this issue is to
design and operate a secure software system to:

 Limit damage

 Be resilient in response to events

Aims include making the system resistant to attack, limiting damage, and having it detect and recover rapidly
when attacks do occur. [Pullum 2001] provides definitive coverage of software fault tolerance, [Stavridou
2001] provides an introduction to intrusion tolerance, and [Berg 2005, Chapter 18] addresses responses to
failure. This can be accomplished in a variety of related ways:

 Limit or contain vulnerabilities’ impacts

 Choose safe default actions and values

 Self-limit program consumption of resources

– Attempt to exhaust system resources (e.g., memory, processing time.) is a common attack. Add
capabilities into the program to prevent overusing system resources

 Design for survivability [Ellison 2003]

 Ensure system has a well-defined status after failure, either to a secure failure state or via a recovery
procedure to a known secure state [Avizienis 2004]

– Rollback

– Fail forward

– Compensate

3 “Defense in breath” is a phrase sometimes used for all encompassing defenses including across the system parts.

6 Secure Software Design

94

 Fail securely

 Eliminate “weak links”

 Implement layered security (no single point of vulnerability).

– Especially important when COTS products are used.

 Be able to recover from system failure in any state

 Be able to recover from failure during recovery (applies recursively)

 Make sure it is possible to reconstruct events

 Record secure audit logs and facilitate periodical review to ensure system resources are functioning,
confirm reconstruction is possible, and identify unauthorized users or abuse

 Support forensics and incident investigations

 Help focus response and reconstitution efforts to those areas that are most in need

Software should not just fail when a damaging problem occurs but should continue to run, at least in a
restricted but secure way, degrading gracefully. A well-designed software system can provide assurance that
the system is, and shall continue to be, resilient in the face of expected threats. The instructive example of the
MAFTIA design is discussed in [Stroud 2004].

Software should also fail safely:

 Fail “open”: If patient “sensor” software happens to fail, should it turn off the life support machine?
No!

 Fail “closed”: If a firewall dies, should the server’s network connection be shutdown? Yes!

Finally, the software is part of a system and organization which can establish their own layers of defenses
including “detect and respond” capabilities, manage single points of failure in inner/lower layers, and
implement a reporting and response strategy.

6.3.3 Vulnerability Reduction
A number of approaches exist to reduce vulnerability:

 Ensure proper security at system shutdown and disposal

– Although a system may be powered down, critical information still resides on the system and
could be retrieved by an unauthorized user or organization.

– At the end of a system’s life-cycle, procedures must be implemented to ensure system hard
drives, volatile memory, and other media are purged to an acceptable level and do not retain
residual information.

Common errors and vulnerabilities must be identified and prevented. Many errors recur with disturbing
regularity, for example

 Buffer overflows

 Format string errors

 Failing to check input for validity

 Programs/processes being given excessive privileges

Sources for lists of vulnerability categories and instances include books and websites. See section 7, Secure
Software Construction.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

95

Separation of duties and privileges, and mechanisms can aid in avoiding a “single point of total vulnerability,”
analogous to avoiding a “single point of failure.” As an additional example, one might require secret sharing
(splitting) across machines for added confidentiality or redundancy across machines as well as for improved
availability and integrity. Of course, secret sharing (splitting) across machines increases the number of
machines that must be accessed to access the secret.

A number of techniques, issues, and benefits result from carefully analyzing proposed designs, identifying, and
reducing vulnerabilities. [Swiderski and Snyder 2004] gives substantial coverage to vulnerability analysis
although they use the term threat modeling, which covers both threat analysis and vulnerability analysis.
[McGraw 2006, Chapter 5 and Appendix C] address architecture risk analysis. Beyond the obvious advantages
of finding vulnerabilities, vulnerability analysis can lead to better designs.

6.3.4 Viewpoints and Issues
Some viewpoints and issues are special for secure software design. These normally include:

 Design with the enemy in mind

– Understand that subversion is the attack mode of choice e.g., subvert people, processes,
procedures, testing, repair, tools, infrastructure, protocol, or systems

– Understand and enforce the chain of trust

– Do not invoke untrusted programs from within trusted ones.

 Test any proposed design decision against policy and ease of assurance

 Be aware of composition difficulties for security properties

 Design with the network security in mind

– Implement security through a combination of measures distributed physically and logically

– Associate all network elements with the security services and advantages or disadvantages they
provide

 Cross (trust or custody) domain issues

– Authenticate users and processes to ensure appropriate access control decisions both within and
across domains

– Level of trust is always an issue when dealing with cross-domain interactions

– Formulate security measures to address multiple overlapping information domains

– Place safeguards on information flows

 An efficient and cost-effective security capability should be able to enforce multiple security policies
to protect multiple information domains without the need to (excessively) physically separate the
information and the respective information systems processing the data.

These viewpoints and issues change for each system being developed, so they should be analyzed for each
development effort.

6.4 Documentation of Design Assumptions
The list of assumptions made primarily about the software systems environment is one of the products of the
requirements activity. These assumptions may change as the design develops, hopefully, by discovering design
approaches that allow making them fewer or weaker. They may also grow if dependencies are introduced by
the design – for example, by reusing a software component whose assurance case derives in part from

6 Secure Software Design

96

uncheckable assertions or evidence from its supplier. See Requirements subsection on Assumptions for more
discussion of contents.

6.4.1 Environmental Assumptions
Assumptions about the environment and its interfaces to the software system can aid in simplifying the design
and assurance arguments but also can provide bases of building attacks.

Development environment and operational environment assumptions should be documented.

6.4.2 Internal Assumptions
Assumptions made about items inside the software system could be the result of assumptions about the
environment or could be strictly internal. Conditions guaranteed to parts of the system by other parts of the
system would be misidentified as “assumptions,” as they are conditions that must be provided by the software
system design.

6.5 Documentation of Design Decisions and Rationales
Good practice calls for documenting design decisions made for security reasons and ensuring traceability of
design items and decisions to requirements and code. Traceability is essential for the assurance case. The
design rationale can often provide arguments or evidence suitable for inclusion in the assurance case.

6.6 Software Reuse
Several facts about reuse in a high-assurance system are straightforward.

 Reused software that includes defects may undermine the trust in the entire software system.

 When requiring reused software to meet the level of assurance of newly developed software is not
feasible, one must still deal with the resulting uncertainty and risks.

 System operators and sustainers may have little control over software fixes and patches for software
originating elsewhere.

One may be reusing much more software than one realizes as compilers and frameworks can incorporate a
substantial amount of code implicitly [McGraw 2006, pp. 167-169].

To ensure the assurance case remains adequate, one may reuse prototype software in production versions only
if its traceability, documentation, and evidence adhere (or is enhanced to adhere) to the levels required for the
overall assurance case. This case implies all the normal production-level reviews, analysis, and tests are
performed.4

With rare exceptions, composing systems from COTS, government off-the-shelf (GOTS), or open source
products or components is fraught with security problems and existing vulnerabilities. One need only read the
long lists of known defects and vulnerabilities for common COTS and open source software to realize the level
of danger (even if most known ones are fixed). While the assurance issues raised by open source and
COTS/GOTS are no different than those for custom software, typically, they are not accompanied by the
evidence required for needed confidence.

Here, even an emphasis on

4 Quite apart from security, good practice would call for incorporating prototypes into a production version only if the prototype
was designed with production standards in mind. Otherwise one might be going “live” with something never designed for a
production environment.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

97

 Performing adequate component analysis prior to acquisition

 Analyses of the frequently awkward security-related issues in composition

 Testing and assessment of resulting composite system

can usually provide high confidence only if the individual components deserve high confidence. Identifying
alternatives and performing trade-off studies on software components can therefore be critical.

If “forced” to use normal OTS software, one can consider other ways of avoiding and sharing risks as well as
using defense-in-depth, damage confinement, and resilience techniques. One family of techniques used is to
attempt to surround the OTS product in a “wrapper.”

When integrity is the only issue, relying primarily on high-assurance resilience and recovery may be
acceptable. If the amount of risk is unacceptable, one needs to consider the option of not producing the system
as it may be an insecure OTS-based system containing high-value assets or having purposes or uses with
significant security risks.

For OTS-based systems with security requirements, preparing the best practicable assurance case from existing
or producible information and evidence is crucial, as system owners, developers, operators, and users need to
know the amount of assurance (or lack thereof) that exists to make decisions and manage risk in a potentially
perilous situation. Part of the Acquisition section addresses this situation.

Subcontracting or outsourcing can reduce one’s intimate visibility and control over software production and
assurance, causing increased uncertainties and risks. Whenever possible, security requirements should be
defined in original contract language, with provisions for thorough testing and evaluation; and any remediation
is required before acceptance or deployment. These requirements can result in the need for special
arrangements and activities as described in the Acquisition section.

Acquiring software through OTS, contracting, or outsourcing (production or production support) neither
removes any of the same security requirements as would hold for in-house production nor does it eliminate the
need to provide the same or higher quality assurance case and evidence. They may increase the path along
which integrity of the product and accompany assurance evidence must be maintained. If it is a portion of a
larger system, then its assurance case must integrate properly with other assurance arguments in the remainder
of the larger assurance case. The same is, of course, true of any the contractor’s suppliers and in the worst case
for the entire supply chain.

6.7 Architectures for Security
Security-aware architectures need to address the concerns of high-dependability and those particular to
preserving the required confidentiality, integrity, and availability under attack.5

Secure architectural styles or style elements include:

 Reference monitors

 System high

 Multiple Independent Levels of Security (MILS)

 Multiple Single Levels of Security (MSLS)

 Distributed access control

 Layered

5 The International Association of Software Architects site is at http://www.iasahome.org/iasaweb/appmanager/home/home
and contains relevant material.

6 Secure Software Design

98

 Tolerant – to (partial) attacker success, including “self healing” approaches

 Adaptive distributed reconfiguration responses to attacks [MAFTIA]

 Compartmentalization via–

– Virtual machines

– Separation via encryption

– Physical separation

– Separation except at point of use

– Filters, guardians, and firewalls

[Neumann 1995], [Neumann 2000], and [Vanfleet 2005] discuss a number of relevant architectural styles.
[Gasser 1988, Chapters 4, 5, 11, and 13] and [Meier 2003, p 40 and p 100] discuss general issues.
(Also see subsection 6.3.2, Damage Confinement and Resilience.) {McGraw 2006, Chapter 5]
addresses architecture risk analysis.

6.7.1 Access Control Issues
There are a number of access control concepts, policies, and issues. [Bishop 2003, pp. 381-406] [Gasser 1988,
Chapter 6] Policies can be used individually or in combination. In addition to the generic access policies listed
in the section 3, Fundamental Concepts and Principles, concepts and issues include:

 Access control process and mechanisms

 Access control in distributed systems/databases

 Disclosure by inference

 Potential exploitation of access control to create possibilities for disclosure by covert channels

See the subsection 6.8.2 on access control mechanisms.

6.7.2 Cross-Domain Control
Information crossing the boundary between security domains with different policies (or in practice ownership)
raises potential problems for both the originating domain (Should it be allowed to leave? Does it need to be
encrypted first?) and the receiving one (Can it be trusted? How should it be handled?). Guards may be placed
on one or both sides of a boundary.

One particular problem is that information already encrypted – say to gain the benefits of end-to-end
encryption – cannot be directly inspected at the boundary. Providing cross-domain solutions has become a
niche area.

6.8 Security Functionality
Areas of knowledge needed include:

 Kinds of security functionality [SCC Part 2 2002] [Common Criteria v.3.0 2005, Part 2]

 Design of security functionalities

– Individually and in combination

– Potential conflicts

– Centralized and decentralized security functionality

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

99

– Planning for evolution of security functionality

 Availability, characteristics, and appropriate use of OTS or reusable security functionality

The Common Criteria call for self-protection and non-bypassability of security functionality and protection for
boundaries to domains of trust. [Common Criteria v.3.0 Part 3, pp. 96-101]

Three areas of functionality important to designers are managing information about identities and
authenticating them, controlling access, and using cryptographic functionality.

6.8.1 Identity Management
An identity may represent an actual user or a process or data with its own identity. [Bishop 2003, Chapter 14]

Use identities authenticated by (possibly multiple) means sufficient for the threat environment and asset value
to:

 Maintain accountability and traceability of a user

 Assign specific rights to an individual user or process

 Provide for non-repudiation

 Enforce access control decisions

 Establish the identity of a peer in a secure communications path

 Prevent unauthorized users from masquerading as an authorized user.

By considering the threat environment and value of the asset being protected, the need for multiple
authentications of an identity is understood.

6.8.2 Access Control Mechanisms
The rights that can be asserted over entities in that system is sometimes called its “protection state.” [Bishop
2003, Section 2.1]. The ability of a system to grant, deny, or modify those rights constitute the process of
access control within a system. The various methods used to control access to entities are the subject of this
subsection. This subsection is only an overview of introductory highlights. [Berg 2005, Chapter 7] has 130
practitioner-relevant pages on access control concepts and a separate chapter, [Berg 2005, Chapter 8], on
classification and compartmentalization.

The access control matrix is a very general framework for describing a systems protection state [Bishop 2003,
Section 2.2]. Users form the rows of the matrix, while the entities in the system are the columns. Entries in a
particular cell of the matrix describe the access the user from that row has over the entity from that column.

A particular access control method can be classified as either mandatory or discretionary [Bishop 2003, pp.
103-104]. A mandatory access control scheme is enforced by the system and cannot be altered or overridden
by users of that system. Often these schemes are rule-based and implement organizational security policies.
Discretionary access controls, on the other hand, are optional controls set by system users with the appropriate
rights to the entity.

6.8.2.1 Access Control Lists
Access control lists (ACL) are typically identity based mechanisms associated with the controlled entity. In the
access control matrix described above, ACLs are a column-wise partition of the matrix. An identity may be
that of a particular user of the system, but can also be more general. That is, the identity may be held by several
users of the system in the form of group membership or a role being played by a user.

6 Secure Software Design

100

Procedure-based access control is a form of a trusted interface mechanism. To access an entity, users must not
only have been granted permission but must also use a specified procedure to accomplish that access.

A propagated access control list (PACL) provides the creator of an entity control over the use of that entity
[Bishop 2003]. Any user allowed access to the object may only do so in accordance with the originator’s
policy. Thus, PACLs are suitable for implementing an originator-controlled (ORCON) access policy.

Access conflicts can arise if a user possesses multiple access permissions to an entity. For example, if by virtue
of a user’s identity, read/write access is granted and by virtue of the same user’s group membership, only read
access is granted, which access permissions take precedence? Normally, if an access type is held by a user,
then that type of access can be exercised. However, this does not have to be the case. Interestingly, some
mechanisms support the reverse: a “deny access” setting on an object for a user.

6.8.2.2 Capabilities
In contrast to ACLs, whereby access rights are associated with the controlled entity, capabilities are associated
with users. Capabilities describe the objects a user is ‘capable’ of accessing and the manner of that access. In
an access control matrix, capabilities are a row-wise partition of the matrix.

6.8.2.3 Locks and Keys
Locks and keys can be thought of as a combination of an ACL and a capability. The lock is information
associated with the protected entity, while the key is information associated with or possessed by one or more
users [Bishop 2003]. Sometimes cryptographic secret-sharing algorithms are used to prevent access to an entity
unless a given number of users agree to that access (e.g., the Shamir secret sharing scheme).

6.8.2.4 Ring-based Access Control
Ring-based access control generalizes the concept of a super-user and an ordinary user used in many operating
systems [Bishop 2003] to an arbitrary number of levels. Entities within a system operate within a certain ring
level and must take certain system- or policy-directed actions to access entities in other rings.

6.8.2.5 Revocation
While revocation of access privileges may seem to be a simple task, it can become quite difficult to administer.
For example, ensuring revocation when users and entities are distributed across domains, systems, or networks
is problematic. Further complicating matters is whether rights granted to, say, User B by User A, should be
revoked if User A rights are revoked.

6.9 Proper Use of Encryption and Encryption Protocols
In this area, experts should be consulted before establishing organizational policies or making project decisions
[Meier 2003, p. 91]. To choose an encryption scheme or protocol properly, one must know the existing
standards (official and de facto), their characteristics (strengths and weaknesses), and their future prospects
[NIST Special Pub 800-53, Final, Appendix F], [FIPS 140], and [FIPS 180].

Computational difficulty is the fundamental measure of encryption merit, and knowledge should be possessed
of the computational requirements to break, as well as to use, different forms of

 Encryption and decryption

 Calculating and reversing hashes

Hashing is an example of an area without adequate theoretical foundations where algorithms have been shown
to be weaker than thought. Such areas deserve careful treatment and concern for potential future problems. For

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

101

adequate assurance, only cryptographic software certified to [FIPS 140] or NSA Type 1 (or official
equivalents) should be used.

For communication and storage designing with the assumption that everything of value should be strongly
encrypted, including integrity checks and explicitly justifying other choices can lead to better security. (See
section 3, Fundamental Concepts and Principles for more discussion of encryption.)

6.10 Frameworks
Many design efforts occur within a given framework such Sun’s J2EE or Microsoft’s .net [Meier 2003, Part
III] [McGraw 2006, p. 150]. When this is true, designers need a thorough knowledge of the framework’s
security philosophy and features as well as its strengths, weaknesses, and dependences. In addition, knowledge
of the approaches taken by the major frameworks and the experiences with and analyses of them can contribute
to all secure software designers understanding of the field.

6.11 Design Patterns for Secure Software
The Open Group, a vendor- and technology-neutral standards consortium, has proposed several design patterns
for secure software [Open Group 2004]. A good example of (retrospective) use of patterns is in [Hafiz 2004].
Materials from a number of different PLoPs are available through http://www.hillside.net/ including EuroPLoP
workshops on security-related patterns. [Schumacher 2006] brings together a number of patterns.

6.12 Database Security
Databases are parts of many systems with security requirements. Many of the design issues involve
establishing proper security access policies. Secure databases are their own subject. [Bertino 2005] provides an
introduction to database security concepts as does [Guimaraes 2004] on teaching database security.

6.13 Specify Configurations
Specifying proper software configurations and settings can reduce vulnerabilities and facilitate security having
significant impact.

 Specify database security configuration(s) [Viega 2005, p. 79] [Thuraisingham 2005]

 Specify operational configuration(s) [Viega 2005, pp. 98-99]

This includes resource-based security configurations. Configuration information is part of the contents of an
operational security guide but do not rely on users to read documentation, make uniform decisions, or disable
features [Schoonover 2005] .The Center for Internet Security issues a number of configuration setting guides
for common software.6

6.14 Methods for Tolerance and Recovery
While generally prevention is to be preferred, designers of secure systems cannot assume preventive or
proactive measures will always succeed. The field of fault tolerance [Pullum 2001] and the associated field of
intrusion tolerance, e.g. [Stroud 2004], have developed a number of techniques. [Berg 2005, Chapter 18]
addresses responses to failure. Recovery techniques have a long history as well, including disaster recovery. A

6 The Center for Internet Security website is www.cisecurity.org

6 Secure Software Design

102

system can undertake a number of activities related to tolerance of errors or violations of correctness or
legitimacy.

 Forecasting violations

 Detection of violations, possible violations, and non-violating activity

 Notification and warning

 Recording, usually via logs

 Damage isolation or confinement

 Continuing service, although possibly degraded

 Diagnosis of cause of violation

 Repair of fault or vulnerability

 Recovery of the system to a legitimate state

 Tactics that adapt to attacking (and equivalent non-malicious) actions

One might also add to the list warn, characterize, investigate root cause or causer, analyze, and learn and
improve. Together, these actions attempt to make things right after something is found to be wrong. As a
bonus, these actions may also set the stage for prevention of reoccurrences.

See subsection 6.3.2, Confine Damage and Increase Resilience, for related ideas.

6.15 Deception and Diversion
Design knowledge includes purposes, principles, and techniques of deception. A brief introduction with
motivations appears in [Hunt 2005].

6.15.1 Purposes of Deception
Deception could be used to increase the uncertainty of the attacker or to create an impression that will lead to
the attacker’s disadvantage or the defender’s advantage. Purposes of deception by the defense include:

 Intelligence gathering

 Diversion of illegitimate attention and resources

 Effects outside the system such as attracting others’ attention, good or bad publicity, or aiding in law
enforcement or mission accomplishment

 Deceptions may also sometimes be used to help conceal other deceptions

6.15.2 Purposes of Obfuscation and Hiding
Obfuscation and hiding could be used to increase the uncertainty of the attacker or to create an impression that
will lead to the attacker’s disadvantage or the defender’s advantage. Purposes of obfuscation and hiding of
software include:

 Reducing the likelihood that the attacker can locate the software artifacts in order to discover their
vulnerabilities or insert malicious logic;

 Reducing the likelihood that the attacker can gain an understanding of the software’s residual
vulnerabilities;

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

103

 Increasing the difficulty of reverse engineering of the software (through decompilation or
disassembly).

6.15.3 Principles of Deception
Rowe expands on the implications for information security deceptions of the six principles suggested by
Fowler and Nesbitt [Fowler and Nesbitt 1995] [Rowe 2004b]:

 Deception should reinforce enemy expectations.

 Deception should have realistic timing and duration.

 Deception should be integrated with operations.

 Deception should be coordinated with concealment of true intentions.

 Deception realism should be tailored to the needs of the setting.

 Deception should be imaginative and creative.

6.15.4 Particular Techniques for Deception
Techniques include such approaches as honeynets, decoys, disinformation, and virtual views of system [Holz
2005], [Cheves 2005], [Hunt 2005], [Rowe 2004a], [Cohen 2001], and [Honeynet 2002].

6.16 Software Protection
A number of schemes exist to try to enforce intellectual property rights, e.g. license’s files, or avoid adversaries
understanding or reverse engineering a product [Atallah, Bryant and Sytz 2004]. Numerous commercial
products exist to copy protect, license, encrypt, or obscure software to aid in protecting intellectual property
and resisting reverse engineering. The DoD has a Software Protection Initiative [Clarke 2003]. Techniques
used in relation to malware may also illuminate a number of techniques. [Szor 2005] See the section 7, Secure
Software Construction, for a discussion of resisting tampering.

6.16.1.1 Anti-Tamper Technologies
Tampering occurs when an attacker modifies a program or data such that it “continue[s] to operate in a
seemingly unaffected manner, but on corrupted data or in a corrupted state [Goertzel and Goguen 2005].” Anti-
tamper technology can be classified using the following categories [Atallah, Bryant and Sytz 2005]: (1)
hardware-based protections, (2) wrappers, (3) obfuscation, (4) watermarking, and (5) guards.

Hardware-based protection is often based on a trusted processor. In one protection scenario, a trusted processor
verifies the integrity of other hardware devices in the system upon boot-up and perhaps stores cryptographic
keys or other means of verifying the trustworthiness of software that will be executing on the system in trusted
memory [Atallah, Bryant and Sytz 2005]. This type of anti-tamper protection will likely be suitable for only
the most critical security aspects of a system. “A less drastic protection … also involves hardware, but is more
lightweight such as a smart card or physically secure token. These lightweight … techniques usually require
that the hardware be present for the software to run, to have certain functionality, to access a media file, etc.
Defeating this kind of protection usually requires working around the need for the hardware rather than
duplicating the hardware [Atallah, Bryant and Sytz 2005].”

Wrappers are a common method of incorporating “new” technology or behavior into legacy code or software
libraries by intercepting calls to the legacy code and enhancing the characteristics of the legacy software within
the wrapper code [Birman 1996]. In the context of anti-tamper techniques, an encryption wrapper can be used
to protect part (or all) of an active process’s instructions and data in memory. Only the portion being executed

6 Secure Software Design

104

is decrypted, and the decryption takes place as “close” as possible to the item’s use [Atallah, Bryant and Sytz
2005].

The object of obfuscation is to render software resistant to analysis or reverse engineering. Obfuscation is
added to software at various levels, including the source and object code level. Within source or object code,
obfuscation techniques include altering program layout, control structures, data encoding, and data
aggregation. It is generally recognized that relying on obfuscation as the sole software protection means is poor
practice. However, the value of using obfuscation in conjunction with other anti-tamper techniques is
recognized as well.

Watermarking “embeds information into software in a manner that makes it hard to remove by an adversary
without damaging the software’s functionality [Atallah, Bryant and Sytz 2005]”. In contrast to watermarks in
steganography, anti-taper watermarks need not be hidden as they have a deterrent effect [Atallah, Bryant and
Sytz 2005].

“A specific type of watermarking is fingerprinting, which embeds a unique message in each instance of the
software for traitor tracing [Atallah, Bryant and Sytz 2005].” This type of anti-tamper technique is sometimes
called code-signing as well.

Software guards are used to detect tampering during execution. “[A] guard’s response when it detects
tampering is flexible and can range from a mild response to the disruption of normal program execution
through injection of run-time errors […] Generally, it is better for a guard’s reaction to be delayed rather than
to occur immediately upon detection so that tracing the reaction back to its true cause is as difficult as possible
and consumes a great deal of the attacker’s time [Atallah and Bryant and Sytz 2005].”

A reference monitor is a tamperproof, trusted access or interface point that mediates access to objects within a
system [Bishop 2003]. Thus, a reference monitor can be considered a type of guard as well, albeit not an anti-
tamper guard as discussed above. Critical services or portions of code are often secured using some type of
reference monitor.

6.17 Forensic Support
The first basic support for forensics is to collect and maintain audit logs of actions and accesses. The logs can
record more data or less data, but in a secure system their integrity, and depending on requirements, their
confidentiality must be protected. Logs are the objects of attacks or change attempts to cover up an adversary’s
actions. Confidential data needs to be protected in logs as in regular storage. In addition, designs must avoid
allowing the exhaustion of log storage space to become a form of attack.

Other forensic support includes aid in identifying suspects and investigating insiders and outsiders. For insiders
where the identity of the user may be known, automated recognition of use in an unusual fashion could help
support identification of suspects.

6.18 User Interface Design
Because achieving a design providing usable security may need to derive from a basic reconceptualization of
the solution, a user interface design should begin during process and task analyses or possibly during
reengineering. Lists of principles in [Yee 2004] and [Garfinkel 2005] extend sound user-system interaction
design methods to cover security issues. [Cranor 2005] has design ideas, including a number concerning
privacy. A series of research-oriented workshops exists in this burgeoning research area that may address
practical issues [SOUPS 2005]. [Hall 2002b] addresses how one might describe user interactions within one
formal methods approach for designing to ensure security.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

105

6.19 Assurance Case for Design
The arguments and evidence related to design are central to the assurance case [SafSec Standard] [SafSec
Guidance]. These arguments necessitate assurance mappings between system descriptions. The design must
agree with the external specification – doing no more and no less – and must conform to the system security
policy. This position can have implications about how to structure the assurance case [Kelly 2003]. Usually,
parts of the assurance case have an internal structure that mirrors the structure of the software system.

As an example approach, SafSec [SafSec Standard 2005, p. 23] calls for “modules” to have interface
specifications covering dependability properties analogous to functionality in “design by contract.” These
modules consist of:

 “Guarantee Clause – entries define the set of dependability properties that the module provides,
assuming the other four elements of the MBC hold. The guarantee will specify the responsibility that
the module takes for reducing risks or supplying services unconditionally. The other clauses supply
the conditions in which the guarantee will hold, such as the level of [uncertainty], limitations and
assumptions. The risk assessment and mitigation processes that use the guarantees must ensure that
the level of responsibility taken by the module is sufficient to mitigate risks that might arise from it –
any behaviour inconsistent with the guarantee should be considered as a possible cause of increased
risk in the environment using the module.

 “Rely Clause – entries define dependencies on interfaced modules, including the required
dependability targets. A rely clause can represent a potential cause of loss if it cannot be met at the
level of dependability expected – they should thus be treated as significant events in the risk
assessment process.

 “Context Clause – assumptions made on the module’s operational context.

 “Assurance Requirement – the level of [uncertainty] in the guarantees of the module that has been
verified, based on the supporting evidence.

 “Counter Evidence – the residual risk for the module and its known defects and limitations.”

This quote does not call for a particular level of rigor in stating these, but, clearly, the more rigorously and
compatibly these are stated, the more use they will be in reasoning about composing modules together to form
larger entities as well as in reasoning about decomposion.

See the section 3, Fundamental Concepts and Principles, and section 8, Secure Software Verification,
Validation, and Evaluation, on assurance cases.

6.19.1 Design for Easier Modification of Assurance Argument after
Software Change

Any security-relevant software changes would in turn require changes in the assurance case – if not in the
argument, then certainly in the evidence. Most obviously, new testing evidence is necessary.

Designs with clean separations among parts may allow localization of assurance arguments and evidence,
thereby facilitating change in the assurance case (as well as the product [Berg 2005, Chapter 17]).

6 Secure Software Design

106

6.19.2 Design for Testability
While emphasis on analysis is essential, so is testing. Three key properties affect testability [Williams 1982]: 7

 Predictability is a measure of how difficult it is to determine what a test’s outcome should be.

 Controllability is a measure of how difficult it is to provide inputs to the system to drive its execution.

 Observability is a measure of how difficult it is to capture and determine whether the test results are
correct.

The complexity and consistency of an application affect its predictability in terms of testing. As complexity
increases and consistency decreases, requirements should document more precisely the features and behaviors
of the system to support testing. The architecture and design of an application affect its controllability and
observability. Designing a system for testability eases the effort required to test it, and is often critical to
supporting test automation.

6.20 Secure Design Processes and Methods
In addition to all the non-security-related design and process knowledge, security-related needs exist that affect
process and methods. Creating the design must proceed hand-in-hand with constructing assurance argument for
the sakes of feasibility, economy, and quality. Security-relevant components need to be traceable to security
policy and needs. The composition of system components must yield the behavior called for in the external
behavior specification; however, to check on this as one designs, one needs to produce (or at least the
arguments plus planned evidence) the relevant parts of the assurance case.

To allow tradeoffs aimed at maximizing security while minimizing its negative impacts on the system and
users, multiple alternatives should be considered within a well-structured decision process. Designing defense-
in-depth may raise the tradeoff between fewer, more expensive layers of possibly stronger defenses or more
layers, each possibly weaker but costing less.

Maintaining security properties is easier if during detailed design and system evolution architectural coherence
is preserved and architectural constraints are never violated.

Formal notations [Hall 2002a] or combined formal and semi-formal notations (e.g., UMLsec [Jürjens 2004]
[Jürjens 2005]) and accompanying methods exist to address security. Generally, design notations are
abstractions and cannot ensure properties of aspects not included in the notation. See the Patterns subsection.

Modifying the design of an existing or legacy software system to be more secure may at times be relatively
straightforward though tedious at the detailed design level, but architecture level changes can be severe and
expensive. Security properties, being emergent properties, can lead to architecture changes being a necessity.
Any redesign process must keep firmly in mind the existing artifacts and the cost involved in changing them.
Because of resource and schedule issues, the changing of a design may need to take place over several releases,
thereby adding another difficulty to the redesign.

For more information on the design description techniques see the section 9, Secure Software Tools and
Methods, and section 10, Secure Software Processes.

7 The “definitions” given by Williams in these bullets are not the meanings of these terms in their full generality although the
general ones speaking in terms of (internal and external) behavior as opposed to test results and causing (by any means) as
opposed to driving by inputs are, especially for controllability and observability, possibly even better for defining testability in
the abstract.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

107

6.21 Design Reviews for Security
Designs need to be open and amenable to verification, validation, and evaluation, including certification and
accreditation. Section 8, Secure Software Verification, Validation, and Evaluation, addresses performance of
these activities, and section 5, Secure Software Requirements, addresses the product needs they generate.

Design reviews should be performed by multiple persons covering each area of relevant expertise
and legitimate stakeholder interests [Meier 2003, Chapter 5]. Formal techniques that exist for
reviews include a scenario-based [Bass 2001] one created for architecture reviews. Reviews
including security issues are essential at all levels of design. An independent outside review is
recommended by [McGraw 2005]. Design-related portions of the assurance case should be reviewed
as well. Since the best results occur when one develops much of the design assurance case along
with the design, these parts may be best reviewed together. Using checklists can also help [Meier
2003, pp. 687-740] [Ramachandran 2002, Chapter 1].

Properly performed design reviews also allow one to gain:

 Added assurance that the system does what the specification calls for and nothing else

 Added [uncertainty] that assurance case and design map correctly to each other

 Improved likelihood of cost-effective and timely certification of software system

See section 8, Secure Software Verification, Validation, and Evaluation.

6.22 Further Reading
[Abran 2004] Abran, Alain, and James W. Moore (Executive editors); Pierre Bourque, Robert Dupuis,

Leonard Tripp (Editors). Guide to the Software Engineering Body of Knowledge. 2004 Edition. Los
Alamitos, California: IEEE Computer Society, Feb. 16, 2004. Available at http://www.swebok.org

[Barden 1995] Barden, Rosalind, Susan Stepney, and David Cooper, Z in Practice, Prentice Hall, 1995

[HMAC 2002] The Keyed-Hash Message Authentication Code (HMAC), FIPS 198, March 2002.

[Leveson 1986] Leveson, N. G. 1986. “Software safety: why, what, and how.” ACM Comput. Surv. 18, 2
(Jun. 1986), 125-163. http://doi.acm.org/10.1145/7474.7528

[Mantel 2002] Mantel, Heiko, “On the Composition of Secure Systems,” IEEE Symposium on Security
and Privacy, p. 88, 2002.

[NIST Special Pub 800-27 Rev A 2004] Stoneburner, Gary, Clark Hayden, and Alexis Feringa.
Engineering Principles for Information Technology Security (A Baseline for Achieving Security),
Revision A, NIST Special Publication 800-27 Rev A, June 2004.

[NIST Special Pub 800-53] Ross, Ron,m et al. Recommended Security Controls for Federal Information
Systems, NIST Special Publication 800-53, Feb. 2005.

[NIST Special Pub 800-60] Barker, William C. Guide for Mapping Types of Information and Information
Systems to Security Categories, NIST Special Publication 800-60, June 2004.

[Peterson 2006] Pederson, Allan, Navi Partner, and Anders Hedegaard. “Designing a Secure Point-of-Sale
System”, Proceedings of the Fourth IEEE International Workshop on Information Assurance (IWIA
’06). pp 51-65, April 2006.

[Radack 2005] Radack, Shirley, editor. Standards for Security Categorization of Federal Information and
Information Systems, Federal Information Processing Standard (FIPS) 199, July 10, 2005.

6 Secure Software Design

108

[Riggs 2003] Riggs, S. Network Perimeter Security: Building Defense In-Depth, Auerbach Publications,
2003.

[Saltzer and Schroeder 1975] Saltzer, J. H. and M. D. Schroeder. “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-1308, 1975.
Available online at http://cap-lore.com/CapTheory/ProtInf/

[Schell 2005] Schell, Roger. “Creating High Assurance for a Product: Lessons Learned from GEMSOS.”
(Keynote Talk) Third IEEE International Workshop on Information Assurance, College Park, MD,
USA March 23-24, 2005. Available at http://www.iwia.org/2005/Schell2005.pdf

[SHS 2002] Secure Hash Standard (SHS), FIPS 180-2, August 2002.

[Sommerville 2006] Sommerville, I. Software Engineering, 8th ed., Pearson Education, 2004.

[US Army 2003] US Army, Field Manual (FM) 3-13: Information Operations: Doctrine, Tactics,
Techniques, and Procedures, 28th Nov., 2003. (Particularly Chapter 4 on Deception)

[US DoD 1996] Joint Chiefs of Staff, DoD JP 3-58, Joint Doctrine for Military Deception, 31 May 1996.

[Zwicky et al, 2000] Zwicky, Elizabeth D., Simon Cooper, and D. Brent Chapman. Building Internet
Firewalls (2nd ed.), O'Reilly, 2000.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

109

7 Secure Software Construction

7.1 Scope
Secure software construction creates working, meaningful, secure software through design, coding,
verification, unit testing, integration testing, and debugging [Abran 2004]. To construct a secure software
system, then, more specific security knowledge is required from a software engineer, programmer, or analyst:
they must include secure design and implementation features as well as features to avoid known types of
weaknesses or pitfalls. It has been said that we have long known how to build secure software; we simply don’t
act on what we know. This section summarizes the current knowledge and techniques available to produce
secure software and briefly describes ongoing efforts to improve the tools and techniques available to those
building software. An ongoing effort of note and relevance is one between government, academia, and
commercial technologists to develop a comprehensive list and classification schema of common security
weaknesses. When accomplished, this effort will clarify and harmonize many aspects of constructing secure
code [Martin 2005], [PLOVER 2005], [SAMATE 2005], and [McGraw 2006, Chapter 12].

7.2 Common Vulnerabilities
Some vulnerabilities in software systems occur with such great frequency they have been deemed “common
vulnerabilities.” However, before these common vulnerabilities can be effectively discussed, it is important to
clarify some terminology. The term “vulnerability” is widely overloaded in the context of secure software. It is
often used to describe everything from basic weaknesses in software, in threats facing the software, in the
exploitable nature of software weaknesses, and more. In this document, a vulnerability is defined as a
weakness in software exploitable by an attacker. Software vulnerabilities are caused by the combination of one
or more underlying weaknesses with some type of enabler during operation that makes the weaknesses
exploitable. To effectively avoid vulnerabilities, one must fully understand the types of weaknesses that enable
them. Rather than attempt to list specific vulnerabilities, this section focuses on the general groups of software
weaknesses that allow exploitable vulnerabilities to occur in operational software and provides a short
overview of how these groupings and their constituent weaknesses can be organized to facilitate understanding
them. Depending on the motivation and context of the reader (e.g., viewing these weaknesses from an external
attacking view, from an internal development and protection view, or from an operational impact view),
various types of organization can be leveraged to provide useful insight and understanding.

Although not addressed below, there are numerous references that cover application, network, and operating
system-specific vulnerabilities. Some of these include [Skoudis 2002], [Graff and Wyk 2003], [Howard and
LeBlanc 2003], [Koziol. et al.. 2004], [Chirillo 2002], [Flickenger 2003], [Wheeler 2003], [Whittaker and
Thompson 2004], [Meier 2003, Part IV].

However, it is also quite important to know where to find specific information on vulnerabilities, exploits, and
patches for application software and systems. Some sources of such information are listed in Section 2.7.

The organization and understanding of software-related security weaknesses and the vulnerabilities they create
point to ways to improve software and help find better ways to avoid introducing security weaknesses into
software. It also aids in identifying security weaknesses in existing code so they can be removed. Several
different ways of organizing these issues have been developed over the years. Some of the earlier ones focused
on specific operating systems or languages. [Abbott 1976], [Aslam 1995], [Aslam 1996], [Bishop 1995],
[Bishop 1996], [Bishop 1999], [Knight 2000], [Krsul 1997], [Lough 2001], [Landwehr 1993], and [Zitser
2005]. Others focused on a specific context such as the nature of the threat, the System Development Life
Cycle (SDLC) phase of weakness introduction, the motivation of that introduction, and perhaps most

7 Secure Software Construction

110

meaningfully, the underlying nature of the weakness itself. [Bazaz 2005], [Firesmith 2005], [Hansman 2003],
[Larus 2004], [McGraw 2005], [Piessens 2002], [Seacord 2005], [Weber 2004], [Younan 2003], and [Younan
2004].

While some modern approaches to classification and organization are a great deal more comprehensive and
detailed than early efforts, they still tend to be limited by an individual technical focus or by focusing on either
the low-end details of the weaknesses or the very high-end weakness groupings. This shortcoming has led to
the effort to define a common weakness enumeration and classification to bridge this gap.

The remainder of this section introduces a few of the more common types of security weaknesses and classifies
them by the manner in which the security of a system is compromised [Meunier 2004], [Howard 2005],
[Whittaker and Thompson 2004], and [Meier 2003, p. 9]. This sampling of common weaknesses illustrates the
nature and potential impact of common weaknesses, the wide diversity of contexts in which they may reside,
and some measure of understanding of the dimensions along which they can be classified and organized. The
aforementioned effort to define a common weakness enumeration and classification should soon bear fruit in
the form of a much more comprehensive listing of these sort of groupings and their constituent, specific, and
detailed weaknesses – all organized and arranged to show their interrelationships along various dimensions.

Meanwhile, Section 7.7, Appendix A. Taxonomy of Coding Errors, gives a currently published effort..

7.2.1 Buffer Overrun
Buffer overrun, also known as buffer overflow, is arguably one of the most common vulnerabilities in software
[Viega and McGraw 2002]. Buffer overrun occurs when a program reads or writes outside the bounds of a
storage buffer. If the overrun occurs when reading, a data leak may result or the program may malfunction due
to incorrect input. If the overrun occurs during writing, the program may again malfunction or data may be
corrupted. Buffer overruns are often exploited to inject attack code into a program or to induce a DOS attack.
Buffer overruns can be exploited whether storage is statically allocated (i.e., at compile time) or dynamically
allocated (i.e., in the stack or heap). New types of buffer overruns are emerging. It is no longer adequate to
simply reference buffer overrun as a weakness. The specific type of buffer overrun should be defined to
effectively recognize the weakness in existing code or to prevent its introduction into new code. Although
specific exploitation techniques for buffer overruns are many and varied, prevention, detection, and protection
mechanisms for the most common types of buffer overruns are well-known and can be found in various
references [Foster and Osipov 2005], [Goertzel and Goguen 2005] , [Howard and LeBlanc 2003], [Viega and
McGraw 2002], and [Viega and Messier 2003].

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

111

There are four basic strategies to eliminate buffer
overflow vulnerabilities [Goertzel and Goguen
2005]. The first is simply to identify and avoid the
various language-specific vulnerabilities,
constructs, and runtime libraries while coding.
Validating input to ensure it does not exploit these
language-specific vulnerabilities will prevent a
significant number of buffer overflow attacks if
they are used.

The second strategy is to use non-executable
memory locations. This prevents attackers from
injecting code via buffer overflow attacks.
However, this requires operating system and
perhaps hardware support. Furthermore, although
this will be effective against direct code injection
attacks, even with non-executable code, there are
ways to induce execution of code.

The third strategy uses (or modifies) the process
runtime environment to perform bounds checking
on all data accesses. This will have a significant,
and perhaps intolerable, impact on performance.

Finally, the compiler can perform integrity checks prior to dereferencing a pointer at a significantly lower
performance penalty. This, however, does not prevent more sophisticated buffer overflow attacks.

7.2.2 Resource Exhaustion
Resource exhaustion is possible whenever there are finite resources and unrestricted access to those resources.
When done with malicious intent, the exhaustion of a resource may be intended either to deny access to the
resource itself, to evade traceability or accountability, or to serve as a distraction to increase the probability of
succeeding in a separate attack.

Resource exhaustion “enablers” include [Meunier 2004] poor resource management due to design or
implementation errors, expensive tasks such as encryption, and coding errors such as memory leaks that
become vulnerabilities. Protocols and algorithms that allow anonymous or unauthenticated resource allocation
and “amplification” services such as broadcasts and other distribution mechanisms can also be used to
consume resources. Asymmetric attacks are a form of amplification. The cost to the attacker to request a
service is much less than the cost of the service provider to respond. Thus, the attacker can easily overwhelm a
service provider with service requests.

7.2.3 Operating Environment
The operating environment in which a process executes is a source of many vulnerabilities. This environment
includes [Meunier 2004] the file system, the user interface, the operating system (OS), user accounts, services
provided by the OS or other applications, and environment variables. Many aspects of the environment are
under the control of an untrusted user(s) and therefore should be sanitized or validated prior to use. For
example, most systems provide the user a capability to specify which directories are to be searched when a
request for a file is submitted to the system.

Most systems provide services to create temporary files for use by processes and applications. Some provide
world readable and writable directories for these temporary files as well as services to generate unique names

Example Buffer-Overflow Worms
• 1998: MORRIS WORM exploited buffer overflow

vulnerability in "finger" program to connect to rsh (remote
shell), and a trapdoor that put Sendmail into 'debug' mode,
enabling remote execution of commands, including
installation of worm code.

• 2001: CODE RED WORM exploited a flaw in the
implementation of Microsoft Internet Information Server (IIS)
Version 5's random number generator, then exploited a
buffer overflow vulnerability the IIS idq.dll to gain access
to memory (execution stack) to either crash the system (if
running on NT) or execute a worm (if running on Windows
2000) that gave the attacker root privileges.

• 2001: RAMEN WORM exploited the buffer overflow and
format string vulnerabilities in Red Hat Linux 6.2 and 7.0,
enabling attackers to execute code under the root user's
context.

• 2003: Structured Query Language (SQL) SLAMMER (aka
Sapphire) WORM exploited multiple buffer overflow
vulnerabilities in Microsoft SQL Server 2000 and SQL Server
Desktop Engine (MSDE), enabling the worm to flood port
1434 and cause denial of service or execute arbitrary code
loaded via the overflow onto the execution heap.

• 2005: Zotob WORM exploited a flaw in the Microsoft Plug
and Play (PnP) service in Windows 2000 and XP SP1
allowed arbitrary code to be executed via a specially crafted
network packet.

7 Secure Software Construction

112

for temporary files. Since temporary directories are available to all and the temporary file names provided by a
system, though unique, are typically predictable, care must be taken when creating and using temporary files
and directories. A secure temporary file has the following properties [Howard and LeBlanc 2003] [Viega and
McGraw 2002]: it resides in a directory accessible only to the process that created it, it has a unique, difficult
to guess name, and access control are set to prevent unauthorized access.

7.2.4 Race Conditions
When the behavior of a system depends on the order in which critical events occur, a race condition is said to
exist. The most prominent example of a race condition in secure programming occurs in the so-called time-of-
check, time-of-use (TOCTOU) scenario. For example, suppose a file is created (using default system access
permissions) using a system call, and a subsequent call places more restrictive access controls on the file.
Between the two calls, a malicious process can change the contents of the file or even replace it with a different
file.

Although race conditions are commonly used to exploit file systems, any situation where multiple processes
contend for resources are subject to them. Techniques to prevent race conditions usually require OS support.
The general strategy to prevent race conditions ensures that access and configuration of the resource appears to
be one atomic operation, even when multiple operations and disjointed periods of time are needed to complete
the “atomic” operation.

7.2.5 Canonical Form
In the context of computer security, canonical form is the fundamental representation of symbols that can be
interpreted without ambiguity. For example, suppose the canonical form of a file on a file system must begin
with a drive letter. Then “\my_file.doc” would not be in canonical form; the location of the file is ambiguous.
Depending on the number of drives in the system, there may be many files called “\my_file.doc”.
Canonicalization is the process of resolving a set of symbols to their standard or canonical form.

Most resources on a system are named so a person using the system can easily remember them. The system
itself, however, rarely uses this name to refer to the same resource. Rather, the system interprets the name and
translates it to the internal representation the system uses. A fundamental security axiom regarding names is
“Do not make any security decision based on the name of a resource… [Howard and LeBlanc 2003]”
Vulnerabilities associated with interpreting non-canonical names span every level of the OSI network model,
and include making decisions based on IP addresses, short forms of directory names (e.g., “dot-dot” attacks),
uninterpreted symbolic file system links, and named network resources and services.

7.2.6 Violations of Trust
Trust can be defined as accepting the risk that an entity, which can harm you, will not do so. Bishop measures
trust by using evidence of trustworthiness. “An entity is trustworthy if there is sufficient credible evidence
leading one to believe that the system will meet a set of given requirements.” [Bishop 2003]

Common vulnerabilities related to trust span both definitions. Format strings in ‘C’ print statements that
require arguments, and a compiler, in a sense, trusts that the programmer has included the correct number; this
is trust in the first sense. Trust in the sense of Bishop requires evidence of trustworthiness because of methods
used to build a system, or metrics gathered during testing. The authentication of an entity claiming a certain
identity is an example of this type of trust.

Cross-site scripting (XSS) and SQL code injection are vulnerabilities that can lead to exploits resulting from
the violation of trust.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

113

7.3 Construction of Code

7.3.1 Language Selection
“The single most important technology choice most software projects face is which program language (or set
of languages) to use for implementation” [Viega and McGraw 2002]. The term “language” is not just limited to
the traditional procedural programming languages like C, C++, and Java, but it also includes query languages,
shell scripting languages, and other compiled or interpreted instructions a software system may employ. The
security implications of this choice extend to other technologies as well, including the host operating system
and distributed system services such as Common Object Request Broker Architecture (CORBA), remote
procedure call (RPC), and Java’s remote invocation procedure (RMI) service.

Specific security characteristics of languages and services are readily accessible [Wheeler 2003], [Viega and
Messier 2003], [Viega and McGraw 2002]. In general, however, the following language characteristics are
desirable: strong typing, safe typing, single entry/exit procedures, passing parameters by value (not by
reference), and the restricted use or elimination of pointers.

In addition to Java, which implements its own security model (the Java Virtual Machine “sandbox”), and Perl
(which provides the “tainting” option), some less familiar programming languages have emerged that are
expressly designed to produce secure code. A noteworthy example is the E language.

Concern must go beyond traditional programming languages. The exploits and browser defenses involving
JavaScript are one example. A growing attack opportunity is the rise of Asynchronous JavaScript and XML
(AJAX); applications such as AJAX are continually being actively embraced by major companies.

7.3.1.1 Language Subsets, Derivatives, and Variants
These language characteristics and the requirement for analyzability lead to the use of language subsets. While
organizations’ coding standards commonly exclude some dangerous language features, concerns for security
and high assurance have led to excluding significant portions of programming languages.

Analyzability was the driving force behind defining the SPARK subset of Ada [Barnes 2003] and was a factor
in defining the SmartCard subset of Java.

“Safe” derivatives and variants of popular languages such as C, C++, and Java have emerged that include most
or all of the expressions and features of those languages, but which add safety- and/or security-enhancing
features. Programs written in these derivative languages are not susceptible to some of the key attack patterns
(e.g., race conditions, buffer overflows, format string attacks, double free attacks) to which programs in the
languages on which the derivatives are based.

Examples of “safe” language derivatives and variants include Cyclone, a variant on C, Guava and SafeJava
variants on Java, Microsoft’s C# (originally called SafeC) which incorporates features of C and Java, and
Microsoft’s Vault that contains features of both C and C#, and Joyce, a secure language from the late 1970s
based on Concurrent Pascal.

7.3.2 Annotations and Add-ons
While good practices for commenting code are well established, security and correctness concerns may be
addressed in part by annotations that specify pre- and post-conditions, invariants, including class invariants,
and information flow constraints [Barnes 2003] [Leavens 2005]. For C programs, a tool called splint
(www.splint.org) uses annotations. These annotations, among other things, document assumptions about
functions, variables, types, and other aspects of the code. Splint then statically examines the code to ensure the
assumptions in fact hold. [Evans and Larochelle 2002]

Proof-carrying code has been advocated, but it has not come into use.

7 Secure Software Construction

114

7.3.3 Using Security Principles in Secure Coding
A number of security principles for software systems have been covered in the prior sections. Using these
principles is important during requirements and design continues during secure coding as well. These high-
level principles lead to more concrete derivations such as design guidelines (technology-independent software
design advice), coding rules (technology-specific instances of common weaknesses as discussed above), and
coding practices (proactive coding advice that can be technology-independent or technology-specific in
nature). Several authors have discussed security principles while emphasizing coding [Viega and McGraw
2002] [Howard and LeBlanc 2003]. They do not all cover the same set but have readable introductions and
discussions of those they do cover. Also see [Bishop 2003].

7.3.4 Coding Standards for Secure Software
An essential element of secure software construction is enforcing particular coding standards. This has several
benefits. It ensures programmers use a uniform set of security approaches that can be selected based on the
requirements of the project and its suitability rather than on the programmers’ familiarity or preference. This,
in turn, increases the maintainability of the code. Finally, it reduces the techniques available for malicious
developers to subvert the code.

There are numerous references available both online and in print with secure coding guidelines, best practices,
suggestions, and case studies [Birman 1996], [Goertzel and Goguen 2005], [Graff and Wyk 2003], [Howard
and LeBlanc 2003], [Viega and Messier 2003], [Wheeler 2003]. Many companies have internal secure coding
standards. However, there seems to be a lack of public standards as such for secure programming. The
community would benefit from internationally recognized secure coding standards for common programming
languages. Using such coding standards may greatly reduce the number of false positives produced by
vulnerability seeking static analysis tools. See Section 8, Secure Software Verification, Validation, and
Evaluation.

7.3.5 Secure Coding Practices
This subsection introduces specific practices that are followed by writers of any type of secure code. Indeed,
the practices described below are prudent whether the code is intended to be secure or not; however, they are
essential for any code claiming some level of security. Code includes traditional procedural languages such as
‘C’ and ‘Java,’ shell scripts, and database queries using languages such as SQL, or web-based programming
such as Hyper Text Markup Language (HTML).

7.3.5.1 Input Validation
Input validation is fundamental to any program claiming security. Characterizations of its importance range
from the understated “Handle data with caution” [Graff and Wyk 2003] to “All input is evil!” [Howard and
LeBlanc 2003]. Identifying sources of input is the critical first step in validating input.

Due to the wide range of input a program may accept, it is difficult to specify validation techniques; however,
the principles and techniques below are general and widely applicable.

7.3.5.1.1 Input cleansing

Part of input validation includes bounds and type checking, which may be classified as a kind of input
cleansing, but input cleansing scope is much broader. Input cleansing can be simply defined as the process of
discarding input that does not conform to what is expected.

While simple to state, the definition presumes a model of expected input is known or has been defined. Based
on this input model, a “white list” of acceptable input can be specified, or an algorithm can be devised that
recognizes acceptable input. The common practice of specifying a “black list” of unacceptable input is strongly

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

115

discouraged. Experience has confirmed intuition time and again: that blacklisting requiring the enumeration of
all bad inputs for a given program can be impracticable or impossible. Therefore, validation must be
approached from the perspective of determining “good” input rather than detecting “bad” input.

In many languages, such as SQL, Hypertext Transfer Protocol (HTTP), or even ‘C’ print functions, it is quite
easy to insert instructions into a program for subsequent execution via input mechanisms. This is the so-called
“code injection” exploit. The fundamental problem is that code and data are occupying the same input channel,
and the program accepting the input must determine which is which. If code (data) can be crafted to appear as
data (code), normal security controls can be bypassed and the system exploited. The remedy for this
vulnerability is to separate the code input channel from the data input channel in some enforceable manner.

Input should not be declared valid until its semantic meaning (i.e., its meaning within the context of the
program) has been determined. Accomplishing this validation will involve completely resolving the various
meta-characters, encodings, and any link indirections of the input into its most fundamental representation
(canonical form). Only at this point can the semantic meaning and proper security checks be performed.

The following has been proposed as an order for proper input validation [Meunier 2004]:

1. Interpret and render all character encodings to a common form

2. Cleanse the input using several passes if necessary

3. Validate type, range, and format of input

4. Validate the semantics of the input.

7.3.5.2 Preventing Buffer Overflow
There are four basic strategies to eliminate buffer overflow vulnerabilities [Goertzel and Goguen 2005]. The
first is simply to identify and avoid the various language-specific vulnerabilities, constructs, and runtime
libraries while coding. Validating input to ensure it does not exploit these language-specific vulnerabilities will
prevent a significant number of buffer overflow attacks if they are used.

The second strategy is to use non-executable memory locations. This prevents attackers from injecting code via
buffer overflow attacks. However, this requires OS and perhaps hardware support. Furthermore, although this
strategy will be effective against direct code injection attacks, even with non-executable code, there are ways
to induce code execution.

The third strategy uses (or modifies) the process runtime environment to perform bounds checking on all data
accesses. This approach will have a significant, and perhaps intolerable, impact on performance.

Finally, the compiler can perform integrity checks before dereferencing a pointer at a significantly lower
performance penalty. This, however, does not prevent more sophisticated buffer overflow attacks.

7.3.6 Sound Practices
Even more than knowing all the bad things that could happen, coders need to know what to do to avoid
creating code that would lead to them. The followingare sound practices, several of which summarize
information provided in earlier subsections, that are intended to help implementers of software achieve their
security objectives. Further information on these and other sound practices appears in [Howard and LeBlanc
2003], [Goertzel 2006], [Wheeler 2003], and elsewhere.

 Coding Practices

– Make security a criterion when selecting programming languages, subsets, and annotations to be
used: this provides a better meduim for construction

7 Secure Software Construction

116

– Minimize code size and complexity, and increase traceability: this will make the code easy to
analyze.

– Code with reuse and sustainability in mind: this will make code easy to understand by others.

– Use a consistent coding style throughout the system: this is the objective of the coding standards
described in subsection 7.2.4.

– Use consistent naming and correct encapsulation: this reduces chances for misunderstanding and
eases reviews

– Implement error and exception handling safely: this will avoid common difficulties and ease
analysis and review

– Use programming languages securely: avoid “dangerous” constructs including using compiler
checks and static analysis tools to verify correct language usage and flag “dangerous” constructs,
and properly leverage security features such as “taint” mode in Perl and “sandboxing” in Java.

– Always assume that the seemingly impossible is possible: the history of increased sophistication,
technical capability, and motivation of attackers shows that events, attacks, and faults that seem
extremely unlikely when the software is written can become quite likely after it has been in
operation for a while. Error and exception handling should be programmed explicitly to ensure
required conditions for correct behavior and security exist despite as many “impossible” events as
the programmer can imagine.

– Program defensively: Use techniques such as information hiding, input validation, output
verification, and anomaly awareness

– Avoid common, well-known logic errors: use input validation, code review to ensure
conformance to specification, absence of “dangerous” constructs and characters, type checking
and static checking, and finally comprehensive security testing.

– Ensure asynchronous consistency: this will avoid timing and sequence errors, race conditions,
deadlocks, order dependencies, syncronization errors, etc.

– Use multitasking and multithreading safely.

– Implement error and exception handling safely: a failure in any component of the software should
never be allowed to leave the software, its volatile data, or its resources vulnerable to attack.

– Program defensively: Use techniques such as information hiding and anomaly awareness.

 Assembly and Integration:

– Make security a criterion when selecting components for reuse or acquisition: before a
component is selected, it should undergo the same security analyses and testing techniques that
will be used on the final software system. For open source and reusable code, these can include
code review. For binary components, including COTS, these will necessarily be limited to “black
box” tests, as described in Section 8.4, Testing, except in the rare cases where the binary software
will be used for such a critical function that reverse engineering to enable code review may be
justified.

– Analyze multiple assembly options: the combination and sequencing of components that are
selected should produce a composed system that results in the lowest residual risk, because it
presents the smallest attack surface. Ideally, it will require the fewest add-on countermeasures
such as wrappers.

 All Development:

– Verify the secure interaction of the software with its execution environment: this includes never
trusting parameters passed by the environment, separation of data and program control, always
presuming client/user hostility (thus always validating all input from the client/user), never
allowing the program to spawn a system shell.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

117

– In addition to these sound implementation practices, there are a number of systems engineering
techniques that can be used to minimize the attack surface and increase the security robustness of
software in deployment. See Section 6, Secure Software Design.

7.4 Construction of User Aids
Security needs to be included in user aids such as manuals and help facilities. If user-visible security is
significant or has changed considerably, users will benefit from including motivations and explicit “user
mental model.” Some types of user aids, including security-oriented material, include:

 Documentation

– Normal documentation includes security aspects and use

– Operational Security Guide [Viega 2005, p. 33, 98-00]

 Training

 Online user aids, e.g., pop-up notes and help facility

 User support

– Help desk

– Online support

7.5 Secure Release
In addition to sound configuration and release management, achieving secure releases requires secure
configuration management facilities and cryptographic signing of artifacts or other means to ensure their
proper origin and their end-to-end integrity when distributed internally or externally. End-to-end integrity can
be achieved by cryptographic signing that starts with individuals producing product components and extends
through deployment of the combined product, as well as possibly further through integration elsewhere with
other products before final delivery to customer or user. [Berg 2005, Section 10.1] addresses designing for
secure deployment.

A number of technical techniques have been tried to protect distributed software as intellectual property.
Software protection is also a national security concern. These issues were covered above in Design section
under anti-tampering.

7.6 Conclusion
Sound practice are intended to help implementers of software achieve their security objectives. See [Goertzel
2006] for more discussion...For software to be secure it must avoid defects in its implementation that introduce
vulnerabilities regardless of whether the majority of development involves coding or assembly of acquired or
reused software components. Writing secure code means not only writing correct code that meets its
specifications and required security property constraints, but avoiding coding practices producing code
weaknesses that could manifest as vulnerabilities and producing code that will simplify the detection and
correction of.not only faults but such weaknesses.

7.7 Appendix A. Taxonomy of Coding Errors
Generalizing information about security flaws allows the developer to look at the underlying principles that
result in exploitable security vulnerabilities. By organizing common types of security errors into a taxonomy,

7 Secure Software Construction

118

software architects and developers can more easily understand and recognize the sorts of problems that lead to
vulnerabilities.

Presented below is a simple taxonomy developed by [McGraw 2006, Chapter 12] and [Tsipenyuk 2005] that
organizes sets of security rules that can be used to help software developers understand the kinds of errors that
have an impact on security.

By better understanding how systems fail, developers may be better equipped to analyze the software they
create, more readily identify and address security problems when they see them, and ideally avoid repeating
the same mistakes in the future.

 Input Validation and Representation. Security problems result from trusting input [McGraw 2006].
The problem of improper validation arises when data is not chekced for consistency and correctness
[Bishop 2003]. Input validation and representation problems are caused by metacharacters, alternate
encodings and numeric representations. The issues include:

– Buffer Overflows. Buffer overflows are the principal method used to exploit software by
remotely injecting malicious code into a target. The root cause of buffer overflow problems is
that C and C++ are inherently unsafe. There are no bounds checks on array and pointer
references, meaning a developer has to check the bounds (an activity that is often ignored) or risk
encountering problems. Reading or writing past the end of a buffer can cause a number of diverse
(and often unanticipated) behaviors: (1) programs can act in strange ways, (2) programs can fail
completely, and (3) programs can proceed without any noticeable difference in execution. The
most common form of buffer overflow, called the stack overflow, can be easily prevented. Stack-
smashing attacks target a specific called the stack overflow, can be easily prevented. Stack-
smashing attacks target a specific programming fault: the careless use of data buffers allocated on
the program's runtime stack. An attacker can take advantage of a buffer overflow vulnerability by
stack-smashing and running arbitrary code, such as code that invokes a shell in such a way that
control gets passed to the attack code. More esoteric forms of memory corruption, including the
heap overflow, are harder to avoid. By and large, memory usage vulnerabilities will continue to
be a fruitful resource for exploiting software until modern languages that incorporate modern
memory management schemes are in wider use.

– SQL Injection. SQL injection is a technique used by attackers to take advantage of non-validated
input vulnerabilities to pass SQL commands through a Web application for execution by a
backend database. Attackers take advantage of the fact that programmers often chain together
SQL commands with user-provided parameters, and the attackers, therefore, can embed SQL
commands inside these parameters. The result is that the attacker can execute arbitrary SQL
queries and/or commands on the backend database server through the Web application. Typically,
Web applications use string queries, where the string contains both the query itself and its
parameters. The string is built using server-side script languages such as ASP or JSP and is then
sent to the database server as a single SQL statement.

– Cross-Site Scripting. A CSS vulnerability is caused by the failure of a site to validate user input
before returning it to the client’s web-browser. The essence of cross-site scripting is that an
intruder causes a legitimate web server to send a page to a victim's browser that contains
malicious script or HTML of the intruder's choosing. The malicious script runs with the
privileges of a legitimate script originating from the legitimate web server.

– Integer Overflows. Not accounting for integer overflow can result in logic errors or buffer
overflow. Integer overflow errors occur when a program fails to account for the fact that an
arithmetic operation can result in a quantity either greater than a data type's maximum value or
less than its minimum value. These errors often cause problems in memory allocation functions,
where user input intersects with an implicit conversion between signed and unsigned values. If an
attacker can cause the program to under-allocate memory or interpret a signed value as an
unsigned value in a memory operation, the program may be vulnerable to a buffer overflow.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

119

– Command Injection. Executing commands that include unvalidated user input can cause an
application to act on behalf of an attacker. Command injection vulnerabilities take two forms: (1)
An attacker can change the command that the program executes: the attacker explicitly controls
what the command is, and (2) An attacker can change the environment in which the command
executes: the attacker implicitly controls what the command means

 API Abuse. An API is a contract between a caller and a callee. The most common forms of API
abuse are caused by the caller failing to honor its end of this contract [McGraw 2006]. Examples of
API abuse are described below:

– Call to Thread.run(). The program calls a thread's run() method instead of calling start(). In
most cases a direct call to a Thread object's run() method is a bug. The programmer intended to
begin a new thread of control, but accidentally called run() instead of start(), so the run() method
will execute in the caller's thread of control.

– Call to a Dangerous Function. Certain functions behave in dangerous ways regardless of how
they are used. Functions in this category were often implemented without taking security
concerns into account. For example in C the gets() function is unsafe because it does not perform
bounds checking on the size of its input. An attacker can easily send arbitrarily-sized input to
gets() and overflow the destination buffer.

– Directory Restriction. The chroot() system call allows a process to change its perception of the
root directory of the file system. After properly invoking chroot(), a process cannot access any
files outside the directory tree defined by the new root directory. Such an environment is called a
chroot jail and is commonly used to prevent the possibility that a processes could be subverted
and used to access unauthorized files. Improper use of chroot() may allow attackers to escape
from the chroot jail.

– Use of java.io. The Enterprise JavaBeans specification requires that every bean provider follow a
set of programming guidelines designed to ensure that the bean will be portable and behave
consistently in any EJB container. The program violates the Enterprise JavaBeans specification
by using the java.io package to attempt to access files and directories in the file system.

– Use of Sockets. The Enterprise JavaBeans specification requires that every bean provider follow
a set of programming guidelines designed to ensure that the bean will be portable and behave
consistently in any EJB container. The program violates the Enterprise JavaBeans specification
by using sockets. An enterprise bean must not attempt to listen on a socket, accept connections on
a socket, or use a socket for multicast.

– Authentication. Security should not rely on DNS names, because attackers can spoof DNS
entries. If an attacker are can make a DNS update (DNS cache poisoning), they can route network
traffic through their machines or make it appear as if their IP addresses are part of your domain. If
an attacker can poison the DNS cache, they can gain trusted status.

– Exception Handling. The _alloca function allocates dynamic memory on the stack. The
allocated space is freed automatically when the calling function exits, not when the allocation
merely passes out of scope. The _alloca() function can throw a stack overflow exception,
potentially causing the program to crash. If an allocation request is too large for the available
stack space, _alloca() throws an exception. If the exception is not caught, the program will crash,
potentially enabling a denial of service attack.

– Privilege Management. Failure to adhere to the principle of least privilege amplifies the risk
posed by other vulnerabilities. Programs that run with root privileges have caused innumerable
Unix security disasters.

– Strings. Functions that convert between Multibyte and Unicode strings often result in buffer
overflows. Windows provides the MultiByteToWideChar(), WideCharToMultiByte(),
UnicodeToBytes, and BytesToUnicode functions to convert between arbitrary multibyte (usually
ANSI) character strings and Unicode (wide character) strings. The size arguments to these
functions are specified in different units – one in bytes, the other in characters – making their use

7 Secure Software Construction

120

prone to error. In a multibyte character string, each character occupies a varying number of bytes,
and therefore the size of such strings is most easily specified as a total number of bytes. In
Unicode, however, characters are always a fixed size, and string lengths are typically given by the
number of characters they contain. Mistakenly specifying the wrong units in a size argument can
lead to a buffer overflow.

– Unchecked Return Value. Ignoring a method's return value can cause the program to overlook
unexpected states and conditions. Two dubious assumptions that are easy to spot in code are “this
function call can never fail” and “it doesn't matter if this function call fails”. When a programmer
ignores the return value from a function, they implicitly state that they are operating under one of
these assumptions.

 Security Features. Software security features such as authentication, access control, confidentiality,
cryptography, and privilege management play an important role in software security [McGraw 2006].
Discussed below are issues that lead to exploitable vulnerabilities:

– Least Privilege Violation. The elevated privilege level required to perform operations such as
chroot() should be dropped immediately after the operation is performed. When a program calls a
privileged function, such as chroot(), it must first acquire root privilege. As soon as the privileged
operation has completed, the program should drop root privilege and return to the privilege level
of the invoking user. If this does not occur, a successful exploit can be carried out by an attacker
against the application, resulting in a privilege escalation attack because any malicious operations
will be performed with the privileges of the superuser. If the application drops to the privilege
level of a non-root user, the potential for damage is substantially reduced.

– Hardcoded Password. Hardcoded passwords may compromise system security in a way that
cannot be easily remedied. Once the code is in production, the password cannot be changed
without patching the software. If the account protected by the password is compromised, the
owners of the system will be forced to choose between security and availability.

– Weak Cryptography. Obscuring a password with a trivial encoding, such as base 64 encoding,
but this effort does not adequately protect the password.

– Insecure Randomness. Standard pseudo-random number generators cannot withstand
cryptographic attacks. Insecure randomness errors occur when a function that can produce
predictable values is used as a source of randomness in security-sensitive context. Pseudo-
Random Number Generators (PRNGs) approximate randomness algorithmically, starting with a
seed from which subsequent values are calculated. There are two types of PRNGs: statistical and
cryptographic. Statistical PRNGs provide useful statistical properties, but their output is highly
predictable and forms an easy to reproduce numeric stream that is unsuitable for use in cases
where security depends on generated values being unpredictable. Cryptographic PRNGs address
this problem by generating output that is more difficult to predict. For a value to be
cryptographically secure, it must be impossible or highly improbable for an attacker to
distinguish between it and a truly random value.

 Time and State. Distributed computation is about time and state. That is, in order for more than one
component to communicate, state must be shared, and that takes time. In multi-core, multi-CPU, or
distributed systems, two events may take place at exactly the same time. Defects related to unexpected
interactions between threads, processes, time, and information happen through shared state:
semaphores, variables, the file system, and, anything that can store information [McGraw 2006]. Time
and State issues are discussed below:

– Race Conditions. The window of time between when a file property is checked and when the file
is used can be exploited to launch a privilege escalation attack. File access race conditions,
known as time-of-check, time-of-use (TOCTOU) race conditions, occur when: (1) the program
checks a property of a file, referencing the file by name, and (2) the program later performs a
filesystem operation using the same filename and assumes that the previously-checked property
still holds. The window of vulnerability for such an attack is the period of time between when the
property is tested and when the file is used. Even if the use immediately follows the check,

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

121

modern operating systems offer no guarantee about the amount of code that will be executed
before the process yields the CPU. Attackers have a variety of techniques for expanding the
length of the window of opportunity in order to make exploits easier, but even with a small
window, an exploit attempt can simply be repeated over and over until it is successful.

– Insecure Temporary Files. Creating and using insecure temporary files can leave application
and system data vulnerable to attacks. The most egregious security problems related to temporary
file creation have occurred on Unix-based operating systems, but Windows applications have
parallel risks. The C Library and WinAPI functions designed to aid in the creation of temporary
files can be broken into two groups based whether they simply provide a filename or actually
open a new file. IN the former case, the functions guarantee that the filename is unique at the
time it is selected, there is no mechanism to prevent another process or an attacker from creating
a file with the same name after it is selected but before the application attempts to open the file.
Beyond the risk of a legitimate collision caused by another call to the same function, there is a
high probability that an attacker will be able to create a malicious collision because the filenames
generated by these functions are not sufficiently randomized to make them difficult to guess. In
the latter case, if a file with the selected name is created, then depending on how the file is
opened the existing contents or access permissions of the file may remain intact. If the existing
contents of the file are malicious in nature, an attacker may be able to inject dangerous data into
the application when it reads data back from the temporary file. If an attacker pre-creates the file
with relaxed access permissions, then data stored in the temporary file by the application may be
accessed, modified or corrupted by an attacker. On Unix based systems an even more insidious
attack is possible if the attacker pre-creates the file as a link to another important file. Then, if the
application truncates or writes data to the file, it may unwittingly perform damaging operations
for the attacker. This is an especially serious threat if the program operates with elevated
permissions.

– Session Fixation. Authenticating a user without invalidating any existing session identifier gives
an attacker the opportunity to steal authenticated sessions. Session fixation vulnerabilities occur
when: (1) a web application authenticates a user without first invalidating the existing session,
thereby continuing to use the session already associated with the user, and (2) an attacker is able
to force a known session identifier on a user so that, once the user authenticates, the attacker has
access to the authenticated session.

 Errors. Errors and error handling represent a class of API. Errors related to error handling are so
common that they deserve a special classification of their own (McGraw 2006). As with API Abuse,
there are two ways to introduce an error-related security vulnerability: the most common one is
handling errors poorly (or not at all). The second is producing errors that either give out too much
information (to possible attackers) or are difficult to handle. Errors are discussed below:

– Empty Catch Block. Ignoring an exception can cause the program to overlook unexpected states
and conditions. Two dubious assumptions that are easy to spot in code are “this method call can
never fail” and “it doesn't matter if this call fails”. When a programmer ignores an exception, they
implicitly state that they are operating under one of these assumptions.

– Catching NullPointerExceptions. It is generally a bad practice to catch NullPointerException.
Programmers typically catch NullPointerException under three circumstances: (1) the program
contains a null pointer dereference. Catching the resulting exception was easier than fixing the
underlying problem, (2) the program explicitly throws a NullPointerException to signal an error
condition, and (3) the code is part of a test harness that supplies unexpected input to the classes
under test. Of these three circumstances, only the last is acceptable.

– Overly Broad Catch. The catch block handles a broad swath of exceptions, potentially trapping
dissimilar issues or problems that should not be dealt with at this point in the program. Multiple
catch blocks can get ugly and repetitive, but “condensing” catch blocks by catching a high-level
class like Exception can obscure exceptions that deserve special treatment or that should not be
caught at this point in the program. Catching an overly broad exception essentially defeats the
purpose of Java's typed exceptions, and can become particularly dangerous if the program grows

7 Secure Software Construction

122

and begins to throw new types of exceptions. The new exception types will not receive any
attention.

– Overly Broad Throws. The method throws a generic exception making it harder for callers to do
a good job of error handling and recovery. Declaring a method to throw Exception or Throwable
makes it difficult for callers to do good error handling and error recovery. Java's exception
mechanism is set up to make it easy for callers to anticipate what can go wrong and write code to
handle each specific exceptional circumstance. Declaring that a method throws a generic form of
exception defeats this system.

– Return Inside Finally. Returning from inside a finally block will cause exceptions to be lost. A
return statement inside a finally block will cause any exception that might be thrown in the try
block to be discarded.

 Code Quality. Poor code quality leads to unpredictable behavior [McGraw 2006]. From a user's
perspective that often manifests itself as poor usability. For an attacker it provides an opportunity to
stress the system in unexpected ways. Code quality issues are discussed below:

– Expression is Always False. An expression will always evaluate to false.

– Expression is Always True. An expression will always evaluate to true.

– Memory Leak. Memory is allocated but never freed. Memory leaks have two common and
sometimes overlapping causes: (1) error conditions and other exceptional circumstances and, (2)
confusion over which part of the program is responsible for freeing the memory. Most memory
leaks result in general software reliability problems, but if an attacker can intentionally trigger a
memory leak, the attacker might be able to launch a denial of service attack (by crashing the
program) or take advantage of other unexpected program behavior resulting from a low memory
condition.

– Null Dereference. The program can potentially dereference a null pointer, thereby raising a
NullPointerException. Null pointer errors are usually the result of one or more programmer
assumptions being violated. Most null pointer issues result in general software reliability
problems, but if an attacker can intentionally trigger a null pointer dereference, the attacker might
be able to use the resulting exception to bypass security logic or to cause the application to reveal
debugging information that will be valuable in planning subsequent attacks.

– Uninitialized Variable. The program can potentially use a variable before it has been initialized.
Stack variables in C and C++ are not initialized by default. Their initial values are determined by
whatever happens to be in their location on the stack at the time the function is invoked.
Programs should never use the value of an uninitialized variable.

– Unreleased Resource. The program can potentially fail to release a system resource. Most
unreleased resource issues result in general software reliability problems, but if an attacker can
intentionally trigger a resource leak, the attacker might be able to launch a denial of service attack
by depleting the resource pool. Resource leaks have at least two common causes: (1) error
conditions and other exceptional circumstances and (2) confusion over which part of the program
is responsible for releasing the resource.

– Use After Free. Referencing memory after it has been freed can cause a program to crash. Use
after free errors occur when a program continues to use a pointer after it has been freed. Like
double free errors and memory leaks, use after free errors have two common and sometimes
overlapping causes: (1) error conditions and other exceptional circumstances, and (2) confusion
over which part of the program is responsible for freeing the memory. Use after free errors
sometimes have no effect and other times cause a program to crash.

– Double Free. Double free errors occur when free() is called more than once with the same
memory address as an argument. Calling free() twice on the same value can lead to a buffer
overflow. When a program calls free() twice with the same argument, the program's memory
management data structures become corrupted. This corruption can cause the program to crash or,
in some circumstances, cause two later calls to malloc() to return the same pointer. If malloc()

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

123

returns the same value twice and the program later gives the attacker control over the data that is
written into this doubly-allocated memory, the program becomes vulnerable to a buffer overflow
attack.

 Encapsulation. Encapsulation is about drawing strong boundaries [McGraw 2006]. In a web browser
that might mean ensuring that your mobile code cannot be abused by other mobile code. On the server
it might mean differentiation between validated data and unvalidated data, between one user's data
and another's, or between data users are allowed to see and data that they are not. Encapsulation issues
ar discussed below:

– Leftover Debug Code. Debug code can create unintended entry points in a deployed web
application. A common development practice is to add “back door” code specifically designed for
debugging or testing purposes that is not intended to be shipped or deployed with the application.
When this sort of debug code is accidentally left in the application, the application is open to
unintended modes of interaction. These back door entry points create security risks because they
are not considered during design or testing and fall outside of the expected operating conditions
of the application. The most common example of forgotten debug code is a main() method
appearing in a web application. Although this is an acceptable practice during product
development, classes that are part of a production J2EE application should not define a main().

– Trust Boundary Violation. A trust boundary can be thought of as line drawn through a program.
On one side of the line, data is untrusted. On the other side of the line, data is assumed to be
trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary--to
move from untrusted to trusted. A trust boundary violation occurs when a program blurs the line
between what is trusted and what is untrusted. The most common way to make this mistake is to
allow trusted and untrusted data to commingle in the same data structure.

– Unsafe Mobile Code: Access Violation. The program violates secure coding principles for
mobile code by returning a private array variable from a public access method. Returning a
private array variable from a public access method allows the calling code to modify the contents
of the array, effectively giving the array public access and contradicting the intentions of the
programmer who made it private.

– Unsafe Mobile Code: Inner Class. The program violates secure coding principles for mobile
code by making use of an inner class. Inner classes quietly introduce several security concerns
because of the way they are translated into Java bytecode. In Java source code, it appears that an
inner class can be declared to be accessible only by the enclosing class, but Java bytecode has no
concept of an inner class, so the compiler must transform an inner class declaration into a peer
class with package level access to the original outer class. More insidiously, since an inner class
can access private fields in their enclosing class, once an inner class becomes a peer class in
bytecode, the compiler converts private fields accessed by the inner class into protected fields.

– Unsafe Mobile Code: Public finalize() Method. The program violates secure coding principles
for mobile code by declaring a finalize()method public. A program should never call finalize
explicitly, except to call super.finalize() inside an implementation of finialize(). In mobile code
situations, the otherwise error prone practice of manual garbage collection can become a security
threat if an attacker can maliciously invoke one of your finalize() methods because it is declared
with public access. If you are using finalize() as it was designed, there is no reason to declare
finalize() with anything other than protected access.

– Unsafe Mobile Code: Dangerous Array Declaration. The program violates secure coding
principles for mobile code by declaring an array public, final and static. In most cases an array
declared public, final and static is a bug. Because arrays are mutable objects, the final constraint
requires that the array object itself be assigned only once, but makes no guarantees about the
values of the array elements. Since the array is public, a malicious program can change the values
stored in the array. In most situations the array should be made private.

– Unsafe Mobile Code: Dangerous Public Field. The program violates secure coding principles
for mobile code by declaring a member variable public but not final. All public member variables

7 Secure Software Construction

124

in an Applet and in classes used by an Applet should be declared final to prevent an attacker from
manipulating or gaining unauthorized access to the internal state of the Applet.

7.8 Further Reading
[SWEBOK] Abran, Alain, James W. Moore (Executive editors); Pierre Bourque, Robert Dupuis, Leonard

Tripp (Editors). Guide to the Software Engineering Body of Knowledge. 2004 Edition. Los Alamitos,
California: IEEE Computer Society, Feb. 16, 2004. Available at http://www.swebok.org

[Avizienis 2004] Avizienis, Algirdas, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,” IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 1, pp. 11-33, Jan.-Mar. 2004. Available at
http://csdl.computer.org/dl/trans/tq/2004/01/q0011.pdf

[Bishop 2003] Bishop, Matt. Computer Security: Art and Practice. Boston, MA: Addison-Wesley
Professional, 2003.

[Cohen 2004] Cohen, Lazaro Issi, and Joseph Issi Cohen, The Web Programmer's Desk Reference, No
Starch Press, 2004.

[Gasser 1988] Gasser, M. Building a Secure Computer System. Van Nostrand Reinhold, 1988. Available at
http://nucia.ist.unomaha.edu/library/gasser.php

[Ibrahim et al, 2004] Ibrahim, Linda, et al, Safety and Security Extensions for Integrated Capability
Maturity Models. Washington D.C.: United States Federal Aviation Administration, Sept. 2004.
Available at http://www.faa.gov/ipg/pif/evol/index.cfm

[McGraw 2006] McGraw, Gary. Software Security: Building Security In. Addison Wesley, 2006.

[Redwine 2004] Redwine, Samuel T., Jr., and Noopur Davis (Editors). Processes for Producing Secure
Software: Towards Secure Software. vols. I and II. Washington, D.C.: National Cyber Security
Partnership, 2004.
Available at http://www.cigital.com/papers/download/secure_software_process.pdf

[Sommerville 2004] Sommerville, I., Software Engineering, 7th ed., Pearson Education, 2004.

[Thompson 2005] Thompson, Herbert and Scott Chase. The Software Vulnerability Guide. Charles River
Media, 2005.

[Hoglund 2004] Hoglund, Greg and Gary McGraw. Exploiting Software: How to Break Code. Boston,
MA: Addison-Wesley Professional, 2004.

[Whittaker and Thompson 2003] Whittaker, James and Herbert Thompson. How to Break Software
Security. Boston MA: Addison-Wesley Professional, 2003.

Cerven, Pavol. Crackproof Your Software: Protect Your Software Against Crackers, First Edition. No
Starch Press, 2002.

Kaspersky, Kris. Hacker Disassembling Uncovered. A-List Publishing, 2003.

[Howard et al 2005] Howard, Michael, John Viega, and David LeBlanc. 19 Deadly Sins of Software
Security. McGraw-Hill Osborne Media, 2005.

Viega, John and Gary McGraw: Building Secure Software: How to Avoid Security Problems the Right
Way. Boston, MA: Addison-Wesley Professional, 2001.

Howard, Michael and David LeBlanc. Writing Secure Code, Second Edition. Redmond, WA: Microsoft
Press, 2002.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

125

Van Wyk, Kenneth R. and Mark G. Graff: Secure Coding: Principles and Practices. Sebastopol, CA:
O’Reilly Media Inc., 2003.

[Tsipenyuk 2005] Tsipenyuk, Katrina, Brian Chess, and Gary McGraw. Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors. IEEE Security & Privacy. Vol. 4, No.2, pp 81-84,
November/December 2005.

[Goertzel 2006] Goertzel, Karen Mercedes, et al. Security in the Software Lifecycle: Making Application
Development Processes—and Software Produced by Them—More Secure, Appendix G, Section G.3,
“Implementing Secure Software”. Washington, DC: Dept. of Homeland Security, 2006.

Viega, John and Matt Messier. Secure Programming Cookbook for C and C++. Sebastopol, CA: O'Reilly
Media Inc., 2003.

Seacord, Robert: Secure Coding in C and C++. Boston MA: Addison-Wesley Professional/SEI Series in
Software Engineering, 2005.

University of California-Berkeley: Proof Carrying Code. Available at http://raw.cs.berkeley.edu/pcc.html.

Princeton University Secure Internet Programming: Proof-Carrying Code. Available at
http://www.cs.princeton.edu/sip/projects/pcc/.

Carnegie Mellon University Fox Project: Proof-Carrying Code. Available at
http://www.cs.cmu.edu/~fox/pcc.html.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

127

8 Secure Software Verification, Validation, and
Evaluation

8.1 Scope
The methods used for verification, validation, and evaluation of original development, reused and OTS
software, and changes can be static or dynamic. The primary dynamic techniques are simulation and testing.
[Abran 2004] states, “Testing is an activity performed for evaluating product quality, and for improving it, by
identifying defects and problems. Software testing consists of the dynamic verification of the behavior of a
program on a finite set of test cases, suitably selected from the usually infinite executions domain, against the
expected behavior.”

Static techniques may involve direct reviews, automated static analysis, and proofing or model checking. The
term “formal” is used here and elsewhere to mean mathematically based. See Section 9, Tools and Methods,
for a number of relevant techniques and the tools.

While the primary initial purpose for using a technique or method may be product improvement, all the
techniques used should contribute to the assurance case for the software system. Those improving the
development process and the developers’ organizations, such as process audits and improvements, contribute
indirectly.

This section first addresses assurance case concerns and then addresses a number of issues and techniques
related to secure software engineering verification, validation, and evaluation.

8.2 Assurance Case
As mentioned in the Fundamentals section, the UK MoD Defence Standard 00-42 Part 3 defines a type of
assurance case that they call a Reliability and Maintainability (R&M) case. Their definition of R&M Case also
serves as a good definition for a security assurance case: “A reasoned, auditable argument created to support
the contention that a defined system will satisfy [its security property]…requirements”.

These are the security requirements, but a combined assurance case could be made for security and safety or
other properties. Where they have significant impacts on the required security properties justification exists for
the security assurance case including not only confidentiality, integrity, availability, etc. requirements but also
reliability, and security-related usability and sustainability. Separate assurance cases may be more
straightforward. [Despotou 2004]

Starting with the initial statement of requirement, the assurance case subsequently includes identified risks
(perceived and actual), avoidance and mitigation strategies, and an assurance argument that refers to associated
and supporting evidence. It is best developed concurrently with the software. This may include evidence and
data from requirements, design, construction, verification, validation, and evaluation; management, and other
sources. Evidence concerning quality results from reviews, analyses, tests, trials, in-service and field
experience, process fidelity, standards conformance results, personnel qualification records, and elsewhere.
The assurance case also records any changes to the case, including changes required by changes in the software
system and its threat and operational environments and its assumptions.

As a reasoned, auditable argument created to support the contention that a defined software system satisfies the
relevant requirements, the assurance case provides an audit trail of the engineering considerations, from
requirements to full evidence of compliance. It provides the justification of why certain activities have been
undertaken and how they were judged successful. It is initiated at the concept stage, progressively revised

8 Secure Software Verification, Validation, and Evaluation

128

during a system life cycle to be up-to-date and available, and with its status continually tracked. It is typically
summarized in Assurance Case Reports at predefined intervals or milestones. It remains with the software
system throughout its life through disposal. The assurance case has, therefore, a progressively expanding body
of evidence during development and responds as required to all changes during development and sustainment.
[Ministry of Defence 2003b, p. 5]

The assurance argument provides a structured set of claims (or goals to assure) that progressively justify
through argument – show, demonstrate, perform causal analysis, prove, quantify – their super-ordinate claim or
goal. An element of the case may contain details of the initial (justified) requirement and reasons for the
proposed solution.

Each goal or claim may be achieved either directly or by goal breakdown. In general, all of the things needing
to be achieved by a goal are carried down and allocated to one or more of its subgoals, and hence once the
decision has been made to use goal breakdown, the higher-level goal does not need to be referred to again. For
this reason, many of the requirements stated in one goal are repeated in its subgoals, sometimes verbatim,
sometimes slightly enhanced.

To achieve a goal directly, a number of things must be argued. The SafSec Standard divides the ways of
arguing or showing into seven non-exclusive ways and calls these “frameworks.” Most important, compliance
with each framework means meeting certain standards, such as the organizational roles being defined,
including standard ones. In addition, they are one categorization of the rationales for use in arguments,
although for a single claim or goal many of them must usually be included in its arguments and evidence.
[SafSec Standard, pp 24-28] The arguments are:

1. Organizational: the goal is achieved by some organization.

2. Procedural: certain actions have been carried out.

3. Unified Risk Management: this process justifies the acceptability of residual risk against the agreed
and documented top-level security or broader dependability objectives – this point is particularly
relevant to assurance arguments.

4. Risk Directed Design: “document a justification for achievement, by the system, of each residual risk;
and document a justification that the evidence of achievement of risk reduction is appropriate for the
level and importance of the risk reduction.”

5. Modular Certification and Technical Modularity: organizational or system interfaces, particularly with
external systems, need the “other” side of the interface to justifiably have the assured qualities
claimed. In addition, “Module boundaries shall match the organizational boundaries.”

6. Evidence: requirements have been established for the recording, handling, and characteristics of
evidence to be used.

7. Evaluation/Assessment: the project shall document a means of demonstrating the achievement, by the
system, of each residual risk to a level of [uncertainty] appropriate for that risk, obtain agreements on
evaluations and assessments among the parties involved, and carry them out successfully (as
determined by evaluation/assessment results).

“In order to demonstrate that a system or module meets its dependability objectives, evidence for the
dependability argument is prepared and presented. Evidence shall be permanent, traceable and managed in
such a way as to provide later readers confidence in its source, contents and validity.” [SafSec Standard, page
9]

When judging the credence to be given to a piece of evidence, its relevance, visibility, traceability, and quality
are crucial factors. Therefore, one must necessarily confirm that the evidence is generated or collected,
managed, validated, and used within the constraints of acceptable practices and controls. It must also achieve

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

129

the objectives claimed in the assurance argument. [MoD DefStan 00-42 Part 3, section 9.1] The body of
evidence can become quite large, and for usability probably needs to be organized by some evidence
framework. The structure of the assurance can make it easier or harder to create, understand, and modify.
[Kelly 2003] Automated tools exist to aid in recording, maintaining, and managing assurance cases- see
Section 9, Tools and Methods.

As the principal means by which the “justifiably high confidence” can be explicitly obtained, the assurance
case is central to the verification, validation, and evaluation of secure software. It should not only give
coherent confidence to developers, sustainers, and acquirers, but also be directly usable by others including
certifiers and accreditors.

Activities involved might include

 Create top-level assurance goal from requirements

 Establish structure of argument with subordinate goals or claims including their relationships

 Create portions of assurance argument tailored for level of assurance desired

 Compile portions of argument and supporting evidence

 Verify

 Validate

 Analyze

 Establish level of confidence

 Use as input to certification

Several steps are mentioned in Sections 3 and 10 that contribute to the assurance case include.

 Perform threat analysis and assure its quality

 Provide assurance case showing that top-level specification agrees with security policy

 Develop a security test plan

 Develop an implementation of the system based on the top-level specification providing assurance
case with argument and evidence (preferably including proofs) that

 Assure design

– Agrees with top-level specification and security policy

– Contains only items called for in top-level specification

 Assure that code is free of critical vulnerabilities, corresponds to design, and security policy and
contains only items called for in design

 Perform penetration testing and test security functionality

 Provide a covert channel analysis

 Perform ongoing monitoring of security threats, needs, and environment

 Perform changes securely maintaining conformance to – possibly revised – security requirements
while continuing to provide complete assurance case

 Deploy securely

 The quality and history of the people who produced it

8 Secure Software Verification, Validation, and Evaluation

130

 The characteristics and history of the kind of process used to produce it

 The quality of the environment in which it was produced

 Data on the quality and fidelity of use of the production process for this piece of software

 The realism of the assumptions made

 Characteristics of the software design including the extent to which it implements defense in depth
and tolerance

 Results of reviews, tests, and analyses of it

 Data on the execution history of the software itself – particularly for post-update assurance

While certification authorities may not always consider everything relevant, every aspect having potential
signification consequences for meeting security requirements or for the confidence of key stakeholders has a
place in a full assurance case along with its related evidence. As all on that list are important, including
everything on the list in the Fundamentals section’s subsection on Assurance Case.

Thus, the assurance case is a top-level control document, normally summarized periodically thorough issuing
Assurance Case Reports that record progress/changes in both arguments and linked evidence. Its purposes are
to provide grounds for their confidence to producers as they proceed and, as emphasized by the Soviet gas
pipeline explosion incident and its aftermath, supply the confidence in the product that acquirers, operators,
and users must have to rationally acquire and use it in situations with security risks – the normal situation
today.

8.3 Ensure Proper Version
Of course, one needs sound configuration and release management, but one also needs secure configuration
management facilities and cryptographic signing of artifacts or other means to ensure their proper origin and
their end-to-end integrity when distributed internally or externally. A process review to trace the use and non-
use of cryptographic signatures could start with individuals producing them and extend all the way to
execution or other external use.

8.4 Testing

8.4.1 Test Process
Many of the considerations in testing secure software are those of any quality testing process, for example,
assuring the correct version is tested. Several considerations have differences that occur in activities such as:

 Independent Verification and Validation’s independence add credibility to its results for some
stakeholders and can bring added expertise. See subsection 8.8, Verification and Validation of User
Aids.

 Unit Testing: One high-end user of formal methods has reported that measurement has shown little
contribution by unit test to defect discovery and has tried eliminating it [King et al. 2000, section 5.1
and Figure 1 on pages 679-680] and [Hall 2002a, pages 21-22].

 No lightweight process user has reported similar results.

 Test Planning and Preparation must include security-related testing and a facility where potentially
dangerous malicious actions can be imitated without fear of impacting others. Incorporating test
results in the assurance case is eased by planning the tests to fill places requiring evidence within the
assurance case’s structured argument.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

131

 Testing for Functionality Not in Specifications is important to help establish the software not just
meets the specification but does nothing else.

 Conducting Test needs to be ethical as well as efficient and effective.

 Termination Criteria are unclear for testing such as penetration testing. If testing is restricted to
technical attacks (e.g., no social engineering), then the interval between successes by a quality red
team might be used. But how long without a break-in would be acceptable? Today, red teams seem to
succeed in attacks against almost all software producers’ software with the limit often set by the
willingness to continue paying the expensive red team. [Howard 2002, p. 48] gives the firm advice,
“Do not ship with known exploitable vulnerabilities,” that he reports has worked for Microsoft.

 Certification Testing is a part of a certification process such as FIPS-140 for certification of
cryptographic software, virus software certification by ICSA Labs, or the Common Criteria
Evaluation process.

 Change and Regression Testing: Testing vulnerability fixes can be extensive because security
properties are emergent properties. Any ability to confine the effort depends on the roles different
tests play in the assurance case. Just as the structures of the designing and the assurance case can help
in gaining assurance originally, structuring can potentially aid in restricting the amount of rework
required in modifying the assurance case, including work in testing.

 Measurement: Security metrics are a difficult area, as discussed in subsection 8.9, Software
Measurement and metrics attempting to measure the additional security assurance justified by a
particular test result suffer the same difficulty. Successful attacks have a clear result that the system is
not secure, but what confidence is justified after fixing the identified vulnerability?

 Reporting and Incorporating in Assurance Argument follow testing.

[McGraw 2006, Chapters 6 and 7] address security testing. As with most testing, security testing is risk- or
consequence-driven. [McGraw 2004b] provides an introduction to risk-based security testing without explicitly
addressing probability, and [Redmill 2005] addresses consequence-based (no probabilities exist) testing as well
as risk-based testing.

While testing is essential in developing secure software, test-driven development where specifications are
replaced by tests (specification by example) is of questionable viability, as it does not provide a serious
approach to specifying such properties as non-bypassability.

8.4.2 Test Techniques
A number of testing techniques either are unique to security or have special uses for security testing.1 [Bishop
2003, p. 533-540]

8.4.2.1 Attack-Oriented Testing
Attack testing involves having persons try to break the software. For security, this is called penetration testing
and aims to violate specified or expected security usually by imitating techniques used by real-world malicious
attackers. [Whitaker 2004] [Flickenger 2003] [McGraw 2006, Chapter 6] The teams that perform these tests
are often called red teams, and generally include dedicated specialists. [McGraw 2006, p. 181-182] discusses
an attacker’s toolkit.

Clearly, the tests are seeking vulnerabilities and likely vulnerabilities, i.e., potentially exploitable to cause
harm, but testing time was not spent to prove it. One additional question to be addressed is how successful are
any defensive deceptions employed.

1 Of potential future interest, but not covered is MC/DC testing per FAA 178B avionics standard.

8 Secure Software Verification, Validation, and Evaluation

132

While often following game plans and scripts, this testing also often has an exploratory testing aspect. The
SWEBOK Guide [Abran 2004, p. 5-5] defines exploratory testing as simultaneous learning, test design, and
test execution; that is, the tests are not defined in advance in an established test plan, but are dynamically
designed, executed, and modified.

The difficulties with deciding when to stop and what the results mean were discussed in Section 8.4.1, Test
Process.

8.4.2.2 Brute Force and Random Testing
Advocates exist for testing with large volumes of structured or unstructured random data with the aim of
exposing faults or vulnerabilities – sometimes called “fuzz” testing [Miller 1990]. When the frequently used
criterion for failure is an abort or crash, failing these tests is a sign of quite poor software. [Redwine 2004]

Random testing to compare the performance of a new version to a different one can, however, be useful.
Finally, testing with appropriate random distributions of input can be used to predict reliability and availability
in the non-security context.

8.4.2.3 Fault- and Vulnerability-Oriented Testing
Testing designed to discover certain kinds of faults is known to be useful. Similarly testing aimed at a certain
class of vulnerabilities can be useful particularly if one or a few kinds of faults underlie them.

While fault tolerance can mitigate the effects of faults, the characteristic of low defects is often discussed as a
prerequisite for secure software, and the existence of increasing numbers of defects is usually believed to
increase the chance of the existence of vulnerabilities. [Redwine 2004] Some dispute, however, exists about
this [Lipner 2005b], and conclusive, generalizable evidence is hard to create.

8.4.2.4 Security Fault Injection Testing
To test the conditions where the attacker has had partial success or where part of the system has malfunctioned
or ceased to exist/respond, one needs to inject faults in code or errors in data – or possibly via hardware faults.
[Whitaker 2004, pp. 17-18, 159-162]

An attacker in control of part of the system would attempt to exploit its capabilities to achieve further success.
A malfunctioning part of the system might be created deliberately by an attacker to achieve favorable results.

In a common case, attackers could attempt fault injection (modification) of client software, including web
pages under their control in such a way to cause security violations. This can be explored by injections such as
faults in an attempt to test the possibility.

Finally, an issue may exist in the possibility of failure by some element in the system’s environment, especially
its infrastructure that can be tested by fault injection in the environment.

8.4.2.5 Using Formal Methods to Support Testing
Formal methods provide a formal specification of expected behavior that can be used to aid in generating test
and most powerfully as a test oracle to automatically check if the behavior resulting from a test meets the
specification. [Blackburn 2001] provides a security-related example. Another approach using mutation testing
is described in [Wimmel 2002].

8.4.2.5.1 Test Generation

Specifications can be analyzed for a characterization of the input space and tests created heuristically (etc.
partition or boundary value tests). State-machine-based specification may use modelchecking techniques to
select test cases.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

133

8.4.2.5.2 Test Oracle

Checking code derived from formal specifications can be used to check test results for correctness at any level
of aggregation, but for security, the special aspect is checking if emergent system properties are violated as
well as the correctness of security functionality. Most logic-based techniques presume that the specification
related directly to system state and state changes, and not to the history of the system. Test oracles based on
state machines may also check state sequences.

8.4.2.6 Usability Testing
Do security aspects affect usability and acceptability negatively, and, if so, how much? Usability of security
features and the impacts of security such as those on convenience and performance can be tested, as can other
usability issues. As mentioned in the Requirements and Design sections’ subsections on Usability, creating
quality solution options may require early and deep considerations. [Cranor 2005]

8.4.2.7 Performance Testing
How much do development decisions or product aspects affected by the security requirements slow
performance? Performance testing can address this issue, but for best results, consideration of performance
should not wait until subsystem or system testing.

8.4.2.8 Compliance Testing
Testing to demonstrate compliance with standards can be relevant for those standards relating to security. A
number of standards have existing test suites or testing laboratories that can be used.

8.4.2.9 Reliability Testing
The probabilistic approach of reliability testing is not appropriate for confidentiality and integrity, but is one
input to availability analysis.

Whether a software system produces correct results despite being under attack is a reliability issue, but it is
also one of the central issues in security testing in general.

8.4.2.10 Evolvability or Maintainability Testing
Evolvability or maintainability testing could involve postulating changes and having them performed while
measuring the time, effort, and mistakes made. The testing would include making any needed changes to the
assurance case.

Among other uses, maintainability forecasts are inputs to availability analysis.

8.4.2.11 Operational Testing
The goal of operational testing is to investigate and assure successful use in a real world environment.
Operational testing may include testing from early in development to after the system is in use. Kinds of
operational tests include:

 Alpha and beta testing

 Field testing

 Operational test and evaluation

 Parallel with old version

 History collection of actual use after release

Security aspects need to be involved in all of these.

8 Secure Software Verification, Validation, and Evaluation

134

8.5 Dynamic Analysis
Often, dynamic analyses as opposed to dynamic testing, such as in slicing and some simulation modeling, do
not actually execute the software under analysis. However, some analyses do.

8.5.1 Simulations
Simulation models of the system might be used to help verify that it conforms to the security policy or has
resistance to certain kinds of denial of service attacks.

8.5.2 Prototypes
Prototypes intended to answer security-related questions play a normal prototype role. Prototypes that are
intended to evolve into part of the system need to be developed so the same level of assurance case can be
created for them as for the remainder of the system. Building the assurance case (or possibly a prototype
thereof) during prototype development might be wise, just as it is in regular development.

8.5.3 Mental Executions
Mental execution of software has a long history and can have utility for cheaply and quickly illuminating
sample execution paths, but its creditability as verification evidence is limited.

8.5.4 Dynamic Identification of Assertions and Slices
Automatically “guessing” pre- and post-conditions or invariants by observing many executions could be useful
to provide candidates for existing software, but would be poor practice when developing new software. Such
candidates cannot be uncritically depended upon as being the proper conditions for correctness.

Static analyses to determine a slice of a program that contains all that is relevant to some action or variable can
be difficult and computationally intensive. Estimating slices by observing a number of program executions
may help heuristically but generally cannot be depended upon to be complete.

8.6 Static Analysis
Static analysis methods relevant to security include formal methods and static code analysis. The tradeoff
between dynamic testing and analyses, and static analyses is often a tradeoff of more accessible dynamic
techniques that are only enumerating examples from a huge input space versus less accessible formal methods
(mathematical but not using advanced mathematics), that cover the entire input space. See the section on Tools
and Methods for more discussion of this.

8.6.1 Formal Analysis and Verification
The most powerful technical methods for assuring system descriptions’ consistency or correctness are
mathematically based formal methods. Most formal techniques in use are based on either logic or model
checking. See Section 9, Secure Software Methods and Tools.

Formal methods can be used for checking the existence or consistency of security-related software properties,
within and across artifacts. Formal methods can show consistency among formal specifications of

 Security Policy

 Specification

 Design

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

135

 Code

Code is a formal notation as well. Some approaches lack rigorous automated support for showing
correspondence between design and code.

For designs, techniques are available for both sequential and concurrent structures. Examples include [Hall
2003], [Barden 1995], and [Jürjens 2005]. Experience has shown that humans are bad at analyzing potential
concurrent behaviors and that automated analysis is essential to ensure desirable properties – usually done
using model checking. See subsection 9.2, Formal Methods.

Using formal methods is frequent in producing software to the highest assurance levels.

8.6.1.1 Static Code Analysis
For code in particular programming languages or subsets of languages, automated help exists to show

 Correctness (e.g., partial correctness)

 Lack of exceptions

 Information flow

 Concurrency abnormities

 Lack of potential vulnerabilities

While significant progress is being made, static analysis tools to scan source code for code practices that can
result in vulnerabilities are reported often to give many false positives. It is not clear that this is the case,
however, when coding standards are followed that forbid or discourage these practices. Automated style
checkers can verify conformance to the bulk of such coding standards. The scalability of vulnerability-seeking
static analysis tools also can be a problem though some commercial tools have analyzed software with millions
of lines. [McGraw 2006, Chapter 4]

While scanning for potential vulnerabilities is a current industry emphasis, the capabilities listed in the first
four bullets can also be quite useful; for an example of some of these capabilities, see [Barnes 2003]. Tools can
also help locate security functionality and design features of potential interest, for example, use of
cryptography, access control, authentication, native/dynamic code use, and calls opening network
communications.

8.6.2 Informal Analysis, Verification, and Validation

8.6.2.1 Reviews and Audits
Reviews are prime examples of an informal but essential and effective technique. Knowledge exists on reviews
with a variety of characteristics. Four primary differences exist for the concerns addressed during reviews
within secure software projects:

1. Achieving security properties and policies

2. Doing only what the specification calls for

3. Avoiding software-related security pitfalls

4. Identifying possible attacker behaviors and consequences

Reviews, however, can be used to address all the topics mentioned under testing, often more cost effectively,
and should therefore normally be a significant investment in testing. Security-oriented checklists exist for use
in various software system reviews. For example, [Meier 2003, pp. 687-740] has a number of them.

8 Secure Software Verification, Validation, and Evaluation

136

Formalized techniques exist for reviews include scenario-based [Bass 2001], inspections and ones based on
assurances of merit by experts rather identification of faults [Parnas 1985] [Laitenberger n. d.]

The last, called active or perspective reviews, might provide output in an attractive form for the assurance case.

In addition to reviews of security-oriented artifacts and concern for security as part of normal review activities,
specialized security reviews and security audits may occur, as may legal or regulatory-oriented reviews.
[McGraw 2006, pp. 165-167] describe “ambiguity analysis,” which is claimed to be useful to find areas of
difficulty or misunderstanding in security. For full effectiveness, some of these reviews require special
security-oriented expertise. For example, validation of an original threat analysis should involve threat experts.

All engineering artifacts for trusted software – requirement, design, code, etc. artifacts – must be reviewed by
authors’ peers – and, as in instances mentioned above, other reviewers as needed. Good practice would, of
course, call for this to be true for untrusted software as well. Indeed, without reviews, adequate assurance that
software does or does not need to be trusted may not be possible.

Special or additional rounds of review or more reviewers may be employed as measures to add assurance
evidence. Readiness reviews may occur before the security certification or accreditation activities.

Finally, regular reviews of the assurance case are necessary to ensure its quality. These reviews can benefit
from involving

 Parties (or their surrogates) whose assurance is the goal of the assurance case

 Developers of the assurance case

 Persons who fully understand the evidence

 Persons able to judge assurance arguments rigorously

Reviews are possibly the most cost-effective verification technique and should be planned for and performed.

8.7 Usability Analysis
In addition or in combination with usability testing a fuller analysis can be done, for example [Whitten 1999].

8.8 Verification and Validation of User Aids
Because security needs to be treated correctly and effectively in user aids, such as manuals and help facilities,
these need to be reviewed and probably included in usability testing. Kinds of user aids covered to ensure
existence and correctness of security-oriented material include

 Documentation

– Normal documentation covers security aspects and use

– Additional operational security guide

 Training

 Online user aids, e.g., help facility

 User support

– Help desk

– Online support

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

137

8.9 Secure Software Measurement
The ultimate measure of merit question may be some variation of, “How much harm (and benefit) will be or
has been caused by known and unknown security violations or vulnerabilities and how security was embodied
in the software system involving it or other security-related impacts?”2 Even if one could make decisions
among all the possible variations of scope, duration, etc., of this question in defining an ultimate measure of
merit, prediction or forecasting faces tremendous difficulties, including from the truth that no intellectually
honest theoretical way exists to calculate risks from the technical characteristics of the software. The software
measurement community is struggling with this issue and the problem of measures for software-related
security, for a serious effort see [Murdock 2005].

This does not mean that useful engineering measurements cannot be made, analyzed, and used to improve.
Often these measures are relative ones – change in one direction say becoming smaller, is known to be better,
but “How much?” is not answerable in future experience in the field. Likewise, for an aspect of development,
using a particular practice may be known to be better than using no practice at all, or one practice is better than
another. In addition, doing an activity more skillfully is usually better. Over time, empirical bases may develop
to make useful prediction of absolute values.

A somewhat similar problem exists with software reliability prediction, knowing the defect density of software
does not allow (except at the extremes) much to be said intellectually honestly about the software’s reliability
in the field as defects may or may not ever be exercised. Since we know having fewer defects is better, this has
not kept us from using and benefiting from density of discovered defects as an engineering measure.

The same holds for counting the number of vulnerabilities. As with other defects, vulnerabilities can be ranked
by severity and categorized for analysis and improvement. To continue the analogy, coding reviews have
traditionally identified violations of the organization’s coding standards without necessarily impacting
correctness. With security, coding practices that are in some circumstances potential bases for vulnerabilities
can often simply be forbidden by the coding standards and counted in reviews or by automatic style checkers.

Reviews of other artifacts can do similar measurements, root cause analyses, and improvements. Counts of
vulnerabilities created and discovered in each activity should be useful for analyses just as with other kinds of
defects.

Measures of “attack surface” (set of points of possible attack) have been proposed. A crude one is how many
ports are open. A more sophisticated measurement is described in [Manadhata and Wing 2004] and [Howard
2003a]. These are relative measures where less “surface” is better.

For projects aiming at less than highly secure software, reasonable commonality exists among the lightweight
processes that have been developed, so organizations trying to improve in that range can make comfortable
decisions about improvement based on community experience and expert consensus. Counting the number of
activities adopted and measuring projects’ training and fidelity in following them are relevant process
measurements.

In comparing high-end processes, benefit can be gained from not only the limited number of such secure
systems about which information is available but the wider experience and arguments that have been

2 Should we include future and variant versions as well as software using work products, methods, techniques, or ideas from
this effort or product? What counts as harm? How insignificant a harm can be safely ignored? What about offsetting benefits,
say in fewer accidents or reduced security spending for physical security?

8 Secure Software Verification, Validation, and Evaluation

138

conducted in highly safe software.3 Measurements of analyzability and measurements resulting from
automated analyses are potentially powerful and useful. Regardless of process and technology, well led, highly
intelligent, skilled, and motivated people can make a big difference over merely good ones – everywhere but
most noticeably at the high-end. These elements also offer opportunities from measurements.

Microsoft has adopted a set of metrics to aid in producing secure software. [Lipner 2005a] reports, “These
metrics range from training coverage for engineering staff (at the beginning of the development lifecycle) to
the rate of discovered vulnerabilities in software that has been released to customers.

“Microsoft has devised a set of security metrics that product teams can use to monitor their success in
implementing the SDL.4 These metrics address team implementation of the SDL from threat modeling through
code review and security testing to the security of the software presented for Final Security Review (FDR). As
these metrics are implemented over time, they should allow teams to track their own performance (improving,
level, or deteriorating) as well as their performance in comparison to other teams. Aggregate metrics will be
reported to senior product team management and Microsoft Executives on a regular basis.”

Mary Ann Davidson of Oracle reports5 similar efforts, “We also have a number of metrics in terms of
measuring adherence to secure coding standards. For example, we measure and report on compliance with the
mandatory secure coding class to executive management within each product team. A number of the
development processes related to security are built in and reportable (since security sections are built in to
functional, design, and test specifications and we enforce compliance with security section completion or
projects are not approved for development). Similarly, there are requirements to run code through various
checks (e.g., SQL injection detection tools) or transactions cannot be checked in. Many metrics involve “on/off
switches” in that it is all or nothing: compliance is mandatory.

“There are multiple metrics around security bug handling, in terms of numbers and types of significant security
vulnerabilities, who finds them (e.g., ¾ are found internally on average, though in some groups the “internal
find rate” is as high as 98%).

“Most significant metrics are reported weekly, in development staff meetings.”

Thus, software-related security measurement is on a slippery theoretical foundation, but much practical and
useful measurement and analysis can be done.

8.10 Third-Party Verification and Validation and
Evaluation

Among the relevant third-party activities are independent security testing, independent verification and
validation, certification of the software system, and accreditation of an operational system.

8.10.1 Independent Verification and Validation
The phrase “independent verification and validation” implies verification and validation are done by a separate
organization – not just a different team within project. For software intended to claim some degree of security,

3 One confounding factor is that a number of such projects have been government procurements where contractors or groups
of contractors have “pushed back” and possibly less than highly knowledgeable government negotiators have retreated. In
other software areas, governments have been said to retreat from such arguments as, “We cannot hire enough programmers
knowing <vastly superior programming language> and, if we have to train them and bring them up to speed, your whole
system’s tight schedule will slip.” Of course, history seems to indicate that major systems have significant slippage deriving
from multiple causes.
4 Security Development Life cycle
5 Personal communication with author (SR) September 26, 2005

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

139

an option exists to do concurrent certification. This is the seemingly preferable but rare way to do many
certifications, including Common Criteria ones.

Even if this is done, independent performance of some verification and validation activities can make sense –
possibly to bring added resources and expertise as well as independence. Independent security testing is
possibly the most common, and is available from a number of sources. Independent verification and validation,
however, appears to need changes from its traditional form to be (cost) effective for security – it certainly
cannot emphasize “normal” scenarios.

Contracting for developing the assurance case – as opposed to aid and review – would appear to have the same
downside that outsourcing preparation of documentation for Common Criteria certification has – it often does
not influence and improve development or the product.

8.10.2 Software Certification
The Common Criteria standard is the most widely referred-to official (ISO) standard regarding software-
related security. Others also exist, such as FIPS-140 certification of cryptographic software, virus software
certification by ICSA Labs, and BITS in the financial sector. Protecting Sensitive Compartmented Information
(SCI) within the US government is covered by [DCID 6/3 2000]. See Requirements section. [Bishop 2003,
Chapter 21]

Each of these standards has its own evaluation process for certification. In the US, the Common Criteria has a
two-step process, first evaluation by an approved laboratory and then validation by the government. Validation
of EAL levels 1-4 is done by National Information Assurance Partnership (NIAP) and EAL 5-7 generally by
NSA. [CC 2005, Part 4]

Common Criteria is an international standard and a number of countries have a reciprocity agreement for EAL
1-4, so opportunity exists at this level to consider laboratories internationally.

8.10.3 System Accreditation
The US DoD has created the DoD Information Technology Security Certification and Accreditation Process
(DITSCAP). [DoD 8510.1-M] On the civilian side of the US government, the National Institute for Standards
and Technology has produced NIST Special Publication (SP) 800-37, Guide for the Security Certification and
Accreditation of Federal Information Systems. [NIST Special Pub 800-37]

ISO/IEC 17799:2005 published 15 June 2005 Information technology. Code of Practice for Information
Security Management combined with BS7799-2:2002 (anticipated will be ISO/IEC 27001) form a basis for an
Information Security Management System (ISMS) certification. More than 1300 certifications have been
issued worldwide6.

See Section 5, Software Requirements, for more information.

Ultimately, secure software’s goal is to be a part of a secure system providing secure services. This larger goal
can have a significant impact on requirements; design; and verification, validation, and evaluation.

8.11 Assurance for Tools
Tools that have been subverted or have “naturally” occurring vulnerabilities are potential sources of problems
in products and updates. The safety community has an analogous concern and, in using tools for FAA and
FDA certifications, qualification is required for such tools.7

6 ISMS Users Group, http://www.xisec.com/ These certifications were clearly to the old version of ISO 17799.
7 Thanks to Mark Blackburn for pointing this out.

8 Secure Software Verification, Validation, and Evaluation

140

Automation generation of an artifact can also give confidence if confidence exists in the generation tool. For
example, this is often the case for compilers. Nevertheless, an assurance case is needed for tools as well as the
primary products.

In the assurance of automated support for formal methods, software to check proofs is much simpler than
software to create proofs and is therefore easier to gain confidence in. .

If adequate assurance cannot be gained, then options include hardening the development network, and possibly
separating it from all other networks.

8.12 Selecting among VV&E Techniques
Much of the process of selecting techniques for dealing with VV&E of secure software is unchanged. Special
care can aid in ensuring that no aspect of security is covered by just one technique or only a few instances of
examination.

The importance of quality requirements and design may be even more pronounced for security. The benefits of
prevention and discovery of problems, while still relatively inexpensive to correct, remains true for security
problems. Dangers and risk management drive much of the decision making on VV&E techniques and
amounts of schedule, effort, and costs devoted to them remains unchanged.

Estimating the dangers and risks takes different techniques and can result in less certain results. See Section
11.4, Project Management, .

From a development process viewpoint, one question often asked is how likely is a defect or possibly more
important a hard to discover and fix defect likely to occur if we do a development activity using certain
techniques. When an activity is straightforward and the performers and reviewers have previously proven
consistently proficient in their roles, then careful performance and review may be adequate. If it is less
straightforward or the organization’s track record is poorer, then more formal approaches to performance and
VV&E would be called for.

The system may contain software that is trusted and software that is untrusted. For software, which is firmly
established as not needing to be trusted, the dependability properties of interest tend toward traditional,
probabilistic ones, and therefore methods such as input-distribution-based reliability testing may remain
adequate.

[ISO/IEC 15443 Part 3 2004] provides a number of comparisons of official assurance or certification
processes. These include ones based on ISO 13335, ISO/IEC 15408, ISO 17799, ISO/IEC 21827, ISO/IEC
15408, TCMM, X/OPEN, and FIPS-140-2.

Finally, laws, regulations, policies, and standards may call for using certain techniques. While laws and
regulations may require compliance, following some standards may be discretionary. On this point and the
general problem of selection, a relevant piece of advice appears in DEF STAN 00-56 [Ministry of Defence
2005b, Part 2 p. 70] that begins by mentioning the concept of making risk “as low as reasonably practicable”
ALARP.8

“Because the ALARP criteria should be determined by the cost-effectiveness of the technique rather than the
availability of the budget, the techniques recommended or mandated in authoritative sources (e.g., international
or national standards) of relevant good practice should be applied whenever the costs are not grossly
disproportionate to the benefits. Where there is a wide range of potential measures and techniques that could be
applied, a consistent set should be adopted and the choice should be justified in the [Assurance] Case. The

8 ALARP is a significant concept in UK law, and an excellent engineering-oriented discussion of it appears in Annex B of DEF
STAND 00-56 Part 2.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

141

selection should preferably be based on the collection of data about the performance of specific methods and
techniques in similar applications, but as such data is difficult to obtain, it will probably be necessary to justify
the selection using expert judgement (sic).”

8.13 Further Reading
[Avizienis 2004] Avizienis, Algirdas, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, “Basic

Concepts and Taxonomy of Dependable and Secure Computing,” IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 1, pp. 11-33, Jan.-Mar. 2004.

Available at http://csdl.computer.org/dl/trans/tq/2004/01/q0011.pdf

[Barden 1995] Barden, Rosalind, Susan Stepney, and David Cooper, Z in Practice, Prentice Hall, 1995.

[Chirillo 2002] Chirillo, John. Hack Attacks Revealed: A Complete Reference for UNIX, Windows, and
Linux with Custom Security Toolset. Wiley Publishing, Inc., 2002.

[CSTB 2004] Committee on Certifiably Dependable Software Systems. Summary of a Workshop on
Software Certification and Dependability. National Academies Computer Science and
Telecommunications Board, National Academies Press, 2004.

 [Herrmann 2001] Herrmann, Debra S. A Practical Guide to Security Engineering and Information
Assurance. Auerbach, 2001.

[ISO/IEC PRF TR 19791] ISO/IEC PRF TR 19791 Information technology -- Security techniques --
Security assessment for operational systems. International Organization for Standards, February 6,
2006.

[Jackson 2005b] Jackson, David and David Cooper, “Where Do Software-related security Assurance
Tools Add Value?”, NIST Workshop on Software-related security Assurance Tools, Techniques, and
Metrics, November, 2005.

[Le Grand 2005] Le Grand, Charles H. Software Security Assurance: A Framework for Software
Vulnerability Management and Audit. Longwood, FL: CHL Global Associates, 2005.

[Merkow and Breithaupt 2004] Merkow, Mark S. and Jim Breithaupt, Computer Security Assurance,
Thomson Delmar Learning, 2004.

[Ministry of Defence 2003b] Ministry of Defence. Defence Standard 00-42 Issue 2, Reliability and
Maintainability (R&M) Assurance Guidance Part 3 R&M Case, 6 June 2003.

[Praxis 2004] Praxis Critical Systems Ltd, EAL4 Common Criteria Evaluations Study, September 2004.
Available at: http://www.cesg.gov.uk/site/iacs/itsec/media/techniques_tools/eval4_study.pdf

[Software Tech News 2005] “Secure Software Engineering”, DoD Software Tech News, Data Analysis
Center for Software, July 2005.
Available at: http://www.softwaretechnews.com

[Srivatanakul 2003] Srivatanakul, Thitima, John A. Clark, Susan Stepney, Fiona Polack. “Challenging
Formal Specifications by Mutation: a CSP security example,” apsec, , 10th Asia-Pacific Software
Engineering Conference (APSEC'03), 2003, p. 340.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

143

9 Secure Software Tools and Methods

9.1 Scope
Secure software development tools and methods assist a developer in creating secure software and usually
encourage a specific disciplined development approach [Abran and Moore 2004]. It is assumed any secure
tools and methods are used in conjunction with a secure development process (cf., Section 11: Secure Software
Processes). In this section, representative tools and methodologies are presented and discussed. From the
outset, it should be recognized that there is no “silver bullet” tool or technique that can deliver absolutely
secure code. Each tool or technique has a particular purpose and has a particular scope of application. The
section is not comprehensive in its level of detail, but does intend to cover the various types of tools and
methods that can be used to produce secure software.1 For lists of tool categories and some tools see [Jackson
2005b] and [Praxis 2004].

9.2 Formal Methods
“Formal Methods” refers to mathematically rigorous techniques and tools for the specification, design and
verification of software and hardware systems. … ‘[M]athematically rigorous’ means that the specifications
used in formal methods are well-formed statements in a mathematical logic and that the formal verifications
are rigorous deductions in that logic.” [Langley 2005] Methods for the formal verification of security can be
classified according to how security properties are specified [Sinclair 2005] or by the manner in which the
security properties are established [Bishop 2003].

In general, an abstract model of a security system captures the essence of the security system under
consideration. The abstract model has a well-defined semantics. Security requirements and functional
requirements of the security system are then specified as logical assertions. Thereafter, a rigorous analysis is
performed to show the abstract model satisfies the logical assertions. This process increases the confidence that
the security system satisfies its functional and security requirements. It may well be the case that during the
rigorous justification, the abstract model does not satisfy the logical assertions. This indicates either the
security system does not satisfy the requirements; that the model was not a faithful abstraction; or that the
functional or functional requirements were not faithfully captured. In either case, corrective measures must be
taken.

A number of formalisms can achieve the process mentioned above. For example, Vienna Development Method
(VDM) and Z (pronounced as Zed) are so-called axiomatic languages. Other types of languages based on state
transitions model computation sequences. State transition systems include state diagrams, message sequence
charts, CSP (Communicating Sequential Processes), and SCR (Software Cost Reduction). Algebraic languages
implicitly define security properties by means of equivalence relations to specify functionality. Languages
include the OBJ and the Larch family of languages as well as Temporal logic, CCS (Calculus of
Communicating Systems), and Petri nets.

Axiomatic languages specify security properties as logical assertions that are shown to be true or false.
Axiomatic language notations include the Vienna Development Method (VDM) and Zed (Z). These types of
languages are also often used to specify abstract models of security systems because of their ability to model
system state. State transition languages, on the other hand, not only model system state, but also explicitly
model the conditions in which state transitions will occur. State transition notation systems include state

1 Readers should be aware of the NIST SAMATE Project and its Nov. 2006 Workshop on Software-related security Assurance
Tools, Techniques, and Metrics

9 Secure Software Tools and Methods

144

diagrams, message sequence charts, communicating sequential processes (CSP), and calculus of
communicating systems (CCS). Algebraic languages implicitly define security properties using equivalence
relations to specify functionality. Languages include the OBJ and Larch family of languages. Temporal logic
languages model timed or ordered sequences of events. Languages of this class of formalism include Petri nets,
Temporal Logic with time Series (TLS), and state diagrams [Sinclair 2005].

Techniques for establishing security properties fall into two broad categories: proof-based techniques or
model-based techniques [Bishop 2003]. Proof-based techniques are deductive and attempt to show that from a
set of initial conditions, a particular set of conclusions will logically follow from a set of initial conditions.
Tools that support deductive reasoning are generally called theorem provers. Examples of theorem provers
include Another Logical Framework (ALF), Higher Order Logic (HOL), Prototype Verification System (PVS),
Naval Research Laboratory Protocol Analyzer (NPA), and Theorem Proving System (TPS).

Some formal methods approaches are more easily used by practitioners than others. For example, based on an
underlying state-machine model, the SCR technique from the US Naval Research Laboratory takes an
approach that is reasonably accessible to serious practitioners, has tool support, and has been used on several
projects [Heitmeyer 1998] [Heitmeyer 2005].

Model-based techniques “establish how well a specification of a system meets a set of properties.” [Bishop
2003] Model checkers typically perform an exhaustive search over a finite state space [Clarke and Wing 1996].
Examples of model checkers include Concurrency Workbench (CWB), SPIN, Symbolic Model Verifier
(SVM), and METAFrame. A comprehensive overview of model checking may be found in [Clarke and
Grumberg 1999].

[Burrows and Martin 1989] develop a logic to reason about authentication. In their logic system, belief and
knowledge can be expressed. The logic, now dubbed BAN logic, after the initials of the authors, has been
successfully used to reason about authentication protocols. Several researchers have worked on this logic in an
attempt to improve it.

9.3 Semi-formal Methods
Semi-formal methods, sometimes known as lightweight formal methods, often “emphasize the use of graphical
representations” [Vaughn and George 2003]. Semi-formal techniques possess some formalism, but cannot be
used to verify or validate most system characteristics. Moreover, another difference is that semi-formal
techniques usually provide methodological guidance (since that is where these methods tend to be found)
whereas formal techniques often do not [Alexander 1995]. Data Flow Diagrams (DFD), and the Universal
Modeling Language (UML) can be considered semi-formal methods.

Some tools combine semi-formal and formal elements most notably extensions to UML. [Jürjens 2004]
[Jürjens 2005].

9.4 Compilers
Many procedural language compilers will support some capability for compile-time checking of language-
based security issues. Using the appropriate compiler invocation flags, compilers can perform strict type
checking and “flag and eliminate code constructs and errors with security implications, such as pointer and
array access semantics that could generate memory access errors, and bounds checking of memory references
to detect and prevent buffer overflow vulnerabilities on stacks and (sometimes) heaps.” [Goertzel and Goguen
2005]

Driven by the reasons C and C++ are poor choices for programming secure software, their compilers have
introduced several features addressing a subset of their weaknesses of which if you must use them you should

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

145

be aware.. Many C/C++ compilers can determine whether format strings used in printf or scanf statements are
being used properly, as well as ensure the proper number of arguments is being used. Since these
vulnerabilities are the source of many code injection and buffer overflow attacks, this compiler functionality
should always be enabled.

“Code should never be compiled with debugging options when producing the production binary executable of
an application or component. The reason for this is that some very popular commercial operating systems have
been reported to contain a critical flaw that enables an attacker to exploit the operating system’s standard,
documented debug interface … to gain control of programs accessed over the network.” [Goertzel and Goguen
2005]

Similar to so called “safe” compilers, there are also versions of safe runtime libraries. These libraries contain
versions of system calls or language-specific functions that have been hardened against vulnerabilities present
in the normal runtime libraries. Examples of “safe” libraries include Avaya Labs' Libsafe, which protects
against buffer overflows2 and David Leblanc's C++ SafeInt class3.

Restricted execution and secure application environments can be used to improve security [Goertzel and
Goguen 2005]. The sandboxing technique, used most notably by Java, is an example of a restricted execution
environment. In the sandbox model, trusted code is given access to all resources subject to normal security
policy. Untrusted code, like downloaded java applets for example, only get access to the resources made
available in the sandbox. Secure application frameworks use a different technique. A secure application
framework provides functionality through framework-provided libraries, applications and other built-in
resources [Goertzel and Goguen 2005]. To use the services provided by the framework, applications invoke the
service as prescribed by the particular framework being used. Prominent examples of these types of security
services include secure sockets layer/transport security layer (SSL/TSL) services [Rescorla 2001],
cryptographic libraries, HTTPS, and the .NET Windows security services.

The quality and analsys feature of compilers and libraries are important, but often the easiest and most
powerful step is to select an programming language that as excellent affects on correctness and the power of
the tools one has available. See section 7.3.

9.5 Static Analysis
Some static analysis techniques can be conservative, making worst case assumptions to ensure the soundness
of the analysis. Dynamic analysis techniques (discussed in the next section), on the other hand, observe a
program’s runtime behavior and may be precise, eliminating any need for assumptions about control flow or
variable values. However, dynamic analysis may not be generalizable to all possible program inputs. Dynamic
and static analysis techniques can be used together as they are in profile-direct optimization in modern
compilers [Ernst 2003]. [Walden 2005]

On one hand, static analysis tools may provide support for the programmer to avoid exceptions and improper
information flow or achieve correctness (e.g. the SPARK programming language with its accompanying
analysis toolset). These tools can play an important part in providing assurance.

On the other hand, tool may provide useful information about the complexity, structure, style, and other
directly observable characteristics of code often aimed at finding “bad” things as opposed to ensuring
“goodness”. Static analysis may offer evidence of potential problems either as a result of inadequate
programming and design approaches or as a result of a malicious code insertion.While most often associated
with source code, Java bytecode and other binary files can also be statically analyzed. The following

2 See http://www.research.avayalabs.com/project/libsafe/
3 See http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure01142004.asp

9 Secure Software Tools and Methods

146

paragraphs describe this latter kind of static analysis, the artifacts handled, and types of things these tools can
detect.

The information in the following paragraphs draws heavily from and paraphrases [NIST SAMATE 2005].
Readers are encouraged to consult [NIST SAMATE 2005] for further information as well as a list of some of
the current analysis tools and development suites available.

Source code scanning tools identify software vulnerabilities during development or after deployment. These
tools detect coding flaws by examining the source code rather than scanning a target application at run time.

Because they have access to application source code, static source code scanners can identify a host of security
issues, including range and type errors, calls to vulnerable library functions, buffer overflow possibilities, and
unvalidated input. Runtime environmental problems can also be detected including relative path
vulnerabilities, and possible sources of information leaks.

Depending on the capability of the tool, scanners can identify synchronization and timing errors, such as covert
timing channels and time of check, time of use race conditions. Protocol errors, such as failure to follow chain
of trust in certificate validation or key exchange without authentication, can be detected as well as general
logic errors and other flaws.

While static byte code scanners are used in a similar fashion to source code scanners, they detect
vulnerabilities primarily through pattern recognition. They can determine, for instance, whether a method
exposes its internal representation or whether a finalizer should be protected.

Static Binary Code Scanners detect vulnerabilities through disassembly and pattern recognition. Binary code
scanners examine the compiled object code directly and as a result can factor in any vulnerabilities created by
the compiler itself. Furthermore, library function code (not available to a source code scanner) can be
examined as well. Loadable images can also be a significant source of vulnerabilities. [Thompson 1984].

Binary code scanners analyze binary signatures within executables for things like SQL injection, cross-site
scripting, buffer overflows, and missing format strings.

Database scanners are used specifically to identify vulnerabilities in database applications. In addition to
performing “external” functions like password cracking, the tools also examine the internal configuration of
the database for possible exploitable vulnerabilities. Database scanning tools discover vulnerabilities by
checking for adequate passwords, default account vulnerabilities, role permissions, and unauthorized object
owners.

Static analysis of specifications and designs are available for certain notations. Some address issues in informal
descriptions, but most require formal notations. See section 9, Secure Software Tools and Methods.

9.6 Dynamic Analysis
Dynamic analysis observes entities in operation. Network scanners can detect vulnerabilities in operating
systems, applications, servers and mobile code that manifest some type of observable network behavior such as
generating network traffic. These types of scanners typically look for known vulnerabilities but heuristics for
detecting previously unobserved malicious behavior are not unknown.

Web Application Scanners focus specifically on web applications and perform field manipulation cookie
poisoning functions. In contrast, Web services scanners focus on analyzing web-based services and performing
things like XML validation of received messages.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

147

9.7 Development Tool Suites
Development software can benefit from producing secure software. A typical software requirements phase
produces requirements documents that can be examined by automated tools. However, a suite of widely-used,
peer-reviewed software requirements and design analysis tools does not yet exist. However, whatever software
is used, it should support determining whether the specifications are:

 Complete

 Consistent

 Correct

 Modifiable

 Ranked Or Rated

 Traceable

 Unambiguous

 Understandable

 Verifiable

Suites covering the entire life cycle are available from IBM Rational and by composing suites from multiple
vendors.

9.8 Selecting Tools
Few tool selection efforts have appeared in the literature, and, as always, one should beware of simple-minded
decision-making processes such as counting the numbers of features. Andrew J. Kornecki has performed a
series of studies of tools for high-assurance software for the US Federal Aviation Administration.4 His work
has been driven in part by the requirements of DO 178B, the aviation safety standard. An example is [Kornecki
2005]. A report resulted from Praxis High-Integrity Systems study for the UK government on code analysis
tools, [Jackson 2005a] as part of an investigation on improving the evaluation at the Common Criteria EAL4.

Advice from practical experience comes from a Working Group member, Mary Ann Davidson of Oracle:, “It’s
worth noting that the state of a number of vulnerability finding tools is so bad at present that some of them
make the problem worse, because a) it takes a scarce resource (a security-aware developer) to go through 300
pages of tool output only to find ¼ page of real issues and b) a bad tool will turn developers off from ever
using them again. I recommend that people put together cross-functional teams to vet products competitively
before buying, including scalability, proof of claims (proof that product works as advertised), extensibility and
so on. I believe we are in the hype phase of the product life cycle: there are beginning to be a critical mass of
tools, but many or most of them do not work as advertised, or do not work at an acceptable cost for value of
information provided. There are a few – very few – good tools, and many bad ones. This is, however, one of
the "right problems to solve in security," and at such time as these tools are proven to work with high
scalability and very low false positive rate, it ought to become standard development practice to use them.”

This subsection gives some insight into differences in evaluating tools for high-assurance software, but also
shows that the selection processes have the same problems and merits as those to select tools for other software
– the stakes and the need for care are just higher.

4 See http://faculty.erau.edu/korn/publ05.html

9 Secure Software Tools and Methods

148

9.9 Further Reading
[Abran 2004] Abran, Alain, James W. Moore (Executive editors); Pierre Bourque, Robert Dupuis,

Leonard Tripp (Editors). Guide to the Software Engineering Body of Knowledge. 2004 Edition. Los
Alamitos, California: IEEE Computer Society, Feb. 16, 2004. Available at http://www.swebok.org.

[Barden 1995] Barden, Rosalind, Susan Stepney, and David Cooper, Z in Practice, Prentice Hall, 1995.

[Ibrahim et al, 2004] Ibrahim, Linda, et al, Safety and Security Extensions for Integrated Capability
Maturity Models. Washington D.C.: United States Federal Aviation Administration, Sept. 2004.
Available at http://www.faa.gov/ipg/pif/evol/index.cfm

[Lipton 2002] Lipson, H.F., N.R. Mead, A.P. Moore. "Assessing the Risk of COTS Usage in Survivable
Systems." Cutter IT Journal 15:5. May 2002.

[Redwine 2004] Redwine, Samuel T., Jr., and Noopur Davis (Editors). Processes for Producing Secure
Software: Towards Secure Software. vols. I and II. Washington, D.C.: National Cyber Security
Partnership, 2004.
Available at http://www.cigital.com/papers/download/secure_software_process.pdf

[Sheyner 2002] Sheyner, Oleg, Somesh Jha, and Jeannette M. Wing, “Automated Generation and Analysis
of Attack Graphs,” Proceedings of the IEEE Symposium on Security and Privacy, 2002.

[Sommerville 2006] Sommerville, I., Software Engineering, 8th ed., Pearson Education, 2006.

[Viega 2005] Viega, J., The CLASP Application Security Process, Secure Software, 2005. Available at
http://www.securesoftware.com.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

149

10 Secure Software Processes
This Secure Software Engineering Process section has two themes:

1. The process arrangements for technical and managerial activities within the secure software life cycle

2. Definition, implementation, assessment, measurement, management, change, and improvement of the
these secure software processes

The processes described cover a major part or all of secure software acquisition, development, sustainment,
and retirement. They vary from ones based around mathematical formalism to those merely trying to make
modest improvements on a legacy product.

This guide presumes the reader has knowledge of software engineering activities and processes that do not
have security or safety as a concern. A number of activities are new or significantly modified for secure
software. The other sections of this guide cover these changes in activities. This section emphasizes the
changes in overall life cycle process by describing several classes and examples of secure software processes.
Following [Boehm 2003], it uses the terms “heavyweight” and “lightweight”.

In practice, these processes vary across a wide range, but they will be grouped here into three categories:

1. Heavyweight development processes [Hall 2002a] [NSA 2002, Chapter 3]

2. Lightweight processes, [Viega 2005] [Lipner 2005a] [Howard 2002] [Meier 2003]

3. Processes especially for the problems of legacy software [Viega 2005, p. 40] [Meier 2003, p. lxxxi].

Generally, the kinds of activities done in heavyweight processes are a modest superset of lightweight processes
but with many performed with considerably more rigor. The activities initially used remedially for legacy
software often consist of a subset of the lightweight ones. Note that legacy software may eventually require
more serious rework such as major re-architecting.

Introducing secure software-oriented changes in processes within ongoing organizations and projects –
development and sustainment – has all the usual problems and solutions of organizational change and software
process improvement.

10.1 Heavyweight Processes
Heavyweight processes are often built around extensive use of reviews and formal methods. Formal notations
used include Z, ACT2, extensions to UML such as UMLsec, and code. [Hall 2002b] [Jűrjens 2004] [Barnes
2003]

Figure 3 shows an example of how formal techniques can be used to increase assurance by adding evidence to
the assurance case in proofs. Using proofs does not result in the complete elimination of testing. Demonstrating
that the system handles all possible input – the functions are total – and that they are functions – e.g.,
deterministic – aids in showing security properties. Not shown explicitly are proofs needed to deal with
concurrency.

10 Secure Software Processes

150

One of the three processes mentioned in [Redwine
2004] as a foundation for producing secure
software uses fully explicit formal methods –
Correctness-by-Construction. The two other
processes – Cleanroom and TSP-Secure – use
mathematically based methods, such as state
machines, but with more reliance on reviews and
informal proofs and less on formal proofs. The
SCR approach with its toolset also has its
proponents (see Section 9, Software Tools and
Methods).

At least one exception exists to heavyweight
processes using formal methods. While aimed at
safety, the aviation industry’s heavyweight
process based on DO-178B uses extensive
systematic testing, although builders have chosen
at times to use formal methods also. Unmodified,
this style of testing effectiveness for security has not been accepted by DoD for the newest US military aircraft.

10.2 Lightweight Processes
Lightweight secure software processes may or may not be used with processes having CMM levels. A CMM-
style addition has been proposed for safety and security and incorporated into the FAA’s iCMM but not the
SEI’s CMMI. [Ibrahim et al, 2004]

Microsoft’s Secure Development Life cycle is an example of a lightweight process that builds on a number of
existing processes of varying degrees of restrictiveness. [Lipner 2005a] Covering engineer education, metrics,
and accountability; and presuming a centralized security group, this process incorporates:

Planning and Requirements

 Assign “security buddy” from central
group

 Incorporate security activities into plans

 Identify key security objectives

 Consider security feature requirements

 Consider need to comply with industry
standards and by certification processes
such as the Common Criteria

 Consider how the security features and
assurance measures of its software will
integrate with other software likely to be
used together with its software

Design

 Define security architecture and design
guidelines

 Document the elements of the software
attack surface

 Conduct threat modeling

 Define supplemental ship criteria for
security

Implementation

 Apply coding and testing standards

 Apply security-testing tools including
fuzzing tools

 Apply static-analysis code scanning tools

 Conduct code reviews

Verification

 While the software is undergoing beta
testing, the product team conducts a
“security push” that includes security
code reviews beyond those completed in

Figure 3: Formal Methods Assurance (Dashed)
– Modified from a diagram by Praxis Critical

Systems

Security
Properties

Proof of
Security

Properties

Proof of
Security

Properties

System Test
Specification

System
Test

Formal
Specification

Formal
Design

Code

Proofs of
Consistency,

Functional Totality,
and Determinism of
Formal Specification

Refinement
Proof of
Formal
Design

Proof of
Functional
Properties

Static
Analysis

Security
Policy

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

151

the implementation phase as well as
focused security testing

 Final Security Review or FSR

Support

 Prepare to evaluate reports of
vulnerabilities and release security
advisories and updates when appropriate

 Conduct a post-mortem of reported
vulnerabilities and take action as
necessary

 Improve tools and processes to avoid
similar future vulnerabilities

[Howard 2006] provides a book length management-oriented view of this Microsoft process.

CLASP adds 30 activities to existing software processes without explicit concern for the previously existing
processes. [Viega 2005] These activities are:

 Institute security awareness program

 Monitor security metrics integrator

 Manage certification process

 Specify operational environment

 Identify global security policy

 Identify user roles and requirements

 Detail misuse cases

 Perform security analysis of requirements

 Document security design assumptions

 Specify resource-based security
properties

 Apply security principles to design

 Research and assess security solutions

 Build information labeling scheme

 Design UI for security functionality

 Annotate class designs with security
properties

 Perform security functionality usability
testing

 Manage System Security Authorization
Agreement

 Specify database security configuration

 Perform security analysis of system
design

 Integrate security analysis into build
process

 Implement and elaborate resource
policies

 Implement interface contracts

 Perform software-related security fault
injection testing

 Address reported security issues

 Perform source-level security review

 Identify and implement security tests

 Verify security attributes of resources

 Perform code signing

 Build operational security guide

 Manage security issue disclosure process

10 Secure Software Processes

152

[McGraw 2005] and [McGraw 2006]
take an artifact-oriented approach and
propose seven “touch points” to add to
existing processes. These are:

 Abuse cases

 Good security requirements

 Code review

 Risk analysis is a necessity

 Penetration testing is also
useful, especially if an architectural risk analysis is driving the tests

 Testing security functionality with standard functional testing techniques, and risk-based security
testing based on attack patterns

 Monitoring software behavior is an essential defensive technique. Knowledge gained by
understanding attacks and exploits should be cycled back into software development.

He also provides a bonus “touch point” – external analysis, meaning from outside the design team. This is
often a necessity in security. He also makes a point that at the design and architecture level, a system must be
coherent and present a unified security front.

RUPSec, which so far has extended the Business Modeling and Requirements disciplines of Rational Unified
Process for developing secure systems, provides a way for users of RUP to initially address security for new
and possibly legacy systems. [Pooya 2005]

Lightweight processes have found favor in industry as a way to produce more secure software. Unlike some
heavyweight processes, their ability to produce highly secure software is not established.

An area of controversy is the abilities of various “agile” software processes to produce secure software. The
central role of architecture in establishing and maintaining security over the evolution of the software as well
as other issues raise a number of questions. [Beznosov 2004] provides an enumeration of the areas where agile
processes tend to be consistent with achieving security and one where they have unresolved conflicts, and the
issues are discussed at some length in [Berg 2005, Chapter 19].1

10.3 Legacy Upgrade Processes
In practice, the lightweight processes discussed in the prior subsection have been applied to legacy software.
Two authors suggest processes or activities especially for approaching the problems of legacy software [Viega
2005, p. 40] and to a much lesser extent [Meier 2003, p. lxxxi].

Viega lists a variant of the CLASP activities in a “Legacy Roadmap.” These are

 Institute security awareness program

 Specify operational environment

 Identify recourses and trust boundaries

 Document security-relevant requirements

1 An mp3 recording of a discussion with Clifford Berg on security and agile processes is available at
http://agiletoolkit.libsyn.com/index.php?post_id=53799 (200603) within which he describes a number of key issues to an
experience agile dévote.

Figure 4: Activities and Applied
Knowledge [Barnum 2005]

Requirements
and use cases

Design Test plans Code Test
results

Field
feedback

Abuse
cases

Security
requirements

External
review

Risk
analysis

Risk-based
security tests

Security
breaks

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

153

 Identify attack surface

 Perform security analysis of system requirements and design (threat modeling)

 Address reported security issues

 Perform source-level security Reviewer Identify, implement, and perform security tests

 Verify security attributes of resources

 Build operational security guide

 Manage security issue disclosure process

[Meier 2003, p. lxxxi] states, “Threat modeling and security assessment (specifically the code review and
deployment review …) apply when one builds a new web applications or when one reviews an existing
applications.”

Steve Lipner of Microsoft has suggested2 the following for legacy software:

 Go back and modify legacy code to make in closer to [security cognizant] standard for new code

 Deprecate functionality that is dangerous or unneeded

 Reduce its attack surface

 Reduce the privilege level of operating system mode or environment that it runs in

Microsoft has also had success using fuzz testing.

Also directly relevant is Section 10.5.1, Introducing Secure Software Engineering Processes, below.

10.4 Concern for Security of Developmental Process
As mentioned elsewhere, a secure environment and organizational security processes are needed. A special
problem requiring prevention and detection measures in the secure software development process is
subversion.

Subversion must be overcome by observation, verification, and validation with levels of independence, skill,
and intensity sufficient to reduce the risk of the inclusion of malicious code in the product (or malicious
elements in non-code artifacts) to an acceptable level. This may include automated analysis and testing, but
currently only human reviewers contain the intelligence needed.

The concept of separation of duties is a central one in countering maliciousness. The rule that everything must
be known by at least two people is mandatory as first level protection against subversion. This rule could
extend thorough reviews at all levels. An example is the review of the “proposed final” version by persons
other than the author before final approvals. Proper configuration management ensures the version reviewed is
the version approved and delivered.

Verification, validation, and evaluation activities should be controlled to prevent deliberate overlooking or
mislabeling of defects.

Operations that touch the code (e.g., doing builds or preparing releases) must also be controlled and verified.

2 Microsoft Academic Days on Trustworthy Computing 7 April 2006

10 Secure Software Processes

154

10.5 Improving Processes for Developing Secure
Software

This Guide presumes knowledge related to processes for software systems where security or safety are
concerns. Introducing changes in software engineering processes to deal with the added requirements for
secure software resembles making other software process changes. Organizational change and software process
improvement are fields in which a substantial body of knowledge and expertise exist; [Redwine 2004, Chapter
6] lists a number of references including the SEI site on technology transition, [SEI TT], and the definitive
book on technology transfer, [Rogers 1995]. [McGraw 2006, Chapter 10] discusses introducing security-
oriented practices. The general characteristics of good process definitions and characteristics have also been
enumerated [ISO 15288] [Redwine 2004, Chapters 3 and 5]. The subsections below enumerate some issues or
special considerations for processes for secure software.

10.5.1 Introducing Secure Software Engineering Processes
Readiness for the needed process changes involves the motivation, general familiarity, and particular skills
required for the changes being instituted. Security awareness training has frequently been used initially to
address the first two of these. [Viega 2005] [Lipner and Howard 2003]. While sharing some features with
computer security awareness training given to users and system administrators, this training also provides an
introduction to security-related virtues and “sins” in software, including common kinds of exploits. This
possibly includes a demonstrated breaching the security in the software product of the project or a team
receiving training.

The eventual success of significant change is aided by its early stages showing immediate payoff. These might
include changing configuration settings to leave only universally (or say 80 percent) used or essential services
available by default; eliminating uniform default passwords; and ensuring all external inputs are validated.

What to do first, however, may be driven by an expert security audit of the product. [Campara 2005] [Viega
2005] While this may require obtaining outside expert services, the properly explained results can directly
motivate not only changes to the product but also changes to the process. Some process changes have been
done first in a form aimed at finding and fixing certain kinds of vulnerabilities, for example problems deriving
from unauthenticated users, but also change can be motivated to avoid future problems similar to ones
currently being reported.

Repeated auditing could be used to motivate yet more changes. [Campara 2005]

10.5.2 Improving Secure Software Engineering Processes
Special considerations in secure software engineering process improvement include those deriving from the
forces driving change and the mathematical skills required.

Identified or exploited threat capabilities, exploit techniques, and reported vulnerabilities may drive changes in
processes to counter them. These stimulating troubles may be identified by internal reviews, tests, or audits or
may arise in the external world. Repeated product audits were mentioned in the case of initiating a security
effort, but they can be a driver of established efforts as well. Process audits or assessments also can be a driver.

External stimulus events may be particular to the organization’s product(s) or a general development. Scanning
the environment for relevant items can provide early warnings of possible future problems.

Driven by security concerns, one major software vendor has adopted the policy of increasing the absolute
requirements on its projects’ software engineering processes every six months. Efforts to improve have shown
results. For example, Mary Ann Davidson of Oracle, another major vendor, states, “Oracle finds fully 3/4 of

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

155

significant security vulnerabilities ourselves, via our development processes and tools such as code reviews,
QA, security-specific tests (e.g., for SQL injection attacks), ethical hacking, and the like.”3

[Ibrahim et al, 2004] defines proposed extensions to the Software Engineering Institute’s CMMI for combined
coverage of safety and security. These have been adopted and incorporated into the US Federal Aviation
Administration’s iCMM capability maturity model. It includes additional activities for the development
process and concern for the work environment, including its security. Thus, these extensions have four
development goals and a work environment goal:

 Goal 1 – An infrastructure for safety and security is established and maintained.

 Goal 2 – Safety and security risks are identified and managed.

 Goal 3 – Safety and security requirements are satisfied.

 Goal 4 – Activities and products are managed to achieve safety and security requirements and
objectives.

 Additional Goal: A work environment that meets stakeholder needs is established and maintained.

The 16 practice areas in the development portion are shown in Table 9 below under the goal they support.

Table 9: SSE-CMM Practice Areas

• Goal 1 – An infrastructure for safety and security is established and maintained.

• AP01.01. Ensure safety and security awareness, guidance, and competency.

• AP01.02. Establish and maintain a qualified work environment that meets safety and security needs.

• AP01.03. Establish and maintain storage, protection, and access and distribution control to assure
the integrity of information.

• AP01.04. Monitor, report and analyze safety and security incidents and identify potential corrective
actions.

• AP01.05. Plan and provide for continuity of activities with contingencies for threats and hazards to
operations and the infrastructure.

• Goal 2 – Safety and security risks are identified and managed.

• AP01.06. Identify risks and sources of risks attributable to vulnerabilities, security threats, and safety
hazards.

• AP01.07. For each risk associated with safety or security, determine the causal factors, estimate the
consequence and likelihood of an occurrence, and determine relative priority.

• AP01.08. For each risk associated with safety or security, determine, implement, and monitor the risk
mitigation plan to achieve an acceptable level of risk.

• Goal 3 – Safety and security requirements are satisfied.

• AP01.09. Identify and document applicable regulatory requirements, laws, standards, policies, and
acceptable levels of safety and security.

• AP01.10. Establish and maintain safety and security requirements, including integrity levels, and
design the product or service to meet them.

• AP01.11. Objectively verify and validate work products and delivered products and services to
assure safety and security requirements have been achieved and fulfill intended use.

• AP01.12. Establish and maintain safety and security assurance arguments and supporting evidence
throughout the life cycle.

• Goal 4 – Activities and products are managed to achieve safety and security requirements and
objectives.

• AP01.13. Establish and maintain independent reporting of safety and security status and issues.

• AP01.14. Establish and maintain a plan to achieve safety and security requirements and objectives.

3 Personal communication with author (SR) September 26, 2005.

10 Secure Software Processes

156

• AP01.15. Select and manage products and suppliers using safety and security criteria.

• AP01.16. Measure, monitor, and review safety and security activities against plans, control products,
take corrective action, and improve processes.

Note that at this high level, all the items combine safety and security. They are treated differently at lower
levels of the document.

A System Security Engineering CMM exists with technical and organizational parts [SSE-CMM 3.0]. The box
below lists technical areas.

The highest EAL-levels of the Common Criteria and much of the
advanced practice in high-confidence systems call for using
mathematically based formal methods. These may require a limited
amount of knowledge of discrete mathematics – often centered on set
theory, predicate logic, and finite state machines – but may require
sophistication in performing proofs or model checking by some on the
project.

Except possibly for a few approaches, the mathematics involved is
much less sophisticated than other fields of engineering – albeit
discrete rather than continuous mathematics.4 Nevertheless, many US
developers and managers appear to possess a reluctance to learn (in
the majority of the cases, probably relearn) the relatively simple mathematics involved to apply it to software.
As important, organizations may possess a reluctance to pay for the training and learning. One does see,
however, an increased acceptance of particular techniques, such as formally expressed “contracts” for
invocations. [Myers 84]

While use of formal methods may be motivated by concerns for security, since the early 1990s their practical
use has been driven more by concerns for correctness and safety. A mixed history exists concerning their
introduction and use in industry. Events related to the industrial use of formal methods include the decade old
annual International Workshop on Formal Methods for Industrial Critical Systems (FMICS)5 and a related
industry association is the Formal Techniques Industrial Association (FotTIA).

10.6 Further Reading
[Breu 2003] Breu, R., K. Burger, M. Hafner, J. Jürjens, G. Popp, G. Wimmel, and V. Lotz, “Key Issues of

a Formally Based Process Model for Security Engineering”, Proceedings of the 16th International
Conference on Software & Systems Engineering and their Applications (ICSSEA03), 2003.

[Jacky 1996] Jacky, Jonathan, The Way of Z: Practical Programming with Formal Methods, Cambridge
University Press, 1996.

[Kolawa 2005] Kolawa, Adam, “Hold the Line against App Attacks,” Software Test and Performance,
November 2005.

[Mead 2003] Mead, Nancy R. “Lifecycle Models for High Assurance Systems,” Proc. of Software
Engineering for High Assurance Systems: Synergies between Process, Product, and Profiling (SEHAS
2003), Software Engineering Institute, p. 33, 2003.
Available at: http://www.sei.cmu.edu/community/sehas-workshop/

4 Remember this document does not address developing cryptographic software.
5 See http://www.inrialpes.fr/vasy/fmics/

SSE-CMM Technical Areas
• Administer Security Controls

• Assess Impact

• Assess Security Risk

• Assess Threat

• Assess Vulnerability

• Build Assurance Argument

• Coordinate Security

• Monitor Security Posture

• Provide Security Input

• Specify Security Needs

• Verify and Validate Security

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

157

[Saitta 2005] Saitta, Paul, Brenda Larcom and Michael Eddington, "Trike v.1 Methodology Document,”
[Draft], 20 June 2005.
Available at: http://www.hhhh.org/trike/papers/Trike_v1_Methodology_Document-draft.pdf

[Srivatanakul 2003] Srivatanakul, Thitima, John A. Clark, Susan Stepney, Fiona Polack. "Challenging
Formal Specifications by Mutation: a CSP security example," p. 340, 10th Asia-Pacific Software
Engineering Conference (APSEC'03), 2003.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

159

11 Secure Software Project Management

11.1 Introduction
Secure Software Project Management is the “systematic, disciplined, and quantified” application of
management activity to include the “planning, coordinating, measuring, monitoring, controlling, and reporting”
that ensures the software being developed conforms to security policies and meets security requirements
[Abran 2004].

Two issues cause differences in project management:

 High-assurance (i.e. low uncertainty about meeting a software system’s requirements being highly
assured, which might or might not include security)

 Security

Almost no literature exists that directly addresses differences in project management deriving from these
differences. Therefore, the author of this section sought out experts and experienced managers in these areas.

In correspondence with one of this guide’s authors (SR), John McDermid of the University of York, an
experienced expert on high assurance systems, stated the following concerning managing high-assurance
software projects:

“In running projects, managers have essentially four “variables” to control:

 Scope – the functions and facilities included in the system

 Quality – the reliability, robustness, usability, etc., of the system

 Resources – the quantity and capability of the staff and computational tools used on the project

 Time – the schedule for the project.

“For secure systems, where assurance and possibly certification or accreditation are essential goals, both scope
and quality are constrained. The system will not be acceptable without certain non-bypassable security
functionality, nor will it achieve certification or accreditation unless it is of sufficient quality. This reduces the
options available to project managers.

“It is becoming widely accepted that incremental or evolutionary development is an appropriate way to address
the problems of complex IT systems. The above analysis of options available to project managers suggests two
problems with these approaches:

 The first releasable increment has to include all core security functions, hence it may be a ‘large’
increment

 Quality cannot be compromised, and the design must be such that the quality of the “first increment”
cannot be undermined by later increments.

“Thus, managers need to define, as early as possible, the architecture for the system, identifying the key
security properties and mechanisms and ensuring that they are designed and developed with an architecture
such that they cannot be compromised by adding later increments.

“The project needs to be managed viewing the architecture and the quality of the software as non-negotiable
plus gaining senior management acceptance that timescales and resources, hence costs, have to be variable
(may need to increase) so as not to compromise security.

11 Secure Software Project Management

160

“There is little published literature on this topic. However, whilst they do not address security in any depth,
Boehm and Turner [Boehm 2003] give a very readable account of the issues in balancing agility and discipline,
which is highly relevant to achieving software assurance.

“The competence of personnel is very important. Competencies include:

 Technical skills, especially knowledge of security

 Knowledge of techniques for achieving low defect density

 Domain knowledge, i.e., understanding of the application area

 Communication skills

 Personal attributes, such as integrity

There has been an attempt in the UK to codify such skills for safety of programmable electronic systems [IEE
1999], but so far as I am aware no systematic approach exists in the area of security.

“There are few management techniques focused solely on low defect/high assurance software, although there
has been some positive experience of using approaches such as the SEI's Team Software Process on projects in
the UK. Perhaps the most crucial management technique is in process measurement of errors and defects,
analysis of the root cause of such defects, and using this information to help manage the project and to improve
processes."

If one has successfully managed a high-assurance project, say for safety, then a number of security issues
remain, but much of the general project management approach can be the same. Martin Croxford of Praxis
High-Integrity Systems Ltd wrote one of the authors (SR) that, “From a project management perspective, I'm
not aware of anything that is different/additional with respect to any other high integrity development. When I
managed the Mondex project [Hall 2002a], I didn't do anything differently because it was a security project -
simply applied the usual Praxis planning and delivery approach (plus lessons learned from my previous
projects, of course). The fact that it was a security project obviously affected the risk assessment, technical
approach, quality planning, etc., but the project management approach was the same.”

11.2 Start Up
Project initiation has all the usual concerns, but with security and the need for high assurance impacting almost
all of them in some way. Security is an essential issue in establishing secure physical, communications, and
computing facilities. Personnel need to be not only highly skilled and knowledgeable about security concerns
within their roles but also trustworthy. [PMBOK] has a enumeration of start up activities. For considerations
related to process and organizational change, see Section 10, Secure Software Processes.

11.3 Scoping Project
A number of differences in activities have been covered in prior sections. These must be planned and
performed. The levels of organizational and individual experience and proficiency can mean that the result is
anything from a substantial increase in hours needed if new or a low to modest increase if highly experienced
and skilled. This and the acceptable risk levels of the producer, users, and other stakeholders may make some
requirements essentially unobtainable by some organizations. The size of the product can have an impact on its
number of vulnerabilities possibly varying with the square of the size [McGraw 2006, p. 13]. Questions of
feasibility and the wisdom and usefulness of instead attempting a more modest system or more modest security
and assurance goals dominate the scoping issues for many organizations. Project management should
realistically balance the project’s capabilities against the initial goals of the project and be willing to decide
they are unlikely to be achieved and explore realistic goals.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

161

11.4 Project Risk Management
As in scoping the project, possible consequences or risks are a constant concern throughout secure software
projects. [McGraw 2006, Chapter 2] Product-affecting ones are explicitly addressed in the assurance case, but
project-oriented ones not directly affecting the product but rather such items as schedule or costs must also be
addressed, including attacks on the project and subversion of products. One essential difference within many
secure software projects is the lack of or irrelevancy of probabilities. This means that consequences rather than
risks are what must be managed.

One attempt to bridge the gap between possible consequences and probability analysis is [Baskerville 2003].
Theoretically, project managers might benefit from knowledge of game theory with its techniques that do not
depend on knowing the probabilities.

11.5 Selecting a Secure Software Process
The Secure Software Processes section grouped relevant processes into three groups: heavyweight,
lightweight, and those especially for legacy software. Most software organizations are facing the potential need
for organizational change to better address software-related security. In addressing the process selection,
decision management might consider the process’ suitability and fit, and costs and benefits; and constraints on
the project.

In selecting a process, many factors are relevant as covered within Section 10.5, Improving Processes for
Developing Secure Software, and Section 9.8, Selecting Tools. Four factors management probably will need
to consider are:

1. The nature, amount, and quality of any existing artifacts

2. The required levels of software system dependability and assurance

3. The project’s (and organization’s) goals, its environment’s expectations, and the factors affecting its
success

4. The organization’s, project’s, and individuals’ readiness for particular processes

For many ongoing projects with substantial existing products, their legacy system and artifacts may place a
heavy burden on the project as it tries to produce (more) secure software. This and other limitations may cause
many managers to decide essentially to draw from the lightweight and legacy-oriented processes’ activities to,
“Do as well as we can within our constraints and keep trying to improve.” While this is understandable, most
software producers’ projects needing (not all will need) to produce high-assurance or secure software will
require a revolutionary increase in the rigor of their approach to doing software. While in the short term,
decisions on initial incremental changes may be relatively straightforward, in the longer term these managers
will face this need for radical change, and they may need considerable courage and skill to eventually succeed
in producing high-assurance secure software.

11.6 Security Management
Secure software would best be done by trustworthy, skilled personnel in an environment with at least the level
of security as required of the product.

11 Secure Software Project Management

162

11.6.1 Personnel Management
People who are intelligent, highly skilled, and knowledgeable about secure software may be hard to find and
recruit, and require careful management to ensure retention. In addition, care needs to be taken to avoid
personnel security problems.

More than routine background checks on personnel producing software where security is an important concern
occur in commercial as well as government organizations. Personnel need to be resistant to succumbing to
attempts at corruption or recruitment, to conceal problems, or to disclose sensitive information. Different levels
of background checks may be desirable depending on a person’s role. For example, one might have additional
levels of checks on personnel who do ethical hacking.

Always important, properly staffing a project with requisite skills is even more important and difficult for
secure software projects. A central group with in-depth security expertise may help stretch this scare resource
across all the projects in need. [Lipner 2005a]

Continuing communications about the importance of security, security procedures, and what to do if
approached or suspect others are necessary to maintain a proper level of attention and discipline among
personnel.

Vigilance and proper processes can reduce the chances of successful subversion. This means implementing
separation of duties and privileges, as well as the principle of least privilege. The rule that at least two persons
are fully aware of – and completely understand – any given thing on the project must be rigorously planned
and ensured. The concept of separation of duties should extend to thorough reviews at all levels, including
review of the “final” version resulting in final approvals by other than the author and accompanied by rigorous
(and secured) configuration management throughout, including ensuring the version reviewed and approved is
the version delivered.

Project managers need to supply the environment and resources the staff needs to do high quality work and the
needed information, guidance, inspiration, motivation, emotional support, perseverance, and discipline to
achieve the highly demanding level of rigor. Additionally, the manager preferably will do this in a fashion that
is suitable to the professionals involved and allows everyone to benefit while experiencing an acceptable
quality of life.

11.6.2 Development Work Environment
A development or sustainment environment with at least the level of security required of the product is best for
developing secure software. is Much of the material in Section 12, Secure Software Sustainment, intended to
address concern for the sustainment and operation of the developed or acquired software applies as well to
managing the computing environment and software tools for development. [Ibrahim et al, 2004] contains a
section on the work environment. The work environment needs to not only be secure but also contain the
proper tools and equipment for the approach taken to secure software. For more, see Section 9, Secure
Software Tools and Methods.

Physical security is also a concern, as good physical security is essential to maintaining information (and
industrial) security. Commercial needs or customer requirements may call for a higher than normal level of
operational security.

11.6.3 Using Software from Outside the Project
Make versus acquire decisions are compounded by security requirements and needs for assurance. Section 13,
Secure Software Acquisition, deals at length with these issues and managing contracts and outsourcing.
Showing that security properties are preserved during the composition of parts from inside and outside the
project is, of course, also an obligation.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

163

11.7 Assuring Security Level of Software Shipped
Producers need the equivalent of an assurance case to assure themselves of the adequacy of the software they
ship. In practice, one of the key differences in managing secure software development is the increased rigor of
the final assessment and approval process. Additional reviews and testing may be used. [Lipner 2005] In
particular, some development organizations are adhering to a strict policy of never shipping a known serious
vulnerability – but what “serious” or “severe” means can vary.

Secure distribution, installation, and deployment require care with the most common techniques involving
crytogrsphicly signed hashes. Some attention is given to this issue in [Howard 2006]. As discussed in Section
7, Secure Software Construction, section, one needs to ensure that the software received and installed is the
software shipped.

11.8 Secure Configuration Management
Diligent configuration management (CM) of software artifacts and supporting data artifacts is critical to ensure
the trustworthiness of those artifacts throughout the development lifecycle, and to eliminate opportunities for
malicious developers to sabotage the security of the software. By contrast, inaccurate or incomplete CM may
enable malicious developers to exploit the shortcomings in the CM process to make unauthorized or
undocumented changes to the software. Lack of proper software change control, for example, could allow
rogue developers to insert or substitute malicious code inserted, introduce exploitable vulnerabilities, or
remove or modify security controls implemented in the software.

By tracking and controlling all of the artifacts of the software development process, CM helps ensure that
changes made to those artifacts cannot compromise the trustworthiness of the software as it evolves through
each phase of the process. For example, establishing a configuration baseline has a significant security
implication in CM because it represents a set of critical observations and data about each development artifact,
information that can then be used to compare known baseline versions with later versions, to help identify any
unauthorized substitutions or modifications.

As described in NCSC-TG-006, A Guide to Understanding Configuration Management in Trusted Systems
(known as the “Amber Book”) and in Section B.2. of NIST SP-800-64, Security Considerations in the
Information System Development Life Cycle (see Appendix B), CM should establish mechanisms to will help
ensure software security, including:

 Increased accountability for the software by making its development activities more traceable;

 Impact analysis and control of changes to software and other development artifacts;

 Minimization of undesirable changes that may affect the security of the software.

Access control of software and associated artifacts are essential in providing reasonable assurance that the
security of the software has not been intentionally compromised during the development process. Developers
and testers should have to authenticate to the CM/version control system using strong credentials (e.g., PKI
certificates, one-time passwords) before being allowed to check out or check in an artifact.

Without such access controls, developers will be able to check in and check out the development artifacts
haphazardly, including those that have already undergone review and/or testing. In such an environment, the
insider threat becomes a real possibility: a malicious or nefarious developer could insert spurious requirements
into or delete valid requirements from the requirements specification, introduce security defects into the
design, inject malicious code into the source code, and modify test plans or results to remove evidence of such
sabotages. To reduce further the risk of such insider threat activities, the CM system should be one that can
automatically create a digital signature and time stamp for each artifact upon check-in, so that any later
unauthorized changes to the artifact can be detected easily.

11 Secure Software Project Management

164

Another effective countermeasure to the insider threat from developers is requiring that every configuration
item be checked into the CM system as a baseline before it is reviewed or tested. In this way, as changes are
made based on findings of the review/test, the new configuration item that results can easily be compared
against the pre-review/pre-test baseline to determine whether those changes also included unintentional
vulnerabilities or malicious elements. Two closely related principles that should be applied to CM are
separation of roles and separation of duties. The development, testing, and production environments, and their
corresponding personnel, should be assigned different, non-contiguous roles with separate access rights in the
CM system. In practical terms, this means that developers will never have access to code that is in the testing
or production phase of the lifecycle.

Further information on configuration management and change control within the secure sustainment phase of
the lifecyle appears in sections 12.5.2 and 12.5.3.

11.8.1 Using CM to Prevent Malicious Code Insertion During
Development

Uncontrolled software development lifecycle activities are susceptible to malicious software developers,
testers, or intruders surreptitiously inserting malicious code, or backdoors that can later be used to insert
malicious code, into the software. For this reason, all source code, binary executables, and documentation
should be kept under strict configuration management control.

Developers and testers should be required to authenticate themselves to a version control system using strong
credentials, such as digital certificates or strong passwords, before checking out or submitting source code,
executables, or documentation. Use only configuration management/version control software that can apply a
digital signature to all software and documentation files, so that the configuration manager, other developers,
and testers can quickly detect any unauthorized changes.

Diligent configuration control of the software development and testing processes is critical to ensure the
trustworthiness of code. The software development lifecycle offers multiple opportunities for malicious
insiders to sabotage the integrity of the source code, executables, and documentation.

A basic principle that should be applied is the one of separation of duties. Different environment types—
development, testing, and production—and their corresponding personnel need to be kept separate, and the
associated functionality and operations should not overlap. Developers should never have access to the
software that is in production.

During testing, from-scratch code should be examined for exploitable defects such as buffer overflows and
format string errors. Software developers should be given awareness training in how common vulnerabilities
manifest in software, and how to avoid them.

Malicious developers who purposely plant such defects have plausible deniability: they can always claim that
the defects were simple errors. Work to prevent such problems by making sure that at least one other set of
eyes besides the developer’s peer reviews all code before it moves on to testing, and use a “multilevel commit”
approach to checking code and documents into the version control system.

The developer should make sure code and documentation is checked in to the version control system before it
goes out for review/testing. This prevents a malicious developer from being able to surreptitiously insert
changes into code (or documentation) before the approved version is checked in to the CM system. Instead, the
approved version is the version already in the CM system, i.e., the same version the reviewers/testers
examined. Ideally, every file would be digitally signed by the developer when submitted to the CM system to
provide even stronger defense-in-depth against unauthorized changes.

Software testing even of code developed from scratch should include black box analysis to verify that the
software does not manifest any unexpected behaviors in execution. The software quality assurance process

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

165

should also include white box analysis (code review), focusing on hunting down any extra, and unexpected
logic branches associated with user input, which could be a sign of a backdoor planted in the code during the
development process.

All issues addressed and specific solutions to problems encountered during all phases of the lifecycle need to
be properly documented. Security training among software developers and testers must be encouraged.
Security background checks should be performed on all non-cleared software developers and testers.

11.9 Software Quality Assurance and Security
In a secure software development process, quality assurance practitioners must always have security in mind.
They must be very skeptical of the accuracy and thoroughness of any security-related requirements in the
software’s specification. In short, they must be willing to adapt their requirements-driven mentality to
introduce some risk-driven thinking into their verification processes. The quality assurance process, then, will
necessarily incorporate some risk-management activities focusing on “secure in deployment” objectives:

 Configuration management of patches (patch management): Must extend to security patches, to
ensure that they are applied in a timely manner (both to the commercial and open source software in
the software system itself and to its execution environment), and that interim risk analyses are
performed to determine the impact the patch will have and to identify any conflicts that may be
caused by applying the patch, particularly those impacts/conflicts with security implications, to
mitigate those effects to the extent possible (which, in some cases, may mean not installing the patch
because its impact/conflicts may put the software at greater risk than the vulnerability the patch is
meant to address). See section 12.5.3 for more information on this topic.

 File system clean-ups: All server file systems are reviewed frequently, and extraneous files are
removed, to prevent avoidable future conflicts (resulting from patching or new component releases);

 Security “refresh” testing: The software’s continued correct and secure operation is verified any
time any component or configuration parameter of its execution environment or infrastructure
changes;

 Security auditing: The software’s security configuration is periodically audited, to ensure that the
file permissions, user account privileges, configuration settings, logging and auditing, etc., continue to
be correct and to achieve their security objectives, considering any changes in the threat environment.
See sections 8.11 and 12.5.4 for further discussion of security audits for software.

In addition to these activities, quality assurance practitioners should periodically audit the correctness of the
performance of these procedures.

11.10 Further Reading1

11.10.1 Secure Software Engineering Management
[PMBOK 2004] Bolles, D., and Fahrenkrog, S. A Guide to the Project Management Body of Knowledge

(PMBOK— ANSI/PMI 99-001-2004. Third Edition. Newton Square, PA.: Project Management
Institute, Inc. 2004

Gilb, Tom. Principles of Software Engineering Management. Boston: Addison-Wesley, 1988.

Futrell, Robert T., Donald F. Shafer and Linda I. Shafer. Quality Software Project Management, First
Edition. Upper Saddle River, NJ: Prentice Hall Professional Technical Reference, 2002.

1 For more material see the management section of the Build-Security-In website http://buildsecurityin.us-cert.gov

11 Secure Software Project Management

166

Thayer, Richard H., editor, and Edward Yourdon. Software Engineering Project Management, Second
Edition (Paperback) Hoboken, NJ: Wiley-IEEE Computer Society Press, 2000.

Williams, S. and P. Fagan, “Secure Software: Management Control Is a Key Issue”. London, UK: Institute
o Electrical Engineers (IEE) Colloquium on Designing Secure Systems, June 1992.

[Baskerville 2005a] Baskerville, R., and Portougal, V. “Possibility Theory in Protecting National
Information Infrastructure.” In K. Siau (Ed.), Advanced Topics in Database Research (Vol. 4). Idea
Group, 2005.

[Baskerville 2005b] Baskerville, R., and Sainsbury, R. “Securing Against the Possibility of an Improbable
Event: Concepts for Managing Predictable Threats and Normal Compromises.” European Conference
on Information Warfare and Security, Glamorgan University, UK, 11-12 July 2005.

[Feathers 2005] Feathers, M.C., Working Effectively with Legacy Code, Prentice Hall, 2005.

11.10.2 Secure Configuration Management
Leon, Alexis. Software Configuration Management Handbook, Second Edition. Norwood, MA: Artech

House Publishers, 2004.

Wheeler, David A., “Software Configuration Management (SCM) Security”. May 2005.
http://www.dwheeler.com/essays/scm-security.html

Keus, Klaus and Thomas Gast, “Configuration Management in Security-related Software Engineering
Processes”. Proceedings of the National Information Systems Security Conference, 1996.
http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper035/scm_kk96.pdf

Devanbu, P., M. Gertz and Stuart Stubblebine. Security for Automated, Distributed Configuration
Management. Proceedings, ICSE 99 Workshop on Software Engineering over the Internet, 1999.
http://www.stubblebine.com/99icse-workshop-stubblebine.pdf

NCSC-TG-006-88. A Guide to Understanding Configuration Management in Trusted Systems. National
Computer Security Center, 1988.

Mell, Peter, Tiffany Bergeron and David Henning, “NIST Special Publication 800-40, Creating a Patch
and Vulnerability Management Program, Version 2.0”. NIST, November 2005.

11.10.3 Software Quality Assurance and Security
Godbole, Nina S. Software Quality Assurance: Principles And Practice. Oxford, UK: Alpha Science

International, Ltd., 2004.

Dustin, Elfriede, Jeff Rashka and Douglas McDiarmid. Quality Web Systems: Performance, Security, and
Usability, First Edition. Boston, MA: Addison-Wesley Professional, 2001.

[OWASP 2006] Open Web Application Security Project. “Software Quality Assurance” chapter in A
Guide to Building Secure Web Applications and Web Services, 2.1 (Draft 3). OWASP Foundation,
February 2006.
http://www.owasp.org/index.php/Software_Quality_Assurance

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

167

12 Secure Software Sustainment

12.1 Introduction
This section covers software assurance activities when software is put into an operational environment and the
unique software assurance activities after initial deployment. Sustainment involves processes that continue to
assure that software satisfies its intended purpose after initial deployment and during operations. [Berg 2005,
Chapter 10]

Software is written to facilitate organizational goals and each goal has security requirements. If the software
does not meet those requirements, the organization must realign the functioning of the software, or alter the
goal to bring it into alignment. The security environment is continuously changing. Environmental factors that
could impact security include:

 People connecting to the system’s endpoints and the motivations of those people

 Systems interconnected with the software

 The type of data flowing to, through, or from the software, or system

 The way the organization does business, or the type of business that is conducted

 The rigor, or extent of the security objectives

 The organizational risk model/risk tolerance

Software must always satisfy security objectives. If that is not the case, then the organization’s risk mitigation
process must dictate the steps necessary to change the software, or change the objectives.

Figure 5: The Environment of Software or Software Intensive Systems

Certain aspects of sustainment are also related to Section 13, Acquisition of Secure Software. Those sections
will be cross-referenced in this section. The following is an outline of the contents of this section:

 Background

 Operational Assurance (Sensing)

Software or Software
Intensive System

Security Objectives

Business Processes

Risk
Model

Decision

Supported by

Developed for

F
ailu

re

12 Secure Software Sustainment

168

 Analysis

 Response Management (Responding)

 Infrastructure Assurance

12.2 Background
Because environment constantly changes, confidence in the security of the software must be continuously
renewed. In addition, because software is increasingly inter-connected, an appropriate level of confidence must
also be established for the entire portfolio of software.

Typically, sustainment monitors the system’s (and portfolio of software's) ability to effectively sustain
confidence in the security of the software. Sustainment monitors the system’s ability to effectively deliver
services, identify and record problems, analyze those problems, take the appropriate corrective, adaptive,
perfective, or preventive action and confirm the restored capability. Sustainment activities also encompass the
migration and retirement of the software. The process ends when the software or software-intensive system is
retired. Also see [ISO/IEC 15288] and [IEEE 12207].

Sustainment is either proactive or reactive. Proactive activities include identifying of threats and
vulnerabilities; creating, assessing, and optimizing security solutions (within a generalized security
architecture); and implementing controls to protect the software and the information that it processes. Reactive
activities include threat response and the detection and reaction to external or internal intrusions or security
violations.

Both proactive and reactive security activities are supported by sensing, analyzing, and responding functions.
The sensing function involves monitoring, testing, and assessment. The goal of sensing is to identify intrusions
(e.g., a break in), violations (e.g., an inappropriate access) and vulnerabilities (a weakness). The analyzing
function facilitates understanding the risk. It assesses the frequency of occurrence and impact. It considers and
evaluates all risk avoidance, risk mitigation, and risk transfer options. The responding function selects and
authorizes the remediation option. It monitors and assures the change and ensures the correct re-integration of
the altered code, system settings, or policies. Management must then make certain that the necessary resources
are available to ensure the authorized level of risk mitigation.

12.2.1 Types of Response
With proactive assurance, decision makers have the option of authorizing a preventive, perfective, or adaptive
response. With reactive assurance, decision makers have the option of authorizing corrective, or emergency
action.

Corrective change involves identifying and removing vulnerabilities and correcting actual errors. Preventive
change involves the identification and detection of latent vulnerabilities (e.g., the software or software-
intensive system is found to be vulnerable to a particular class of intrusion). Perfective change involves the
improvement of performance, dependability and maintainability.

Adaptive change adapts the software to a new or changed environment (e.g., a new operating system with
enhanced security functionality is available). Emergency change involves unscheduled corrective action (e.g.,
an intrusion or violation has taken place).

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

169

12.2.2 Representation
Sustainment presupposes complete, accurate, and unambiguous representation of the software, or system at its
most basic level of functioning (atomistic representation). In addition, the interconnection between the
software and the entire portfolio of software of
systems must also be fully understood (holistic
representation).

The software’s responsibility for receiving,
processing, or transmitting information must be
known as well as the status of all of the attached
users (or other pieces of software).

Figure 6 shows (at the highest level) how this is
represented. Drilling down into each element of
the diagram would produce a detailed
understanding of the actual nodes with all of their
installed components and inter-relationships.

12.3 Operational
Assurance (Sensing)

Operational assurance is primarily a proactive sustainment function(sensing) that encompasses using defined
policies, procedures, tools, and standards to monitor, test, and review the software or system. This is done
continuously within the operating environment. Standard operational assurance activities are specified within
the larger context of the Operation Primary Process [e.g., ISO/IEC 12207, 5.4 – Operation Process].

Operational assurance also identifies and resolves security and control vulnerabilities within the software, the
system, the data, the policies, and the users. Because vulnerabilities can be associated with application
software, operating system software, network or device configuration, policies and procedures, security
mechanisms, physical security, and employee usage, operational assurance is not limited to software alone, but
extends into the operating environment that surrounds the software.

Technical assurance practices include intrusion detection, penetration testing, and violation processing using
clipping levels. Reviewing is a periodic activity that evaluates the software, the system, the policies and
procedures, and the users’ usage against established standards. Reviews may consist of walkthroughs,
inspections, or audits. They can be both managerial and technical [IEEE 1028].

Identified threats, vulnerabilities, and violations are recorded and reported using a defined problem reporting
and problem resolution process [e.g., ISO/IEC 12207 section 6.8 – Problem Resolution Process]. The problem
resolution process should be tailored to allow decision makers to authorize multi-dimensional responses based
on their assessment of risk.

The policies, procedures, tools, and standards used for operational assurance are also continuously assessed so
that recommendations can be made to improve or enhance them [e.g., ISO/IEC 12207 section 7.3 –
Improvement process].

12.3.1 Initiation
Software must be in a secure state and that state must be understood and documented to carry out operational
assurance. Upon initiation of operational assurance process, it is necessary to validate the security of the
installation and configuration of the software and that all security functions are enabled. It is a requisite of
good practice to:

Figure 6: High level representation of a system

E
ndpoints

(users or system
s)

Presentation
(of functionality)

A
pp L

ogic
(business logic)

D
atabase

(dbm
s)

Storage
(e.g. R

A
ID

 5)

Upstream Systems (that Master Information for this
Software Intensive system)

Downstream Systems (that receive information
mastered by this software-intensive system)

12 Secure Software Sustainment

170

 Identify feasible security perimeter(s) and defense in depth [Riggs 2003]

 Document an overall concept of operations.

 Prepare an operational testing plan.

 Prepare a policy to ensure appropriate response to unexpected incidents.

 Prepare a secure site plan.

 Prepare a Business Continuity Plan and a Disaster Recovery Plan (BCP/DRP) with Recovery Time
Objectives (RTO), Network Recovery Objectives (NRO) and Recovery Point Objectives (RPO) fully
established for every item within the secure perimeter.

 Ensure the system staff is adequately trained in secure operation.

 Ensure the system staff is capable of utilizing all embedded security functionality.

 Identify a valid security accreditation process and obtain certification of security of the operational
system.

12.3.2 Operational Testing
It is necessary to monitor the ongoing functioning of the software, or system, within the operational
environment because threats can arise at any point in the process and can represent a range of unanticipated
hazards. This must be done on a disciplined and regularly scheduled basis. Therefore, a requisite of good
practice is to deploy a continuous operational testing process to identify security threats and vulnerabilities and
control violations in software and software-intensive systems [e.g., ISO/IEC 12207 section 5.4.2 - Operational
testing].

12.3.3 Environmental Monitoring
Environmental threats exist in the context in which the software functions. In that respect, the environment
represents the place where early warning of impending hazards or attacks can be best obtained. Therefore, a
requisite of good practice is to continuously monitor the operating environment that surrounds the software to
identify and respond to security threats, exposures, vulnerabilities, and violations as they arise (threat
identification).

12.3.4 Incident Reporting
Incidents must be reported through a standard and disciplined process. The aim is to respond as quickly as
possible to trouble arising from vulnerabilities, malfunctions, or incidents that might occur as a result of
attempts to exploit those vulnerabilities or malfunctions. The process must be both standard in its procedure
and fully documented.

The process also must be well understood within the organization. Therefore, a requisite of good practice is to
institute a systematic procedure to document and record threat exposures and vulnerabilities (trouble
reporting).

12.3.5 Reporting Vulnerabilities
Producers who do not actively seek to identify and repair vulnerabilities in their products, or who do not report
vulnerabilities that they know about, increase the chances that customers and users will suffer serious harm
with accompany harm to the producer’s reputation or business. On the other hand, restricting early access to
vulnerability information may be needed in practice to prevent dangerous leakage to attackers.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

171

Therefore, a requisite of good practice is to identify and report all vulnerabilities possibly to a central entity,
but not necessarily wide disclosure: Section 12.5.1, Responding to Known Vulnerabilities, discusses reporting
and response issues at more length. Identification occurs in operational assurance (sensing). The classification,
prioritization, and development of remediation options occurs in analysis.

12.3.6 Operational Process Assurance
It is necessary to ensure that operational assurance is carried out in the most effective and efficient manner. As
such, the functioning of the operational assurance process itself must be continuously monitored. The aim is to
identify and report any deviation from proper practice to management for remediation. As such, it is a requisite
of good practice to:

 Assess and audit the policies, procedures, tools, and standards used for operational assurance.

 Document assessments and audits and make recommendations for improvement to the designated
approving authority [e.g., ISO/IEC 12207 section 7.3 – Improvement Process].

12.3.7 Assurance Case Evidence for Operational Assurance
A variety of evidence is relevant to creating and maintaining an assurance case for operational assurance,
including:

 Evidence of an organizationally standard operational procedure manual that details the required steps
for every activity in operational assurance, including expected results and some way to determine that
they have been achieved.

 Evidence of a tangible set of organizationally sanctioned actions, procedures, or protocols invoked
when anticipated hazards occur.

 Evidence of a tangible set of organizationally sanctioned actions, procedures, or protocols invoked
when unforeseen hazards occur.

 Documenting the specific method for incident reporting, or requesting change and the procedures for
responding to each report.

 The process for ensuring that the Business Continuity Plan is up to date.

 Evidence that all of relevant members of the organization know precisely what activities they have to
carry out in Sustainment and the timing requirements for performing them.

– Documenting the precise steps taken to build awareness of correct practice, including a formal
employee education and training program

– Documenting each employee’s specific education, training, and awareness activities

– Documenting the explicit enforcement requirements and consequences for non-compliance for
every job title

– Specification and evidence of personal agreement to the consequences for non-compliance

 Evidence that enforcement was practiced on a continuous basis and as an organization wide
commitment

12.4 Analysis
The analysis section evaluates the consequences of an identified threat or violation along with the impact of
recommended changes. All software, software-intensive systems, policies, processes, or objectives impacted
by the change must be included in the evaluation.

12 Secure Software Sustainment

172

This is necessary to ensure a coordinated response. Analysis entails identification of the affected software and
systems (to include cascading or ripple effects) along with affected policies or processes.

Affected software and systems elements are studied to determine impacts of a prospective change. Impacts on
existing software and systems, as well as any interfacing systems and organizational functioning are
characterized. Security and safety impacts of the change must be fully examined and documented and
communicated to the Response Management Function for authorization.

In addition, to determining impacts, the results of the analysis are formally recorded and maintained in a
permanent repository. This increases understanding of the content and structure of the portfolio of software. In
addition, this supports retrospective causal analysis that could be undertaken to understand security and control
issues associated with the change.

12.4.1 Understanding
To implement a change properly, it is essential to understand all of the components and the consequences of
change to them. That degree of understanding requires knowledge of all aspects of the design architecture and
the affected code. To support this change, it is good practice to:

 Document the problem/modification request and capture all requisite data in standard form as
specified by [IEEE/EIA 12207.1, 6.2].

 Replicate or verify the existence of the reported problem – for the sake of resource coordination
confirm that the problem really exists.

 Verify the violation, exposure, or vulnerability – understand the precise nature and implications of the
vulnerability and develop an overall response strategy.

 Identify elements to be modified in the existing system – identify all system components that will be
changed – develop a specific response strategy for each element using good development practices.

 Identify interface elements affected by the modification.

 Estimate the impact of change to the software on system interfaces – perform impact analysis on
affected interfaces and, from that, design a specific response strategy for each interface using good
development practices.

 Identify documentation to be updated.

 Identify relevant security policies – validate recommended response strategy against relevant security
and safety policy.

 Identify relevant legal, regulatory, and forensic requirements – validate the recommended response
strategy against relevant legal, regulatory, or forensic requirements.

These steps help ensure proper change implementation decisions for a component or system.

12.4.2 Impact Analysis
As indicated in the previous subsection, to implement a specifically tailored response, it is necessary to know
what the implications of a particular response strategy or action might be. That level of knowledge requires a
comprehensive and detailed impact analysis. This should be based on a formal methodology ensuring a
comprehensive and unambiguous understanding of all operational implications for the software, its
requirements, and its associated architecture. Therefore, for each remediation option:

 Identify the impact of change on the assurance case.

 Identify the violation, exposure, or vulnerability type – the threat is explicitly classified by type.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

173

 Identify the scope of the violation, exposure, or vulnerability – the extent or boundary of the threat is
fully and explicitly itemized.

 Provide a formal statement of the criticality of the violation, exposure, or vulnerability.

 Document all feasible options for analysis.

 Perform a comprehensive risk identification – identification of the type and extent of risk for each
option.

 Perform a detailed risk evaluation – assess the likelihood and feasibility of each identified risk for
each option.

 Estimate safety and security impacts if change is implemented – based on likelihood percentages and
feasibility for each option.

 Estimate the safety and security impacts if change is not implemented – based on the likelihood of
occurrence of financial and operational impacts of each identified option.

 Assess the impact of change on security and control architecture.

 Perform software understanding and design description exercise for all automated security and control
features.

 Estimate and assess the implications of change as they impact the policy and procedure infrastructure.

 Estimate the impact of change on the Business Continuity/Disaster Recovery strategy.

 Specify feasible recovery time, NRO, and recovery point impact estimates for each option.

 Estimate the return on investment for each option, including total cost of ownership and marginal loss
percentage.

 Estimate the level of test and evaluation commitment necessary for verification and validation.

 For each option, prepare a testing program – sample test cases and methods of administration.

 Estimate the resource requirements, staff capability, and feasibility of administration of tests.

 Estimate the financial impacts where appropriate for each option.

 Estimate the feasibility and timelines for implementing each option.

 Prepare a project plan for each option if detailed level of understanding required.

Once the options have been investigated, a basis for decision-making exists.

12.4.3 Reporting
To support explicit decision-making on the response, the body-of-evidence (developed in the analysis phase)
must be communicated in an understandable fashion to the designated approving authority (DAA) for
authorization of the change. For each change requested, the nominal correct practice is to:

 Determine or designate the appropriate decision maker – This identification may be based on the
results of the analysis phase, or carried out as a result of pre-designation.

 Decision-making may also be done through a pre-selected control board composed of the appropriate
decision makers.

 If the decision is significant enough, it may also be decided through a singular process instituted at the
conclusion of the analysis phase.

12 Secure Software Sustainment

174

The results of the analysis are reported to the DAA with a full explanation of the implementation requirements
for each remediation option.

 This report must clearly outline impacts of each option and it must be plainly and explicitly
understandable to lay-decision makers.

 The feasible remediation options must be itemized.

 These must be expressed in a manner that is understandable to lay-decision makers and each option
recommended must be fully and demonstrably traceable to the business case.

All of this prepares for the responses discussed in the next subsection.

12.5 Response Management (Responding)
Response management entails processes specified within the larger context of the change process [e.g.,
ISO/IEC 12207 section 5.5, Maintenance Process]. Response management involves coordination and assurance
of the remediation option. The development process or the acquisition process is the actual agent of change.
Also see the Development and Acquisition sections and [ISO12207].

Policies, tools, and standards that are employed for response management are also continuously assessed so
that recommendations can be made to improve or enhance them, e.g.,[ISO/IEC 12207 section 7.3 –
Improvement process] and [Krutz 2004].

12.5.1 Responding to Known Vulnerabilities

12.5.1.1 Responding to Known Vulnerabilities: Patching
The duty of response management is to maintain the security and integrity of the software throughout its useful
lifetime. The reality is that over that lifetime, a significant number of new vulnerabilities, which might threaten
that security will be discovered.

Vulnerabilities might be discovered through explicit investigation by security professionals, software vendors,
white-hat hackers, internal members of an organization, or any other interested party, including exploits by the
black-hat community [Havana, 2003]. Whatever the source, any vulnerability that has been discovered requires
risk management decisions on patching or other risk mitigations.

To ensure against revealing the existence of a vulnerability before a patch or remediation option is developed,
it is a requirement of the process that the finder and vendor communicate securely with each other throughout
all phases [OIS, 2004]. The discovery process will entail the following stages [OIS, 2004]:

 Discovery – Finder discovers a security vulnerability.

 Notification- Finder notifies vendor to advise the potential vulnerability. or flaw. Vendor confirms the
receipt of the notification

 Investigation – Vendor investigates the finder’s reports to verify and validate the vulnerability. in
collaboration with the finder

 Resolution – If the vulnerability is confirmed, the vendor will develop a remediation option (software
patch or change procedure) to eliminate the vulnerability.

 Release – Vendor and finder will coordinate and publicly release information about the vulnerability
and remedy, including the requisite patch (if applicable).

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

175

12.5.1.2 Responding to Known Vulnerabilities: Reporting
If a vulnerability is discovered, it is the duty of the response management function (of the organization that has
discovered it) to disclose its existence in a way that will ensure users of the software are not harmed. The risk
is that, if the vulnerability is simply reported, or reported too soon, the black hat community will exploit the
problem before the vendor, or finder, can discover a way to patch, or mitigate it. As such, it is not correct
practice to provide full and immediate public disclosure of a vulnerability without fully exploring the risk
mitigation options. That understanding is obtained through the Impact Analysis (0.4.2)

Depending on the risk mitigation situation, there are three ways to disclose the existence of a new vulnerability
[Havana, et al. 2003]. All three of these entail risks, which must be considered; however, partial disclosures
are considered to be more appropriate [Havana, 2003].

 Wide public disclosure. This involves publishing a full report to a wide audience where system
security experts decide on actions to take. This approach is subject to exploitation by criminals.

 Limited public disclosure. Only one organization is informed either because the remediation is only
required there – or to research appropriate responses. That limits the potential for exploitation.

 Total limited public disclosure. Only a selected group is informed, for example, only the security
group in a particular organization, until an appropriate response is developed.

12.5.1.3 Responding to Known Vulnerabilities without Fixes
There might be operational justification for not fixing, or reporting a vulnerability or for not fixing it or
reporting it as soon as possible. These justifications might include such reasons as the lack of obvious harm, or
the amount of time and resources required to develop the fix will outweigh any potential cost should the threat
occur. It might also include lack of current resources; difficulty or infeasibility of the repair, or an
unwillingness to take down a critical operational system.

However, it is essential that known vulnerabilities are monitored and managed. Therefore, a requisite of good
practice is to:

 Maintain continuous records of publicly known vulnerabilities..

 Maintain a continuous record of privately known vulnerabilities.

 Monitor operational behavior of the system to detect and recognize the signature of any attempt to
exploit a known vulnerability.

 Set automated alarms to inform of an attempt to exploit a known vulnerability.

 Maintain a systematic and well-defined response to any expected attempt to exploit a known
vulnerability.

 Ensure that the system staff understands the proper response to an attempt to exploit a known
vulnerability.

12.5.2 Change Control
The agent performing a fix must understand all of the requirements and restrictions involved in making the
change. Thus, a process must be established to unambiguously convey all of the technical and contextual
specifications of the remediation option to the change agent. Organizationally persistent controls must be put in
place to ensure that this is done in a standard and disciplined fashion. Therefore. it is good practice to: [ISO04,
p.17, ISO96, p. 25]

 Identify the appropriate change agent – this may be either an acquisition or a development entity.

12 Secure Software Sustainment

176

 Develop and document a Statement of Work (SOW) and specify the precise method for
communicating this to the change agent.

 Develop and document criteria for testing and evaluating the software or software-intensive system to
ensure successful remediation.

 Communicate these to the change agent prior to instituting the change process.

 Develop and document criteria for ensuring that elements and requirements that should not be
modified remain unaffected.

12.5.3 Post-Change Analysis
Changes to software can eliminate vulnerabilities. However, change can also create new ones. As a
consequence, attackers typically examine changed code to identify any new or different methods of
exploitation. Therefore, the system staff must also continue to monitor and analyze the impact of a change.
This must occur even after the change has been made. The aim is to understand all of the long-term
consequences. As such, it is a requisite of good practice to:

 Perform an analysis of the changed code within its operational environment to identify potential
points of future exploitation.

 Execute pen testing, load testing, or other stress-testing exercises to identify any new points of
weakness, or failure.

 Continue to update the countermeasure set to enforce the security status and requirements of the
changed software.

 Modify the assurance case as appropriate.

 Ensure that all required operational integration and testing processes have been executed on the
changed code.

 Ensure that all test results are reported to the appropriate DAA for resolution.

12.5.4 Change Assurance
Although the change is implemented through the agency of another process (either Acquisition, or
Development) the change assurance process ensures that the change meets established criteria [ISO04, p.17,
ISO96, p. 25]. This is a continuous process, involving the joint review and problem resolution processes as
specified by [IEEE/EIA 12207]. Therefore, it is good practice to:

 Monitor the change through joint reviews as specified in the SOW.

 Ensure that all reviews specified by the SOW are conducted at their scheduled check points.

 Ensure that action items issuing out of each review are recorded for further action.

 Ensure that closure criteria are specified.

 Perform audits as specified in the SOW.

 Ensure any audit specified in the SOW is properly resourced and performed.

 Ensure that any audit or review findings involving non-concurrence are resolved.

 Monitor service levels as agreed to by contract (see the Acquisition section on SLAs).

 Oversee the execution of the contract to ensure that required service levels are maintained (see
Section 13, Acquisition of Secure Software).

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

177

 Ensure that problems identified through joint reviews and audits are resolved.

 Baseline and track the number and type of vulnerabilities over time to verify that audit and
remediation programs are demonstrating positive return on investment.

The DAA certify that any non-concurrences issuing out of the review process are addressed and that all closure
criteria have been satisfied.

Following delivery of the change, it is a requisite of good practice to:

 Perform tests to ensure correctness in accordance with test and evaluation criteria [ISO96, p.29].

 Conduct a verification and validation program to sufficiently ensure the correctness and integrity of
operation of the change as delivered.

 Ensure functional completeness against requirements [ISO96, p.29].

 Ensure that the change satisfies all function requirements specified in the SOW.

 Ensure physical completeness against technical description [ISO96, p.29]. Validate correctness of the
change against technical description documents.

Documenting the assurance case requires an audit trail that provides traceability between the change
authorization and the delivered product [ISO96, p.29].

12.5.5 Assurance Case Evidence for Response Management
A variety of evidence is relevant to creating and maintaining an assurance case for response management,
including:

 Evidence that resource considerations are factored into impact analyses and change authorizations.

 Evidence that every change has been authorized.

 Documentation of a formal schedule, or timetable for each change.

 Evidence that a formal configuration management plan exists that itemizes the change management,
baseline management, and verification management functions, as well as documents how the
configuration identification scheme will be formulated and ensured.

 Evidence of a capable status accounting function comprising established baselines for each software
item that documents the current state of the software at all times.

 Documentation that a baseline management ledger (BML) account exists for each controlled entity in
the software asset base.

12.5.6 Change Re-integration
Changes must be re-integrated into the operational system. The decision-maker who authorized a change must
provide the approval to perform the final re-integration. This approval must be underwritten by the findings of
the Change Assurance Process (0.4.4).

Once authorization is granted, the change is re-integrated into the operational system. It is then necessary to
conduct a technically rigorous process to assure that this re-integration has been done correctly.

This re-integration is supported by a comprehensive testing program. The re-integration testing program is
specified at the point where the change agent prepares the plan to perform the work (see 0.4.2 Change
Control). The testing certifies that the re-integration is satisfactory and that all interfaces are functioning
properly [ISO96, p. 30].

12 Secure Software Sustainment

178

12.5.7 Configuration Management
In addition to certifying of the correctness of the re-integration, it is necessary to fully document the new
software’s baseline configuration and then maintain it under strict configuration control.

The documentation is kept as a current baseline configuration description. That baseline is stored in an
organizationally designated repository [ISO04, p. 21]. Therefore, it is good practice to:

 Confirm reintegration maintains correct level of integrity and security [ISO04, p.21]. This
confirmation is certified by the results of the testing program.

 Ensure documentation is updated at the requisite level of integrity and security (including the
assurance case) [ISO04, p.21]. This is assured by confirming that the new baseline has been
satisfactorily represented in a controlled baseline repository.

 Ensure changed items maintain backward and forward traceability to other baselined states [ISO04,
p.21]. This is assured by maintaining a repository of prior baseline states that is typically called a
static library, or archive.

 Ensure the configuration record is securely maintained throughout the lifecycle and archived
according to good practice. [ISO04, p.21]

12.5.8 Recertification and Accreditation
To ensure confidence, software systems must be assessed and authorized by an appropriate third-party agent
using a commonly accepted process. The findings of that process are typically accredited by formal
certification.

Re-accreditation of the results of a certification process should be obtained periodically to ensure continuing
confidence. Intervals for re-accreditation are typically specified by organizational policy and/or external
regulation. Therefore:

 A legitimate third-party agency must be employed to conduct certification audits – the audit standard
should be established by regulation or contract.

 Assessments for certification/re-certification of accreditation must be performed by properly certified
lead auditors.

 Adequate resources must be provided to ensure the effectiveness of the audit process.

 The independence of the auditing/accrediting agency must be assured.

 Consistent use of a standard audit method must be assured.

 Re-certification audits must be performed timely enough to ensure continuing confidence.

12.5.9 Secure Migration, Retirement, Loss, and Disposal
Migration and retirement of software and systems must be controlled by organizationally standard and rigorous
processes [ISO96, pp.25-26, ISO04, pp.37-38, pp.47-48]. This ensures that major changes are controlled using
a rational and secure process. It also ensures that the overall portfolio of software will continue to meet its
intended purpose. Therefore, it must be ensured that:

 Migration and retirement risks and impacts must be known [ISO96, pp.25-26] – –that knowledge is
developed through the agency of the analysis function.

 A transition strategy must be developed that assures system services will be maintained during
transition [ISO04, p.33].

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

179

 The safety and security aspects of the transition must be fully and explicitly studied, characterized,
and understood.

A DAA must authorize migration or retirement strategy.

Tests and inspections must be executed to explicitly assure:

 Transition of the software or system [ISO04, p.33] is accomplished in a safe and secure fashion.

 The transition process is confirmed effective and correct.

 The proper functioning of the software, or system after transition [ISO04, p.33].

 The effectiveness of the transition is confirmed and certified by a satisfactory verification and
validation procedure.

 The results of the transition process are documented and retained.

 The integrity of the software or system is confirmed after transition [ISO04, p.33].

 All software operation and data integrity is confirmed by an appropriate set of measures.

 The results of the program and data integrity checking process are documented and retained.

 Software or system documentation accurately reflects the changed state.

12.6 Infrastructure Assurance
Infrastructure assurance involves processes that apply, coordinate, and sustain operational assurance, analysis,
and response management. Infrastructure assurance ensures that the organization has a planned and
documented assurance case and security architecture as well as tangible policies, processes, and methodologies
that establish operational assurance, analysis, and response management.

The organization’s security architecture is the composite of all solutions the organization devised to provide
tangible preventing, sensing, analysis and response to threats. Security architecture must be holistic and
complete. Establishing and maintaining a security architecture also establishes and maintains the
interrelationships among those solutions.

Standard policies, processes, and methodologies are necessary to ensure that the actions of the organization
will be appropriate. They are altered to maintain a correct response to changes in the contextual situation (i.e.,
to maintain alignment between security objectives and the software). These policies, processes and
methodologies constitute the tangible elements of the Sustainment process.

Besides creating a tangible sustainment infrastructure, policies, processes, and procedures also ensure
continuous coordination between the Sustainment function and the Acquisition and Development functions.

12.6.1 Security Architecture
Security architecture involves the development, deployment, and continuous maintenance of the most
appropriate and capable security solutions, tools, frameworks, and components. The aim of security
architecture is to maintain a dynamic security response to threats and changes. To accomplish this:

 Standard security and control processes must be planned, designed, administered, and maintained.
The aim is to ensure that effective leadership vision, expertise, and the correct technology solutions
are available to assure security and control of applications and infrastructure.

 Standard procedures are in place to assess, integrate, and optimize security architecture – the security
architecture must be assessed regularly and systematically to ensure that it remains effective.

12 Secure Software Sustainment

180

 Organization-wide evaluations are done to ensure the continuous state of the security architecture
within the enterprise. The security architecture must be evaluated to ensure that it remains effective.

 Future security trends are evaluated to define security architecture strategy. Security trends are
assessed as they impact the evolution of the security architecture of the organization.

 Consultation and strategy resources are made available to ensure the effectiveness of the security
architecture. Expertise is provided to lay-practitioners to ensure a minimum acceptable awareness of
the implications and requirements of security architecture.

 Directions are evaluated as they relate to the acquisition of security architecture components. From
this evaluation, rational decisions are made on the most effective purchase of products and services
and the in-house development of tools.

 The security aspects of the acquisition process must be continuously ensured to be in conformance
with all assurance practices defined by the organization.

 On-call technical support must be provided for security architecture. Any questions or concerns raised
in the day-to-day maintenance of the security architecture must be responded as Do-It-Now (DIN)
requests.

 Enterprise on security and control must be maintained as a readily available knowledge base. This
must be kept in an information store that will share, as well as cascade security architecture
knowledge and information to all levels in the organization.

12.6.2 Policy, Process, and Methodology Assurance
To ensure security, the most appropriate and capable set of policies, processes, and methodologies must be
developed, deployed, and sustained. The aim is to maintain a dynamically effective security and controls
architecture. To ensure this:

 The most current security methodologies, processes, and associated documentation are developed and
deployed and kept in an organizationally standard and accessible repository.

 Cross-organization collaboration must be established to communicate security practices by
developing and implementing training materials. These materials must be organizationally standard.
Their coordination must be carried out by a formal process.

 Security metrics must be developed and collected. Security metrics must be standard. They must be
used for causal analysis to optimize the ongoing security process.

 Formal teams must be established and coached in how to apply the organizationally standard
methodologies and processes. This item also assists with assessing compliance.

 Metrics to improve methodology and process efficiency, usage, and results must be defined and
analyzed.

 Modeling of application and infrastructure must be done from a security perspective.

 Ongoing security and control certifications of applications and infrastructure must be enforced.

 Security and control awareness, knowledge of policies, procedures, tools, and standards must be
championed and promoted.

Altogether, to minimize risks the infrastructure needs careful attention to its security aspects.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

181

12.6.3 Assurance Case Evidence for Infrastructure Assurance
A variety of evidence is relevant to creating and maintaining an assurance case for infrastructure assurance,
including:

 Evidence of Sustainment function’s role in formulating strategic security requirements

 Evidence that Sustainment operational plan exists and is current

– Documentation of assumptions about current, known risks and threats

– Documentation of organization-wide standards, or standard practices

– Specification of the technologies and products that will be utilized during the planning period,
along with the method for installing, maintaining, and operating them on a secure basis

 Evidence that all security updates have been verified, tested, and installed in a timely fashion

 Evidence of an organization-wide information sharing process

– Evidence that the information sharing process is revised and updated as the security situation
changes.

12.7 Further Reading

12.7.1 General
[Pethia] Pethia, Richard, "Congressional Testimony: Attacks on the Internet in 2003", accessed 8/27,

http://usinfo.state.gov/journals/itgic/1103/ijge/gj11a.htm.

[Oberndorf] Oberndorf, P and E Wrubel, “Transformation of a Software Development Organization Using
Software Acquisition Principles, A Case Study”, Software Engineering Institute, Carnegie Mellon
University, 2006

[Lipson] Lipson, Howard, “Evolutionary Systems Design: Recognizing Changes in

Security and Survivability Risks”, CERT, Software Engineering Institute, Carnegie Mellon University,
2006

[Hissam] Hissam, Scott, Charles B. Weinstock, Daniel Plakosh, Jayatirtha Asundi

Perspectives on Open Source Software,” Software Engineering Institute, Carnegie Mellon University,
November 2001

[McDermid] McDermid, John A, “Trends in system safety: a European view?” Conferences in Research
and Practice in Information Technology Series; Vol. 139, Proceedings of the seventh Australian
workshop conference on Safety critical systems and software 2002 - Volume 15, Australian Computer
Society, 2002

[Novak] Novak William E (Editor): “Software Acquisition Planning Guidelines

Software Engineering Institute, Carnegie Mellon University, December 2005

CMU/SEI-2005-HB-006

[Smith] Smith, Jim, “An Alternative to Technology Readiness Levels for Non-Developmental Item (NDI)
Software” Software Engineering Institute, Carnegie Mellon University, April 2004

[Wilde 93] Norman Wilde, Paul Matthews, and Ross Huitt, "Maintaining Object-Oriented Software”,
IEEE Software Volume 10, Issue 1 (January 1993) Pages: 75 - 80

12 Secure Software Sustainment

182

[Wohlin 94] Claes Wohlin and Per Runeson, "Certification of Software Components," IEEE Transactions
on Software Engineering, v 20, n 6, June 1994, 494-499. riented Software," IEEE Software, January
1993, 75-80.

12.7.2 Operational Assurance
[BS ISO/IEC 17799] BS ISO/IEC 17799:2000, Information Technology - Code of Practice for

Information Security Management.

[Carter 2004] Carter, Earl, Cisco Systems Inc., CCSP Self-Study: Cisco Secure Intrusion Detection
System, Cisco Press, 2004.

[CCIMB-2004-01-001] CCIMB-2004-01-001, Common Criteria for Information Technology Security
Evaluation, 2004.

[DoD 5200.28-STD 1985] DOD 5200.28-STD, Department of Defense Trusted Computer System
Evaluation Criteria, 1985.

[Escamilla 1996] Escamilla, T. “Intrusion Detection: Network Security Beyond the Firewall,” Wiley,
1998, Chap. 5.Jones, Capers, Software Defect Removal Efficiency, Computer, April 1996, Vol.29, #4.

[IEEE 1008] IEEE 1008 Standard for Software Unit Testing.

[IEEE 1012] IEEE 1012 1986 Software Validation and Verification Plan.

[IEEE 1012a] IEEE 1012a-1998 Content Map to IEEE/EIA 12207.1-1997.

[IEEE 1028] IEEE 1028-1997 Standard for Software Reviews.

[IEEE 1042] IEEE Standard 1042-1987, Guide to Software Configuration Management.

[IEEE 1045] IEEE 1045-1992 IEEE Standard for Software Productivity Metrics.

[IEEE 1059] IEEE 1059 1993 Guideline for SVV Planning.

[IEEE 12207.2] IEEE/EIA 12207.2-1997, IEEE/EIA Guide: Industry Implementation of International
Standard ISO/IEC 12207:1995, 1998.

[IEEE 730.1] IEEE 730.1 1995 Software Quality Assurance Planning.

[IEEE 730] IEEE 730 1998 Software Quality Assurance Plans.

[IEEE 828] IEEE 828 1998 Software Configuration Management Plan.

[IEEE 829] IEEE 829 1998 Software Test Documentation.

[IEEE/EIA 12207.1] IEEE/EIA 12207.1-1997, IEEE/EIA Guide: Industry Implementation of International
Standard ISO/IEC 12207:1995, 1998.

[Ingalsbe 2004] Ingalsbe, Jeffery A. “Supporting the Building and Analysis of an Infrastructure Portfolio
of software Using UML Deployment Diagrams,” UML Satellite Activities 2004, pp 105-117, 2004.

[ISACA 2004-CobiT] “CobiT in Academia,” IT Governance Institute, 2004, available from Information
Systems Audit and Control Association: http://www.isaca.org, Accessed: July 20, 2005.

[ISACA 2005-COBIT] "COBIT 3rd Edition Executive Summary", IT Governance Institute, Available
from Information Systems Audit and Control Association: http://www.isaca.org, Accessed: July 2005.

[ISO/IEC 12207] ISO/IEC 12207: 1995, Information Technology - Software life cycle process.

[Kairab 2005] Kairab, S. A Practical Guide to Security Assessments, Auerbach Publications, 2005.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

183

[Krutz 2004] Krutz, R., R. Vines, The CISSP Prep Guide: Mastering the CISSP and ISSEP Exams, Second
Edition, John Wiley & Sons, Chap. 5, 6, 10, 2004.

[Lee 1997] Lee, E. “Software Inspections: How to Diagnose Problems and Improve the Odds of
Organizational Acceptance,” Crosstalk, Vol.10 #8 1997.

[Lukatsky 2003] Lukatsky, Protect Your Information with Intrusion Detection., A-LIST Publishing, Chap.
1, 4, 6, 2003.

[Northcutt 2003] Northcutt, S. “Computer Security Incident Handling: An Action Plan for Dealing with
Intrusions, Cyber-Theft, and Other Security-Related Events,” SANS Institute, 2003.

[Peltier 2003] Peltier, T., J. Peltier, and J. Blackley, Managing a Network Vulnerability Assessment,
Auerbach Publications, 2003.

[Riggs 2003] Riggs, S., Network Perimeter Security: Building Defense In-Depth, Auerbach Publications,
Chap. 9, 12, 2003.

[Swiderski 2004] Swiderski, F. and W. Snyder, Threat Modeling, Microsoft Press, 2004.

12.7.2.1 Operational Testing
[Andrews 2006] Andrews, James H., Lionel C. Briand, Yvan Labiche, Akbar Siami Namin: Using

Mutation Analysis for Assessing and Comparing Testing Coverage Criteria. IEEE Trans. Software
Eng. 32(8): 608-624 (2006)

[Arisholm 2006] Arisholm, Erik, Lionel C. Briand: Predicting fault-prone components in a java legacy
system. ISESE 2006: 8-17

[Besal 2001] Besal, R.E. and Steven K. Whitehead, “Operational Testing: Redefining Industry Role,”
National Defense, Saturday, September 1 2001

[Briand 1993] Briand, Lionel C, Victor R. Basili, Christopher J. Hetmanski: Developing Interpretable
Models with Optimized Set Reduction for Identifying High-Risk Software Components. IEEE Trans.
Software Eng. 19(11): 1028-1044 (1993)

[Briand 1994] Briand, Lionel C, Victor R. Basili, Yong-Mi Kim, Donald R. Squier: A Change Analysis
Process to Characterize Software Maintenance Projects. ICSM 1994: 38-49

[Briand 1996] Briand, Lionel C, Sandro Morasca, Victor R. Basili: Property-Based Software Engineering
Measurement. IEEE Trans. Software Eng. 22(1): 68-86 (1996)

[Briand 1997] Briand, Lionel C, Christian Bunse, John W. Daly, Christiane Differding: An Experimental
Comparison of the Maintainability of Object-Oriented and Structured Design Documents. Empirical
Software Engineering 2(3): 291-312 (1997)

[Briand 1998] Briand, Lionel C, Khaled El Emam, Oliver Laitenberger, Thomas Fussbroich: Using
Simulation to Build Inspection Efficiency Benchmarks for Development Projects. ICSE 1998: 340-
349

[Briand 2000] Briand, Lionel C, Bernd G. Freimut, Ferdinand Vollei: Assessing the Cost-Effectiveness of
Inspections by Combining Project Data and Expert Opinion. ISSRE 2000: 124-135

[Briand 2002] Briand, Lionel C, Walcélio L. Melo, Jürgen Wüst: Assessing the Applicability of Fault-
Proneness Models Across Object-Oriented Software Projects. IEEE Trans. Software Eng. 28(7): 706-
720 (2002)

[Briand 2004a] Briand, Lionel C, Yvan Labiche, Yihong Wang: Using Simulation to Empirically
Investigate Test Coverage Criteria Based on Statechart. ICSE 2004: 86-95

12 Secure Software Sustainment

184

[Briand 2004b] Briand, Lionel C, Bernd G. Freimut, Ferdinand Vollei: Using multiple adaptive regression
splines to support decision making in code inspections. Journal of Systems and Software 73: 205-217
(2004)

[Cohen 1998] Cohen, Michael I, John E. Rolph, and Duane L. Steffey (Eds.); “Statistics, Testing, and
Defense Acquisition: New Approaches and Methodological Improvements,” Panel on Statistical
Methods for Testing and Evaluating Defense Systems, Committee on National Statistics, National
Research Council, 1998

[Frankl 1998] Frankl, Phyllis G, Richard G. Hamlet, Bev Littlewood and Lorenzo Strigini, “Evaluating
Testing Methods by Delivered Reliability”, IEEE Transactions on Software Engineering, August
1998, Vol. 24, No. 8, pp. 586+601

[Freimut 2005] Freimut, Bernd G, Lionel C. Briand, Ferdinand Vollei: Determining Inspection Cost-
Effectiveness by Combining Project Data and Expert Opinion. IEEE Trans. Software Eng. 31(12):
1074-1092 (2005)

[Gilliam 2003] Gilliam, David, John Powell, Eric Haugh and Matt Bishop, “Addressing Software Security
and Mitigations in the Life Cycle”, Proceedings 28th Annual NASA Goddard Software Engineering
Workshop (SEW'03), 2003

[Gokhale 2003] Gokhale, Swapna S, “Optimal Software Release Time Incorporating Fault Correction”
Proceedings 28th Annual NASA Goddard Software Engineering Workshop (SEW'03), 2003

[Grottke 2002] Grottke, Michael, “A Markov Model for Software Code Construct Coverage and Fault
Detection”, Communications of Third International Conference on Mathematical Methods in
Reliability, Trondheim, Norway 2002

[Hochstein 2003] Hochstein, Lorin and Mikael Lindvall, “Diagnosing Architectural Degeneration”,
Proceedings 28th Annual NASA Goddard Software Engineering Workshop (SEW'03), 2003

[Kamavaram 2003] Kamavaram, Sunil and Katerina Goseva-Popstojanova, “Sensitivity of Software Usage
to Changes in the Operational Profile,” Proceedings 28th Annual NASA Goddard Software
Engineering Workshop (SEW'03), 2003

[Morasca 1997] Morasca, Sandro, Lionel C. Briand: Towards A Theoretical Framework For Measuring
Software Attributes. IEEE Metrics 1997: 119-126

[Mouchawrab 2005] Mouchawrab, Samar, Lionel C. Briand, Yvan Labiche: A measurement framework
for object-oriented software testability. Information & Software Technology 47(15): 979-997 (2005)

[NRC 2003] Panel on Operational Test Design and Evaluation of the Interim Armored Vehicle, “Improved
Operational Testing and Evaluation: Better Measurement and Test Design for the Interim Brigade
Combat Team with Stryker Vehicles, Phase I Report,” National Research Council, Washington DC
2003

[NRC 2004] Panel on Operational Test Design and Evaluation of the Interim Armored Vehicle, “Improved
Operational Testing and Evaluation and Methods of Combining Test Information for the Stryker
Family of Vehicles and Related Army Systems: Phase II Report,” National Research Council,
Washington DC. 2004

[Rivers 1998] Rivers, Anthony T. and M. A. Vouk "Resource Constrained Non-Operational Testing Of
Software," Proceedings ISSRE 98, 9th International Symposium on Software Reliability Engineering,
Paderborn Germany, Nov. 4-7, 1998

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

185

[VonMayrhauser 1993] Von Mayrhauser A and A.M. Vans “From Program Comprehension to Tool
Requirements for an Industrial Environment” CASE '93: The Sixth International Conference on
Computer-Aided Software Engineering, Singapore; July 19-23, 1993

[Vouk 1992] Vouk, M. A, “Using Reliability Models During Testing with Non-Operational Profiles”
Proceedings 2nd Bellcore/Purdue Workshop on Issues in Software Reliability Estimation, October,
1992, Oct. 1992

[Vouk 1993] Vouk, M. A. and K.C. Tai, "Some Issues in Multi-Phase Software Reliability Modeling,"
Proceedings International Conference on Computer Science and Software Engineering CASCON,
October 1993

[Walker 2003] Walker, Robert J,. Lionel C. Briand, David Notkin, Carolyn B. Seaman, Walter F. Tichy:
Panel: Empirical Validation-What, Why, When, and How. ICSE 2003: 721-722

12.7.3 Analysis
[Babich 1986] Babich, W., Software Configuration Management, Addison-Wesley, 1986.

[Berry 2001] Berry, John, “IT ROI Metrics Fall Into Four Groups,” Internet Week, July 16, 2001.

[Bersoff 1980] Bersoff, E., V. Henderson, and S. Siegel., Software Configuration Management, Prentice-
Hall, 1980.

[Dart 1996] Dart, Susan A., “Achieving the Best Possible Configuration Management Solution,”
Crosstalk, September 1996.

[Dorofee 1997] Dorofee A.J., JA Walker, and RC Williams. “Risk Management in Practice,” Crosstalk,
Volume 10 #4, April 1997.

[Feiler 1990] Feiler, P., “Software Process Support in Software Development Environments", Fifth
International Software Process Workshop, ACM Press, October 1990.

[Feiler 1991] Feiler, P., Configuration Management Models in Commercial Environments, Tech. report
CMU/SEI-91-TR-7, ADA235782, Software Engineering Institute, Carnegie-Mellon University, April
1991.

[Han 1997] Han, Jun. “Designing for Increased Software Maintainability,” International Conference on
Software Maintenance (ICSM, 97), January 1, 1997.

[Hatton 1999] Hatton, L. (1999) “Repetitive failure, feedback and the lost art of diagnosis,” Journal of
Systems and Software, 1999.

[Hatton 2001] Hatton, L. “Exploring the role of Diagnosis in Software Failure”, IEEE Software, July
2001.

[Hatton 2002] Hatton, L. “Safer Language Subsets: an overview and a case history,” MISRA C,
Information and Software Technology, June 2002.

[IEEE/ANSI 1042] IEEE Guide to Software Configuration Management, IEEE/ANSI Standard 1042-
1987,1987.

[IEEE/ANSI 828] IEEE Standard for Software Configuration Management Plans, IEEE/ANSI Standard
828-1998, 1998.

[IEEE/EIA 12207.1] IEEE/EIA 12207.1-1997, IEEE/EIA Guide: Industry Implementation of International
Standard ISO/IEC 12207:1995, 1998.

12 Secure Software Sustainment

186

[IEEE/EIA 12207.2] IEEE/EIA 12207.2-1997, IEEE/EIA Guide: Industry Implementation of International
Standard ISO/IEC 12207:1995, 1998.

[ISO/IEC 12207] ISO/IEC Std. 12207:1995, Information Technology - Software Life Cycle Processes,
International Standards Organization, 1995.

[ISO/IEC 15288] ISO/IEC Std. 15288:2002, E, Systems Engineering – System Lifecycle Processes,
International Standards Organization, 2002.

[ISO/IEC 15846] ISO/IEC 15846: 1998, Information technology - Software life cycle processes -
Configuration Management, May 5, 1998.

[Jones 2004] Jones, Capers, Software “Project Management Practices: Failures versus Success,” Crosstalk,
pp, 5-9, October 1, 2004.

[Lee 1997] Lee, E. “Software Inspections: How to Diagnose Problems and Improve the Odds of
Organizational Acceptance,” Crosstalk, Vol.10 #8 1997.

[OMB 1999] Office of Management and Budget, Evaluating Information Technology Investments, 1999.

[Pfleeger 1997b] Pfleeger, S. and L. Hatton, “Do formal methods really work," IEEE Computer, Jan 1997.

[SEI 1990] “Configuration Management: State of the Art,” SEI Bridge, Software Engineering Institute,
Carnegie-Mellon University, March 1990.

[Violino 1997] Violino R, “Measuring Value: Return on Investment,” Information Week, No. 637, pp. 36-
44, June 30, 1997.

[Whitgift 1991] Whitgift, D., Methods and Tools for Software Configuration Management, John Wiley
and Sons, England, 1991.

[Zimmerman 1997] Zimmerman, Michael, “Configuration Management, Just a Fashion or a Profession,”
White Paper, usb GmbH, 1997.

Available at: at http://www.itmweb.com.

12.7.3.1 Threats Identification and Analysis
[Arnold 1996] Arnold, Robert and Shawn Bohner, “Software Change Impact Analysis,” Wiley-IEEE

Computer Society Press, July 1996

[Beattie 2002] Beattie, S., Arnold, S., Cowan, C., Wagle, P. and Wright,”Timing the application of
security patches for optimal uptime”, Proceedings: Large Installation Systems Administration LISA
'02: 16th Systems Administration Conference. (2002)

[Bharti 2006] Bharti, Nitin, “Threat Modeling Key to Proactive Security,” Software Quality News, March
1, 2006

[Bohner 2003] Bohner, Shawn A and Denis Gracanin, “Software Impact Analysis in a Virtual
Environment”, Proceedings 28th Annual NASA Goddard Software Engineering Workshop (SEW'03),
2003 p. 143

[Burns 2005] Burns, Steven F, “Threat Modeling: A Process To Ensure Application Security”, SANS-
GSEC , January 5, 2005

[Chen 2002] Chen, M., E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, "Pinpoint: Problem Determination
in Large, Dynamic, Internet Services," Proceedings:. International Conf. on Dependable Systems and
Networks (IPDS Track), 2002

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

187

[Cobb 2007] Cobb, Michael, “Improve Web Application Security with Threat Modeling,”
SearchSecurity.com, January 11, 2007, accessed 8/31/2007,
http://searchsecurity.techtarget.com/tip/0,289483,sid14_gci1237571,00.html

[Dacey 2003] Dacey, Robert F, “Effective Patch Management is Critical to Mitigating Software
Vulnerabilities,” Testimony before the Subcommittee on Technology Information Policy,
Intergovernmental Relations, and the Census, House Committee on Government Reform, United
States General Accounting Office, September 10, 2003

[Das 2002] Das, M., S. Lerner, and M. Seigle, “ESP: Path-sensitive Program Verification in Polynomial
Time. Proceedings: ACM Conf. on Programming Language Design and Implementation, pages 57-68,
Berlin, June 2002

[Ensel 2002] Ensel C. and A. Keller, “An approach for managing service dependencies with xml and the
resource description framework”, Journal of Network and Systems Management, Special Issue on
Selected Papers of IM 2001, 10(2):27--34, June 2002

[Heckman 2007] Heckman, Rocky, “Application Threat Modeling v2,” Builder. Au, 2006/03/07,
Accessed 8/30/2007, http://www.builderau.com.au/blogs/intothebreach/soa/Application-Threat-
Modeling-v2/0,339027621,339237280,00.htm

[Herman 2006] Hernan, Shawn, Scott Lambert, Tomasz Ostwald and Adam Shostack, “ Uncover Security
Design Flaws Using The STRIDE Approach,” MSDN Magazine, November 2006

[Larsson 2001] Larsson M. and I. Crnkovic, "Configuration Management for Component-based Systems,"
Proceedings International Conf. on Software Engineering (ICSE), May 2001

[Lippmann 2002] Lippmann, Richard, Seth Webster and Douglas Stetson, “The Effect of Identifying
Vulnerabilities and Patching Software on the Utility of Network Intrusion Detection”, Recent
Advances in Intrusion Detection, 5th International Symposium, RAID 2002, Zurich, Switzerland, in
Luca Deri, Giovanni Vigna, Andreas Wespi, (Eds.) Springer-Verlag, Lecture Notes in Computer
Science, New York (2002)

[Murphy 2004] Murphy, Paul, “Software Vulnerabilities and the Future of Liability Reform,”
LinuxInsider, January 22, 2004, Accessed 8/31/2007 http://www.linuxinsider.com/

[Rus 2003] Rus, Ioana, Forrest Shull and Paolo Donzelli, Decision Support for Using Software
Inspections”, Proceedings 28th Annual NASA Goddard Software Engineering Workshop (SEW'03),
2003

[Swiderski 2004] Swiderski, Frank and Window Snyder, “Threat Modeling”, Microsoft Press, 2004

[Thompson 2005] Thompson, Herbert H and Scott G. Chase ,“The Software Vulnerability Guide,”
(Charles River Media, 2005

[Wang 2003] Wang, Y, M Verbowski, Chad Dunagan, J., Chen, Y., Wang, H.J., Yuan, C., and Zhang, Z.,
"STRIDER: A Blackbox, State-based Approach to Change and Configuration Management and
Support," Proceedings: Usenix Large Installation Systems Administration (LISA) Conference, pp.
159-171, October 2003

[Wyatt 2003] Wyatt, Valerie, Justin DiStefano, Mike Chapman and Edward Aycoth, “A Metrics Based
Approach for Identifying Requirements Risks, “Proceedings 28th Annual NASA Goddard Software
Engineering Workshop (SEW'03), 2003

[Xu 2006] Xu, Dianxiang and Kendall E. Nygard, “Threat-Driven Modeling and Verification of Secure
Software Using Aspect-Oriented Petri Nets,” IEEE Transactions on Software Engineering, April 2006
(Vol. 32, No. 4) pp. 265-278

12 Secure Software Sustainment

188

12.7.3.2 Reporting
[Berinato 2007] Berinato, Scott, “The Chilling Effect, How the Web Makes Creating Software

Vulnerabilities Easier, Disclosing them More Difficult and Discovering them Possibly Illegal, CSO,
January 2007

[DoD 1986] DODI 5215.2, “Computer Security Technical Vulnerability Reporting Program (CSTVRP),”
U.S. Department of Defense (DoD), September 2, 1986

[Leyden 2006] Leyden, John, “Report Security Vulnerabilities at your Peril,” The Register, Thursday 25th
May 2006, Accessed, 8/14/2007,
http://www.theregister.co.uk/2006/05/25/security_vuln_reporting_risk/

[Meunier 2006] Meunier Pascal, “CERIAS Weblogs » Reporting Vulnerabilities is for the Brave”, 2006,
Accessed 8/17/2007, http://www.cerias.purdue.edu/weblogs/pmeunier/policies-law/post-38/

[OIS 2004] Organization for Internet Safety, ”Guidelines for Security Vulnerability Reporting and
Response, Version 2.0, OIS, September 2004

[Verghese 2003] Varghese, Sam, “Researchers Critical of Vulnerability Reporting Process Draft,” The
Age, June 11 2003, Accessed 8/14/2007,
http://www.theage.com.au/articles/2003/06/11/1055220630601.html

[Zarra 2006] Zarra, Marcus, "The Morals of Security: Reporting Vulnerabilities". Dev Source. Ziff Davis
Media, August 2006.

12.7.4 Response Management
[Bastani 96] F. Bastani, B. Cukic, V. Hilford, and V. Jamoussi, "Toward Dependable Safety-critical

Software," Proceedings of WORDS '96 Second Workshop on Object-Oriented Real-Time Dependable
Systems, IEEE Computer Society Press, Los Alamitos, Calif. 1996. 86 - 92

[Bernot 91] Giles Bernot, M. C. Gaudel, and B. Marre, "Software Testing based on Formal Specifications:
a Theory and a Tool," Software Engineering Journal, v 6, n 6, November 1991, 387-405.

[Binder 96c] Robert V. Binder, "Off-the-Shelf Test Automation for Objects," Object Magazine, v 6, n 2,
April 1996, 26-30

[BS 15000-1] BS 15000-1: 2000, Specification for Service Management.

[BS 15000-2] BS 15000-2, 2000, Code of Practice for Service Management.

[Cunningham] Cunningham, Ward, "Finding and Exploiting Potent Abstractions FAST," Smalltalk
Solutions '96, SIGS Conferences, New York, March 1996

[DeLooze 2004] DeLooze, L. “Classification of computer attacks using a self-organizing map,”
Proceedings from the Fifth Annual IEEE SMC, 10-11 June 2004, Pages: 365-369, 2004.

[FDA 2002] U.S. Food and Drug Administration, Center for Devices and Radiological Health, January 11,
2002

[Hsia 96] Pei Hsia, Xiaolin Li, Kung, D.C. "A History-based Approach for Early Faulty State Detection,"
Proceedings of 20th International Computer Software and Applications Conference: COMPSAC '96,
IEEE Computer Society Press, Los Alamitos, Ca 1996,321 - 326,

[IEEE/EIA 12207.1] IEEE/EIA 12207.1-1997, IEEE/EIA Guide: Industry Implementation of International
Standard ISO/IEC 12207:1995, 1998.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

189

[IEEE/EIA 12207.2] IEEE/EIA 12207.2-1997, IEEE/EIA Guide: Industry Implementation of International
Standard ISO/IEC 12207:1995, 1998.

[ISO/IEC 12207] ISO/IEC Std. 12207:1995, Information Technology - Software Life Cycle Processes,
International Standards Organization, 1995.

[ISO/IEC 15288] ISO/IEC 15288: 2002 Systems Engineering - System Life Cycle Processes.

[ISO/IEC 17799] ISO/IEC Std. 17799:2000, Information Technology - Code of Practice for Information
Security Management, International Standards Organization, 2000.

[ISO/IEC 27001] ISO/IEC 27001: 2005, Information Security Management - Specification With Guidance
for Use, 2005.

[ITIL 1999] IT Infrastructure Library – “ITIL v2: 1999 Best Practice in IT Service,” Management, 1999.

[Kornecki] Kornecki, Andrew J and Janusz Zalewski, “Design Tool Assessment for Safety-Critical
Software Development”, Proceedings 28th Annual NASA Goddard Software Engineering Workshop
(SEW'03), 2003

[Mann 1999] Mann, D and D. Christey, Towards a Common Enumeration of Vulnerabilities, The MITRE
Corporation, Bedford MA, 1999.

[Martin 2003] Martin, R. "Integrating your information security vulnerability management capabilities
through industry standards (CVE&OVAL)," Systems, Man and Cybernetics, IEEE International
Conference, Volume 2, 5-8 Oct. 2003 Page(s):1528-1533, 2003.

[Mattern 2006] Mattern, Steven F, “Increasing the Likelihood of Success of a Software Assurance
Program”, Crosstalk, Sep 2006 Issue

[NASA 1993] NASA-STD-2201-93 “Software Assurance Standard”, National Aeronautics and Space
Administration, November 10, 1992

[Overbeck 1995] Jan Overbeck, "Testing Object-Oriented Software and Reusability -- Contradiction or
Key to Success" Proceedings, 8th Annual Software Quality Week May 1995, Software Research, Inc.
San Francisco

[Rajlich] Rajlich, Vaclav, “Software Change and Evolution”, Conference on Current Trends in Theory and
Practice of Informatics, SOFSEM'99: Milovy, Czech Republic, 1999

[Riggs 2003] Riggs, S., Network Perimeter Security: Building Defense In-Depth, Auerbach Publications,
Chap. 9, 12, 2003.

[Wallace] Wallace Dolores R. Wendy W. Peng and Laura M. Ippolito, “NISTIR 4909

“General Principles of Software Validation; Final Guidance for Industry and FDA Staff”,

Software Quality Assurance: Documentation and Reviews” U.S. Department of Commerce, Technology
Administration, National Institute of Standards and Technology

[YCC 2005] Web site on viruses: www.ycc.com/security/details/virus.htm (December 20, 2005).

12.7.4.1 Responding to Known Vulnerabilities
[Mell 2007] Mell, Peter, Karen Scarfone and Sasha Romanosky, Common Vulnerability Scoring System

(CVSS-SIG), A Complete Guide to the Common Vulnerability Scoring System Version 2.0, Forum of
Incident Response and Security Teams (FIRST), June 2007

12 Secure Software Sustainment

190

[Myerson 2005] Myerson, Judith, “Use SLAs in a Web services context, Part 7: Mitigate risk for
vulnerability with a SLA Guarantee, IBM, 28 Jan 2005, Accessed 8/12/2007,
http://www.ibm.com/developerworks/library/ws-sla7/

12.7.4.2 Secure Migration, Retirement, Loss, and Disposal
[Intel 2006] Intel Information Technology, “Integrated Software Enhances Enterprise Security”,

IT@Intel Brief, November 2006, Accessed 8/31/07, http://www.intel.com/it/pdf/integrated-sw-enhances-
security.pdf

12.7.5 Infrastructure Assurance
[Ashton 2001] Ashton, Gerry. “Cleaning up your Security Act for Inspection,” Computer Weekly, Jan 18,

2001.

[Berg 2005] Berg, Clifford J, High-Assurance Design: Architecting Secure and Reliable Enterprise
Applications, Addison Wesley, 2005.

[BS 15000-1] BS 15000-1: 2000, Specification for Service Management.

[Byfield 2005] Byfield, Bruce, “Nine principles of Security Architecture,” Linux.com, November 22,
2005, Accessed 8/17/2007, http://www.linux.com/articles/49803?tid=78

[CCIMB-2004-01-001] CCIMB-2004-01-001, Common Criteria for Information Technology Security
Evaluation", 2004.

[DoD 5200.28-STD 1985] DOD 5200.28-STD, Department of Defense Trusted Computer System
Evaluation Criteria, 1985.

[DOE 2007] National Energy Technology Laboratory (NETL), “Key Issues & Mandates, Critical
Infrastructure Assurance,” Department of Energy, 2007, Accessed 8/31/2007
http://www.netl.doe.gov/KeyIssues/critical_infra.html

[Dorofee 1997] Dorofee A.J., JA Walker, and RC Williams. “Risk Management in Practice”, Crosstalk,
Volume 10 #4, April 1997.

[DTI UK 2004] Price, Waterhouse and Coopers, Information Security Breaches 2003, Department of
Trade and Industry (DTI), U.K., 2004.

[GAO 1999] General Accounting Office, GAO Internal Control Standard, 1999.

[GASSP 1999] GASSP, “Generally Accepted System Security Principles”, International Information
Security Forum, June 1999.

[IEEE/EIA 12207.1] IEEE/EIA 12207.1-1997, IEEE/EIA Guide: Industry Implementation of International
Standard ISO/IEC 12207:1995, 1998.

[IEEE/EIA 12207.2] IEEE/EIA 12207.2-1997, IEEE/EIA Guide: Industry Implementation of International
Standard ISO/IEC 12207:1995, 1998.

[ISACA (AS) 1999] ISACA, “Audit Sampling,” IS Auditing Guideline, 1999.

[ISACA (CM) 2004] IT Governance Institute, CobiT Mapping, ISACA, 2004.

[ISACA (CRSA) 2003] ISACA, “Control Risk Self Assessment,” IS Auditing Guideline, 2003.

[ISACA (DPC) 1999] ISACA, “Due Professional Care,” IS Auditing Guideline, 1999.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

191

[ISACA (ICO) 1999] IT Governance Institute, IT Control Objectives for Enterprise Governance, ISACA,
1999.

[ISACA (ID) 2003] ISACA, “Intrusion Detection,” IS Auditing Guideline, 2003.

[ISACA (ISC) 2003] IT Governance Institute, IT Strategy Committee, ISACA, 2003.

[ISACA (SDLC) 2003] ISACA, “SDLC Reviews,” IS Auditing Guideline, 2003.

[ISACA (SO) 2004] IT Governance Institute, IT Control Objectives for Sarbanes-Oxley, ISACA, 2004.

[ISACA (URA) 2000] ISACA, “Use of Risk Assessment,” IS Auditing Guideline, 2000.

[ISACA 2004-CobiT] "CobiT in Academia", IT Governance Institute, 2004, available from Information
Systems Audit and Control Association: http://www.isaca.org, Accessed: July 20, 2005.

[ISACA 2005-COBIT] "COBIT 3rd Edition Executive Summary", IT Governance Institute, Available
from Information Systems Audit and Control Association: http://www.isaca.org, Accessed: July 2005.

[ISO/IEC 12207] ISO/IEC Std. 12207:1995, Information Technology - Software Life Cycle Processes,
International Standards Organization, 1995.

[ISO/IEC 15288] ISO/IEC Std. 15288:2002, E, Systems Engineering – System Lifecycle Processes,
International Standards Organization, 2002.

[ISO/IEC 27001] ISO/IEC 27001: 2005, Information Security Management - Specification With Guidance
for Use, 2005.

[ISO/IEC 27003] ISO/IEC 27003: 2005, Information Security Management – Implementation of ISO
27001, 2005.

[ISO/IEC 27004] ISO/IEC 27004: 2005, Information Security Management – Information Security
Metrics and Measurement, 2005

[ITIL 1999] IT Infrastructure Library – “ITIL v2: 1999 Best Practice in IT Service,” Management, 1999.

[Kairab 2005] Kairab, S. A Practical Guide to Security Assessments, Auerbach Publications, 2005. Chap.
6,7.

[Kim 2007] Kim, Gene, and Rob Warmack, “Proving Control of the Infrastructure,” Whitepaper,
Tripwire, 2007

[King 2001] King, C., C. Dalton and E. Osmanoglu, Security Architecture: Design Deployment and
Operations, McGraw-Hill/Osborne, 2001.

[Kolodgy 2004] Kolodgy, Charles J., “Infrastructure Integrity”, White Paper, Tripwire, October 2004

[Krutz 2004] Krutz, R., R. Vines, The CISSP Prep Guide: Mastering the CISSP and ISSEP Exams, Second
Edition, John Wiley & Sons, Chap. 5, 6, 10, 2004.

[Nelson 2007] Nelson, Mike, “Complying with the Federal Information Security Management Act,”
Whitepaper, Tripwire, 2007

[NIST 800-26] National Institute of Standards and Technology (NIST 800-26), Security Self-Assessment
Guide for Information Technology Systems, November 2001.

[Purser 2004] Purser, S., A Practical Guide to Managing Information Security, Artech House, Chap. 1, 8,
2004.

[Qualys 2007] Qualys, “7 Essential Steps to Achieve, Measure and Prove Optimal Security Risk
Reduction” Whitepaper, Qualys, Redwood Shores, CA Jun 11, 2007

12 Secure Software Sustainment

192

[Swanson ND] Swanson, Marianne, Security Self Assessment Guide for Information Technology Systems,
ND.

[Tripwire 2007a] Tripwire, “Control IT with Configuration Audit and Control, Enforcing Change Policy
to Reach Compliance, Security, and Availability Goals,” Whitepaper, Tripwire, 2007

[Tripwire 2007b]Tripwire, “Configuration Audit and Control in a Layered Security Strategy, Providing the
Essential Foundation for Data and Network Security, “Whitepaper, Tripwire, 2007

[Tripwire 2007c] Tripwire, “Managing Change in IT Infrastructures”, Whitepaper, Tripwire, 2007

[Van Grembergen 2004] Van Grembergen, W., Strategies for Information Technology Governance, Idea
Group Publishing, Chap.11, 2004.

[White House 1995] “White Paper on Information Infrastructure Assurance,” Security Policy Board,
Assistant to the President for National Security, White House, December 1995

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

193

Part 4: Using the Software
Assurance Common Body of

Knowledge

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

195

13 Acquiring Secure Software

13.1 Introduction
This section covers use of existing software or software externally produced for an organization including
several kinds of sources, commercial and otherwise. It is intended for readers involved in software reuse or
software acquisition education and training, as well as standards developers who need additional knowledge on
acquiring secure software. Notional examples or illustrations are provided to facilitate understanding.

At this point in developing this section, most of the references cited are to U.S .federal government documents
because they are more readily available to the working group. While international and UK Ministry of Defense
standards have had significant influence on the content, the material in this section reflects a US federal
government perspective. Although this section may require more effort and some “translation” by international
and the commercial readers due to sometimes unfamiliar terminology, the content is still universally relevant.
To help this section evolve into a more general perspective and terminology, we hope that readers and
reviewers will help us with additional relevant information from the commercial and international arenas.

Models of acquisition in general are defined in the Federal Acquisitions Regulation [FAR] and [DoDI 5000.2],
and several standards address the software acquisition process and practices [ISO/IEC 12207, p. 10, para. 5.1];
[IEEE/EIA 12207]; IEEE 1062-1998]. A NIST Special Publication more directly addresses the acquisition of
secure information systems [NIST Special Pub 800-64, para 2.3.2, para 2.3.2.9, Appendix A, and Appendix B].
The acquisition activities that cross most models include initiation, request for proposals, proposal (tender)
preparation, contract preparation and update, supplier monitoring, and acceptance and completion. This section
uses a generic acquisition framework that can be easily related to the ISO/IEC, civilian US federal government,
and DoD models. This section also provides the acquirer and, to a lesser extent, supplier perspectives.

The SwA Acquisition guide is recommended in Sep 2007 Report of the Defense Science Board (DSB) Task
Force on “Mission Impact of Foreign Influence on DoD Software” -- Under the Recommendations on Risk-
Based Acquisition (starting on page 64):

“…the mere fact of asking what vendors do to engineer security and quality into their lifecycle puts the vendor
community on notice that it is important to DoD.”

 “The DoD/DHS software assurance forum has been working on a procurement guide focused on
software assurance, which helps procurement officers glean (through a series of questions) what
vendors have done (and not done) as part of their secure development process, how they handle
vulnerabilities, and so on.”

“Such a document, when reviewed by a larger audience and finalized, could be used as part of IT procurement
cycles to help DoD better evaluate risk.”

 “As long as this is sensible, the questions are phrased to allow expository answers, and the benefit
derived is commensurate with the cost of vendors completing it, this is one way for DoD both to know
what they are getting and to put vendors on notice that quality and security-worthiness has become a
purchasing criteria for DoD.”

Certain aspects of acquisition are also related to the Development and Post Release sections. Those sections
will be cross-referenced in this section. The following is an outline of the contents of this section:

 Concepts, Terms, and Definitions

 Program Initiation and Planning – Acquirer

13 Acquiring Secure Software

196

 Acquisition and Software Reuse – Acquirer/Supplier

 Request for Proposals – Acquirer

 Preparation of Response – Supplier

 Source Selection – Acquirer

 Contract Negotiation and Finalization – Acquirer

 Project/Contract Management – Acquirer/Supplier

13.2 Concepts, Terms, and Definitions

13.2.1 Acquisition
“Acquisition” as used in this section means acquiring software development services or software
products, whether by contract or by other means (e.g., downloading open source software from the
Internet, etc.) [For the US federal government also see the FAR Subpart 2.101(b)(2) definition of
acquisition].

13.2.2 Off the Shelf Software (OTS)
Off-the-shelf software includes COTS (Commercial off the Shelf Software) and other OTS (Off the
Shelf Software). This may also include (for governments) government off-the-shelf (GOTS)
software and Non-developmental Items (NDI) [Also see FAR Subpart 2.1 for a US federal
government definition of commercial items].

13.2.3 Information Assurance Architecture
Information Assurance Architecture is an abstract description (used among others by the US
Department of Defense (DoD)) of a combination of information assurance (IA) solutions for a
system or set of systems that assigns and portrays IA roles, identifies behavior among a set of
information technology assets, and prescribes rules for interaction and interconnection to ensure
security and taking advantage of supporting IA infrastructures [DoD Instruction 8500.2, Enclosure
2].

13.2.4 US NIAP
National Information Assurance Partnership is a combined initiative of the US government’s
National Institute of Standards and Technology (NIST) and National Security Agency (NSA)
initiative originated to meet the security testing needs of both information technology (IT) consumers
and producers [http://www.niap.nist.gov/]. Currently, its efforts center on the Common Criteria and
Protection Profiles [CC 2005, Part 1, Annex B].

13.2.5 Security Accreditation
“Security accreditation” means the official management decision given to authorize operation of an
information system and to explicitly accept the risk to an organization’s (and by implication
interconnecting organizations’) operations (including mission, functions, image, or reputation),
assets, or individuals based on implementing of an agreed-upon set of security controls [NIST
Special Publication 800-37].

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

197

13.2.6 Security Certification
“Security certification” may apply to a software system as in the case of the Common Criteria or
FIPS-140, or may mean a comprehensive assessment of the management, operational, and technical
security controls in an information system, made in support of security accreditation, to determine
the extent to which the controls are implemented correctly, operating as intended, and producing the
desired outcome with respect to meeting the security requirements for the system [NIST Special
Publication 800-37].

13.3 Program Initiation and Planning–Acquirer

13.3.1 Scope
Program initiation and planning begins with developing the concept of the need to acquire, develop,
or enhance a software capability. During the initiation stage, the acquirer is concerned with setting
boundaries about the project. Of these, cost, schedule, and quality are most easily seen; more
difficult is the definition of the required capability, and even more difficult than that is the definition
of the required level of software assurance.

Program initiation and planning may include the following activities:

 Determine the need (requirements) and solutions approaches. Key issues during this activity relative
to software assurance include acquiring public domain software; purchasing COTS software;
developing the software internally; acquiring the developing software by contract; enhancing existing
software; modifying legacy software; or any combination of these options.

 Make the decision to contract (The terms outsourcing and contracting out are often used
interchangeably. However, outsourcing implies that the work is being done within the acquirer’s
organization and a subsequent decision is made to contract out the work to an outside organization.)
[FAR 2005, Part 10: Market Research].

 Identify responsibilities of organizations.

 Determine (maximum) potential risk from software system and its use and values to acquirer of
achieving different levels of reduced risk, e.g., [NIST Special Pub 800-30; FAR 2005, Subpart
39.102: Management of Risk].

 Determine type of contract based on the level of cost, schedule, and performance risks that are
acceptable between the parties of the contract, e.g., choose among those described in [FAR 2005, Part
16: Types of Contracts].

 Define software assurance requirements within contract language and establish process for testing and
evaluation, and remediation before final acceptance.

 Develop an acquisition strategy and/or plan, e.g., see
[http://akss.dau.mil/DAG/Guidebook/IG_c2.3.asp] and [FAR 2005, Part 7: Acquisition Planning] that
incorporates key strategies for software assurance. In particular, FAR 7.105(b)(17) requires that plans
discuss how agency information security requirements are to be met.

For additional relevant material see [ISO/IEC 12207, para 5.1.1.], [ANSI/PMI 99-001-2004 , Ch2], [Schwalbe
2006, p. 80], and [Meredith 2000, Part 1],

13 Acquiring Secure Software

198

13.3.2 Determining the Need (Requirements) and Solution
Approaches

Similar to software needs and requirements, software assurance needs and requirements at this point are
usually broad statements of management and technical capabilities and constraints. Constraints may be
specified in risk mitigation requirements that result from a risk assessment (See Risk Management below).
Other capabilities may be specified in EAL [CC 2005, Part 3]. In addition, Common Criteria Protection
Profiles [CC 2005, Part 1, Annex A] may also be another alternative for describing capabilities and constraints
related to secure software. Also see Section 5, Requirements for Secure Software, for guidance on technical
software assurance requirements [also see NIST Special Pub 800-64, p. 12-13].

See the “Acquisition from the Public Domain” and “OTS Acquisition” subsections for issues software
assurance issues related to off-the-shelf software, software code reuse, and public domain software.

13.3.3 Making the Decision to Contract
One decision that the acquirer must make is whether (and how much) to either acquire OTS or contract out
(e.g., outsourcing) the effort versus doing the work with in-house resources. Conducting market research [e.g.,
see FAR 2005, Part 10: Market Research] can assist in determining if the capabilities are available through
suppliers. “Engage in software outsourcing only when you understand the pitfalls” [Haddad 2004] is one
conclusion of a recent study in contracting out software-intensive projects.

Software-related security risks must be considered and mitigated when making decisions to contract out the
software effort and in conducting a market search for qualified software suppliers. Some considerations
include:

 Supplier qualification in developing and/or integrating secure software

 Supplier history of good software engineering practices. Good software engineering practices can
reduce faults and vulnerabilities [Seacord and Householder 2005, p. 2] and [Seacord 2005]

 Supplier employment of known “hackers”

 Foreign influence of the supplier and its personnel

13.3.4 Risk Management
An essential part of project management is risk management. Risk management is the process of planning,
assessing risk, mitigating risks, monitoring risk mitigation activities, and adjusting the risk mitigation
activities, as appropriate, based on the results of the monitoring activity. [NIST Special Pub 800-30] provides
guidance on information systems risk management. Software assurance risks should be managed as part of the
overall information systems risk management.

Software assurance risk mitigation strategies may translate into specific program specifications or requirements
(e.g., “The software shall be capable of National Information Assurance Partnership (NIAP) certification at
EAL-Level 6”). Other strategies can translate into actions that the acquirer needs to take during the life of the
project (e.g., ongoing risk management activities, ongoing monitoring of software assurance testing, etc.).
Some may require action during the actual acquisition process (e.g., a FOCI investigation, inclusion of
software assurance criteria in the best-value calculation, inclusion of individuals qualified to evaluate software
assurance issues on the proposal evaluation board, etc.).

The overall cost of risk management activities over the entire life cycle must be considered in the total cost of
the contract effort. NIST Special Publication 800-30 (paragraph 4.5) provides some insights into cost-benefit
analysis.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

199

This subsection addresses software assurance-related considerations in risk assessment, risk mitigation
(identifying risk reduction activities), and risk monitoring.

13.3.4.1 Software Assurance Risk Assessment
In general, a software assurance risk assessment (see Section 2, Dangers, for a list of risks) is based on the
criticality and sensitivity of the information processed by the software as well as vulnerability and threat
information. An initial step in risk assessment is identifying the risk. Using a risk-based categorization scheme
can facilitate software assurance risk identification and is useful in standardizing the results of assessing
potential security risks for software-intensive systems. Such a security categorization scheme is based on a
software-intensive system’s criticality to the organization’s mission and the sensitivity of the information that
it processes. –See Section 5, Secure Software Requirements, for more detailed coverage. These security
categories can then be used in conjunction with vulnerability and threat information in assessing risk to an
organization. See the Threat Analysis subsection in Section 5, Secure Software Requirements, under
Requirements. The following covers are several risk based categorization schemes. While not perfect, their
efforts in this area are suggestive of methods others might use for categorization.

 The civilian US federal government’s method defines three levels or potential impact on organizations
or individuals should there be a breach of security (i.e., loss of confidentiality, integrity, or
availability) [FIPS Pub 199]. Confidentiality, integrity, and availability are determined by these
levels.

 The DoD’s method defines three mission assurance categories that reflect the importance of
information relative to achieving mission goals and objectives [DoDI 8500.2,para E2.1.38 and
Enclosure 4]. Integrity and availability levels are determined by these categories.

 The DoD also has several levels of sensitivity classifications for information, including unclassified,
confidential, secret, top secret, and SCI [DoDI S-3600.2]. Confidentiality levels are determined by
these classifications [DoDI 8500.2, para E4.1.1].

 The ISO 17799 Newsletter,:News & Updates for ISO 27001 and ISO17799 in Issue 9, suggests
categories to “cover most eventualities” – Top Secret, Highly Confidential, Proprietary, Internal Use
Only, and Public Documents – giving brief definitions for each.1

 (Asset classification is covered by Section 5 of the ISO17799 standard.)

 The Information Assurance Task Force Framework document [NSA 2002] enumerates five levels of
consequences of a violation (as value of data protected) and seven levels of threat.

13.3.4.2 Software Assurance Risk Mitigation Strategies
Once software assurance risks have been assessed, the acquirer should identify corresponding risk mitigation
strategies. These risk mitigation strategies provide a baseline level of software assurance and become part of
the acquisition requirement. The US government’s method for mapping risks to mitigation strategies or
techniques provides a useful way for standardizing on specific safeguards based on a categorization scheme as
mentioned above. While not perfect, the following are suggestive mapping methods that others might use:

 [NIST Special Pub 800-53] and [FIPS 200] define assurance levels by the required security measures
– primarily network-oriented security measures – related to the sensitivity or potential impact levels in
FIPS 199.

 DoD Instruction 8500.2 defines assurance levels by assurance conditions achieved through applying
specific safeguards. Minimum safeguards are provided for each mission assurance category. Several
are relevant to software assurance [as examples, see DoDI 8500.2, pp. 58, 69, and 79 Software

1 See http://17799-news.the-hamster.com/issue09-news1.htm (accessed 2005/09/17)

13 Acquiring Secure Software

200

Quality; pp. 60 and 71 Software Development Change Control; p. 67 Mobile Code; p. 68 and 78,
Public Domain Software].

 The Information Assurance Task Force Framework document [NSA 2002] maps each combination of
its five levels of value or consequences of a violation and seven levels of threat to recommendations
on strength of mechanism level (SML) and evaluation assurance level (EAL). SMLs are discussed as
they related to several security properties.

 The US Director of Central Intelligence Directive [DCID 6/3 2000] places assurance requirements on
systems protecting Sensitive Compartmented Information (SCI) within the US government.

 Outside the intelligence community, FIPS 140 certifications for cryptographic software appear a
universally accepted minimum for assurance, but NSA Type 1 certification is required for intelligence
information – some other nations have similar certifications.

 While not using as simple a mapping as in some schemes, the US DoD accreditation process governed
by DoD Instruction 5200.40, DoD Information Technology Security Certification and Accreditation
Process (DITSCAP). [DoD1997] supplemented by the DoD8510.1-M Application Manual uses a
combined system security assessment and risk analysis process to assist the certifier in determining if
the system provides adequate protection for the information handled in the system.

13.3.4.3 Software Assurance Risk Monitoring
Lastly, the acquirer should implement a means for monitoring the software risk mitigation strategies to assess
whether those strategies result in acceptable protection [NIST Special Pub 800-30, table 2-1, paragraph 3.9,
and Chapter 5].

13.4 Acquisition and Software Reuse – Acquirer/Supplier

13.4.1 Scope
This section covers the acquisition of reusable software , which includes open source software and other
reusable software code (hereinafter collectively referred to as free software). Currently, more than 50 types of
recognized open source licenses exist with varying obligations on acquirers. Open source products are also
sold with value-added products or services (e.g., Linux by Red Hat). The implications and choices are often not
simple even before one considers security.

13.4.2 Reusable Software in the Acquisition Process
Reusable software applications and code pose significant software-related security risks. Acquirers and
suppliers should have controls in place to ensure that reusable software does not compromise the security of
the software-intensive system.

With rare exceptions, composing systems of reusable software is fraught with security problems and existing
vulnerabilities. One needs only read the long lists of known defects and vulnerabilities of reusable software to
realize the level of danger (even if most known ones are fixed). The risks in reusable software components may
or may not be greater than software that costs more money. Indeed, products with source code available can
benefit from review by more people knowledgeable in software-related security, and the customers with the
skills and resources have the opportunity to fix problems as soon as thy are identified (versus “closed source”
software where customers must rely on the vendor to diagnose and fix any problems). The question is not
whether free or commercial software is “superior” from a security perspective but the situation with particular
choices for software and their pedigrees. Acquiring reusable software does not remove any of the same security
requirements as would hold for in-house production or the need to provide the same or higher quality assurance

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

201

case and evidence. Also, see Section 13.4.4, Software Reuse as Part of Requirer’s Solution. in this body of
knowledge.

Because the acquisition of reusable software may not require formal contracts, visibility and control over
software production and assurance can be significantly reduced, causing increased uncertainties and risks.
Therefore, special arrangements are needed to control the use and integration into the software-intensive
system [see DoDI 8500.1, para 4.19]. Use of reusable software should be thoroughly assessed for risk [see
DoDI 8500.1, para 4.19]. The process in place to deal with vulnerability reports, and to construct and deploy
patches or new versions needs special care and scrutiny. Analysis commensurate with the required confidence
or assurance level must be performed before (and after) integration into a larger software-intensive system.
[Goertzel 2005, section on security issues associated with acquired or reused components]. Where possible,
this ideally would include financial analysis of life cycle costs.

If one is willing to potentially spend what may be large amounts for analysis and review of source code, on the
plus side for open source software versus software whose source is not available is the malicious code issue.
While not specifically mentioning it, a reverberation of incidents similar to the Soviet pipeline explosion of
1982 appeared in IST Features in 2004 while discussing open source software. “During the Cold War, for
example, the Soviet Union bought a lot of commercial software from the United States. US intelligence,
however, had put spies in the software so they could track what the Soviets were doing – and Moscow knew
nothing about it,” the coordinator [Antonis Ramfos] says. “The same problem exists today for governments
and corporations around the world, and that is why using open source is starting to become more widespread.”
[Antonis Ramfos 2004] This again emphasizes the need for confidence as well as product.

13.4.3 Acquirer Only
Approval and/or limitations on software resuse as part of the supplier’s solution should be clearly stated in the
contract. Part of this approval should include risk mitigation strategies and testing. In addition, conditions for
approval may rely on the security history and posture of the software, including pedigree, vulnerability, and
patch management system [Goertzel 2005, section on security issues associated with acquired and reused
components]. Approvals may also be contingent on negotiated liabilities for loss or damage between the
acquirer and supplier. See [NIST Special Pub 800-65, Appendix B] and [Rasmussen 2004, p. 2].

The amount and kind of information available about the software and its quality and credibility impact the
amount of investigation, including testing required to produce the equivalent of an assurance case for the
software that under other circumstances would mainly be supplied by the supplier.

13.4.4 Supplier Software Reuse as Part of Acquirer’s Solution
The supplier may also be an acquirer of reuseable software. In that event, the supplier should also refer to
Section 13.4, Acquisition and Software Reuse–Acquisition/Supplier. As part of good software development
practices, the supplier should also have strict controls over software reuse in a contract solution.

13.4.5 Evaluating Reusable Software
A Software Assurance Case is a good mechanism for providing a reasoned, auditable argument to support the
contention that reusable software will satisfy security (and safety) requirements. See Section 3, Fundamental
Concepts and Principles, [MOD Def Std 00-42, Part 3, 2003] and [Goertzel 2005] for evaluation criteria and
sources of evidence that might be included in a Software Assurance Case for reusable software components.
Also Section 8, Secure Software Verification, Validation, and Evaluation for more on assurance cases.

If reusable software is a portion of a larger system, then its assurance case must integrate properly with other
assurance arguments in the remainder of the larger assurance case. The same is, of course, true of any the
contractor’s suppliers and in the worst case for the entire supply chain.

13 Acquiring Secure Software

202

13.5 Request for Proposals – Acquirer

13.5.1 Scope
This section includes the first formal stage of requesting work from suppliers to satisfy a software integration
or development need. When an organization needs to enter into a contract for the acquisition of secure
software, normally a written request is issued to prospective developers/offerors/vendors (herein after called
suppliers). This request is sometimes referred to as a request for proposal (RFP) [FAR Subpart 15.203]. The
acquirer should consider incorporating the following in the RFP:

 Special terms and conditions related to software assurance. Also see [NIST Special Pub 800-64,
Appendix B]

 Software assurance needs and requirements (capabilities and constraints defined in the Program
Initiation stage), including measures/metrics in SOW as well as the requirements for software
assurance case. Also see Section 3, Fundamental Concepts and Principles and “Development”
sections [FAR 15.204-2(c)]

 Instructions to suppliers on the information they must submit to be evaluated, including software
assurance case and related deliverables [FAR Subpart 15.204-5(b)]

 Appropriate evaluation criteria for software assurance [FAR 15.204-5(c) and FAR 15.304]. See the
section “Source Selection – Acquirer” for evaluation criteria.

In addition to the request for proposal, the organization should develop other documents to manage the
selection of the supplier. In the US federal government one such document is called the Source Selection Plan
[FAR 15.300] that would include guidance on what is to be evaluated, how the information should be
evaluated, and who should be involved in the evaluation. See Section 13.7, Source Selection-Acquirer for the
source selection plan.

13.5.2 Software Assurance Terms and Conditions
Terms and conditions should be considered to identify software assurance responsibilities assigned to parties
under a contract even to the extent that such obligations survive after the period of performance [NIST Special
Pub 800-64, p.21]. In addition, terms and conditions on the right to audit (security review of the code and other
security-relevant engineering artifacts), the use of secure coding practices, and security warranties should also
be considered [Rasmussen 2004, pp. 1-2]. The following is a discussion on recommended terms and conditions
taken from the NIST Special Publication 800-64. The NIST publication divides terms and conditions into 10
categories. See [NIST Special Pub 800-64, Appendix B]. The following is an expanded discussion on terms
and conditions relevant to software assurance and is illustrative of what should be considered:

 Legal responsibilities may include the following:

– Security violations. These can even be caused when the software is performing correctly. Some
examples include backdoors (software companies may include these to assist customers),
malicious code, etc.

– Allocating contractual risk and responsibility. Acquirers may wish to include clauses to address
allocating responsibility for integrity, confidentiality, and availability. Consideration should also
be given to using guarantees, warranties, and liquidated damages (i.e., providing for the supplier
to compensate the acquirer for losses or damage resulting from security issues).

– Remediation. As used here, this would be the process of tracking and correcting software-related
security flaws by the supplier. The terms and conditions should require the supplier to have a
procedure acceptable to the acquirer for acting on reports of software-related security flaws
[NIST Special Pub 800-64; Rasmussen 2004].

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

203

 Software Assurance Training. Security violations are often a result of the poorly trained supplier
personnel. Consideration should be given in requiring a software assurance training program. [NIST
Special Pub 800-50] provides a suggested model for establishing security training and awareness
programs that could be used for a software assurance training program.

 FOCI. When appropriate, consideration should be given to requiring investigation into the chain of
ownership. This may be appropriate if foreign ownership, control or influence are concerns, or if, in a
business context, possible conflicts of interest, or rival control of a potential supplier is an issue.

 Information Security Features in Software-Intensive Systems. These refer to specific functions that
can be incorporated into or those integral to the software. Consideration should be given to including
terms and conditions that require certain controls for:

– Access, identification and authentication, auditing, cryptography (data authentication, digital
signature, key management, security of cryptographic modules [FIPS PUB 140-2], cryptographic
validations), software integrity, software architecture, and media sanitation

– Non-bypassibility and self-protection of security functionality

 Software-related security Acceptance Criteria – COTS. The acquirer should consider
terms/conditions requiring the supplier to configure the security features as specified by the acquirer,
to require the supplier to demonstrate the software is fully functional on hardened platforms, to
require that software updates not change any configuration settings without the permission of the
acquirer, and to deliver vulnerability test reports.

Example
The following is an example of a particular term/condition on the security of commercial software. [This is work that is currently
in progress by the US Chief Information Officer’s Council to be incorporated into the FAR.]

Securely configuring commercial software
(a) In the performance of this contract, any commercial off the shelf (COTS) software delivered by [contractor] shall be
configured in conformance with applicable system configuration requirements established by [acquirer] pursuant to [44 USC
3544 (b) (1) (D)] (iii) as enumerated in Exhibit [X].

(b) [Supplier] shall maintain such COTS software so as to assure that it conforms to the most current version of all applicable
[acquirer] system configuration requirements throughout its operational life cycle.

(c) For both custom and COTS software, with initial delivery and each subsequent release, [supplier] shall provide written
assurance that the software operates satisfactorily on systems configured in accordance with section (a) above

(d) Prior to acceptance of the software by [acquirer] [supplier] shall deliver a complete vulnerability test report of both system
and application vulnerability of the application running on the operating system and platform proposed to be used in
production prior to initial acceptance and for each subsequent software release.

(e) Any exceptions to conformance with the [acquirer’s] system configuration requirements must be approved in advance and
in writing.

13.5.3 Software Assurance and the Common Criteria (CC) in the
Acquisition Process

Use of the CC does not necessarily answer questions of software assurance. However, IA and IA-enabled
software products that have a designated CC Evaluation Assurance Level (EAL) may be incorporated into a

13 Acquiring Secure Software

204

final solution. For more IA and IA-enabled products see [NSTISSP No. 11, para (5) through (11)] and
[NSTISSAM INFOSEC/2-00]. The DoD includes software components in this category [DoDD 8500.1, para
4.17].

Assuming that a Software Assurance Case is the primary mechanism for establishing the measure of acceptable
confidence, one can use the CC EAL as a comparison in asserting a level of assurance. The delta is the change
that is needed to attain the appropriate level of confidence stated in the assurance case argument.

Protection Profiles are implementation independent statements of security requirements that address threats
that exist in a specified environment. Protection Profiles could be used in creating a specification for secure
software as a basis of acquisition. Also see [DoDI 8500.2, para 5.6.3] and [CC 2005, Part 1, section 8 and
Annex B]. The Software Assurance Case uses the specification (among other items) in forming its arguments
and identifying the supporting evidence [CC, 1999, pp. 11-12].

13.5.4 Software Assurance Measures and Metrics in the Acquisition
Process

Measures and metrics in the acquisition process usually are used to determine whether the supplier is
performing adequately under a contract. There are no known predictive measures for software assurance. See
Section 8, Verification, Validation, and Evaluation, for more on measures. Suggestive measures include but are
not limited to, counts of vulnerabilities created and discovered and process measures (i.e., measuring the
supplier’s training and fidelity in following them), etc. The acquirer needs to select measures based on the level
of trust that is needed for different parts of the software. The measures and metrics should be determined in
part by the Software Assurance Case.

In that measures and metrics used for software assurance may be a subset of a contract’s
measurement program, the acquirer/supplier should incorporate them into the larger acquisition
measurement method/system used by the acquirer’s organization. The following are among the
methods that one might explore for use in the measurement of contract performance:

 Service Level Agreements (SLA) are suggestive of a method for expressing and contractually
agreeing to specific measures of performance. [Gaines & Micahel 2005] suggests using SLAs for
software development and [Rasmussen 2005] suggests SLAs for software assurance contract
requirements.

 Earned Value Management Systems (EVMS) are defined in [ANSI/EIA 748-1998], an industry
standard that the US federal government requires internally and of its suppliers. EVM is a tool that
provides visibility into contract technical, cost, and schedule planning, performance, progress [DoD
EVMS 2005, pp. 1-3]. The US federal government requires using EVMS in many of its contracts
[OMB A11, Part 7, pp. 3, 5, 14, 26, and Exhibit 300]. If EVMS is used, the acquirer should ensure
that software assurance is included.

 For other suggestive measurement models that may be relevant to software assurance see [NIST
Special Pub 800-55], [CJCSI 3401.03A], [MOD Def Std 00-42, Part 3, 2003], and [Murdoch 2005,
sections 6, 7, and 8].

13.5.5 Software Assurance Language for a Statement of Work to
Develop Secure Software, Including Incentives

The written request for proposals should include a statement of requirements. The statement of requirements is
often called a Statement of Work (SOW), Statement of Objectives (SOO), Work Statement (WS), or
Performance-Based Work Statement (PBWS). The work statement could include requirements for software
certification and accreditation (see “System Accreditation and Auditing Needs,” “Design Reviews for
Security,” “System Accreditation,” and “Recertification and Accreditation” sections), personnel software

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

205

assurance education and training programs, software assurance case, verification and validation for software-
related security, software assurance plan, software architecture (with security controls included), and minimum
software-related security measures and countermeasures, etc. The statement of work might also specify
required standards [See FAR 11.102 as an example of required use of Federal Information Processing
Standards Publications.] As another example, FAR 39.101(d) requires US federal agencies to include
“appropriate information technology security policies and requirements” when acquiring information
technology. Appendix A includes notional language for a statement of work. The sample is not intended to be
all inclusive. Rather, the sample is intended to motivate thought on what might be included.

Also see [FAR Subpart 11.2] and [MIL-HDBK-245D, figure 1 and para 3.6].

13.5.6 Develop Software Assurance Language for a Statement of
Work to Acquire COTS or Commercial Items

Acquirers (and suppliers) are motivated to use COTS software (e.g., cost savings, time savings, etc.). This
motivation may be counter to software assurance – so when given a choice and if the risk of COTS integration
is not acceptable, software assurance should take precedence over COTS. Purchasing COTS or commercial
software items or products exposes an organization’s information infrastructure to malicious attacks from
intentional or unintentional vulnerabilities (e.g., backdoors, malicious code, etc.). Also, the acquirer does not
normally have access to the COTS source code, resulting in acquirer’s inability to evaluate the COTS in the
same manner in which organically developed software is evaluated for security vulnerabilities. To minimize
the potential of damage because of poor software assurance practices, provisions can be included in the
statement of work or in terms and conditions (see “Software Assurance Terms and Conditions” in this section)
that requires the software vendor to include statements of assurance against unintentional and intentional
vulnerabilities and provide warranties to support those assurances. Also, see [NIST Special Pub 800-64, Rev.
1, Appendix B].

In cases where commercial software products are security enabled [NSTISSP No. 11], countries or
organizations may establish their own security evaluation process. An example of this is the US government’s
NIAP for the Evaluation of Commercial Off-The-Shelf (COTS) Security Enabled Information Technology
Products. See [NIST Special Pub 800-23], [NSTISSP No. 11, para (5) through (11)], and [NSTISSAM
INFOSEC/2-00]. This program evaluates and accredits security-enabled information technology products
(including software products) at licensed/approved evaluation facilities in the US or in other countries
participating in the Common Criteria Recognition Arrangement (CCRA) for conformance to the Common
Criteria for IT Security Evaluation (ISO Standard 15408). The Common Criteria certificates issued to those
software products apply only to the specific versions and releases of those products. These certificates do not
endorse the “goodness” of a product, but, rather, represent the successful completion of a validation that the
product met Common Criteria requirements for which it was evaluated/tested [CCEVS 2005].

13.5.7 Software Assurance Language for the Instructions to
Suppliers

In addition to the statement of work, the organization should also include instructions on the information the
supplier must submit to enable the organization to evaluate the supplier’s proposal for developing the (secure)
software [FAR 15.204(b)]. These instructions may include what to submit to answer foreign ownership, control
or influence (FOCI) concerns, the content of the initial Software Assurance Case and the initial Software
Assurance Plan, and the content for the initial software architecture.

See Appendix B for notional language. The sample is not intended to be all inclusive. Rather, the sample is
intended to motivate thought on what can be included.

13 Acquiring Secure Software

206

13.6 Preparation of Response--Supplier

13.6.1 Scope
The response to a request for proposals should reflect the software assurance capabilities that have been
specified in the terms and conditions, statement of work, and evaluation factors, including the incorporation of
an assurance case.

The supplier must submit adequate information in response or risk being eliminated from the competition. If
any questions exist on the meaning of the instructions, suppliers should not hesitate to request clarification.
The request for clarification must be clear and comprehensive to minimize subsequent requests for
clarification.

Also, as a word of caution, the acquirer may request software assurance-related information that is evaluated as
a “go or no-go” factor. This means that the supplier must adequately address software assurance in the first
round or face elimination from the competition. Acquirers often use this kind of factor as a first order of
eliminating suppliers. If this technique is used, suppliers must take extreme care in providing adequate
information regarding software assurance in the initial. Also, see Section 13.7, Source Selection – Acquirer.
and the references noted in Section 13.5, Request for Proposals-Acquirer.

13.6.2 Initial Software Architecture
A software architecture is a design plan that assigns and portrays roles and behavior among all IT assets.
Software-related security-related roles and behaviors must be integrated into the overall software architecture
in a manner that facilitates the software assurance case. Also, see relevant software architecture references. See
[Hofmeister 2000] and [Bass 1998] for software architecture concepts. [Hofmeister 2000, para 1.2.2] identifies
a suggestive model for creating different views (conceptual, module, and execution) and suggests engineering
questions that should be answered by each view. Software assurance questions that need to be answered by the
software architecture can be added to the list for each view.

13.6.3 Initial Software Assurance Plan
During the acquisition/supply of software, there are a myriad of plans required to ensure quality,
security/safety, timely delivery within cost, and appropriate engineering practices are used. These plans include
the Software Development Plan (reflects security requirements and assurance-oriented activities including
assurance case); Project Risk Management Plan; Software Test Plan (software-related security vulnerability
testing, user testing, stress testing and/or IV&V); Systems Engineering Plan; Project Quality Assurance Plan;
Project Configuration Management Plan; Project Training Plan; Project Information Assurance or Security
Plan; Project Incident Response Plan; and Software Contingency Plan. Also, see ISO 15026.

Acquirers/suppliers may opt to include appropriate software assurance items in those plans or opt to develop a
stand-alone plan. The acquirer may require a supplier to submit an initial Software Assurance Plan as a part of
the proposal. If this is the case, the winning supplier will likely be expected to refine the initial plan throughout
the life cycle of the software effort. The contents of a Software Assurance Plan may include but is not limited
to the following:

 Plan Purpose and Scope.

 Software Systems Identification and Description.

 Software Assurance Manager: Name of person responsible for software assurance.

 Software Staff Qualifications: Names, education, experience related to software development and
software-related security.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

207

 Software-related security Risks and Mitigation: Identification of vulnerabilities and risks associated
with the development and deployment of software and the steps that will be taken to mitigate those
risks. These include risks across the entire lifespan of the software and address the software and its
environment, including the security of and within its development environment.

 Software Assurance Case (security and possibly other dependability-related) goals, structure,
arguments, and evidence).

 Software Assurance Case Management: Include a discussion on the contents of the case, how the case
will evolve and be managed throughout the software development life cycle, configuration
management of the case, verification, validation, and evaluation of software-related security.

 Software Assurance Life Cycle: Include software assurance tasks, products, and
documentation/records by phase.

 Software Assurance Case Management: Include a discussion on the contents of the case, how the case
will evolve and be managed throughout the software development life cycle, configuration
management of the case, verification, validation, and evaluation of software-related security.

 Software Requirements and Traceability: Include a discussion on traceability management to include
protection of the software.

 Tool Support (special or unique software assurance modeling and simulation).

 Subcontract Management (special or unique software assurance requirements).

 Process and Product Certification.

13.7 Source Selection–Acquirer

13.7.1 Scope
This subsection includes considerations and issues related to software assurance in selecting a supplier. See
[FAR Subpart 15.3] for notional source selection processes and techniques.

13.7.2 Develop Software Assurance Evaluation Criteria
Evaluation criteria are included in the Request for Proposals and are used to determine the best supplier for the
job. Therefore, to distinguish clearly the best fit for the job, only significant factors and significant subfactors
should be included [see FAR Subpart 15.204(c) and FAR Subpart 15.304]. When software-related security or
assurance is an issue, ensuring their serious consideration during evaluation implies including a software
assurance criterion that is no less than a significant subfactor. The software assurance evaluation criterion
might include (but not be limited to) the quality of the software assurance case, quality of the software
assurance plan and architecture, experience in developing secure software (or experience in integrating secure
software components), past software assurance performance under similar acquisition efforts, training program
for secure software, quality of personnel and software-related security expertise, and quality of software
assurance integrated within other management and technical considerations. Any element of an appropriate
assurance case is relevant here – see section 3.3.6.

Another consideration would be to include critical software assurance factors as “go no-go” factors. In other
words, the supplier’s proposal for software assurance considerations is either acceptable or not acceptable at
the outset. If not acceptable, then the supplier is no longer considered in the competition.

For addition information in constructing evaluation criteria see [ANSI/PMI 99-001-2004, section 12.2.3.2],
[[DAU (SEF) 2001, p. 197-200] and [DoD PMI 2003, section 12.2.3].

13 Acquiring Secure Software

208

13.7.3 Software Assurance in the Source Selection Plan
A Source Selection Plan guides the source selection process. The plan includes roles and responsibilities of the
source selection team, a description of the process to be followed, and the evaluation criteria with specific
instructions on how to perform the evaluation against the criteria. Also, see [DAU (SEF) 2001, p. 197-200] for
general information on source selection plans.

Assuming that one of the significant factors or subfactors is software assurance considerations, the acquirer
should ensure that an individual experienced in software assurance as it relates to the specific acquisition is
part of the source selection team.

13.8 Contract Negotiation and Finalization

13.8.1 Scope
This subsection includes the discussions between acquirer and supplier and their finalizing contract
requirements, terms, and conditions [see FAR 15.306].

13.8.2 Contract Negotiations
During negotiations, both the acquirer and supplier give and take on requirements, terms, and conditions. It is
important that the give and take on software assurance requirements, terms, and conditions do not compromise
the ultimate assurance goals or the specific critical assurance goals for the software intensive system.

The acquirer may find that contractors will push back on the software assurance requirements because the
contractor may not be fully competent to do the job or willing to take the risk. The acquirer may find that
suppliers may over bid because of the perceived risk and doing something they have never done. The acquirer
should consider share-in-savings (savings as a result of implementing software assurance requirements as
stated). The sharing includes not only costs and benefits but also the willingness to afford the supplier more
time to engage in the education and training that is needed. An alternative would be to consider a contract type
that shifts the burden of some of the risk to the acquirer and/or provide additional cost or performance
incentives [see FAR Subpart 16.1 and FAR Subpart 16.3].

13.9 Project/Contract Management – Acquirer/Supplier

13.9.1 Scope
The subsection discusses the acquirer and supplier considerations and issues in integrating and managing
software assurance during the project/contract.

Also see [ANSI/PMI 99-001-2004, Chapter 4] and [DoD PMI 2003, Chapter 4] for general project integration
tips. These tips would also apply to integrating software assurance into the overall software-intensive system
project.

13.9.2 Project/Contract Management
The acquirer and supplier should consider a separate plan for overseeing software assurance-related reviews
and audits, including oversight of any sub-contract management activities. In addition, the acquirer must
ensure that competent software assurance professional(s) oversee the supplier’s delivery of software assurance.
The supplier must ensure that competent software assurance professional(s) oversee their software assurance
requirements delivery as well as oversee the competence of software professionals who provide software

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

209

assurance capabilities under the contract. In addition, software assurance management should play a significant
role in overall project management.

The following should be considered in overseeing software assurance delivery:

 How frequently will the supplier provide assurance statements and an updated Software Assurance
Case? How will the updated Software Assurance be evaluated?

 If a software assurance SLA is used (see Section 13.5.4, Software Assurance Measures and Metrics
Process), how will performance be evaluated?

 If an EVMS is used, how is software assurance incorporated?

 What role does software assurance play in software certification and accreditation?

 How will the software system’s architecture be managed and what will be reviewed from a software
assurance perspective?

 How often will the software risk management plan be updated and software assurance risks
evaluated?

 What is the mechanism for elevating software assurance issues? Is there an issues resolution
plan/process?

 Under what circumstances will software assurance intelligence updates (FOCI review) be conducted?

 If corrective actions are needed in software assurance, how will these be monitored?

 If a share-in-savings is negotiated, how will software assurance savings be measured and the supplier
rewarded?

 If software assurance experience is important, how will the experience level be monitored? Will key
software personnel be required and how will this be monitored? If a software assurance training
program is required, how will this be monitored?

 What will be the involvement in testing?

13.10 Further Reading

13.10.1 General
[Abadi 2003] M. Abadi, “Built-in Object Security”, Proceedings: European Conference on Object

Programming (ECOOP) 2003, Darmstadt, Germany, July 2003

[Anderson 2001] R. Anderson. Security Engineering, “A Guide to Building Dependable Distributed
Systems,” Wiley Computer Publishing, 2001.

[Berg 2007] Berg, Ryan, “Secure at the Source:: Implementing Source Code Vulnerability Testing in the
Software Development Life Cycle” Ounce Labs, 2007, Accessed 8/31/2007
http://www.ouncelabs.com/abstracts/Software-Security-Testing-SDLC.asp

[Boehm 2000] Boehm, B. and Basili, V.R., "Gaining Intellectual Control of Software Development."
IEEE Computer Vol. 33, No. 5, May 2000, pp. 27-33

[CASIS3 2004] Third Annual Conference on the Acquisition of Software-Intensive Systems, sponsored by
the Software Engineering Institute (SEI) and the Office of the Under Secretary of Defense
(Acquisition, Technology, and Logistics), Defense Systems, Software-Intensive Systems, January 26-
28, 2004. Available at http://www.sei.cmu.edu/products/events/acquisition/2004-presentations/

13 Acquiring Secure Software

210

[DACS API] DACS Gold Practice, Acquisition Process Improvement. Available at
http://www.goldpractices.com/practices/api/

[Falcarin 2003] Falcarin, Paolo and Maurizio Morisio, “Developing Secure Software and Systems”
Special Issue on security software, Software Practice and Experience, vol. 33, issue 5, 2003

[Francic 2005] Francis, Bob, “Security Vendors Respond to Heightened Concerns,” InfoWorld, June 20,
2005, Accessed 8/14/2007, http://akamai.infoworld.com/article/05/06/28/HNsecprod_1.html

[Gamble 2005] Gamble, M. T, R. Gamble and M. Hepner. “Understanding Solution Architecture
Concerns,” Proceedings: 2nd international workshop on Models and processes for the evaluation of
off-the-shelf components, ACM Press, New York, NY, 2005

[GAO 2004] GAO, Defense Acquisitions: Stronger Management Practices Are Needed to Improve DoD’s
Software-Intensive Weapon Acquisitions, GAO Report GAO-04-393, March 2004. Available at
http://www.gao.gov/new.items/d04393.pdf.

 [Giorgini 2006] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements Engineering for
Trust Management: Model, Methodology, and Reasoning. International Journal of Information
Security, 2006

[Jacobson 1998] Jacobson, Ivar, Martin Griss, and Patrik Jonsson, “Software Reuse: Architecture, Process,
and Organization for Business Success”, Addison Wesley, 1998.

[Lodderstedt 2002] Lodderstedt, T, D. A. Basin, and J. Doser, “SecureUML: A UML-based Modeling
Language for Model-Driven Security” Proceedings: UML 5th International Conference, Dresden,
Germany, 2002

[Massacci 2006] Massacci, F. and N. Zannone, “Detecting Conflicts between Functional and Security
Requirements with Secure Tropos: John Rusnak and the Allied Irish Bank” Technical Report DIT-06-
002, University of Trento, 2006

[NASA 1989] NASA Software Assurance guidebook, NASA GSFC MD, Office of Safety and Mission
Assurance, 1989

[NCSC 1994] National Computer Security Center, “A Guide to Procurement of Single and Connected
Systems,” NCSC Technical Report-004, July 1994

[Turner 2002] Turner, R.G., Implementation of Best Practices in U.S. Department of Defense Software-
Intensive System Acquisitions, Ph.D. Dissertation, George Washington University, 31 January 2002.
Available at http://www.goldpractices.com/survey/turner/index.php.

13.10.2 OTS
[Anderson 2002] Anderson, Tom, Mei Feng, Steve Riddle, Alexander Romanovsky, “Protective Wrapper

Development: A Case Study, School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne, 2002

[Bishop 2001] Bishop, Peter, Robin Bloomfield, Tim Clement, Sofia Guerra, “Software Criticality
Analysis of COTS/SOUP, Adelard, London, 2001

[Butertre 1997] Dutertre, B, “A Study of COTS and Component Integration for Safety Critical Systems”,
Technical report, UK Ministry of Defense (MOD) Task Report, August 1997

[C. Guerra 2003] P. A. de C. Guerra, C. Rubira, A. Romanovsky, R. de Lemos, “Integrating COTS
Software Components into Dependable Software Architectures”, Proceedings: 6th IEEE International

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

211

Symposium on Object-Oriented Real-Time Distributed Computing (ISORC'03). Hokaido, Japan. May
2003

[Cooper 2005] Cooper, Kendra and Lawrence Chung “Managing Change in an OTS-aware Requirements
Engineering Approach,” Proceedings: 2nd international workshop on Models and processes for the
evaluation of off-the-shelf components, ACM Press, New York, NY, 2005

[Dawkins 2000] Dawkins, S., and S. Riddle, “Managing and supporting the use of COTS”, In F. Redmill,
T. Anderson (eds.), Lessons in System Safety: Proc. 8th Safety-Critical Systems Symposium, 2000

[Estublier 2001] Estublier, J., H. Verjus and P. Cunin, “Designing and Building Software Federations,”
Proceedings: 1st Conference on Component Based Software Engineering (CBSE), Varsovie, Poland,
2001

[Fenelon 1994] Fenelon, Peter and McDermid, John, “New Directions in Software Safety: Causal
Modeling as an Aid to Integration,” ASAM-II, High Integrity Systems Engineering Group,
Department of Computer Science, University of York, York, U.K., 1994

[Franch 2005] Franch, Xavier and Marco Torchiano, “Towards a Reference Framework for COTS-based
Development: A Proposal,” Proceedings: 2nd international workshop on Models and processes for
the evaluation of off-the-shelf components, ACM Press, New York, NY, 2005

[Gorton 2003] Gorton, Ian, Anna Liu and Paul Brebner, “Rigorous Evaluation of COTS Middleware
Technology” IEEE Computer Society, March 2003

[Goseva-Popstojanova 2001] Goseva-Popstojanova K and K.S. Trivedi, "Architecture-based approach to
reliability assessment of software systems" Performance Evaluation, v45 n2-3, July 2001

[Graland 1995] Garland, David, Robert Allen, and John Ockerbloom, “Architectural Mismatch or Why it's
hard to build systems out of existing parts.” Proceedings: 17th International Conference on Software
Engineering, ACM SIGSOFT, pages 179--185, Seattle, Washington, April 1995.

[IEEE 1998] IEEE Computer, “Special issue on COTS”, IEEE Computer, 31(6), 1998

[Jaccheri 2002] Jaccheri, L. and Torchiano, M, “Classifying COTS Products”, Proceedings: European
Conference on Software Quality, Helsinki, 2002

[Jilani 1998] Jilani, Labed L. and A. Mili, “Estimating COTS Integration: an Analytic Approach”,
Software Engineering Research Center (SERC), Ball State University, 1998

[Jones 2001] Jones, C, R E Bloomfield, P K D Froome and P G Bishop, “Methods for assessing the safety
integrity of safety-related software of uncertain pedigree (SOUP), UK Health and Safety Executive,
Adelard, London,2001

[Kapfhammer 2000] Kapfhammer, G., C. Michael, J. Haddox, R. Coyler, “An Approach to Identifying
and Understanding Problematic COTS Components,” Presentation: ISACC 2000, The Software Risk
Management Conference

[Kim 2001] Kim, Wook K. and Jongmoon Baik, “Dynamic Model for COTS Glue Code Development and
COTS Integration,” Raymond J. Madachy, Editor, “Software Process Dynamics” P.274, Wiley-IEEE
Press, 2001

[Kontio 1995] Kontio J. and R. Tesoriero, “A COTS Selection Method and Experiences of its Use”,
Proceedings, the Twentieth Annual Software Engineering Workshop, Greenbelt, Maryland,
November 1995

13 Acquiring Secure Software

212

[Kontio 1996] Kontio, Jyrki, “A Case Study in Applying a Systematic Method for COTS Selection”. In H.
Dieter Rombach, editor, Proc. 18th Int'l Conf. on Software Engineering (ICSE'96), Berlin, pages 201-
-209. ACM/IEEE-CS Press, N.Y., March 1996

[Kunda 1999] Kunda Douglas and Brooks Laurence, "Applying a Social-technical Approach for COTS
Selection," Proceedings: 4th UKAIS Conference, University of York, McGraw Hill. April 1999

[Lutz 1993] Lutz, R, "Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems,"
Proceedings of the IEEE International Symposium on Requirements Engineering, Jan 1993, pp. 126-
133

[McIlroy 1968] McIlroy, M.D, “Mass Produced Software Components,” In P. Naur and B. Randel, editors,
NATO Conference on Software Engineering. NATO Science Committee, October 1968

[Meyer 1992] Meyer B, “Programming by Contract” In D. Mandrioli, B. Meyer (eds.), Advances in
Object-Oriented Software Engineering. Prentice Hall, 1992

[Mohamed 2005] Mohamed, Abdallah, Guenther Ruhe, Armin Eberlein, “Decision Support for
Customization of the COTS Selection Process,” Proceedings: 2nd international workshop on Models
and processes for the evaluation of off-the-shelf components, ACM Press, New York, NY, 2005

[Morisio 2000] Morisio, M, Seaman, C. B., Parra, A. T., Basili, V. R., Kraft, S. E., and Condon, S. E.,
“Investigating and Improving a COTS-Based Software Development Process” Proceedings: 2000
International Conference on Software Engineering. ACM, New York, 2000, 32-41.

[Morisio 2002] Morisio, M, C. B. Seaman, V. R. Basili, A. T. Parra, S. E. Kraft, and S. E. Condon.
“COTS-based Software Development Processes and Open Issues”, The Journal of Systems and
Software, 61(3):189--199, 2002

[Murray 2005] Murray, John F, “Guidance for Industry - Cybersecurity for Networked Medical Devices
Containing Off-the-Shelf (OTS) Software,” U.S. Department of Health and Human Services, January
14, 2005

[Ochs 2000] Ochs, M.A, Pfahl, D.; Chrobok-Diening, G.; Nothhelfer-Kolb, B, “A COTS Acquisition
Process: Definition and Application Experience,” Proceedings of the 11th ESCOM Conference,
Shaker, Maastricht, 2000. Pp.335-343

[Réquilé-Romanczuk 2005] Réquilé-Romanczuk, Annya, Alejandra Cechich, Anne Dourgnon-Hanoune
and Jean-Christophe Mielnik, “Towards a Knowledge-based Framework for COTS Component
Identification ,” Proceedings: 2nd international workshop on Models and processes for the evaluation
of off-the-shelf components, ACM Press, New York, NY, 2005

[Solberg 2001] Solberg, Håkon and Karl Morten Dahl, "COTS Software Evaluation and Integration
issues" Norwegian University of Technology and Science, SIF8094, Software Engineering, Project,
November 2001 Accessed 8/31/2007
http://citeseer.ist.psu.edu/cache/papers/cs/24138/http:zSzzSzwww.idi.ntnu.nozSzgrupperzSzsuzSzsif8
094-reportszSzp14.pdf/solberg01cots.pdf

[Stavridou 2007] Stavridou, Victoria, “COTS, Integration and Critical Systems,” SRI International,
Accessed 8/31/2007,
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/823/http:zSzzSzwww.csl.sri.comzS
zdsazSz.zSzpubliszSziee.pdf/cots-integration-and-critical.pdf

[Torchiano 2002] Torchiano, Morisio, M. "Definition and Classification of COTS: a proposal"
Proceedings, International Conference on COTS Based Software Systems (ICCBBS), Orlando (FL),
February 2002

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

213

[Torchiano 2002a] Torchiano, Marco, Letizia Jaccheri, Carl-Fredrik Sørensen and Alf Inge Wang, “COTS
Products Characterization” Proceedings” 14th International Conference on Software Engineering and
Knowledge Engineering (SEKE'02), 2002

[Voas 1996] Voas, J, F. Charron, K. Miller, “Robust software interfaces: Can COTS--based systems be
trusted without them?” Proceedings: 15th International Conference, Computer Safety, Reliability, and
Security (SAFECOMP'96), 1996, pp. 126-135

[Voas 1998] Voas, J, “Certifying Off-The-Shelf Software Components”, IEEE Computer, 31(6), 1998, 53-
59.

[Voas 1998a] Voas, J, “The Challenges of Using COTS Software in Component-Based Development,”
IEEE Computer, 31(6):44-45, June 1998. 21

[Yacoub 2000] Yacoub, Sherif, Ali Mili, Chakri Kaveri and Mark Dehlin, “A Model for Certifying COTS
Components for Product Lines” Proceedings: First Software Product Line Conference, Denver,
August, 2000

13.10.3 Software Security Accreditation and Certification
[Casey 1988] Casey, T., Vinter, S., Weber, D., Varadarajan, R., and Rosenthal, D, “A Secure Distributed

Operating System,” Proceedings: Symposium on Security and Privacy, April 1988, IEEE Computer
Society, pp. 27—38

[Denning 1977] Denning, D.E, and P.J. Denning,”Certification of Programs for Secure Information Flow.
Communications of the ACM, 20(7):504–513, 1977

[DoD 1985] DoD 5200.28-STD, "Department of Defense Trusted Computer System Evaluation Criteria,"
December 26, l985

[Feiertag 1977] Feiertag R. J., K. N. Levitt, and L. Robinson, “Proving Multi-Level Security of a System
Design, Proceedings: Sixth ACH Symposium on Operating Systems Principles, November 1977, 57-
65.

[Feiertag 1979] R. J. Feiertag and P. G. Neumann, “The Foundations of a Provably Secure Operating
System (PSOS),” Proceedings, American Federation of Information Processing Societies (AFIPS),
National Computing Conference (NCC 79), pages 329--334, New York, NY, USA, June 1979

[Neumann 2003] Neumann, P.G, and R.J. Feiertag, “PSOS revisited,” Proceedings: 19th Annual
Computer Security Applications Conference (ACSAC 2003), Las Vegas, December 2003

[Neumann 2003a] Neumann P.G, “Principled Assuredly Trustworthy Composable Architectures,” Final
report, SRI Project 11459, Computer Science Laboratory, SRI International, Menlo Park, California,
2003

[NIST 1981] Federal Information Processing Standard (FIPS) Publication 74, “Guidelines for
Implementing and Using the NBS Data Encryption Standard,” National Institute of Standards and
Technology, April, 1981

[NIST/NSA 1992] NIST/NSA, “Federal Criteria for Information Technology Security: Volume 1:
Protection Profile Development,”. National Institute of Standards and Technology & National
Security Agency, Fort Meade, MD, December 1992.

[Pfleeger 1988] Pfleeger, C., and Pfleeger, S, “A Transaction Flow Approach to Software Security
Certification for Document Handling Systems”, Computers and Security 7, 5 (October 1988), 495—
502

13 Acquiring Secure Software

214

[Rushby 1993] Rushby, John, “Formal Methods and the Certification of Critical Systems”, Technical
Report, Computer Science Laboratory, SRI International, Menlo Park CA, December 1993

[Zheng 2005] Zheng, Jiang, Brian Robinson, Laurie Williams and Karen Smiley, “A Process for
Identifying Changes when Source Code is not Available ,” Proceedings: 2nd international workshop
on Models and processes for the evaluation of off-the-shelf components, ACM Press, New York, NY,
2005

13.10.4 Secure Requirements Approaches
[Alberts 2001] Alberts, Christopher J, Audrey J. Dorofee and Julia H. Allen, “OCTAVE Catalog of

Practices, Version 2.0,” Technical Report, CMU/SEI-2001-TR-020, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa. October 2001

[Arnab 2004] Arnab Ray, Bikram Sengupta, and Rance Cleaveland, “Secure Requirements Elicitation
through Triggered Message Sequence Charts”, Lecture Notes in Computer Science Springer Berlin /
Heidelberg, 2004

[Biskup 1998] Biskup, J, U. Flegel, and Y. Karabulut, “Secure Mediation: Requirements and Design,”
Proceedings: 12th Annual IFIP WG 11.3 Working Conference on Database Security, Chalkidiki,
Greece, July 1998

[Ellison 1997] Ellison, R.J.; Fisher, D.; Linger, R.C.; Lipson, H.F.; Longstaff, T, and Mead, N.R.
“Survivable Network Systems: An Emerging Discipline”, Technical Report (CMU/SEI-97-TR-013):
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 1997
[Linger 2002] Linger, Richard C. Howard F. Lipson, John McHugh, Nancy R. Mead and Carol A.
Sledge, “Life-Cycle Models for Survivable Systems” Technical Report, CMU/SEI-2002- Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, October 2002

[Ellison 2002] Ellison, Robert J. and Andrew P. Moore, “Trustworthy Refinement Through Intrusion-
Aware Design (TRIAD),” Technical Report, CMU/SEI-2003-TR-002, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, October 2002 (Revised March 2003)

[Ellison 2004] Ellison, Robert J, Andrew P. Moore, Len Bass, Mark Klein and Felix Bachmann, “Security
and Survivability Reasoning Frameworks and Architectural Design Tactics”, Technical Note,
CMU/SEI-2004-TN-022, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
September 2004

[Hartson 1980] Hartson, H. Rex, “Architectural Approaches to Secure Databases”, ACM SIGSMALL
Newsletter, Volume 6, Issue 1, June July 1980, pp. 16-24

[Leveson 1994] Leveson, N. G, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese, “Requirements
Specification for Process Control Systems” IEEE Transactions on Software Engineering, 20(9):684--
707, September 1994

[Linger 1997] Linger, R.; Mead, N.; Lipson, H, “Requirements Definition for Survivable Network
Systems”, 1997, Accessed 8/31/2007, http://www.cert.org/research

[Mead 2003] Mead, Nancy R, “Requirements Engineering for Survivable Systems”, Technical Note,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, CMU/SEI-2003-TN-013,
September 2003

[Rosum 1992] Rozum, James A, “Software Measurement Concepts for Acquisition Program Managers”
Technical Report, CMU/SEI-92-TR-11, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa. 1992

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

215

[Serpanos 2002] Serpanos, D.N and Voyiatzis, A.G,”Secure Network Design: A Layered Approach,
Proceedings: The 2nd International Workshop on Autonomous Decentralized System, Volume, Issue,
6-7 Nov. 2002 Page(s): 95 - 100

[Thompson 1999] Thompson, J. M., M.P.E. Heimdahl, and S. P. Miller, “Specification-Based Prototyping
for Embedded Systems”, Proceedings: 7th Embedded Systems Expo (EXEC/FSE), September 1999

13.10.5 Acquisition Risk Management
[Ketchenham 1996] Kitchenham, Barbara, Pfleeger, Shari Lawrence, Software Quality: The Elusive

Target, IEEE Software 13, 1 (January 1996) 12-21

[Lutz 2000] Lutz, R, “Software Engineering for Safety: A Roadmap,” in A. Finkelstein, editor, “The
Future of Software Engineering.” ACM Press, New York, 2000

[Mazzanti 1995] Mazzanti, F, “Coding Regulations for Safety Critical Software Development,” 2nd IEEE
Software Engineering Standards Symposium, 1995, p. 134

[Rosenberg 1998] Rosenberg, Linda H, Theodore Hammer and Jack Shaw, “Software Metrics and
Reliability,” Proceedings: 9th International Symposium on Software Reliability Engineering,
Paderborn Germany, 1998

[Rosenberg 1999] Rosenberg, Linda H, Theodore Hammer and Albert Gallo,”Continuous Risk
Management at NASA,” Proceedings: Quality Week Conference, San Francisco, California, May
1999

13.10.6 Reusable Software in the Acquisition Process
[Eisner 1995] Eisner, H., “Reengineering the Software Acquisition Process using Developer off-the-shelf

Systems (DOTSS)”, IEEE International Conference on Intelligent Systems for the 21st Century,
Volume 5, Issue, 22-25 Oct 1995 Page(s):3971 - 3976

[Giaria 2000] Giaria, A.J, “Codifying ATS Software Components for Acquisition and Procurement
Proceedings: AUTOTESTCON 2000, IEEE 2000 Page(s):56 - 67

[Kontio 1995] Kontio, Jyrki, "OTSO: A Systematic Process for Reusable Software Component Selection",
University of Maryland, Technical report, December 1995

[SEI 2007] Software Acquisition Pilot Studies, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2007, Accessed 9/1/2007 http://www.sei.cmu.edu/programs/acquisition-
support/pilot-intro.html

13 Acquiring Secure Software

216

13.11 Appendices

13.11.1 APPENDIX A:
NOTIONAL Language for the Statement of Work

1.0 “1.0 Secure Software”2

1.1 Key definitions:

1.1.1 “Secure software” means “highly secure software realizing – with justifiably high confidence
but not guaranteeing absolutely – a substantial set of explicit security properties and
functionality including all those required for its intended usage.” [Redwine 2004, p. 2] One
can also state this in a negative way as “justifiably high confidence that no software-based
vulnerabilities exist that the system is not designed to tolerate.” That definition incorporates
the appropriate software-related security controls for a software intensive system’s security
category to meet software-related security objectives.

1.1.2 “Software-related security controls” mean the management, operational, and technical
controls (i.e., safeguards or countermeasures) prescribed for a software information system to
protect the confidentiality, integrity, and availability of the system and its information.

1.1.3 “Security category” means the characterization of information or an information system
based on an assessment of the potential impact that a loss of confidentiality, integrity, or
availability of such information or information system would have on organizational
operations, organizational assets, or individuals.

1.1.4 “Software-related security objectives” means confidentiality, integrity, availability,
authenticity, accountability, and non-repudiation.

1.1.5 “Software assurance case” means a reasoned, auditable argument created to support the
contention that the defined software-intensive system will satisfy software-related security
requirements and objectives.

1.1.6 Include other appropriate definitions--

1.2 Security Category [NOTE: This is an example, also see FIPS Pub 199 and DoDI 8500.2, Enclosure
4.]:

1.2.1 This software system is used for large procurements in a contracting organization and
contains both sensitive and proprietary supplier information and routine administrative
information. For the sensitive supplier information, the potential impact from a loss of
confidentiality is moderate (e.g., the loss may result in a significant financial loss), the
potential impact from a loss of integrity is moderate (e.g., the loss may result in the
effectiveness of the contracting mission is significantly reduced and there is significant
damage to the information asset), the potential impact from a loss of availability is low (e.g.,
the loss may result in downtime, but there is backup). For the routine administrative
information, the potential impact from a loss of confidentiality is low, the impact from a loss
of integrity is low, and the impact from a loss of availability is low.

1.2.2 Based on 2.1, the resulting security category of the software system is {(confidentiality,
moderate), (integrity, moderate), (availability, low)}

1.3 Software-related security Requirements. Based on the security category for the software system, the
minimum security requirements specified in [NOTE: Reference the external document(s)] are
required.

2 This language is provided to provoke thought and has not been reviewed by attorneys for its efficacy.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

217

(NOTE: Minimum security controls may be specified in this paragraph or in an external document
similar to FIPS Pub 200; NIST SP 800-53; and DoDI 8500.2, Enclosure 4].

1.4 Software Assurance Case. The contractor shall refine the Software Assurance Case throughout the
development process. This assurance case should be based on the software-related security
requirements. The contractor shall submit the case for review – [NOTE: Specify when the case
should be reviewed, such as when submitting the software design, etc.] Lastly, the successful
execution of the Software Assurance Case shall be a condition for final acceptance of the software.

1.5 Auditing the Code. The supplier shall have an independent verification and validate (V&V)
performed on the code to determine the security posture of the code. This verification and validation
shall be performed by a qualified [NOTE: specify what “qualify” means] software assurance V&V
entity. [NOTE: Also see “Secure Software Verification, Validation, and Evaluation” section in this
CBK]

1.6 Software Assurance Practices. The supplier shall use software assurance practices in accordance with
[NOTE: either explain those practices or provide a reference document].

1.7 Software Assurance Plan. The supplier shall refine, throughout the life cycle of this software
development work, the Software Assurance Plan that was submitted with the supplier’s proposal. The
Software Assurance Plan shall be submitted to the acquirer [XX] days after each development
milestone for review. [NOTE: Include how often this should be delivered. As a suggestion, the
revisions to this plan should be submitted at key milestones. Such milestones might be after
requirements analysis, after software architectural design, after detailed software design, after coding
and testing. See the “Development” section in this CBK. Also, see ISO/IEC 12207, 5.3.] This plan
shall include but not be limited to: [State what is to be included. See Section 13.6, Preparation of
Response – Supplier in this section.]

1.8 Software Assurance Risk Management. The supplier shall maintain a formal software assurance risk
management program. Within [XX] days of the award of the contract, the supplier shall deliver a
Software Assurance Risk Management Plan to the acquirer for review. [NOTE: This could be a
section in the Software Assurance Plan.]

13 Acquiring Secure Software

218

13.11.2 APPENDIX B:
NOTIONAL3 Language for Instructions to Suppliers

2.0 Foreign ownership, control or influence (FOCI) is a concern. For any software product that the

supplier intends to acquire or develop, the supplier shall answer the following questions:

2.1 Need to develop questions

3.0 Software Assurance Case

3.1 In order for the acquirer to evaluate the proposed software assurance capabilities, the offeror must
submit an initial System Description and Software Assurance Case that addresses the required
security properties and functionality and the arguments and evidence (existing or proposed) that the
properties are preserved and all relevant laws, regulations, standards and other legal or societal
requirements are met, the organizational and system security policies are adhered to, and security
objectives are met for the software intensive system as specified in the statement of work and other
characteristics as specified in paragraph 2.2 below. This initial Software Assurance Case will
subsequently become a part of the contract and be used by the acquirer as an acceptance condition.

3.2 A software assurance case should present a convincing argument that the software intensive system
will operate in an acceptably secure manner. The case should present definitive evidence, supported
by process, procedure, and analysis, that a system and its software will be acceptably secure
throughout its life cycle, including termination. [See Fundamentals section’s subsection on Assurance
Case for a list of kinds of evidence might explicitly call for here.] The case should demonstrate that
within the totality of the environment in which the software will operate, any problems created by the
software itself failing to operate as required, have been identified and assessed and that any necessary
amelioration has been made. Subsequent to contract award, the contractor shall modify the case as
development progresses, and knowledge of the system and its software increases. All the lifecycle
activities, resources, and products, which contribute to or are affected by the security of the software,
also need to be covered by the case.

Similar to a risk analysis, the following questions are examples of what should be of interest, be
examined, and be analyzed through the use of the software assurance case:

a) How can a software-related security violations or failure occur?
b) What might the causes and conditions of the security violation or failure be?
c) What are the consequences of security violations or failure?
d) What is the level of criticality of the consequences?
e) How often is it likely that the security violation or failure will occur?

Software assurance cases are likely to contain significant numbers of complex inter-dependencies that
typically result from a wide range of related analyses. They often rest upon a number of explicit, as
well as implicit, assumptions and can have a long history, going through multiple versions in the
course of their production. Both product, process, and resource issues need to be addressed in the
case; it must be shown both that the system meets its software assurance requirements and that the
processes for deriving the requirements, constructing the system, and assessing the system are of
appropriate depth, breadth, and integrity. The analyses crucially depend upon the formulation of
suitable models of the system, at various levels of abstraction, produced during the development
process. Given these characteristics, it should be noted that software assurance cases are resource
intensive to create and support.

4.0 Initial Software Assurance Plan.

4.1.1 The supplier shall submit an initial Software Assurance Plan.

3 This language is provided to provoke thought and has not been reviewed by attorneys for its efficacy.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

219

4.1.2 The Plan shall include [NOTE: See “Preparation of Response – Supplier” in this section of
the CBK.]

5.0 Initial Software Description

5.1.1 The supplier shall submit an initial Software Architecture and such other description as
needed to provide a structure for the assurance case.

The Software Architecture shall include an initial description of the software components and
connector, including software-related security-related aspects. [NOTE: Include additional
explanation.]

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

221

14 Tips on Using this Body of Knowledge

14.1 Purpose and Scope
This section provides some suggestions on how one can use this document. The advice given is tentative, as
the document has not been widely circulated yet.

This section is not intended to replace professional knowledge or experience in curriculum development,
instruction, self-study, standards development, product evaluation or other areas of application. Rather, it
provides a high-level introduction, and combined with the references contained herein, can serve as a guide.

This document can be used by

 Educators – to influence and support curricula

 Trainers – to extend/improve contents of training of current workforce

 Acquisition personnel – as an aid in acquiring (more) secure software

 Evaluators and testers – to supplement content beyond what is covered in their current evaluations and
consider its implications for evaluations of persons, organizations, and products

 Standards developers – to encourage and facilitate inclusion of security-related items in standards

 Experts – to solicit feedback by way of suggested modifications or validation

 Practitioners – as a high-level introduction to field and a guide for learning

 Program managers – to understand software-related security and assurance, including alternative
approaches, risks, prioritization, and budget

After covering general considerations applicable to most users, educators and trainers are addressed
specifically. Because self-study shares many of the concerns of instructor-led learning, it is covered next.
Potential uses for developing curriculum, professional and product standards and guidelines are also covered.
The section closes with coverage of evaluation and testing, acquisition, and some final remarks encouraging
readers to share information about their experiences using this document.

While a number of experts in various areas may be quite capable of using this document without help, this
section is intended to provide ideas to anyone who wishes to use it.1

14.2 General Considerations
Users of this document have three audiences to consider: themselves, associates, and the users of their products
or services. Each audience has their own backgrounds and existing knowledge, capabilities, and motivations,
and each must start from where they are, which may or may not match the knowledge presumed in this
document. So let us first consider how to gain an adequate background in software engineering and security.

Some users of this document may simply need a refresher; some may come from backgrounds that do not
include software engineering. Some who work in network security or information assurance may fall into this
group. Even though many of these may have had instruction or experience in programming and software
engineering, it may have become dated. Some may have experience with deficient software production

1 Items in this section often reflect generally held opinions or individual experiences as selected by the author and editor. As
with all contents of this document, users must exercise their own judgment concerning them. See disclaimer on back of title
page.

14 Tips on Using this Body of Knowledge

dsfasdfTips on Using this Body of Knowledge

222

processes. Unfortunately, learning the basics of good software engineering is not trivial. While none of the
introductory software engineering textbooks currently reflect the complexities of real software production or
adequately cover software-related security, the seventh edition of [Sommerville 2006]has extensive coverage
of critical systems and has a subsection on security. Thus, it is a good place to start.

If on the other hand one needs an initial understanding of the wider field of computer security, [Anderson
2001] is probably the best first book for self-study (not a textbook).2 While it has more than 600 pages, it is
quite readable. If [Anderson 2001] it is simply too large, there are a number of shorter introductions to
computer security. Many references given in this document would be suitable as well.

Associates, such as fellow professors or standards developers, may not have the motivation or time to acquire
the needed background on their own. They may, on the other hand, already know some of what is covered in
this document and may simply need to review it.

Of course, preparing end-users of products and services such as students or standards users will vary. In some
cases, special effort may be needed to identify their background. For example, the amount of explanatory
material included in a product should vary depending on how knowledgeable the audience is.

The second important consideration is what the objective is in using this document. The scope – breadth and
depth – of the relevant knowledge heavily depends on these objectives and needs careful consideration,
particularly when motivation or resources are limited.

The third consideration is how to proceed from your current knowledge to the desired knowledge. Much of the
remainder of this section addresses this consideration for the different kinds of intended users of this document.

14.3 Use for Learning
This subsection covers the use of this document by educators in higher education, trainers of software
professionals as well as self-study by practitioners. Instructors should also refer to Subsections 14.3.3, Some
Topics that May Require Special Attention from Instructors, and 14.3.5 Education and Training Literature.

14.3.1 Use in Higher Education Instruction
Two approaches are suggested for incorporating knowledge areas described in this document:

1. Offering courses specific to software-related security and assurance

2. Covering software-related security and assurance throughout existing courses as it relates to the
particular subject being covered

Because of the nature of institutions of higher education and the need for learning on the part of instructors or
professors, the easiest first steps for most institutions and interested individuals would be to take the first
approach – establish separate courses. An early offering could be a course in secure software engineering with
an existing software engineering course as a prerequisite or a co-requisite.

Computer security courses have proven popular, but usually contain little of the software-oriented knowledge
identified in this document. Efforts to include an introduction to this material within such courses would
broaden students beyond network security and the assumption that software is simply a black box as well as
motivate students to take courses in secure software engineering. In any case, prerequisite (or, if properly
synchronized, co-requisite) introductory computer security courses can remove the need to teach basic security
concepts within secure software courses and provide students with a useful context.

2 Textbooks exist such as [Pfleeger 2003].

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

223

Likewise, introducing secure software engineering in traditional software engineering or programming courses
could motivate students to take specialized courses and give them a realization that in the “real-world”
software-related security is a common or “normal” concern. If using [Sommerville 2006]seventh edition, an
initial step might be to include the section on requirements for critical systems followed by the section on
security engineering.

If one takes the second approach of spreading security coverage throughout the curriculum, then the problem
of limited instructional time and student study time must be addressed. If security is added, what subject matter
will be removed? In addition, textbooks often do not explicitly cover it. This may not be as severe a problem as
one might think, particularly in beginning courses.

For instance, in programming courses much of what needs to be taught early is what not to do. This means
covering a smaller portion of languages such as C/C++ (better not to use early) or Java to avoid known
dangerous features or practices and to restrict use as much as possible to analyzable subsets. This could fit well
into existing approaches of teaching good style. A stronger step might be to use SPARK [Barnes 2003] or
Alloy [Jackson 2006] so tools can emphasize and aid correctness.

Concern for correctness in early (and, indeed, all) courses could be reinforced with an insistence that students
must be able to provide an argument or case for their program being correct that goes beyond evidence from
tests. These could include arguments about understandability, design, lack of dangerous features or poor
practices, explicitly knowing all the exceptions possible and avoiding or handing them, static analysis and
metrics, arguments analyzing explicitly what can be concluded from the tests, proof-like arguments or program
proofs, results of reviews, student history of correctness, and so on. More and more of these kinds of
arguments might be expected as students progress. See section 3.3.6 for other ideas.

Design courses could potentially benefit from two new books, [Berg 2005] (which has questions at ends of
chapters) and [Schumacher 2006]. Network programming courses might use an instructive article analyzing a
rewrite of sendmail in patterns and principles, [Hafiz 2004].

14.3.1.1 Graduate
Graduate programs face a variety of incoming students that can be addressed using the guidance for training
entry-level practitioners below. James Madison University, for example, has graduate students take an
introductory course on the software engineering life cycle including secure, software aspects resulting in a
common foundation for subsequent learning.

14.3.2 Using in Training
Training shares similar concerns as education but is more likely to focus on particular job roles or skills. Thus,
those interested in training would do well also to read the prior subsections in 14.3 Use for Learning.

14.3.2.1 General
Training is, of course, not just about the training sessions, but about proper tailoring to client and student needs
as well as ensuring successful on-the-job use of material, including follow-up. Beyond the training itself, key
factors in successful training includes fit to the organization, availability of on-the-job help and
reinforcement/enforcement, and support from co-workers and management.

One difference between education and training is less coverage of theory and abstract concepts in training.
Section 0Principles, contains a number of abstractions, but these probably all deserve coverage in training,
although depth of coverage might vary. Several books emphasizing coding practices give substantial coverage
to software system security principles (3.4), indicating the authors felt these are important for practitioners.
Among the fundamentals covered, however, the concrete aspects of items may not need to be covered if they
are not immediately relevant to the context of the training.

14 Tips on Using this Body of Knowledge

dsfasdfTips on Using this Body of Knowledge

224

The organization being trained might not use formal methods. This does not mean that individuals should not
be made aware of its existence and potential. In addition, arguments for agreement among descriptions, such as
specifications and design as well as the absence of certain information flows, are needed whether formal
methods are used as evidence or not.

The Secure Software Design, Section 6, also contains a significant number of more abstract concepts and
principles. Judgment is required in dividing instructor and student time among these and more concrete items
such as the security features of the framework the students use for their development, e.g. .net. Key architects
and designers, however, need to know and properly apply the design principles as well as the fundamental
principles mentioned above.

Most organizations producing substantial systems are integrating parts produced elsewhere. This means that
persons deciding what to obtain and use need to be aware of the issues covered in Section 13 Acquiring Secure
Software, and able to deal with the relevant issues that apply to free or open source and commercial software.

Instructional content that motivates and inspires is discussed below to emphasize the differences in
considerations between training entry-level and experienced practitioners and between existing and new
employees. Users of all subsections should also refer to subsections 14.3.3 Some Topics that May Require
Special Attention from Instructors, and 14.3.5 Education and Training Literature.

14.3.2.2 Entry-Level Practitioners versus Experienced Practitioners
Entry-level practitioners seldom have any significant knowledge or skill in secure software engineering or
assurance. Indeed, some computer science graduates may not have had even a single course of any kind in
software engineering, and most have no substantial education in computer security, although the latter is
rapidly improving for network security. Information systems graduates, and to a greater extent software
engineering graduates, may have more of a background in producing software systems, but these students add
to the variation in student backgrounds. Thus, training may need to begin with relevant aspects of software
engineering and most if not all training in secure software engineering must cover this in the beginning. On the
other hand, most will not have to unlearn incorrect notions about software-related security. Some
misconceptions may, however, exist, such as security simply being a matter of avoiding buffer overflows or
that poor software quality is inevitable.

Variation in the knowledge and skill of incoming students in software engineering for systems where safety
and security are not serious concerns is not a new problem. What is new is the variety of knowledge and skill
in security and secure software. In many instances, any variety in secure software knowledge can be
adequately dealt with by assuming students know nothing.

Entry-level practitioners are often new employees, and the next subsection will, therefore, be relevant. Entry-
level practitioners – as do new employees – generally have a greater willingness to learn and change. Training
entry-level practitioners is part of initiating them into the profession, and this is doubly so when training new
entry-level employees for an organization. Initiation rites (or rites of passage) generally have powerful effects
– good or bad – on future expectations and behavior and therefore need to be crafted with particular care.

Entry-level practitioners may have some software production job experience, such as being a summer intern.
Depending on the experience, this can be helpful, but it may also mean that the student now believes “real”
software development organizations are not rigorous about security or have misconceptions about what being
truly serious about security means.

The potentially wide variation among entry-level students makes the instructor’s job of establishing a common
foundation difficult. As mentioned above, facing a similar problem with students entering its MS in secure
software engineering, James Madison University has graduate students take an introductory course on the
software engineering life cycle, including secure software aspects resulting in a common foundation for

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

225

subsequent learning. To conserve resources, industry might chose to provide additional training only to those
who need it.

While training experienced practitioners benefits from their more extensive knowledge and skill derived from
real-world experience, this same experience may cause them to have more difficulty seeing the need for new
knowledge or skills and be less open to learning and change since much of industry today does not vigorously
address software-related security. While entry-level personnel may be willing to assume the trainer or
organizational management knows best what they need to learn, experienced personnel often are not willing to
make that assumption. This may require instructors to spend even more time on motivation and relevance.
Luckily, many examples exist to help with motivation. While others appear throughout the document, see
particularly Sections 2, Dangers and Damage, and 7, Secure Software Construction, as well as the trade press
and the places mentioned in 14.3.5.

Students will often know little about security or secure software. Prospective students need clear information
about not only the required prerequisite levels of experience, knowledge, and skill, but also the motivations,
benefits, goals, and content of the training. Even when prerequisite background and course objectives are
clearly stated, students may arrive with inadequate backgrounds or incorrect expectations. The instructor must
decide how to prepare for this. Techniques trainers already use for addressing this variety in other topics
should be applicable here as well. These problems may be more acute when training experienced practitioners
who are not all from the same specific organizational setting.

As we will see, some of the same factors mentioned in this subsection apply as well in the next subsection,
New versus Existing Employees.

14.3.2.3 New versus Existing Employees
Generally, new employees are more open to change than existing employees are. They are more accepting of
“This is the way we do things here.” In contrast, training existing employees is often in the context of trying to
change the organizations’ processes and face the problems of organizational change efforts – see Section 10.5,
Improving Processes for Developing Secure Software.

Instructor activities needed for successful training in an organizational context are described in [Delahaye
1998, p. 55],3 and will not be enumerated here. However, a substantial number of activities before and after
training sessions are just as essential to successful training as the training itself. As mentioned above, fit to the
organization, availability of on-the-job help and reinforcement/enforcement, and support from co-workers and
management are among the key factors. In addition, training is more effective when the participant can
immediately apply the training rather than waiting a long time before applying it. This is also true when the
entire team is trained at the same time, preferably following appropriate management orientation or training.
Support prior to and during training from management and lack of opposition (and even better active support)
from influential, technical personnel are critical for organizational change and acceptance of training.

Technical and manage personnel need to leave the training with a favorable opinion, as well as an enthusiasm
and willingness to use the training. Therefore, motivation and indoctrination are generally critical elements in
the training. Examples can help. While others appear throughout the document, see particularly Sections 2,
Dangers and Damage, and 7, Secure Software Construction, as well as the trade press and the places mentioned
in 14.3.5. Most effective for existing employees, however, is an example involving their team’s product.
Several organizations create and present such examples to their teams as part of training.

3 [Kelly 1994] further addresses some of the organizational issues, e.g. on page 55.

14 Tips on Using this Body of Knowledge

dsfasdfTips on Using this Body of Knowledge

226

14.3.3 Some Topics that May Require Special Attention from
Instructors

This subsection highlights topics instructors may be less familiar with or which require significant effort for
the instructor to learn or teach. These topics include the assurance case, analyzability, formal methods,
penetration testing, laws and policy, and professional ethics including student recognition of his/her
limitations.

14.3.3.1 Learning and Teaching Assurance Cases
Together, including section 3.3.6 on assurance cases and section 8.2 under Secure Software Verification,
Validation, and Evaluation provide an initial text to read in this document to learn about assurance cases. An
article giving context, background, and a gentle introduction is [Despotou 2004]. [ISO TR 15443 - 1] includes
good security-oriented introductory material and a generally applicable ISO standard for a computer security
assurance case. [SafSec Standard] is applicable and addresses safety and security,4 and example safety cases
are available at http://www.esafetycase.com.

14.3.3.2 Teaching Analyzability
The need for analyzability is the direct result of the need for predictability and verifiability and addresses the
inherent weaknesses of testing, which does only point verification.

Establishing the state of the art or practice in analyzability is difficult because the answer depends on the
power and availability of the techniques that exist at a given moment. For example, what can be predicted
about the various aspects programs written in Java or various subsets of it? On the other hand, notations may
be designed to permit certain kinds of analyses, for example the SPARK programming language with its
accompanying analysis toolset.

The most common use of the term analyzability means a design or program can be proven to conform to its
specification. A familiar example is program proofs showing agreement with pre- and post-conditions. But
even for these, the state of the practice is not adequate to address the full breadth of the programming
languages in common use.

Specifications and designs can use notations for which

 A number of properties can be shown – mostly mathematically or state-machine-based ones

 Little can be proved – most of UML

The latter has led to the existence of OCL within UML [OCL 2.0] and various UML extensions for security,
e.g., [Jürjens 2004].

14.3.3.3 Customizing Instruction about Construction
The intent of the Secure Software Construction chapter is to identify elements of secure software construction
that span the construction of software whatever particular language or environment is chosen. Therefore, it is
necessarily general in its treatment. It is assumed that the reader will map topics in this section to the
particulars of an operating system such as Microsoft Windows or Linux or to the particular programming
language being used. No matter which operating system or language is assumed, each will have “common
vulnerabilities” it must address or particular security-related strengths and weaknesses.5

4 A tutorial on using SafSec for security is planned for IEEE International Symposium on Secure Software Engineering, March
13, 2006, Washington D.C. area.
5 A construction-relevant body of knowledge is [Pomeroy-Huff 2005] for the Personal Software Process.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

227

14.3.3.4 Teaching Formal Methods
As mentioned below in subsection 14.3.5 Education and Training Literature, several articles exist describing
experiences in teaching formal methods. An older book also exists on the subject [Dean 1996] as well as a
recent workshop [Duce 2003] and symposium [Dean 2004].

While formal methods or techniques of equivalent power are needed for highly secure software, formal
methods in isolation are not a “silver bullet” or are appropriate for general application in such situations as
those involving masses of legacy code. The Secure Software Tools and Methods chapter’s contents can help
teaching how to identify criteria for selecting appropriate tools and the strengths of particular methods and
choose a specific disciplined development approach as well as to understand different approaches to verifying
the security of software. Furthermore, it identifies key characteristics of tools that can aid in producing secure
software.

14.3.3.5 Teaching Reuse and Composability
Incorporating “reusable” software, including OTS and open source software, can have difficulties because of
the quality or characteristics of the reused software or from verifying that the composition of the parts has the
properties desired. Addressing the first can lead to discussions of what categories of software have fewer
vulnerabilities. Long discussions on this subject are seldom beneficial – better to insist it is a case-by-case
question of the particular software involved. Students may also have a hard time accepting that their favorite
software has a significant number of defects and vulnerabilities. This seems to be particularly difficult if the
software is open source.

Composing pieces and reasoning about the composition’s security properties from those of its parts and their
interconnections can be quite difficult once any element of complexity is involved [Bishop 2002]. Students
need to understand the hazards and the care that needs to be exercised.

14.3.3.6 Learning and Teaching Penetration Testing
Penetration testing is a subject whose techniques are continually evolving. A readable place to start, however,
is [Whittaker and Thompson 2003]. An introduction to the hacking world can be found in the latest of the
“Hacking Exposed” series of books. If one wants the latest up-to-date information, no substitute exists for
learning from professionals in the field. Of course, only teach “ethical hacking.” A number of books exist on
this subject; one is [EC-Council 2003] – the same organization offers an ethical hacking exam [EC-Council
CEH 312-50].

14.3.3.7 Teaching Laws and Policy
This is another constantly changing field. A number of references are given in section 4 Ethics, Law, and
Governance, but these can never be entirely up to date. On an advanced level or when desiring to be entirely up
to date, this topic will need to be taught by or with the benefit of knowledgeable lawyers. Since most software
products have or intend to have international sales or use, covering just the laws and regulations of the home
country will likely not be enough.

14.3.3.8 Teaching Professional Ethics
Professional ethics need to be addressed early, before specific attack techniques are taught even if these are
taught as part of teaching defense. To emphasize that students must behave ethically and to aid in protecting
their institution from liability, Julie and Dan Ryan of George Washington University have produced an article
and a statement for students to sign [Ryan 2002]. Requiring the signing of such statements is not unusual in
information/network security education. Also, see [Endicott-Popovsky 2003]. Finally, student recognition of
his or her limitations and knowledge of what to do if a problem lies outside their expertise are also important
for professional practice.

14 Tips on Using this Body of Knowledge

dsfasdfTips on Using this Body of Knowledge

228

14.3.3.9 Hands on Learning, Student Projects, and Industrial Pilot Projects
Meaningful examples and demonstrations are useful, but for a person to be a member of the workforce
producing (more) secure software, practice and feedback are needed. In addition, many people learn best by
doing. Achieving good exercises or projects for students or employees to do as part of learning can be a major
effort, and they may require revision to reflect what happens when initially used. Organizations might establish
a pilot project on which people learn, practice, receive feedback, and gain skill with ongoing, expert coaching.
Learners also need exposure to failures before working on a production product to realize what may happen.
Finally, practitioners need to have time to blend the proper techniques and concepts into their everyday work.

14.3.4 Training Educators and Trainers
In the summer of 2004, a month long intensive seminar was held at James Madison University to provide a
foundation for teaching secure software engineering – although significant teacher preparation might still be
required beyond this foundation to teach a specific course. The five participants were software engineering
faculty with little or no background in computer security or secure software. Attendees rated the seminar well,
and two successfully taught secure software engineering courses the following fall. For a copy of the syllabus,
contact Sam Redwine (http://www.cs.jmu.edu/faculty/redwine.htm).

Microsoft has also held events to teach instructors, mainly from higher education: one in December 2005 and
another in April 2006.

14.3.5 Education and Training Literature
Literature on teaching is available in ACM Special Interest Group on Computer Science Education (SIGCSE)
publications and proceedings and in the Proceedings of the IEEE Conference on Software Engineering
Education and Training (CSEET). The IEEE has an Education Society and Transactions on Engineering
Education. Also of note is an IEEE Workshop on Secure Software Engineering Education and Training
(WSSEET), April 2006. A Colloquium on Information Security Education (CISSE) is held every year.6 The
Training and Development Journal contains articles on training. In addition, relevant publications on
education and training and computer and software-related security exist scattered throughout the computing
literature and worldwide web.

Some articles address specific topics. Several items were referenced earlier in this section. Several articles
describe experiences in teaching formal methods to undergraduates, for example [Sobel 2000] – also see
references above in 14.3.3. [Mead 2005] reports an experience related to teaching security requirements.

Microsoft has sponsored developing the curriculum. Microsoft sites of interest that are not cited elsewhere
include

 Curricula items – http://www.msdnaacr.net/curriculum/repository.aspx

 Archived event presentations –
http://www.microsoft.com/industry/publicsector/eventpresosarchive.mspx

 Archived web casts – http://www.microsoft.com/technet/security/eventswebcasts/default.mspx

 2003 Software-related security Summer Institute –
http://research.microsoft.com/projects/SWSecInstitute/schedule.htm#Monday,%20June%2016

Educational materials are a part of the Nebraska University Consortium for Information Assurance site –
http://nucia.ist.unomaha.edu/. James Madison University has a description of its graduate secure software
engineering program at http://www.cs.jmu.edu/sse/. The Department of Defense has information assurance
training and awareness materials, including CDs at http://iase.disa.mil/eta/prod-des.html. Finally, while not

6 For CISSE see http://www.ncisse.org/conferences.htm

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

229

specifically addressing education and training, one should not forget the material available at
https://buildsecurityin.us-cert.gov/.

14.3.6 Use by Practitioners for Professional Development
A practitioner can use this document in the following ways

1. Learn the general, widely applicable terminology, concepts, and principles

2. Learn a comprehensive overview of terminology, concepts, and issues in general and for a given
major sub-area

3. Obtain an overview understanding of secure software

4. Learn the details of a sub-area

5. Thoroughly learn secure software engineering

A good beginning on the first can be obtained by reading sections 2 through 4 and preferably through 5,
constituting the general sections plus the requirements section. While not as basic, the issues surrounding
programming are the subject of much of the discussions in industry, so practitioners may also wish to read the
section on construction. This can be done without concern for reading any references, although they should
consider [Davis 2004], which is a good initial overview article for practitioners.

The second can be done by reading sections 2 through 4 and the section(s) related to the sub-area. These
sections can be identified from the Table of Contents and the Index. These sections may refer to other sections
as well.

For the third, a comprehensive overview, the reader needs to cover the text in at least sections 2-11 and
preferably 12 and 13 as well.

The fourth item is similar to the second but requires using the references to learn details. One should consider
in each reference what is relevant, new to the reader, or important and concentrate on these. Some skimming
may be appropriate. In the end, the reader may find some gaps in the details, and search the digital libraries at
www.acm.org and www.computer.org, or general search engines to find additional material. The same is true
of the fifth, thorough understanding of secure software engineering, but the reader needs to cover at least
sections 2-11 and preferable 12 and 13 as well.

Practitioners should keep the purpose and scope of this document firmly in mind. It presumes learners already
know the relevant knowledge identified in the SWEBOK Guide [Abran 2004]. In addition, while some text
and references may permit the most skillful to successfully perform some task, this document’s purpose is to
identify knowledge and not to teach skills. Finally, one should not forget the material available at
https://buildsecurityin.us-cert.gov/ and elsewhere.

14.4 Using to Develop Standards and Guidelines
This document can aid standards and guideline developers to identify the scope of the high-level topics within
their area of interest and provide guidance in seeking more information. The first may be achieved by
reviewing the topics covered in this document within the area of interest. If this area corresponds to section(s)
within this document, this is easy. If not, the index is available as well as document search functions when
using an electronic version. Ensuring one knows enough about the area of interest may require using the
references and the “Further Reading” items that appear at the end of each major section.

Standards and guideline developers need to recognize that this is neither a normative document nor a document
identifying skills or competences. They are responsible for establishing what is “right” or “best” for their
purposes and users.

14 Tips on Using this Body of Knowledge

dsfasdfTips on Using this Body of Knowledge

230

Four areas are briefly addressed:

1. Curriculum

2. Professional Personnel

3. Professional Practice

4. Product Evaluation

14.4.1 Curriculum
With its increased importance, a number of curricula “standards” in higher education and elsewhere need to be
revised to include software-related security. Of course, a team developing curricula standards should include
experts in the relevant areas of secure software. This document can help such experts or other team members to
identify and understand possible topics and possibly help in deciding what topics would be best to include.

Because many curricula have courses whose scope somewhat mirrors the structure of this document, mapping
possible topics into existing course curricula may be relatively straightforward by topic. What may be less easy
to ascertain is classifying topics as beginning, intermediate, or advanced; or by difficulty or importance. This is
not surprising because supplying such a classification was not a goal of this document and may vary by kind of
role or curricula. Experts on the team can make substantial contributions to these classification decisions.

14.4.2 Professional Personnel
This document can help identify topics that need to be covered. The key difficulty may be in mapping to a
professional role, as this document did not have this as an objective. The developer of a certification exam for a
certain role will need to classify topics and aspects of topics by professional level of competency and by
importance to role.

One should be aware that persons in a number of roles do not currently use knowledge of secure software
engineering or acquisition but would be better able to perform their role if they had competencies within these
areas. In other words, perhaps they should have these knowledge or competencies, and professional standards
should expand to include them.

14.4.3 Professional Practice and Processes
Many existing standards and guidelines are “process” oriented and constrain how something should be done.
This document is organized mainly by processes and sub-processes, so some mappings may be relatively easy.

Currently, many do not adequately address software-related security. For example, some “assurance” standards
maintainers may desire to expand their scope beyond safety to include security. Standards developers might
wish to maintain consistency with existing standards such as ISO 15443 (including its emerging third part) or
the emerging revision of ISO 15026.

Using terminology, however, may be a problem. For example, what are currently termed “integrity levels” in
safety standards will need to be changed to something like “assurance levels” as “integrity” is used in certain
ways in the security community and the “integrity level” usage will be awkward or confusing in that
community.

This document may also help standards developers to recognize limitations either theoretical or in the state of
art or practice that make standards in certain areas problematic.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

231

14.4.4 Product Evaluation
A common shortcoming of product evaluations that this document can help in overcoming is using only a few
kinds of evidence rather than a fuller set as listed in section 3.3.6. While not all of these may be significant in
all areas, a great majority might be relevant for a particular standard. In addition, unless clear justification with
substantial evidence exists, justifying another approach, good engineering or risk management would appear to
require something in the nature of an assurance case to establish a system’s real condition or justify rational
confidence.

14.5 Use in Evaluation and Testing
What was stated in the prior subsection on product evaluation standards applies here as well – good
engineering or risk management requires something similar to an assurance case to establish a system’s real
condition and justify rational confidence.

Section 8, Secure Software Verification, Validation, and Evaluation, is dedicated to this topic, but relevant
knowledge is identified elsewhere in this document as well. Most major sections contain a subsection on
reviews and an assurance case, and the Secure Software Requirements section has a number of relevant
subsections – 5.2.10.1, 5.2.13, 5.3, 5.5, 5.6, and 5.2.12. Assurance cases are introduced and first explained in
subsection 3.3.6.

This document can help evaluators and testers identify techniques. Deciding, for example, which testing
techniques to use requires judgment and knowledge of local conditions as well as the merits and costs of the
techniques.

Because a topic is covered in this document does not mean it should be used (indeed, wide usage does not
guarantee merit). For example, there is widespread agreement exists that the Common Criteria process needs
substantial changes. In addition, many believe Common Criteria results below EAL5 offer little evidence
relevant to justified high confidence. This is doubly true when, as is often the case today, the production and
evaluation of Common Criteria required artifacts are not integrated into the actual production process.

One testing technique commonly used is attack or penetration testing – see subsections 8.4.2.1 and 14.3.3.6.
Brute force testing is also common, but proves little, since any software that fails (i.e., crashes) is simply poor
software. Subsection 8.4.2.4 discusses Security Fault Injection Testing, which is a technique that is needed to
test “defense in depth.”

If the software producers restricted themselves to using (adequately) analyzable notations or descriptions (for
example, by using formal methods), an evaluator has the potential to predict or verify the producer’s prediction
of security-relevant aspects of behavior. While this does not mean that reviews and testing should not also be
performed, it can provide a level of assurance that can substantially contribute toward rational confidence that
the software system meets its security-relevant policy and specifications.

In practice, other factors also can combine to give high levels of assurance; these appear to always include
adequate time and resources, high-quality people with the right expertise (and experience), extensive review, a
specification whose ambiguities have been resolved, and a clean, relatively stable architecture. Evaluators of
systems where these are not true should be suspicious.

14.6 Tips on Using the Acquisition Section

14.6.1 Introduction
The primary intended users of Section 0 are those involved in software acquisition education and training, as
well as standards developers, who need additional knowledge on acquiring secure software. While educators,

14 Tips on Using this Body of Knowledge

dsfasdfTips on Using this Body of Knowledge

232

trainers and standards developers are the primary users, buyers and suppliers may also find the knowledge in
this section useful. The advice in this section provides ideas for anyone who wishes to use the Acquisition of
Secure Software section.

14.6.2 About the Sample Language
The notional examples and illustrations that provide sample language are intended to provoke thought.
Atorneys have not reviewed them for efficacy. The sample language should be modified and expanded to fit
the users’ particular acquisition environment. As an example, the sample statements of work may contain
language that may be more appropriate in other sections of a request for proposals or contract as “terms and
conditions.” Likewise, any sample “terms or conditions” may be more appropriate in the statement of work.

14.6.3 Software Acquisition Education and Training
In using this section, the educator or trainer should first establish a specific or generic acquisition process
description that is best suited for their educational environment. As an example, educators and trainers of US
Department of Defense acquisition would use the process established in the 5000 regulation series, while other
educators and trainers might use a process that is identified in a generally accepted IEEE of international
standard. In addition, major sub-processes may be imbedded within the larger acquisition process, such as the
(software) systems engineering process. In this case, the educator or trainer may wish to integrate acquisition
within the context of a major sub-process. The educator or trainer may also wish to select the larger software
lifecycle process.

Once the process is defined, relevant ideas presented in the Acquisition of Secure Software can be mapped and
integrated into the selected process. Student materials can then be created by expanding the information using
the references provided within each section and relating the acquisition of secure software knowledge to the
selected process.

In addition to providing a single repository of knowledge on the acquisition of secure software, this section
also provides subject matter for expanded research and other scholarly work. Risk-based approaches, pedigree
management, and incentives in the acquisition process for providing secure software are examples of areas that
need further exploration.

14.6.4 Standards Developers
Standards developers can use the knowledge in this section to establish new or modify existing standards. As
an example, standards on recommended practice for software acquisition [IEEE 1062] or software life cycle
[IEEE 12207] may be modified to incorporate ideas presented in the Acquisition of Secure Software section.

14.6.5 Buyers and Suppliers
Buyers and suppliers can use the sample statement of work or other language provided in this section
to the extent that it is applicable to their acquisition. However, refer to the cautions on using the
language.

14.7 Final Remark
Feedback from readers and users is needed to improve this section and the document as a whole. We welcome
feedback of all kinds about the document. It will be greatly appreciated.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

233

14.8 Further Reading
[Bell 2005] Bell, David Elliot. “Looking Back at the Bell-La Padula Model,” Proceedings of the 21st

Annual Computer Security Applications Conference (ACSAC ’05). pp 337-351, December 2005.

[Epstein 2005] Epstein, Jeremy, Scott Matsumoto, and Gary McGraw. “Software-related security and
SOA: Danger, Will Robinson!” IEEE Security & Privacy. Vol. 4, No.1, pp 80-83, January/February
2006.

[Fernandez 2005] E.B.Fernandez and Maria M. Larrondo-Petrie, “Using UML and security patterns to
teach secure systems design,” Proceedings of the American Society for Engineering Education
Annual Conference (ASEE 2005). American Society for Engineering Education, 2005

[McGraw 2006] McGraw, Gary. Software-related security: Building Security In. Addison Wesley, 2006.

[Microsoft Security Regulatory Compliance Site]
http://www.microsoft.com/technet/security/learning/compliance/all/default.mspx.

[Peterson 2006] Pederson, Allan, Navi Partner, and Anders Hedegaard. “Designing a Secure Point-of-Sale
System,” Proceedings of the Fourth IEEE International Workshop on Information Assurance (IWIA
’06). pp 51-65, April 2006.

[Schlesinger 2004] Schlesinger, Rich (ed.). Proceedings of the 1st annual conference on Information
security curriculum development. Kennesaw, Georgia, ACM, October 08 - 08, 2004.

[Snow 2005] Snow, Brian. “We need Assurance!” Proceedings of the 21st Annual Computer Security
Applications Conference (ACSAC ’05). pp 3-10, December 2005.

[Verton 2005] Verton, Dan. The Insider: A True Story. Llumina Press, 2005.
[Vizedom 1976] Vizedom, Monika, Rites and Relationships: Rites of Passage and Contemporary
Anthropology, Beverly Hills, CA: Sage Publications, 1976.

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

23
4

15
 M

ap
pi

ng
 to

 th
e

Se
cu

ri
ty

 p
ri

nc
ip

le
s

of
 s

of
tw

ar
e

as
su

ra
nc

e
T

hi
s

m
at

ri
x

ill
us

tr
at

es
 th

e
re

la
ti

on
sh

ip
 b

et
w

ee
n

th
e

Se
cu

ri
ty

 p
ri

nc
ip

le
s

of
 s

of
tw

ar
e

as
su

ra
nc

e
an

d
th

e
se

ct
io

ns
 o

f
th

is
 d

oc
um

en
t.

 T
hi

s
is

 a
 s

ca
le

d-
do

w
n

ve
rs

io
n

of

th
e

m
at

ri
x

ai
m

ed
 to

 p
ro

vi
de

 th
e

re
ad

er
 w

it
h

a
ge

ne
ra

l u
nd

er
st

an
di

ng
 o

f
ho

w
 th

e
co

nc
ep

ts
 r

el
at

e
to

 o
ne

 a
no

th
er

.
A

 f
ul

l v
er

si
on

 o
f

th
e

m
at

ri
x

w
ill

 b
e

av
ai

la
bl

e
on

th

e
B

ui
ld

 S
ec

ur
it

y
In

 W
eb

 s
ite

 a
t h

ttp
s:

//b
ui

ld
se

cu
ri

ty
in

.u
s-

ce
rt

.g
ov

.

T
h

e
S

ec
u

ri
ty

 p
ri

n
ci

p
le

s
o

f
so

ft
w

ar
e

as
su

ra
n

ce

1 The Adverse

1.1 Adversaries Intelligent and Malicious

1.2 Limit, Reduce, or Manage Benefits to
Violators or Attackers

Think like an attacker

1.3 Increase Attacker Losses

1.3.1 Increase expense of attacking

1.3.2.1 Adequate detection and forensics

1.4 Increase Attacker Uncertainty

1.5 Limit, Reduce, or Manage Set of Violators

1.5.1 Users

1.5.2.1 Limit, remove, and discourage aspiration
to be attacker

1.6 Limit, Reduce, or Manage Attempted
Violations

1.6.1 Discourage violations

1.6.1.1.3 Psychological Acceptability

2 The System

2.1 Limit, Reduce, or Manage Violations

2.1.1 Limit, reduce, or manage origination or
continuing existence of opportunities or possible
ways for performing violations throughout
system’s lifecycle/lifespan

2.1.1.1 Accurate Identification

Separate Identity from Privilege

Positive Authorization

Least Exposure

2.1.1.4.1.3 Complete Mediation of Accesses

2.1.1.4.1.5 Least Privilege

2.1.1.4.1.6 Tamper Proof or Resistant

2
D

A
N

G
E

R
S

A
N

D

D
A

M
A

G
E

 1
5

2.
3

A
T

T
A

C
K

E
R

S1
8

2.
4

M
E

T
H

O
D

S
FO

R

A
T

T
A

C
K

S2
0

2.
5

N
O

N
-M

A
L

IC
IO

U
S

D
A

N
G

E
R

S
T

O

SO
FT

W
A

R
E

 2
3

2.
6

A
T

T
A

C
K

S
A

C
R

O
SS

L

IF
E

C
Y

C
L

E
24

2.

7
IN

FO
R

M
A

T
IO

N

A
B

O
U

T
 K

N
O

W
N

V

U
L

N
E

R
A

B
IL

IT
IE

S
A

N
D

 E
X

P
L

O
IT

S2
9

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

23
5

1 The Adverse

1.1 Adversaries Intelligent and Malicious

1.2 Limit, Reduce, or Manage Benefits to
Violators or Attackers

Think like an attacker

1.3 Increase Attacker Losses

1.3.1 Increase expense of attacking

1.3.2.1 Adequate detection and forensics

1.4 Increase Attacker Uncertainty

1.5 Limit, Reduce, or Manage Set of Violators

1.5.1 Users

1.5.2.1 Limit, remove, and discourage aspiration
to be attacker

1.6 Limit, Reduce, or Manage Attempted
Violations

1.6.1 Discourage violations

1.6.1.1.3 Psychological Acceptability

2 The System

2.1 Limit, Reduce, or Manage Violations

2.1.1 Limit, reduce, or manage origination or
continuing existence of opportunities or possible
ways for performing violations throughout
system’s lifecycle/lifespan

2.1.1.1 Accurate Identification

Separate Identity from Privilege

Positive Authorization

Least Exposure

2.1.1.4.1.3 Complete Mediation of Accesses

2.1.1.4.1.5 Least Privilege

2.1.1.4.1.6 Tamper Proof or Resistant

3
FU

N
D

A
M

E
N

T
A

L

C
O

N
C

E
PT

S
A

N
D

PR

IN
C

IP
L

E
S

33

3.
3

B
A

S
IC

C

O
N

C
E

PT
S

35

3.
3.

1
D

ep
en

da
bi

lit
y

35

3.
3.

2
Se

cu
ri

ty
 3

6

3.

3.
3

So
ft

w
ar

e
an

d
ot

he
r

Se
cu

ri
ty

-r
el

at
ed

C

on
ce

rn
s

 3
7

3.
3.

4
A

ss
et

s
 3

7

3.

3.
5

Se
cu

ri
ty

-
V

io
la

ti
on

-r
el

at
ed

C

on
ce

pt
s3

8

3.

3.
6

A
ss

ur
an

ce
 3

8

3.

4
B

A
S

IC

SO
FT

W
A

R
E

SY

ST
E

M
 S

E
C

U
R

IT
Y

PR

IN
C

IP
L

E
S4

5

3.

4.
1

L
ea

st
 P

ri
vi

le
ge

46

3.
4.

2
C

om
pl

et
e

M
ed

ia
tio

n
46

3.

4.
3

Fa
il-

Sa
fe

D

ef
au

lts
.4

6

3.

4.
4

L
ea

st
 C

om
m

on

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

23
6

1 The Adverse

1.1 Adversaries Intelligent and Malicious

1.2 Limit, Reduce, or Manage Benefits to
Violators or Attackers

Think like an attacker

1.3 Increase Attacker Losses

1.3.1 Increase expense of attacking

1.3.2.1 Adequate detection and forensics

1.4 Increase Attacker Uncertainty

1.5 Limit, Reduce, or Manage Set of Violators

1.5.1 Users

1.5.2.1 Limit, remove, and discourage aspiration
to be attacker

1.6 Limit, Reduce, or Manage Attempted
Violations

1.6.1 Discourage violations

1.6.1.1.3 Psychological Acceptability

2 The System

2.1 Limit, Reduce, or Manage Violations

2.1.1 Limit, reduce, or manage origination or
continuing existence of opportunities or possible
ways for performing violations throughout
system’s lifecycle/lifespan

2.1.1.1 Accurate Identification

Separate Identity from Privilege

Positive Authorization

Least Exposure

2.1.1.4.1.3 Complete Mediation of Accesses

2.1.1.4.1.5 Least Privilege

2.1.1.4.1.6 Tamper Proof or Resistant

M
ec

ha
ni

sm
46

3.
4.

5
Se

pa
ra

tio
n

of

Pr
iv

ile
ge

46

3.
4.

6
Ps

yc
ho

lo
gi

ca
l

A
cc

ep
ta

bi
lit

y
47

3.

4.
7

W
or

k
Fa

ct
or

.4
7

3.
4.

8
E

co
no

m
y

of

M
ec

ha
ni

sm
 4

7

3.

4.
9

O
pe

n
D

es
ig

n4
7

3.
4.

10
 A

na
ly

za
bi

lit
y

47

3.

4.
11

 R
ec

or
di

ng
 o

f
C

om
pr

om
is

es
.4

7

3.

4.
12

 D
ef

en
se

 in

D
ep

th
 4

7

3.

4.
13

 T
re

at
 a

s
C

on
fl

ic
t

48

3.
4.

14
 T

ra
de

of
fs

49

3.
5

SA
FE

T
Y

 A
N

D

SE
C

U
R

IT
Y

 4
9

3.
5.

1
Pr

ob
ab

ili
ty

 v
er

su
s

Po
ss

ib
ili

ty
 4

9

3.

6
SE

C
U

R
E

SO

FT
W

A
R

E

E
N

G
IN

E
E

R
IN

G
50

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

23
7

1 The Adverse

1.1 Adversaries Intelligent and Malicious

1.2 Limit, Reduce, or Manage Benefits to
Violators or Attackers

Think like an attacker

1.3 Increase Attacker Losses

1.3.1 Increase expense of attacking

1.3.2.1 Adequate detection and forensics

1.4 Increase Attacker Uncertainty

1.5 Limit, Reduce, or Manage Set of Violators

1.5.1 Users

1.5.2.1 Limit, remove, and discourage aspiration
to be attacker

1.6 Limit, Reduce, or Manage Attempted
Violations

1.6.1 Discourage violations

1.6.1.1.3 Psychological Acceptability

2 The System

2.1 Limit, Reduce, or Manage Violations

2.1.1 Limit, reduce, or manage origination or
continuing existence of opportunities or possible
ways for performing violations throughout
system’s lifecycle/lifespan

2.1.1.1 Accurate Identification

Separate Identity from Privilege

Positive Authorization

Least Exposure

2.1.1.4.1.3 Complete Mediation of Accesses

2.1.1.4.1.5 Least Privilege

2.1.1.4.1.6 Tamper Proof or Resistant

3.
6.

4
Se

cu
ri

ty
-R

el
at

ed

A
rc

hi
te

ct
ur

al
 C

on
ce

pt
s

53

3.

6.
5

Se
cu

re
 S

of
tw

ar
e

D
ev

el
op

m
en

t
A

ct
iv

it
ie

s5
7

3.
6.

6
Se

cu
ri

ty

Fu
nc

tio
na

lit
y

60

3.
6.

8
Se

cu
ri

ty
 R

is
k

M
an

ag
em

en
t f

or

So
ft

w
ar

e6
0

3.
7

SE
C

U
R

IT
Y

PR

O
PE

R
T

IE
S

E
L

A
B

O
R

A
T

E
D

63

3.
7.

1
C

on
fi

de
nt

ia
lit

y6
3

3.
7.

2
In

te
gr

it
y

65

3.
7.

3
A

va
ila

bi
lit

y6
5

3.
7.

4
A

cc
ou

nt
ab

ili
ty

66

4

E
T

H
IC

S,
 L

A
W

,
A

N
D

 G
O

V
E

R
N

A
N

C
E

71

4.

2
E

T
H

IC
S7

1

4.

3
L

A
W

.7
1

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

23
8

1 The Adverse

1.1 Adversaries Intelligent and Malicious

1.2 Limit, Reduce, or Manage Benefits to
Violators or Attackers

Think like an attacker

1.3 Increase Attacker Losses

1.3.1 Increase expense of attacking

1.3.2.1 Adequate detection and forensics

1.4 Increase Attacker Uncertainty

1.5 Limit, Reduce, or Manage Set of Violators

1.5.1 Users

1.5.2.1 Limit, remove, and discourage aspiration
to be attacker

1.6 Limit, Reduce, or Manage Attempted
Violations

1.6.1 Discourage violations

1.6.1.1.3 Psychological Acceptability

2 The System

2.1 Limit, Reduce, or Manage Violations

2.1.1 Limit, reduce, or manage origination or
continuing existence of opportunities or possible
ways for performing violations throughout
system’s lifecycle/lifespan

2.1.1.1 Accurate Identification

Separate Identity from Privilege

Positive Authorization

Least Exposure

2.1.1.4.1.3 Complete Mediation of Accesses

2.1.1.4.1.5 Least Privilege

2.1.1.4.1.6 Tamper Proof or Resistant

5
SE

C
U

R
E

SO

FT
W

A
R

E

R
E

Q
U

IR
E

M
E

N
T

S
77

5.

2
R

E
Q

U
IR

E
M

E
N

T
S

FO
R

 A
 S

O
L

U
T

IO
N

 7
7

5.
2.

3
A

ss
et

 P
ro

te
ct

io
n

N
ee

ds
.7

8

5.

2.
4

T
hr

ea
t

A
na

ly
si

s8
0

5.
2.

5
In

te
rf

ac
e

an
d

E
nv

ir
on

m
en

t
R

eq
ui

re
m

en
ts

82

5.
2.

13
 S

ys
te

m

A
cc

re
di

ta
tio

n
an

d
A

ud
iti

ng
 N

ee
ds

 8
5

5.
3

R
E

Q
U

IR
E

M
E

N
T

S
A

N
A

L
Y

SE
S

 8
6

5.
3.

1
R

is
k

A
na

ly
si

s8
6

5.
3.

2
Fe

as
ib

ili
ty

A

na
ly

si
s8

7

5.

3.
3

T
ra

de
of

f
A

na
ly

si
s8

7

5.

4
SP

E
C

IF
IC

A
T

IO
N

88

5.

5
R

E
Q

U
IR

E
M

E
N

T
S

V
A

L
ID

A
T

IO
N

 9
0

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

23
9

1 The Adverse

1.1 Adversaries Intelligent and Malicious

1.2 Limit, Reduce, or Manage Benefits to
Violators or Attackers

Think like an attacker

1.3 Increase Attacker Losses

1.3.1 Increase expense of attacking

1.3.2.1 Adequate detection and forensics

1.4 Increase Attacker Uncertainty

1.5 Limit, Reduce, or Manage Set of Violators

1.5.1 Users

1.5.2.1 Limit, remove, and discourage aspiration
to be attacker

1.6 Limit, Reduce, or Manage Attempted
Violations

1.6.1 Discourage violations

1.6.1.1.3 Psychological Acceptability

2 The System

2.1 Limit, Reduce, or Manage Violations

2.1.1 Limit, reduce, or manage origination or
continuing existence of opportunities or possible
ways for performing violations throughout
system’s lifecycle/lifespan

2.1.1.1 Accurate Identification

Separate Identity from Privilege

Positive Authorization

Least Exposure

2.1.1.4.1.3 Complete Mediation of Accesses

2.1.1.4.1.5 Least Privilege

2.1.1.4.1.6 Tamper Proof or Resistant

5.
6

A
SS

U
R

A
N

C
E

C

A
SE

91

6
SE

C
U

R
E

SO

FT
W

A
R

E
 D

E
S

IG
N

95

6.

3
PR

IN
C

IP
L

E
S

A
N

D

G
U

ID
E

L
IN

E
S

FO
R

D

E
S

IG
N

IN
G

 S
E

C
U

R
E

SO

FT
W

A
R

E
.9

7

6.

3.
2

D
am

ag
e

C
on

fi
ne

m
en

t a
nd

Sy

st
em

 R
es

ili
en

ce
 9

9

6.

3.
3

V
ul

ne
ra

bi
lit

y
R

ed
uc

tio
n1

00

6.
4

D
O

C
U

M
E

N
T

A
T

IO
N

O

F
D

E
S

IG
N

A

SS
U

M
P

T
IO

N
S1

01

6.
4.

1
E

nv
ir

on
m

en
ta

l
A

ss
um

pt
io

ns
10

2

6.

7
A

R
C

H
IT

E
C

T
U

R
E

S
FO

R
 S

E
C

U
R

IT
Y

 1
03

6.

8
SE

C
U

R
IT

Y

FU
N

C
T

IO
N

A
L

IT
Y

10
4

6.
8.

1
Id

en
ti

ty

M
an

ag
em

en
t 1

05

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

24
0

1 The Adverse

1.1 Adversaries Intelligent and Malicious

1.2 Limit, Reduce, or Manage Benefits to
Violators or Attackers

Think like an attacker

1.3 Increase Attacker Losses

1.3.1 Increase expense of attacking

1.3.2.1 Adequate detection and forensics

1.4 Increase Attacker Uncertainty

1.5 Limit, Reduce, or Manage Set of Violators

1.5.1 Users

1.5.2.1 Limit, remove, and discourage aspiration
to be attacker

1.6 Limit, Reduce, or Manage Attempted
Violations

1.6.1 Discourage violations

1.6.1.1.3 Psychological Acceptability

2 The System

2.1 Limit, Reduce, or Manage Violations

2.1.1 Limit, reduce, or manage origination or
continuing existence of opportunities or possible
ways for performing violations throughout
system’s lifecycle/lifespan

2.1.1.1 Accurate Identification

Separate Identity from Privilege

Positive Authorization

Least Exposure

2.1.1.4.1.3 Complete Mediation of Accesses

2.1.1.4.1.5 Least Privilege

2.1.1.4.1.6 Tamper Proof or Resistant

6.
8.

2
A

cc
es

s
C

on
tr

ol

M
ec

ha
ni

sm
s

 1
05

6.

9
PR

O
PE

R
 U

SE
 O

F
E

N
C

R
Y

PT
IO

N
 A

N
D

E

N
C

R
Y

PT
IO

N

PR
O

T
O

C
O

L
S1

06

6.
14

 M
E

T
H

O
D

S
FO

R

T
O

L
E

R
A

N
C

E
 A

N
D

R

E
C

O
V

E
R

Y
10

8

6.

15
 D

E
C

E
PT

IO
N

A

N
D

 D
IV

E
R

S
IO

N
10

8

6.

16
 S

O
FT

W
A

R
E

PR

O
T

E
C

T
IO

N
10

9

6.

17
 F

O
R

E
N

S
IC

SU

PP
O

R
T

 1
10

6.

18
 U

SE
R

IN

T
E

R
FA

C
E

D

E
S

IG
N

11
0

6.
19

 A
SS

U
R

A
N

C
E

C

A
SE

 F
O

R

D
E

S
IG

N
11

1

7

SE
C

U
R

E

SO
FT

W
A

R
E

C

O
N

ST
R

U
C

T
IO

N
11

5

7.

4
C

O
N

ST
R

U
C

T
IO

N

O
F

U
SE

R
 A

ID
S.

12
4

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

24
1

1 The Adverse

1.1 Adversaries Intelligent and Malicious

1.2 Limit, Reduce, or Manage Benefits to
Violators or Attackers

Think like an attacker

1.3 Increase Attacker Losses

1.3.1 Increase expense of attacking

1.3.2.1 Adequate detection and forensics

1.4 Increase Attacker Uncertainty

1.5 Limit, Reduce, or Manage Set of Violators

1.5.1 Users

1.5.2.1 Limit, remove, and discourage aspiration
to be attacker

1.6 Limit, Reduce, or Manage Attempted
Violations

1.6.1 Discourage violations

1.6.1.1.3 Psychological Acceptability

2 The System

2.1 Limit, Reduce, or Manage Violations

2.1.1 Limit, reduce, or manage origination or
continuing existence of opportunities or possible
ways for performing violations throughout
system’s lifecycle/lifespan

2.1.1.1 Accurate Identification

Separate Identity from Privilege

Positive Authorization

Least Exposure

2.1.1.4.1.3 Complete Mediation of Accesses

2.1.1.4.1.5 Least Privilege

2.1.1.4.1.6 Tamper Proof or Resistant

8
SE

C
U

R
E

SO

FT
W

A
R

E

V
E

R
IF

IC
A

T
IO

N
,

V
A

L
ID

A
T

IO
N

, A
N

D

E
V

A
L

U
A

T
IO

N
13

5

8.

2
A

SS
U

R
A

N
C

E

C
A

SE
 1

35

8.
10

 T
H

IR
D

-P
A

R
T

Y

V
E

R
IF

IC
A

T
IO

N
 A

N
D

V

A
L

ID
A

T
IO

N
 A

N
D

E

V
A

L
U

A
T

IO
N

14
7

9
SE

C
U

R
E

SO

FT
W

A
R

E
 T

O
O

L
S

A
N

D
 M

E
T

H
O

D
S1

51

10
 S

E
C

U
R

E

SO
FT

W
A

R
E

PR

O
C

E
SS

E
S.

15
7

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

24
2

2.1.1.4.2.1 Secure defaults

2.1.1.4.2.2 Secure Failure

2.1.1.4.2.7 Trusted Communication Channels

2.1.1.4.2.10 Least Common Mechanism

2.1.2 Hierarchical Protection

2.1.3 Learn, Adapt, and Improve

2.1.4 Limit, reduce, or manage undetected
violations

2.1.5 Limit, reduce, or manage lack of accountability

2.1.6 Limit, reduce, or manage violations unable to
respond to acceptably or learn from

2.1.7 Defense in Depth

2.2 Avoid Adverse Effects on System Benefits

2.2.1 Authorizations Fulfill Needs and Facilitate
User

2.2.2 Encourage and ease use of security aspects

Quickly Mediated Access

Ease secure operation

2.2.3 Articulate the desired characteristics and
tradeoff among them [jabir 1998]

2.2.4 Economic Security

Efficiently Mediated Access

2.2.5 High-Performance Security

2.2.6 Provide Privacy Benefit

2.2.7 Provide Reliability

2.3 Limit, Reduce, or Manage Security-related
Costs

2.3.1 Limit, reduce, or manage security-related
adverse consequences

Exclusion of Dangerous Assets

2
D

A
N

G
E

R
S

A
N

D

D
A

M
A

G
E

 1
5

2.
3

A
T

T
A

C
K

E
R

S1
8

2.
4

M
E

T
H

O
D

S
FO

R

A
T

T
A

C
K

S2
0

2.
5

N
O

N
-M

A
L

IC
IO

U
S

D
A

N
G

E
R

S
T

O

SO
FT

W
A

R
E

 2
3

2.
6

A
T

T
A

C
K

S
A

C
R

O
SS

L

IF
E

C
Y

C
L

E
24

2.

7
IN

FO
R

M
A

T
IO

N

A
B

O
U

T
 K

N
O

W
N

V

U
L

N
E

R
A

B
IL

IT
IE

S
A

N
D

 E
X

P
L

O
IT

S2
9

3
FU

N
D

A
M

E
N

T
A

L

C
O

N
C

E
PT

S
A

N
D

PR

IN
C

IP
L

E
S

33

3.
3

B
A

S
IC

 C
O

N
C

E
PT

S
35

3.

3.
1

D
ep

en
da

bi
lit

y
35

3.

3.
2

Se
cu

ri
ty

 3
6

3.
3.

3
So

ft
w

ar
e

an
d

ot
he

r
Se

cu
ri

ty
-r

el
at

ed

C
on

ce
rn

s
 3

7

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

24
3

2.1.1.4.2.1 Secure defaults

2.1.1.4.2.2 Secure Failure

2.1.1.4.2.7 Trusted Communication Channels

2.1.1.4.2.10 Least Common Mechanism

2.1.2 Hierarchical Protection

2.1.3 Learn, Adapt, and Improve

2.1.4 Limit, reduce, or manage undetected
violations

2.1.5 Limit, reduce, or manage lack of accountability

2.1.6 Limit, reduce, or manage violations unable to
respond to acceptably or learn from

2.1.7 Defense in Depth

2.2 Avoid Adverse Effects on System Benefits

2.2.1 Authorizations Fulfill Needs and Facilitate
User

2.2.2 Encourage and ease use of security aspects

Quickly Mediated Access

Ease secure operation

2.2.3 Articulate the desired characteristics and
tradeoff among them [jabir 1998]

2.2.4 Economic Security

Efficiently Mediated Access

2.2.5 High-Performance Security

2.2.6 Provide Privacy Benefit

2.2.7 Provide Reliability

2.3 Limit, Reduce, or Manage Security-related
Costs

2.3.1 Limit, reduce, or manage security-related
adverse consequences

Exclusion of Dangerous Assets

3.
3.

4
A

ss
et

s
 3

7

3.

3.
5

Se
cu

ri
ty

-V
io

la
ti

on
-

re
la

te
d

C
on

ce
pt

s3
8

3.
3.

6
A

ss
ur

an
ce

 3
8

3.
4

B
A

S
IC

 S
O

FT
W

A
R

E

SY
ST

E
M

 S
E

C
U

R
IT

Y

PR
IN

C
IP

L
E

S4
5

3.
4.

1
L

ea
st

 P
ri

vi
le

ge
46

3.

4.
2

C
om

pl
et

e
M

ed
ia

tio
n

46

3.
4.

3
Fa

il-
Sa

fe

D
ef

au
lts

.4
6

3.
4.

4
L

ea
st

 C
om

m
on

M

ec
ha

ni
sm

46

3.
4.

5
Se

pa
ra

tio
n

of

Pr
iv

ile
ge

46

3.
4.

6
Ps

yc
ho

lo
gi

ca
l

A
cc

ep
ta

bi
lit

y
47

3.

4.
7

W
or

k
Fa

ct
or

.4
7

3.
4.

8
E

co
no

m
y

of

M
ec

ha
ni

sm
 4

7

3.

4.
9

O
pe

n
D

es
ig

n4
7

3.
4.

10
 A

na
ly

za
bi

lit
y

 4
7

3.
4.

11
 R

ec
or

di
ng

 o
f

C
om

pr
om

is
es

.4
7

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

24
4

2.1.1.4.2.1 Secure defaults

2.1.1.4.2.2 Secure Failure

2.1.1.4.2.7 Trusted Communication Channels

2.1.1.4.2.10 Least Common Mechanism

2.1.2 Hierarchical Protection

2.1.3 Learn, Adapt, and Improve

2.1.4 Limit, reduce, or manage undetected
violations

2.1.5 Limit, reduce, or manage lack of accountability

2.1.6 Limit, reduce, or manage violations unable to
respond to acceptably or learn from

2.1.7 Defense in Depth

2.2 Avoid Adverse Effects on System Benefits

2.2.1 Authorizations Fulfill Needs and Facilitate
User

2.2.2 Encourage and ease use of security aspects

Quickly Mediated Access

Ease secure operation

2.2.3 Articulate the desired characteristics and
tradeoff among them [jabir 1998]

2.2.4 Economic Security

Efficiently Mediated Access

2.2.5 High-Performance Security

2.2.6 Provide Privacy Benefit

2.2.7 Provide Reliability

2.3 Limit, Reduce, or Manage Security-related
Costs

2.3.1 Limit, reduce, or manage security-related
adverse consequences

Exclusion of Dangerous Assets

3.
4.

12
 D

ef
en

se
 in

 D
ep

th

47

3.
4.

13
 T

re
at

 a
s

C
on

fl
ic

t
48

3.

4.
14

 T
ra

de
of

fs
49

3.

5
SA

FE
T

Y
 A

N
D

SE

C
U

R
IT

Y
 4

9

3.

5.
1

Pr
ob

ab
ili

ty
 v

er
su

s
Po

ss
ib

ili
ty

 4
9

3.
6

SE
C

U
R

E

SO
FT

W
A

R
E

E

N
G

IN
E

E
R

IN
G

50

3.
6.

4
Se

cu
ri

ty
-R

el
at

ed

A
rc

hi
te

ct
ur

al
 C

on
ce

pt
s

53

3.

6.
5

Se
cu

re
 S

of
tw

ar
e

D
ev

el
op

m
en

t
A

ct
iv

it
ie

s5
7

3.
6.

6
Se

cu
ri

ty

Fu
nc

tio
na

lit
y

60

3.
6.

8
Se

cu
ri

ty
 R

is
k

M
an

ag
em

en
t f

or

So
ft

w
ar

e6
0

3.
7

SE
C

U
R

IT
Y

PR

O
PE

R
T

IE
S

E
L

A
B

O
R

A
T

E
D

63

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

24
5

2.1.1.4.2.1 Secure defaults

2.1.1.4.2.2 Secure Failure

2.1.1.4.2.7 Trusted Communication Channels

2.1.1.4.2.10 Least Common Mechanism

2.1.2 Hierarchical Protection

2.1.3 Learn, Adapt, and Improve

2.1.4 Limit, reduce, or manage undetected
violations

2.1.5 Limit, reduce, or manage lack of accountability

2.1.6 Limit, reduce, or manage violations unable to
respond to acceptably or learn from

2.1.7 Defense in Depth

2.2 Avoid Adverse Effects on System Benefits

2.2.1 Authorizations Fulfill Needs and Facilitate
User

2.2.2 Encourage and ease use of security aspects

Quickly Mediated Access

Ease secure operation

2.2.3 Articulate the desired characteristics and
tradeoff among them [jabir 1998]

2.2.4 Economic Security

Efficiently Mediated Access

2.2.5 High-Performance Security

2.2.6 Provide Privacy Benefit

2.2.7 Provide Reliability

2.3 Limit, Reduce, or Manage Security-related
Costs

2.3.1 Limit, reduce, or manage security-related
adverse consequences

Exclusion of Dangerous Assets

3.
7.

1
C

on
fi

de
nt

ia
lit

y6
3

3.
7.

2
In

te
gr

it
y

65

3.
7.

3
A

va
ila

bi
lit

y6
5

3.
7.

4
A

cc
ou

nt
ab

ili
ty

 6
6

4
E

T
H

IC
S,

 L
A

W
, A

N
D

G

O
V

E
R

N
A

N
C

E
 7

1

4.

2
E

T
H

IC
S7

1

4.

3
L

A
W

.7
1

5
SE

C
U

R
E

 S
O

FT
W

A
R

E

R
E

Q
U

IR
E

M
E

N
T

S
77

5.

2
R

E
Q

U
IR

E
M

E
N

T
S

FO
R

 A
 S

O
L

U
T

IO
N

 7
7

5.
2.

3
A

ss
et

 P
ro

te
ct

io
n

N
ee

ds
.7

8

5.

2.
4

T
hr

ea
t A

na
ly

si
s8

0

5.

2.
5

In
te

rf
ac

e
an

d
E

nv
ir

on
m

en
t

R
eq

ui
re

m
en

ts
82

5.

2.
13

 S
ys

te
m

A

cc
re

di
ta

tio
n

an
d

A
ud

iti
ng

 N
ee

ds
 8

5

5.

3
R

E
Q

U
IR

E
M

E
N

T
S

A
N

A
L

Y
SE

S
 8

6

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

24
6

2.1.1.4.2.1 Secure defaults

2.1.1.4.2.2 Secure Failure

2.1.1.4.2.7 Trusted Communication Channels

2.1.1.4.2.10 Least Common Mechanism

2.1.2 Hierarchical Protection

2.1.3 Learn, Adapt, and Improve

2.1.4 Limit, reduce, or manage undetected
violations

2.1.5 Limit, reduce, or manage lack of accountability

2.1.6 Limit, reduce, or manage violations unable to
respond to acceptably or learn from

2.1.7 Defense in Depth

2.2 Avoid Adverse Effects on System Benefits

2.2.1 Authorizations Fulfill Needs and Facilitate
User

2.2.2 Encourage and ease use of security aspects

Quickly Mediated Access

Ease secure operation

2.2.3 Articulate the desired characteristics and
tradeoff among them [jabir 1998]

2.2.4 Economic Security

Efficiently Mediated Access

2.2.5 High-Performance Security

2.2.6 Provide Privacy Benefit

2.2.7 Provide Reliability

2.3 Limit, Reduce, or Manage Security-related
Costs

2.3.1 Limit, reduce, or manage security-related
adverse consequences

Exclusion of Dangerous Assets

5.
3.

1
R

is
k

A
na

ly
si

s8
6

5.
3.

2
Fe

as
ib

ili
ty

A

na
ly

si
s8

7

5.

3.
3

T
ra

de
of

f
A

na
ly

si
s8

7

5.

4
SP

E
C

IF
IC

A
T

IO
N

88

5.

5
R

E
Q

U
IR

E
M

E
N

T
S

V
A

L
ID

A
T

IO
N

 9
0

5.
6

A
SS

U
R

A
N

C
E

C

A
SE

91

6
SE

C
U

R
E

 S
O

FT
W

A
R

E

D
E

S
IG

N
 9

5

6.

3
PR

IN
C

IP
L

E
S

A
N

D

G
U

ID
E

L
IN

E
S

FO
R

D

E
S

IG
N

IN
G

 S
E

C
U

R
E

SO

FT
W

A
R

E
.9

7

6.

3.
2

D
am

ag
e

C
on

fi
ne

m
en

t a
nd

 S
ys

te
m

R

es
ili

en
ce

 9
9

6.
3.

3
V

ul
ne

ra
bi

lit
y

R
ed

uc
tio

n1
00

6.

4
D

O
C

U
M

E
N

T
A

T
IO

N

O
F

D
E

S
IG

N

A
SS

U
M

P
T

IO
N

S1
01

6.

4.
1

E
nv

ir
on

m
en

ta
l

A
ss

um
pt

io
ns

10
2

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

24
7

2.1.1.4.2.1 Secure defaults

2.1.1.4.2.2 Secure Failure

2.1.1.4.2.7 Trusted Communication Channels

2.1.1.4.2.10 Least Common Mechanism

2.1.2 Hierarchical Protection

2.1.3 Learn, Adapt, and Improve

2.1.4 Limit, reduce, or manage undetected
violations

2.1.5 Limit, reduce, or manage lack of accountability

2.1.6 Limit, reduce, or manage violations unable to
respond to acceptably or learn from

2.1.7 Defense in Depth

2.2 Avoid Adverse Effects on System Benefits

2.2.1 Authorizations Fulfill Needs and Facilitate
User

2.2.2 Encourage and ease use of security aspects

Quickly Mediated Access

Ease secure operation

2.2.3 Articulate the desired characteristics and
tradeoff among them [jabir 1998]

2.2.4 Economic Security

Efficiently Mediated Access

2.2.5 High-Performance Security

2.2.6 Provide Privacy Benefit

2.2.7 Provide Reliability

2.3 Limit, Reduce, or Manage Security-related
Costs

2.3.1 Limit, reduce, or manage security-related
adverse consequences

Exclusion of Dangerous Assets

6.
7

A
R

C
H

IT
E

C
T

U
R

E
S

FO
R

 S
E

C
U

R
IT

Y
 1

03

6.
8

SE
C

U
R

IT
Y

FU

N
C

T
IO

N
A

L
IT

Y
10

4

6.

8.
1

Id
en

ti
ty

M

an
ag

em
en

t 1
05

6.

8.
2

A
cc

es
s

C
on

tr
ol

M

ec
ha

ni
sm

s
 1

05

6.
9

PR
O

PE
R

 U
SE

 O
F

E
N

C
R

Y
PT

IO
N

 A
N

D

E
N

C
R

Y
PT

IO
N

PR

O
T

O
C

O
L

S1
06

6.

14
 M

E
T

H
O

D
S

FO
R

T

O
L

E
R

A
N

C
E

 A
N

D

R
E

C
O

V
E

R
Y

10
8

6.
15

 D
E

C
E

PT
IO

N
 A

N
D

D

IV
E

R
S

IO
N

10
8

6.
16

 S
O

FT
W

A
R

E

PR
O

T
E

C
T

IO
N

10
9

6.
17

 F
O

R
E

N
S

IC

SU
PP

O
R

T
 1

10

6.
18

 U
SE

R

IN
T

E
R

FA
C

E

D
E

S
IG

N
11

0

6.

19
 A

SS
U

R
A

N
C

E

C
A

SE
 F

O
R

 D
E

S
IG

N
11

1

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

24
8

2.1.1.4.2.1 Secure defaults

2.1.1.4.2.2 Secure Failure

2.1.1.4.2.7 Trusted Communication Channels

2.1.1.4.2.10 Least Common Mechanism

2.1.2 Hierarchical Protection

2.1.3 Learn, Adapt, and Improve

2.1.4 Limit, reduce, or manage undetected
violations

2.1.5 Limit, reduce, or manage lack of accountability

2.1.6 Limit, reduce, or manage violations unable to
respond to acceptably or learn from

2.1.7 Defense in Depth

2.2 Avoid Adverse Effects on System Benefits

2.2.1 Authorizations Fulfill Needs and Facilitate
User

2.2.2 Encourage and ease use of security aspects

Quickly Mediated Access

Ease secure operation

2.2.3 Articulate the desired characteristics and
tradeoff among them [jabir 1998]

2.2.4 Economic Security

Efficiently Mediated Access

2.2.5 High-Performance Security

2.2.6 Provide Privacy Benefit

2.2.7 Provide Reliability

2.3 Limit, Reduce, or Manage Security-related
Costs

2.3.1 Limit, reduce, or manage security-related
adverse consequences

Exclusion of Dangerous Assets

7
SE

C
U

R
E

 S
O

FT
W

A
R

E

C
O

N
ST

R
U

C
T

IO
N

11
5

7.
4

C
O

N
ST

R
U

C
T

IO
N

O

F
U

SE
R

 A
ID

S.
12

4

8

SE
C

U
R

E
 S

O
FT

W
A

R
E

V

E
R

IF
IC

A
T

IO
N

,
V

A
L

ID
A

T
IO

N
, A

N
D

E

V
A

L
U

A
T

IO
N

13
5

8.
2

A
SS

U
R

A
N

C
E

 C
A

SE

13
5

8.
10

 T
H

IR
D

-P
A

R
T

Y

V
E

R
IF

IC
A

T
IO

N
 A

N
D

V

A
L

ID
A

T
IO

N
 A

N
D

E

V
A

L
U

A
T

IO
N

14
7

9
SE

C
U

R
E

 S
O

FT
W

A
R

E

T
O

O
L

S
A

N
D

M

E
T

H
O

D
S1

51

10
 S

E
C

U
R

E

SO
FT

W
A

R
E

PR

O
C

E
SS

E
S.

15
7

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

24
9

Retain minimal state

Tolerate Security Violations

2.3.1.3.1 • Limit damage

2.3.1.3.7.1 • Ensure system has a well-defined
status after failure, either to a secure failure state or
via a recovery procedure to a known secure state
[Avizienis 2004]

2.3.1.4.1.4 • Make sure it is possible to reconstruct
events

2.3.1.4.1.5 o Record secure audit logs and facilitate
periodical review to ensure system resources are
functioning, confirm reconstruction is possible, and
identify unauthorized users or abuse

2.3.1.4.1.6 o Support forensics and incident
investigations

2.3.1.4.1.7 o Help focus response and reconstitution
efforts to those areas that are most in need

Avoid Single-Point Security Failure

2.3.1.5.2 Avoid Multiple Losses from Single Attack
Success

2.3.1.5.3 Separation of Privilege

2.3.1.5.4 Defense in Depth

Allocation of Defenses according to Consequences

2.3.2 Limit, reduce, or manage security-related
developmental and operational expenses

2.3.2.1.2 Ease (cost-effective and timely)
Certification and Accreditation

2.4 Limit, Reduce, or Manage Security-related
Uncertainties

2.4.1 Limit, reduce, or manage security-related
unknowns

2.4.2 Limit, reduce, or manage security-related
assumptions

2.4.3 Limit, reduce, or manage unpredictability of
system behavior

Analyzability

2.4.4 Limit, reduce, or manage consequences or
risks not addressed in assurance case

2.4.5 Limit, reduce, or manage consequences or
risks related to uncertainty

Risk Sharing

2.4.6 Increase Assurance Regarding Product

2
D

A
N

G
E

R
S

A
N

D

D
A

M
A

G
E

 1
5

2.
3

A
T

T
A

C
K

E
R

S1
8

2.
4

M
E

T
H

O
D

S
FO

R

A
T

T
A

C
K

S2
0

2.
5

N
O

N
-M

A
L

IC
IO

U
S

D
A

N
G

E
R

S
T

O

SO
FT

W
A

R
E

 2
3

2.
6

A
T

T
A

C
K

S
A

C
R

O
SS

L

IF
E

C
Y

C
L

E
24

2.

7
IN

FO
R

M
A

T
IO

N

A
B

O
U

T
 K

N
O

W
N

V

U
L

N
E

R
A

B
IL

IT
IE

S
A

N
D

 E
X

P
L

O
IT

S2
9

3
FU

N
D

A
M

E
N

T
A

L

C
O

N
C

E
PT

S
A

N
D

PR

IN
C

IP
L

E
S

33

3.
3

B
A

S
IC

 C
O

N
C

E
PT

S
35

3.

3.
1

D
ep

en
da

bi
lit

y
35

3.

3.
2

Se
cu

ri
ty

 3
6

3.
3.

3
So

ft
w

ar
e

an
d

ot
he

r
Se

cu
ri

ty
-r

el
at

ed
 C

on
ce

rn
s

37

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

25
0

Retain minimal state

Tolerate Security Violations

2.3.1.3.1 • Limit damage

2.3.1.3.7.1 • Ensure system has a well-defined
status after failure, either to a secure failure state or
via a recovery procedure to a known secure state
[Avizienis 2004]

2.3.1.4.1.4 • Make sure it is possible to reconstruct
events

2.3.1.4.1.5 o Record secure audit logs and facilitate
periodical review to ensure system resources are
functioning, confirm reconstruction is possible, and
identify unauthorized users or abuse

2.3.1.4.1.6 o Support forensics and incident
investigations

2.3.1.4.1.7 o Help focus response and reconstitution
efforts to those areas that are most in need

Avoid Single-Point Security Failure

2.3.1.5.2 Avoid Multiple Losses from Single Attack
Success

2.3.1.5.3 Separation of Privilege

2.3.1.5.4 Defense in Depth

Allocation of Defenses according to Consequences

2.3.2 Limit, reduce, or manage security-related
developmental and operational expenses

2.3.2.1.2 Ease (cost-effective and timely)
Certification and Accreditation

2.4 Limit, Reduce, or Manage Security-related
Uncertainties

2.4.1 Limit, reduce, or manage security-related
unknowns

2.4.2 Limit, reduce, or manage security-related
assumptions

2.4.3 Limit, reduce, or manage unpredictability of
system behavior

Analyzability

2.4.4 Limit, reduce, or manage consequences or
risks not addressed in assurance case

2.4.5 Limit, reduce, or manage consequences or
risks related to uncertainty

Risk Sharing

2.4.6 Increase Assurance Regarding Product

3.
3.

4
A

ss
et

s
 3

7

3.

3.
5

Se
cu

ri
ty

-V
io

la
ti

on
-

re
la

te
d

C
on

ce
pt

s3
8

3.
3.

6
A

ss
ur

an
ce

 3
8

3.
4

B
A

S
IC

 S
O

FT
W

A
R

E

SY
ST

E
M

 S
E

C
U

R
IT

Y

PR
IN

C
IP

L
E

S4
5

3.
4.

1
L

ea
st

 P
ri

vi
le

ge
46

3.

4.
2

C
om

pl
et

e
M

ed
ia

tio
n

46

3.
4.

3
Fa

il-
Sa

fe
 D

ef
au

lts
.4

6

3.

4.
4

L
ea

st
 C

om
m

on

M
ec

ha
ni

sm
46

3.

4.
5

Se
pa

ra
tio

n
of

Pr

iv
ile

ge
46

3.

4.
6

Ps
yc

ho
lo

gi
ca

l
A

cc
ep

ta
bi

lit
y

47

3.
4.

7
W

or
k

Fa
ct

or
.4

7

3.

4.
8

E
co

no
m

y
of

M

ec
ha

ni
sm

 4
7

3.
4.

9
O

pe
n

D
es

ig
n4

7

3.

4.
10

 A
na

ly
za

bi
lit

y
 4

7

3.

4.
11

 R
ec

or
di

ng
 o

f
C

om
pr

om
is

es
.4

7

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

25
1

Retain minimal state

Tolerate Security Violations

2.3.1.3.1 • Limit damage

2.3.1.3.7.1 • Ensure system has a well-defined
status after failure, either to a secure failure state or
via a recovery procedure to a known secure state
[Avizienis 2004]

2.3.1.4.1.4 • Make sure it is possible to reconstruct
events

2.3.1.4.1.5 o Record secure audit logs and facilitate
periodical review to ensure system resources are
functioning, confirm reconstruction is possible, and
identify unauthorized users or abuse

2.3.1.4.1.6 o Support forensics and incident
investigations

2.3.1.4.1.7 o Help focus response and reconstitution
efforts to those areas that are most in need

Avoid Single-Point Security Failure

2.3.1.5.2 Avoid Multiple Losses from Single Attack
Success

2.3.1.5.3 Separation of Privilege

2.3.1.5.4 Defense in Depth

Allocation of Defenses according to Consequences

2.3.2 Limit, reduce, or manage security-related
developmental and operational expenses

2.3.2.1.2 Ease (cost-effective and timely)
Certification and Accreditation

2.4 Limit, Reduce, or Manage Security-related
Uncertainties

2.4.1 Limit, reduce, or manage security-related
unknowns

2.4.2 Limit, reduce, or manage security-related
assumptions

2.4.3 Limit, reduce, or manage unpredictability of
system behavior

Analyzability

2.4.4 Limit, reduce, or manage consequences or
risks not addressed in assurance case

2.4.5 Limit, reduce, or manage consequences or
risks related to uncertainty

Risk Sharing

2.4.6 Increase Assurance Regarding Product

3.
4.

12
 D

ef
en

se
 in

 D
ep

th

47

3.
4.

13
 T

re
at

 a
s

C
on

fl
ic

t
48

3.

4.
14

 T
ra

de
of

fs
49

3.

5
SA

FE
T

Y
 A

N
D

SE

C
U

R
IT

Y
 4

9

3.

5.
1

Pr
ob

ab
ili

ty
 v

er
su

s
Po

ss
ib

ili
ty

 4
9

3.
6

SE
C

U
R

E

SO
FT

W
A

R
E

E

N
G

IN
E

E
R

IN
G

50

3.
6.

4
Se

cu
ri

ty
-R

el
at

ed

A
rc

hi
te

ct
ur

al
 C

on
ce

pt
s

 5
3

3.
6.

5
Se

cu
re

 S
of

tw
ar

e
D

ev
el

op
m

en
t A

ct
iv

it
ie

s5
7

3.
6.

6
Se

cu
ri

ty

Fu
nc

tio
na

lit
y

60

3.
6.

8
Se

cu
ri

ty
 R

is
k

M
an

ag
em

en
t f

or

So
ft

w
ar

e6
0

3.
7

SE
C

U
R

IT
Y

PR

O
PE

R
T

IE
S

E
L

A
B

O
R

A
T

E
D

63

3.
7.

1
C

on
fi

de
nt

ia
lit

y6
3

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

25
2

Retain minimal state

Tolerate Security Violations

2.3.1.3.1 • Limit damage

2.3.1.3.7.1 • Ensure system has a well-defined
status after failure, either to a secure failure state or
via a recovery procedure to a known secure state
[Avizienis 2004]

2.3.1.4.1.4 • Make sure it is possible to reconstruct
events

2.3.1.4.1.5 o Record secure audit logs and facilitate
periodical review to ensure system resources are
functioning, confirm reconstruction is possible, and
identify unauthorized users or abuse

2.3.1.4.1.6 o Support forensics and incident
investigations

2.3.1.4.1.7 o Help focus response and reconstitution
efforts to those areas that are most in need

Avoid Single-Point Security Failure

2.3.1.5.2 Avoid Multiple Losses from Single Attack
Success

2.3.1.5.3 Separation of Privilege

2.3.1.5.4 Defense in Depth

Allocation of Defenses according to Consequences

2.3.2 Limit, reduce, or manage security-related
developmental and operational expenses

2.3.2.1.2 Ease (cost-effective and timely)
Certification and Accreditation

2.4 Limit, Reduce, or Manage Security-related
Uncertainties

2.4.1 Limit, reduce, or manage security-related
unknowns

2.4.2 Limit, reduce, or manage security-related
assumptions

2.4.3 Limit, reduce, or manage unpredictability of
system behavior

Analyzability

2.4.4 Limit, reduce, or manage consequences or
risks not addressed in assurance case

2.4.5 Limit, reduce, or manage consequences or
risks related to uncertainty

Risk Sharing

2.4.6 Increase Assurance Regarding Product

3.
7.

2
In

te
gr

it
y

65

3.
7.

3
A

va
ila

bi
lit

y6
5

3.
7.

4
A

cc
ou

nt
ab

ili
ty

 6
6

4
E

T
H

IC
S,

 L
A

W
, A

N
D

G

O
V

E
R

N
A

N
C

E
 7

1

4.

2
E

T
H

IC
S7

1

4.

3
L

A
W

.7
1

5
SE

C
U

R
E

 S
O

FT
W

A
R

E

R
E

Q
U

IR
E

M
E

N
T

S
77

5.

2
R

E
Q

U
IR

E
M

E
N

T
S

FO
R

 A
 S

O
L

U
T

IO
N

 7
7

5.
2.

3
A

ss
et

 P
ro

te
ct

io
n

N
ee

ds
.7

8

5.

2.
4

T
hr

ea
t A

na
ly

si
s8

0

5.

2.
5

In
te

rf
ac

e
an

d
E

nv
ir

on
m

en
t

R
eq

ui
re

m
en

ts
82

5.

2.
13

 S
ys

te
m

A

cc
re

di
ta

tio
n

an
d

A
ud

iti
ng

N

ee
ds

 8
5

5.
3

R
E

Q
U

IR
E

M
E

N
T

S
A

N
A

L
Y

SE
S

 8
6

5.
3.

1
R

is
k

A
na

ly
si

s8
6

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

25
3

Retain minimal state

Tolerate Security Violations

2.3.1.3.1 • Limit damage

2.3.1.3.7.1 • Ensure system has a well-defined
status after failure, either to a secure failure state or
via a recovery procedure to a known secure state
[Avizienis 2004]

2.3.1.4.1.4 • Make sure it is possible to reconstruct
events

2.3.1.4.1.5 o Record secure audit logs and facilitate
periodical review to ensure system resources are
functioning, confirm reconstruction is possible, and
identify unauthorized users or abuse

2.3.1.4.1.6 o Support forensics and incident
investigations

2.3.1.4.1.7 o Help focus response and reconstitution
efforts to those areas that are most in need

Avoid Single-Point Security Failure

2.3.1.5.2 Avoid Multiple Losses from Single Attack
Success

2.3.1.5.3 Separation of Privilege

2.3.1.5.4 Defense in Depth

Allocation of Defenses according to Consequences

2.3.2 Limit, reduce, or manage security-related
developmental and operational expenses

2.3.2.1.2 Ease (cost-effective and timely)
Certification and Accreditation

2.4 Limit, Reduce, or Manage Security-related
Uncertainties

2.4.1 Limit, reduce, or manage security-related
unknowns

2.4.2 Limit, reduce, or manage security-related
assumptions

2.4.3 Limit, reduce, or manage unpredictability of
system behavior

Analyzability

2.4.4 Limit, reduce, or manage consequences or
risks not addressed in assurance case

2.4.5 Limit, reduce, or manage consequences or
risks related to uncertainty

Risk Sharing

2.4.6 Increase Assurance Regarding Product

5.
3.

2
Fe

as
ib

ili
ty

A

na
ly

si
s8

7

5.

3.
3

T
ra

de
of

f
A

na
ly

si
s8

7

5.

4
SP

E
C

IF
IC

A
T

IO
N

 8
8

5.
5

R
E

Q
U

IR
E

M
E

N
T

S
V

A
L

ID
A

T
IO

N
 9

0

5.

6
A

SS
U

R
A

N
C

E

C
A

SE
91

6

SE
C

U
R

E
 S

O
FT

W
A

R
E

D

E
S

IG
N

 9
5

6.
3

PR
IN

C
IP

L
E

S
A

N
D

G

U
ID

E
L

IN
E

S
FO

R

D
E

S
IG

N
IN

G
 S

E
C

U
R

E

SO
FT

W
A

R
E

.9
7

6.
3.

2
D

am
ag

e
C

on
fi

ne
m

en
t a

nd
 S

ys
te

m

R
es

ili
en

ce
 9

9

6.

3.
3

V
ul

ne
ra

bi
lit

y
R

ed
uc

tio
n1

00

6.
4

D
O

C
U

M
E

N
T

A
T

IO
N

O

F
D

E
S

IG
N

A

SS
U

M
P

T
IO

N
S1

01

6.
4.

1
E

nv
ir

on
m

en
ta

l
A

ss
um

pt
io

ns
10

2

6.

7
A

R
C

H
IT

E
C

T
U

R
E

S
FO

R
 S

E
C

U
R

IT
Y

 1
03

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

25
4

Retain minimal state

Tolerate Security Violations

2.3.1.3.1 • Limit damage

2.3.1.3.7.1 • Ensure system has a well-defined
status after failure, either to a secure failure state or
via a recovery procedure to a known secure state
[Avizienis 2004]

2.3.1.4.1.4 • Make sure it is possible to reconstruct
events

2.3.1.4.1.5 o Record secure audit logs and facilitate
periodical review to ensure system resources are
functioning, confirm reconstruction is possible, and
identify unauthorized users or abuse

2.3.1.4.1.6 o Support forensics and incident
investigations

2.3.1.4.1.7 o Help focus response and reconstitution
efforts to those areas that are most in need

Avoid Single-Point Security Failure

2.3.1.5.2 Avoid Multiple Losses from Single Attack
Success

2.3.1.5.3 Separation of Privilege

2.3.1.5.4 Defense in Depth

Allocation of Defenses according to Consequences

2.3.2 Limit, reduce, or manage security-related
developmental and operational expenses

2.3.2.1.2 Ease (cost-effective and timely)
Certification and Accreditation

2.4 Limit, Reduce, or Manage Security-related
Uncertainties

2.4.1 Limit, reduce, or manage security-related
unknowns

2.4.2 Limit, reduce, or manage security-related
assumptions

2.4.3 Limit, reduce, or manage unpredictability of
system behavior

Analyzability

2.4.4 Limit, reduce, or manage consequences or
risks not addressed in assurance case

2.4.5 Limit, reduce, or manage consequences or
risks related to uncertainty

Risk Sharing

2.4.6 Increase Assurance Regarding Product

6.
8

SE
C

U
R

IT
Y

FU

N
C

T
IO

N
A

L
IT

Y
10

4

6.

8.
1

Id
en

ti
ty

 M
an

ag
em

en
t

10
5

6.
8.

2
A

cc
es

s
C

on
tr

ol

M
ec

ha
ni

sm
s

 1
05

6.

9
PR

O
PE

R
 U

SE
 O

F
E

N
C

R
Y

PT
IO

N
 A

N
D

E

N
C

R
Y

PT
IO

N

PR
O

T
O

C
O

L
S1

06

6.
14

 M
E

T
H

O
D

S
FO

R

T
O

L
E

R
A

N
C

E
 A

N
D

R

E
C

O
V

E
R

Y
10

8

6.

15
 D

E
C

E
PT

IO
N

 A
N

D

D
IV

E
R

S
IO

N
10

8

6.

16
 S

O
FT

W
A

R
E

PR

O
T

E
C

T
IO

N
10

9

6.

17
 F

O
R

E
N

S
IC

SU

PP
O

R
T

 1
10

6.

18
 U

SE
R

 I
N

T
E

R
FA

C
E

D

E
S

IG
N

11
0

6.
19

 A
SS

U
R

A
N

C
E

 C
A

SE

FO
R

 D
E

S
IG

N
11

1

7

SE
C

U
R

E
 S

O
FT

W
A

R
E

C

O
N

ST
R

U
C

T
IO

N
11

5

7.

4
C

O
N

ST
R

U
C

T
IO

N
 O

F
U

SE
R

 A
ID

S.
12

4

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

25
5

Retain minimal state

Tolerate Security Violations

2.3.1.3.1 • Limit damage

2.3.1.3.7.1 • Ensure system has a well-defined
status after failure, either to a secure failure state or
via a recovery procedure to a known secure state
[Avizienis 2004]

2.3.1.4.1.4 • Make sure it is possible to reconstruct
events

2.3.1.4.1.5 o Record secure audit logs and facilitate
periodical review to ensure system resources are
functioning, confirm reconstruction is possible, and
identify unauthorized users or abuse

2.3.1.4.1.6 o Support forensics and incident
investigations

2.3.1.4.1.7 o Help focus response and reconstitution
efforts to those areas that are most in need

Avoid Single-Point Security Failure

2.3.1.5.2 Avoid Multiple Losses from Single Attack
Success

2.3.1.5.3 Separation of Privilege

2.3.1.5.4 Defense in Depth

Allocation of Defenses according to Consequences

2.3.2 Limit, reduce, or manage security-related
developmental and operational expenses

2.3.2.1.2 Ease (cost-effective and timely)
Certification and Accreditation

2.4 Limit, Reduce, or Manage Security-related
Uncertainties

2.4.1 Limit, reduce, or manage security-related
unknowns

2.4.2 Limit, reduce, or manage security-related
assumptions

2.4.3 Limit, reduce, or manage unpredictability of
system behavior

Analyzability

2.4.4 Limit, reduce, or manage consequences or
risks not addressed in assurance case

2.4.5 Limit, reduce, or manage consequences or
risks related to uncertainty

Risk Sharing

2.4.6 Increase Assurance Regarding Product

8
SE

C
U

R
E

 S
O

FT
W

A
R

E

V
E

R
IF

IC
A

T
IO

N
,

V
A

L
ID

A
T

IO
N

, A
N

D

E
V

A
L

U
A

T
IO

N
13

5

8.

2
A

SS
U

R
A

N
C

E
 C

A
SE

13

5

8.

10
 T

H
IR

D
-P

A
R

T
Y

V

E
R

IF
IC

A
T

IO
N

 A
N

D

V
A

L
ID

A
T

IO
N

 A
N

D

E
V

A
L

U
A

T
IO

N
14

7

9

SE
C

U
R

E
 S

O
FT

W
A

R
E

T

O
O

L
S

A
N

D

M
E

T
H

O
D

S1
51

10

 S
E

C
U

R
E

 S
O

FT
W

A
R

E

PR
O

C
E

SS
E

S.
15

7

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

25
6

System Assurability

Reduce Danger from other software or systems

2.4.6.2.1 Avoid and workaround environment’s
security endangering weaknesses

2.4.6.2.2 System does what the specification calls
for and nothing else

Reduce Complexity

2.4.6.3.1 Make Small

2.4.6.3.1.1 Minimized Security Elements

2.4.6.3.2 Simplify

2.4.6.3.2.1 Control complexity with multiple
perspectives and multiple levels of abstraction

2.4.6.3.2.1.1 Use information hiding and
encapsulation

2.4.6.3.2.1.2 Clear Abstractions

2.4.6.3.2.1.3 Partially Ordered Dependencies

2.4.6.3.3 Straightforward Composition

2.4.6.3.3.1 Trustworthy Components

2.4.6.3.3.2 Self-reliant Trustworthiness

2.4.6.3.4 To improve design study previous
solutions to similar problems [jabir 1998]

2.4.6.3.4.1 Use known security techniques and
solutions

2.4.6.3.4.2 Use standards

Change Slowly

2.4.6.4.1 Use a stable architecture

2.4.6.4.1.1 To eliminate possibilities for violations –
particularly of information flow policies

2.4.6.4.1.2 To facilitate achievement of security
requirements and evolution

2.4.6.4.1.3 Amendable to supporting assurance
arguments and evidence

Assure Security of Product

2
D

A
N

G
E

R
S

A
N

D

D
A

M
A

G
E

 1
5

2.
3

A
T

T
A

C
K

E
R

S1
8

2.
4

M
E

T
H

O
D

S
FO

R

A
T

T
A

C
K

S2
0

2.
5

N
O

N
-M

A
L

IC
IO

U
S

D
A

N
G

E
R

S
T

O

SO
FT

W
A

R
E

 2
3

2.
6

A
T

T
A

C
K

S
A

C
R

O
SS

L

IF
E

C
Y

C
L

E
24

2.

7
IN

FO
R

M
A

T
IO

N

A
B

O
U

T
 K

N
O

W
N

V

U
L

N
E

R
A

B
IL

IT
IE

S
A

N
D

 E
X

P
L

O
IT

S2
9

3
FU

N
D

A
M

E
N

T
A

L

C
O

N
C

E
PT

S
A

N
D

PR

IN
C

IP
L

E
S

33

3.
3

B
A

S
IC

 C
O

N
C

E
PT

S
35

3.

3.
1

D
ep

en
da

bi
lit

y
35

3.

3.
2

Se
cu

ri
ty

 3
6

3.
3.

3
So

ft
w

ar
e

an
d

ot
he

r
Se

cu
ri

ty
-r

el
at

ed
 C

on
ce

rn
s

37

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

25
7

System Assurability

Reduce Danger from other software or systems

2.4.6.2.1 Avoid and workaround environment’s
security endangering weaknesses

2.4.6.2.2 System does what the specification calls
for and nothing else

Reduce Complexity

2.4.6.3.1 Make Small

2.4.6.3.1.1 Minimized Security Elements

2.4.6.3.2 Simplify

2.4.6.3.2.1 Control complexity with multiple
perspectives and multiple levels of abstraction

2.4.6.3.2.1.1 Use information hiding and
encapsulation

2.4.6.3.2.1.2 Clear Abstractions

2.4.6.3.2.1.3 Partially Ordered Dependencies

2.4.6.3.3 Straightforward Composition

2.4.6.3.3.1 Trustworthy Components

2.4.6.3.3.2 Self-reliant Trustworthiness

2.4.6.3.4 To improve design study previous
solutions to similar problems [jabir 1998]

2.4.6.3.4.1 Use known security techniques and
solutions

2.4.6.3.4.2 Use standards

Change Slowly

2.4.6.4.1 Use a stable architecture

2.4.6.4.1.1 To eliminate possibilities for violations –
particularly of information flow policies

2.4.6.4.1.2 To facilitate achievement of security
requirements and evolution

2.4.6.4.1.3 Amendable to supporting assurance
arguments and evidence

Assure Security of Product

3.
3.

4
A

ss
et

s
 3

7

3.

3.
5

Se
cu

ri
ty

-V
io

la
ti

on
-

re
la

te
d

C
on

ce
pt

s3
8

3.
3.

6
A

ss
ur

an
ce

 3
8

3.
4

B
A

S
IC

 S
O

FT
W

A
R

E

SY
ST

E
M

 S
E

C
U

R
IT

Y

PR
IN

C
IP

L
E

S4
5

3.
4.

1
L

ea
st

 P
ri

vi
le

ge
46

3.

4.
2

C
om

pl
et

e
M

ed
ia

tio
n

46

3.
4.

3
Fa

il-
Sa

fe
 D

ef
au

lts
.4

6

3.

4.
4

L
ea

st
 C

om
m

on

M
ec

ha
ni

sm
46

3.

4.
5

Se
pa

ra
tio

n
of

Pr

iv
ile

ge
46

3.

4.
6

Ps
yc

ho
lo

gi
ca

l
A

cc
ep

ta
bi

lit
y

47

3.
4.

7
W

or
k

Fa
ct

or
.4

7

3.

4.
8

E
co

no
m

y
of

M

ec
ha

ni
sm

 4
7

3.
4.

9
O

pe
n

D
es

ig
n4

7

3.

4.
10

 A
na

ly
za

bi
lit

y
 4

7

3.

4.
11

 R
ec

or
di

ng
 o

f
C

om
pr

om
is

es
.4

7

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

25
8

System Assurability

Reduce Danger from other software or systems

2.4.6.2.1 Avoid and workaround environment’s
security endangering weaknesses

2.4.6.2.2 System does what the specification calls
for and nothing else

Reduce Complexity

2.4.6.3.1 Make Small

2.4.6.3.1.1 Minimized Security Elements

2.4.6.3.2 Simplify

2.4.6.3.2.1 Control complexity with multiple
perspectives and multiple levels of abstraction

2.4.6.3.2.1.1 Use information hiding and
encapsulation

2.4.6.3.2.1.2 Clear Abstractions

2.4.6.3.2.1.3 Partially Ordered Dependencies

2.4.6.3.3 Straightforward Composition

2.4.6.3.3.1 Trustworthy Components

2.4.6.3.3.2 Self-reliant Trustworthiness

2.4.6.3.4 To improve design study previous
solutions to similar problems [jabir 1998]

2.4.6.3.4.1 Use known security techniques and
solutions

2.4.6.3.4.2 Use standards

Change Slowly

2.4.6.4.1 Use a stable architecture

2.4.6.4.1.1 To eliminate possibilities for violations –
particularly of information flow policies

2.4.6.4.1.2 To facilitate achievement of security
requirements and evolution

2.4.6.4.1.3 Amendable to supporting assurance
arguments and evidence

Assure Security of Product

3.
4.

12
 D

ef
en

se
 in

 D
ep

th

47

3.
4.

13
 T

re
at

 a
s

C
on

fl
ic

t
48

3.

4.
14

 T
ra

de
of

fs
49

3.

5
SA

FE
T

Y
 A

N
D

SE

C
U

R
IT

Y
 4

9

3.

5.
1

Pr
ob

ab
ili

ty
 v

er
su

s
Po

ss
ib

ili
ty

 4
9

3.
6

SE
C

U
R

E

SO
FT

W
A

R
E

E

N
G

IN
E

E
R

IN
G

50

3.
6.

4
Se

cu
ri

ty
-R

el
at

ed

A
rc

hi
te

ct
ur

al
 C

on
ce

pt
s

 5
3

3.
6.

5
Se

cu
re

 S
of

tw
ar

e
D

ev
el

op
m

en
t A

ct
iv

it
ie

s5
7

3.
6.

6
Se

cu
ri

ty

Fu
nc

tio
na

lit
y

60

3.
6.

8
Se

cu
ri

ty
 R

is
k

M
an

ag
em

en
t f

or

So
ft

w
ar

e6
0

3.
7

SE
C

U
R

IT
Y

PR

O
PE

R
T

IE
S

E
L

A
B

O
R

A
T

E
D

63

3.
7.

1
C

on
fi

de
nt

ia
lit

y6
3

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

25
9

System Assurability

Reduce Danger from other software or systems

2.4.6.2.1 Avoid and workaround environment’s
security endangering weaknesses

2.4.6.2.2 System does what the specification calls
for and nothing else

Reduce Complexity

2.4.6.3.1 Make Small

2.4.6.3.1.1 Minimized Security Elements

2.4.6.3.2 Simplify

2.4.6.3.2.1 Control complexity with multiple
perspectives and multiple levels of abstraction

2.4.6.3.2.1.1 Use information hiding and
encapsulation

2.4.6.3.2.1.2 Clear Abstractions

2.4.6.3.2.1.3 Partially Ordered Dependencies

2.4.6.3.3 Straightforward Composition

2.4.6.3.3.1 Trustworthy Components

2.4.6.3.3.2 Self-reliant Trustworthiness

2.4.6.3.4 To improve design study previous
solutions to similar problems [jabir 1998]

2.4.6.3.4.1 Use known security techniques and
solutions

2.4.6.3.4.2 Use standards

Change Slowly

2.4.6.4.1 Use a stable architecture

2.4.6.4.1.1 To eliminate possibilities for violations –
particularly of information flow policies

2.4.6.4.1.2 To facilitate achievement of security
requirements and evolution

2.4.6.4.1.3 Amendable to supporting assurance
arguments and evidence

Assure Security of Product

3.
7.

2
In

te
gr

it
y

65

3.
7.

3
A

va
ila

bi
lit

y6
5

3.
7.

4
A

cc
ou

nt
ab

ili
ty

 6
6

4
E

T
H

IC
S,

 L
A

W
, A

N
D

G

O
V

E
R

N
A

N
C

E
 7

1

4.

2
E

T
H

IC
S7

1

4.

3
L

A
W

.7
1

5
SE

C
U

R
E

 S
O

FT
W

A
R

E

R
E

Q
U

IR
E

M
E

N
T

S
77

5.

2
R

E
Q

U
IR

E
M

E
N

T
S

FO
R

 A
 S

O
L

U
T

IO
N

 7
7

5.
2.

3
A

ss
et

 P
ro

te
ct

io
n

N
ee

ds
.7

8

5.

2.
4

T
hr

ea
t A

na
ly

si
s8

0

5.

2.
5

In
te

rf
ac

e
an

d
E

nv
ir

on
m

en
t

R
eq

ui
re

m
en

ts
82

5.

2.
13

 S
ys

te
m

A

cc
re

di
ta

tio
n

an
d

A
ud

iti
ng

 N
ee

ds
 8

5

5.

3
R

E
Q

U
IR

E
M

E
N

T
S

A
N

A
L

Y
SE

S
 8

6

5.

3.
1

R
is

k
A

na
ly

si
s8

6

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

26
0

System Assurability

Reduce Danger from other software or systems

2.4.6.2.1 Avoid and workaround environment’s
security endangering weaknesses

2.4.6.2.2 System does what the specification calls
for and nothing else

Reduce Complexity

2.4.6.3.1 Make Small

2.4.6.3.1.1 Minimized Security Elements

2.4.6.3.2 Simplify

2.4.6.3.2.1 Control complexity with multiple
perspectives and multiple levels of abstraction

2.4.6.3.2.1.1 Use information hiding and
encapsulation

2.4.6.3.2.1.2 Clear Abstractions

2.4.6.3.2.1.3 Partially Ordered Dependencies

2.4.6.3.3 Straightforward Composition

2.4.6.3.3.1 Trustworthy Components

2.4.6.3.3.2 Self-reliant Trustworthiness

2.4.6.3.4 To improve design study previous
solutions to similar problems [jabir 1998]

2.4.6.3.4.1 Use known security techniques and
solutions

2.4.6.3.4.2 Use standards

Change Slowly

2.4.6.4.1 Use a stable architecture

2.4.6.4.1.1 To eliminate possibilities for violations –
particularly of information flow policies

2.4.6.4.1.2 To facilitate achievement of security
requirements and evolution

2.4.6.4.1.3 Amendable to supporting assurance
arguments and evidence

Assure Security of Product

5.
3.

2
Fe

as
ib

ili
ty

A

na
ly

si
s8

7

5.

3.
3

T
ra

de
of

f
A

na
ly

si
s8

7

5.

4
SP

E
C

IF
IC

A
T

IO
N

 8
8

5.
5

R
E

Q
U

IR
E

M
E

N
T

S
V

A
L

ID
A

T
IO

N
 9

0

5.

6
A

SS
U

R
A

N
C

E

C
A

SE
91

6

SE
C

U
R

E
 S

O
FT

W
A

R
E

D

E
S

IG
N

 9
5

6.
3

PR
IN

C
IP

L
E

S
A

N
D

G

U
ID

E
L

IN
E

S
FO

R

D
E

S
IG

N
IN

G
 S

E
C

U
R

E

SO
FT

W
A

R
E

.9
7

6.
3.

2
D

am
ag

e
C

on
fi

ne
m

en
t a

nd
 S

ys
te

m

R
es

ili
en

ce
 9

9

6.

3.
3

V
ul

ne
ra

bi
lit

y
R

ed
uc

tio
n1

00

6.
4

D
O

C
U

M
E

N
T

A
T

IO
N

O

F
D

E
S

IG
N

A

SS
U

M
P

T
IO

N
S1

01

6.
4.

1
E

nv
ir

on
m

en
ta

l
A

ss
um

pt
io

ns
10

2

6.

7
A

R
C

H
IT

E
C

T
U

R
E

S
FO

R
 S

E
C

U
R

IT
Y

 1
03

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

26
1

System Assurability

Reduce Danger from other software or systems

2.4.6.2.1 Avoid and workaround environment’s
security endangering weaknesses

2.4.6.2.2 System does what the specification calls
for and nothing else

Reduce Complexity

2.4.6.3.1 Make Small

2.4.6.3.1.1 Minimized Security Elements

2.4.6.3.2 Simplify

2.4.6.3.2.1 Control complexity with multiple
perspectives and multiple levels of abstraction

2.4.6.3.2.1.1 Use information hiding and
encapsulation

2.4.6.3.2.1.2 Clear Abstractions

2.4.6.3.2.1.3 Partially Ordered Dependencies

2.4.6.3.3 Straightforward Composition

2.4.6.3.3.1 Trustworthy Components

2.4.6.3.3.2 Self-reliant Trustworthiness

2.4.6.3.4 To improve design study previous
solutions to similar problems [jabir 1998]

2.4.6.3.4.1 Use known security techniques and
solutions

2.4.6.3.4.2 Use standards

Change Slowly

2.4.6.4.1 Use a stable architecture

2.4.6.4.1.1 To eliminate possibilities for violations –
particularly of information flow policies

2.4.6.4.1.2 To facilitate achievement of security
requirements and evolution

2.4.6.4.1.3 Amendable to supporting assurance
arguments and evidence

Assure Security of Product

6.
8

SE
C

U
R

IT
Y

FU

N
C

T
IO

N
A

L
IT

Y
10

4

6.

8.
1

Id
en

ti
ty

 M
an

ag
em

en
t

10
5

6.
8.

2
A

cc
es

s
C

on
tr

ol

M
ec

ha
ni

sm
s

 1
05

6.

9
PR

O
PE

R
 U

SE
 O

F
E

N
C

R
Y

PT
IO

N
 A

N
D

E

N
C

R
Y

PT
IO

N

PR
O

T
O

C
O

L
S1

06

6.
14

 M
E

T
H

O
D

S
FO

R

T
O

L
E

R
A

N
C

E
 A

N
D

R

E
C

O
V

E
R

Y
10

8

6.

15
 D

E
C

E
PT

IO
N

 A
N

D

D
IV

E
R

S
IO

N
10

8

6.

16
 S

O
FT

W
A

R
E

PR

O
T

E
C

T
IO

N
10

9

6.

17
 F

O
R

E
N

S
IC

SU

PP
O

R
T

 1
10

6.

18
 U

SE
R

 I
N

T
E

R
FA

C
E

D

E
S

IG
N

11
0

6.
19

 A
SS

U
R

A
N

C
E

 C
A

SE

FO
R

 D
E

S
IG

N
11

1

7

SE
C

U
R

E
 S

O
FT

W
A

R
E

C

O
N

ST
R

U
C

T
IO

N
11

5

7.

4
C

O
N

ST
R

U
C

T
IO

N
 O

F
U

SE
R

 A
ID

S.
12

4

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

26
2

System Assurability

Reduce Danger from other software or systems

2.4.6.2.1 Avoid and workaround environment’s
security endangering weaknesses

2.4.6.2.2 System does what the specification calls
for and nothing else

Reduce Complexity

2.4.6.3.1 Make Small

2.4.6.3.1.1 Minimized Security Elements

2.4.6.3.2 Simplify

2.4.6.3.2.1 Control complexity with multiple
perspectives and multiple levels of abstraction

2.4.6.3.2.1.1 Use information hiding and
encapsulation

2.4.6.3.2.1.2 Clear Abstractions

2.4.6.3.2.1.3 Partially Ordered Dependencies

2.4.6.3.3 Straightforward Composition

2.4.6.3.3.1 Trustworthy Components

2.4.6.3.3.2 Self-reliant Trustworthiness

2.4.6.3.4 To improve design study previous
solutions to similar problems [jabir 1998]

2.4.6.3.4.1 Use known security techniques and
solutions

2.4.6.3.4.2 Use standards

Change Slowly

2.4.6.4.1 Use a stable architecture

2.4.6.4.1.1 To eliminate possibilities for violations –
particularly of information flow policies

2.4.6.4.1.2 To facilitate achievement of security
requirements and evolution

2.4.6.4.1.3 Amendable to supporting assurance
arguments and evidence

Assure Security of Product

8
SE

C
U

R
E

 S
O

FT
W

A
R

E

V
E

R
IF

IC
A

T
IO

N
,

V
A

L
ID

A
T

IO
N

, A
N

D

E
V

A
L

U
A

T
IO

N
13

5

8.

2
A

SS
U

R
A

N
C

E
 C

A
SE

13

5

8.

10
 T

H
IR

D
-P

A
R

T
Y

V

E
R

IF
IC

A
T

IO
N

 A
N

D

V
A

L
ID

A
T

IO
N

 A
N

D

E
V

A
L

U
A

T
IO

N
14

7

9

SE
C

U
R

E
 S

O
FT

W
A

R
E

T

O
O

L
S

A
N

D

M
E

T
H

O
D

S1
51

10

 S
E

C
U

R
E

 S
O

FT
W

A
R

E

PR
O

C
E

SS
E

S.
15

7

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

26
3

2.4.6.5.1 Create and Maintain an Assurance Case

2.4.6.5.2 Ensure security preserving composition at
all levels of detail

2.4.6.5.3 Secure Distributed Composition

2.4.6.5.4 Ease production of an accompanying
assurance case for the security preserving
correctness of compositions

2.4.6.5.5 Design to ease traceability, verification,
validation, and evaluation

2.4.6.5.6 Analyzability

2.4.6.5.7 Chain of Trust

62.4..6 Use Production Process and Means that
Ease and Increase Assurance

2.4.6.6.1 Ease creation and maintenance of an
assurance case

2.4.6.6.2 Use Repeatable, Documented Procedures

2.4.6.6.3 Procedural Rigor

2.4.6.6.4 Engineering Rigor

2.4.6.6.5 Open Design

2.4.6.6.5.1 Review for use of design principles (and
guidelines

2.4.6.6.6 Chose notations and tools that facilitate
achieving security and its assurance

2.4.6.6.7 Have expertise in technologies being used
and application domain

2.4.6.6.8 Avoid Known Pitfalls

2.4.6.6.8.1 Avoid common errors and vulnerabilities

2.4.6.6.8.2 Avoid and workaround tools’ security
endangering weaknesses

2.4.6.6.8.3 Avoid non-malicious pitfalls

Continuous Risk Management

2.4.6.7.1 Consider security or assurance risks
together with other risks

3 The Environment

3.1 Nature of Environment

2
D

A
N

G
E

R
S

A
N

D

D
A

M
A

G
E

 1
5

2.
3

A
T

T
A

C
K

E
R

S1
8

2.
4

M
E

T
H

O
D

S
FO

R

A
T

T
A

C
K

S2
0

2.
5

N
O

N
-M

A
L

IC
IO

U
S

D
A

N
G

E
R

S
T

O

SO
FT

W
A

R
E

 2
3

2.
6

A
T

T
A

C
K

S
A

C
R

O
SS

L

IF
E

C
Y

C
L

E
24

2.

7
IN

FO
R

M
A

T
IO

N

A
B

O
U

T
 K

N
O

W
N

V

U
L

N
E

R
A

B
IL

IT
IE

S
A

N
D

 E
X

P
L

O
IT

S2
9

3
FU

N
D

A
M

E
N

T
A

L

C
O

N
C

E
PT

S
A

N
D

PR

IN
C

IP
L

E
S

33

3.
3

B
A

S
IC

 C
O

N
C

E
PT

S
35

3.

3.
1

D
ep

en
da

bi
lit

y
35

3.

3.
2

Se
cu

ri
ty

 3
6

3.
3.

3
So

ft
w

ar
e

an
d

ot
he

r
Se

cu
ri

ty
-r

el
at

ed
 C

on
ce

rn
s

37

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

26
4

2.4.6.5.1 Create and Maintain an Assurance Case

2.4.6.5.2 Ensure security preserving composition at
all levels of detail

2.4.6.5.3 Secure Distributed Composition

2.4.6.5.4 Ease production of an accompanying
assurance case for the security preserving
correctness of compositions

2.4.6.5.5 Design to ease traceability, verification,
validation, and evaluation

2.4.6.5.6 Analyzability

2.4.6.5.7 Chain of Trust

62.4..6 Use Production Process and Means that
Ease and Increase Assurance

2.4.6.6.1 Ease creation and maintenance of an
assurance case

2.4.6.6.2 Use Repeatable, Documented Procedures

2.4.6.6.3 Procedural Rigor

2.4.6.6.4 Engineering Rigor

2.4.6.6.5 Open Design

2.4.6.6.5.1 Review for use of design principles (and
guidelines

2.4.6.6.6 Chose notations and tools that facilitate
achieving security and its assurance

2.4.6.6.7 Have expertise in technologies being used
and application domain

2.4.6.6.8 Avoid Known Pitfalls

2.4.6.6.8.1 Avoid common errors and vulnerabilities

2.4.6.6.8.2 Avoid and workaround tools’ security
endangering weaknesses

2.4.6.6.8.3 Avoid non-malicious pitfalls

Continuous Risk Management

2.4.6.7.1 Consider security or assurance risks
together with other risks

3 The Environment

3.1 Nature of Environment

3.
3.

4
A

ss
et

s
 3

7

3.

3.
5

Se
cu

ri
ty

-V
io

la
ti

on
-

re
la

te
d

C
on

ce
pt

s3
8

3.
3.

6
A

ss
ur

an
ce

 3
8

3.
4

B
A

S
IC

 S
O

FT
W

A
R

E

SY
ST

E
M

 S
E

C
U

R
IT

Y

PR
IN

C
IP

L
E

S4
5

3.
4.

1
L

ea
st

 P
ri

vi
le

ge
46

3.

4.
2

C
om

pl
et

e
M

ed
ia

tio
n

46

3.
4.

3
Fa

il-
Sa

fe
 D

ef
au

lts
.4

6

3.

4.
4

L
ea

st
 C

om
m

on

M
ec

ha
ni

sm
46

3.

4.
5

Se
pa

ra
tio

n
of

Pr

iv
ile

ge
46

3.

4.
6

Ps
yc

ho
lo

gi
ca

l
A

cc
ep

ta
bi

lit
y

47

3.
4.

7
W

or
k

Fa
ct

or
.4

7

3.

4.
8

E
co

no
m

y
of

M

ec
ha

ni
sm

 4
7

3.
4.

9
O

pe
n

D
es

ig
n4

7

3.

4.
10

 A
na

ly
za

bi
lit

y
 4

7

3.

4.
11

 R
ec

or
di

ng
 o

f
C

om
pr

om
is

es
.4

7

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

26
5

2.4.6.5.1 Create and Maintain an Assurance Case

2.4.6.5.2 Ensure security preserving composition at
all levels of detail

2.4.6.5.3 Secure Distributed Composition

2.4.6.5.4 Ease production of an accompanying
assurance case for the security preserving
correctness of compositions

2.4.6.5.5 Design to ease traceability, verification,
validation, and evaluation

2.4.6.5.6 Analyzability

2.4.6.5.7 Chain of Trust

62.4..6 Use Production Process and Means that
Ease and Increase Assurance

2.4.6.6.1 Ease creation and maintenance of an
assurance case

2.4.6.6.2 Use Repeatable, Documented Procedures

2.4.6.6.3 Procedural Rigor

2.4.6.6.4 Engineering Rigor

2.4.6.6.5 Open Design

2.4.6.6.5.1 Review for use of design principles (and
guidelines

2.4.6.6.6 Chose notations and tools that facilitate
achieving security and its assurance

2.4.6.6.7 Have expertise in technologies being used
and application domain

2.4.6.6.8 Avoid Known Pitfalls

2.4.6.6.8.1 Avoid common errors and vulnerabilities

2.4.6.6.8.2 Avoid and workaround tools’ security
endangering weaknesses

2.4.6.6.8.3 Avoid non-malicious pitfalls

Continuous Risk Management

2.4.6.7.1 Consider security or assurance risks
together with other risks

3 The Environment

3.1 Nature of Environment

3.
4.

12
 D

ef
en

se
 in

 D
ep

th
 4

7

3.

4.
13

 T
re

at
 a

s
C

on
fl

ic
t

48

3.
4.

14
 T

ra
de

of
fs

49

3.
5

SA
FE

T
Y

 A
N

D

SE
C

U
R

IT
Y

 4
9

3.
5.

1
Pr

ob
ab

ili
ty

 v
er

su
s

Po
ss

ib
ili

ty
 4

9

3.

6
SE

C
U

R
E

 S
O

FT
W

A
R

E

E
N

G
IN

E
E

R
IN

G
50

3.

6.
4

Se
cu

ri
ty

-R
el

at
ed

A

rc
hi

te
ct

ur
al

 C
on

ce
pt

s
 5

3

3.

6.
5

Se
cu

re
 S

of
tw

ar
e

D
ev

el
op

m
en

t A
ct

iv
it

ie
s5

7

3.

6.
6

Se
cu

ri
ty

 F
un

ct
io

na
lit

y
60

3.

6.
8

Se
cu

ri
ty

 R
is

k
M

an
ag

em
en

t f
or

So

ft
w

ar
e6

0

3.

7
SE

C
U

R
IT

Y

PR
O

PE
R

T
IE

S
E

L
A

B
O

R
A

T
E

D
63

3.

7.
1

C
on

fi
de

nt
ia

lit
y6

3

3.

7.
2

In
te

gr
it

y
65

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

26
6

2.4.6.5.1 Create and Maintain an Assurance Case

2.4.6.5.2 Ensure security preserving composition at
all levels of detail

2.4.6.5.3 Secure Distributed Composition

2.4.6.5.4 Ease production of an accompanying
assurance case for the security preserving
correctness of compositions

2.4.6.5.5 Design to ease traceability, verification,
validation, and evaluation

2.4.6.5.6 Analyzability

2.4.6.5.7 Chain of Trust

62.4..6 Use Production Process and Means that
Ease and Increase Assurance

2.4.6.6.1 Ease creation and maintenance of an
assurance case

2.4.6.6.2 Use Repeatable, Documented Procedures

2.4.6.6.3 Procedural Rigor

2.4.6.6.4 Engineering Rigor

2.4.6.6.5 Open Design

2.4.6.6.5.1 Review for use of design principles (and
guidelines

2.4.6.6.6 Chose notations and tools that facilitate
achieving security and its assurance

2.4.6.6.7 Have expertise in technologies being used
and application domain

2.4.6.6.8 Avoid Known Pitfalls

2.4.6.6.8.1 Avoid common errors and vulnerabilities

2.4.6.6.8.2 Avoid and workaround tools’ security
endangering weaknesses

2.4.6.6.8.3 Avoid non-malicious pitfalls

Continuous Risk Management

2.4.6.7.1 Consider security or assurance risks
together with other risks

3 The Environment

3.1 Nature of Environment

3.
7.

3
A

va
ila

bi
lit

y6
5

3.
7.

4
A

cc
ou

nt
ab

ili
ty

 6
6

4
E

T
H

IC
S,

 L
A

W
, A

N
D

G

O
V

E
R

N
A

N
C

E
 7

1

4.

2
E

T
H

IC
S7

1

4.

3
L

A
W

.7
1

5
SE

C
U

R
E

 S
O

FT
W

A
R

E

R
E

Q
U

IR
E

M
E

N
T

S
77

5.

2
R

E
Q

U
IR

E
M

E
N

T
S

FO
R

 A
 S

O
L

U
T

IO
N

 7
7

5.
2.

3
A

ss
et

 P
ro

te
ct

io
n

N
ee

ds
.7

8

5.

2.
4

T
hr

ea
t A

na
ly

si
s8

0

5.

2.
5

In
te

rf
ac

e
an

d
E

nv
ir

on
m

en
t

R
eq

ui
re

m
en

ts
82

5.

2.
13

 S
ys

te
m

A

cc
re

di
ta

tio
n

an
d

A
ud

iti
ng

N

ee
ds

 8
5

5.
3

R
E

Q
U

IR
E

M
E

N
T

S
A

N
A

L
Y

SE
S

 8
6

5.
3.

1
R

is
k

A
na

ly
si

s8
6

5.
3.

2
Fe

as
ib

ili
ty

 A
na

ly
si

s8
7

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

26
7

2.4.6.5.1 Create and Maintain an Assurance Case

2.4.6.5.2 Ensure security preserving composition at
all levels of detail

2.4.6.5.3 Secure Distributed Composition

2.4.6.5.4 Ease production of an accompanying
assurance case for the security preserving
correctness of compositions

2.4.6.5.5 Design to ease traceability, verification,
validation, and evaluation

2.4.6.5.6 Analyzability

2.4.6.5.7 Chain of Trust

62.4..6 Use Production Process and Means that
Ease and Increase Assurance

2.4.6.6.1 Ease creation and maintenance of an
assurance case

2.4.6.6.2 Use Repeatable, Documented Procedures

2.4.6.6.3 Procedural Rigor

2.4.6.6.4 Engineering Rigor

2.4.6.6.5 Open Design

2.4.6.6.5.1 Review for use of design principles (and
guidelines

2.4.6.6.6 Chose notations and tools that facilitate
achieving security and its assurance

2.4.6.6.7 Have expertise in technologies being used
and application domain

2.4.6.6.8 Avoid Known Pitfalls

2.4.6.6.8.1 Avoid common errors and vulnerabilities

2.4.6.6.8.2 Avoid and workaround tools’ security
endangering weaknesses

2.4.6.6.8.3 Avoid non-malicious pitfalls

Continuous Risk Management

2.4.6.7.1 Consider security or assurance risks
together with other risks

3 The Environment

3.1 Nature of Environment

5.
3.

3
T

ra
de

of
f

A
na

ly
si

s8
7

5.
4

SP
E

C
IF

IC
A

T
IO

N
 8

8

5.

5
R

E
Q

U
IR

E
M

E
N

T
S

V
A

L
ID

A
T

IO
N

 9
0

5.
6

A
SS

U
R

A
N

C
E

C

A
SE

91

6
SE

C
U

R
E

 S
O

FT
W

A
R

E

D
E

S
IG

N
 9

5

6.

3
PR

IN
C

IP
L

E
S

A
N

D

G
U

ID
E

L
IN

E
S

FO
R

D

E
S

IG
N

IN
G

 S
E

C
U

R
E

SO

FT
W

A
R

E
.9

7

6.

3.
2

D
am

ag
e

C
on

fi
ne

m
en

t
an

d
Sy

st
em

 R
es

ili
en

ce
 9

9

6.

3.
3

V
ul

ne
ra

bi
lit

y
R

ed
uc

tio
n1

00

6.
4

D
O

C
U

M
E

N
T

A
T

IO
N

O

F
D

E
S

IG
N

A

SS
U

M
P

T
IO

N
S1

01

6.
4.

1
E

nv
ir

on
m

en
ta

l
A

ss
um

pt
io

ns
10

2

6.

7
A

R
C

H
IT

E
C

T
U

R
E

S
FO

R
 S

E
C

U
R

IT
Y

 1
03

6.

8
SE

C
U

R
IT

Y

FU
N

C
T

IO
N

A
L

IT
Y

10
4

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

26
8

2.4.6.5.1 Create and Maintain an Assurance Case

2.4.6.5.2 Ensure security preserving composition at
all levels of detail

2.4.6.5.3 Secure Distributed Composition

2.4.6.5.4 Ease production of an accompanying
assurance case for the security preserving
correctness of compositions

2.4.6.5.5 Design to ease traceability, verification,
validation, and evaluation

2.4.6.5.6 Analyzability

2.4.6.5.7 Chain of Trust

62.4..6 Use Production Process and Means that
Ease and Increase Assurance

2.4.6.6.1 Ease creation and maintenance of an
assurance case

2.4.6.6.2 Use Repeatable, Documented Procedures

2.4.6.6.3 Procedural Rigor

2.4.6.6.4 Engineering Rigor

2.4.6.6.5 Open Design

2.4.6.6.5.1 Review for use of design principles (and
guidelines

2.4.6.6.6 Chose notations and tools that facilitate
achieving security and its assurance

2.4.6.6.7 Have expertise in technologies being used
and application domain

2.4.6.6.8 Avoid Known Pitfalls

2.4.6.6.8.1 Avoid common errors and vulnerabilities

2.4.6.6.8.2 Avoid and workaround tools’ security
endangering weaknesses

2.4.6.6.8.3 Avoid non-malicious pitfalls

Continuous Risk Management

2.4.6.7.1 Consider security or assurance risks
together with other risks

3 The Environment

3.1 Nature of Environment

6.
8.

1
Id

en
ti

ty
 M

an
ag

em
en

t
10

5

6.

8.
2

A
cc

es
s

C
on

tr
ol

M

ec
ha

ni
sm

s
 1

05

6.
9

PR
O

PE
R

 U
SE

 O
F

E
N

C
R

Y
PT

IO
N

 A
N

D

E
N

C
R

Y
PT

IO
N

PR

O
T

O
C

O
L

S1
06

6.

14
 M

E
T

H
O

D
S

FO
R

T

O
L

E
R

A
N

C
E

 A
N

D

R
E

C
O

V
E

R
Y

10
8

6.
15

 D
E

C
E

PT
IO

N
 A

N
D

D

IV
E

R
S

IO
N

10
8

6.
16

 S
O

FT
W

A
R

E

PR
O

T
E

C
T

IO
N

10
9

6.
17

 F
O

R
E

N
S

IC

SU
PP

O
R

T
 1

10

6.
18

 U
SE

R
 I

N
T

E
R

FA
C

E

D
E

S
IG

N
11

0

6.

19
 A

SS
U

R
A

N
C

E
 C

A
SE

FO

R
 D

E
S

IG
N

11
1

7
SE

C
U

R
E

 S
O

FT
W

A
R

E

C
O

N
ST

R
U

C
T

IO
N

11
5

7.
4

C
O

N
ST

R
U

C
T

IO
N

 O
F

U
SE

R
 A

ID
S.

12
4

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

26
9

2.4.6.5.1 Create and Maintain an Assurance Case

2.4.6.5.2 Ensure security preserving composition at
all levels of detail

2.4.6.5.3 Secure Distributed Composition

2.4.6.5.4 Ease production of an accompanying
assurance case for the security preserving
correctness of compositions

2.4.6.5.5 Design to ease traceability, verification,
validation, and evaluation

2.4.6.5.6 Analyzability

2.4.6.5.7 Chain of Trust

62.4..6 Use Production Process and Means that
Ease and Increase Assurance

2.4.6.6.1 Ease creation and maintenance of an
assurance case

2.4.6.6.2 Use Repeatable, Documented Procedures

2.4.6.6.3 Procedural Rigor

2.4.6.6.4 Engineering Rigor

2.4.6.6.5 Open Design

2.4.6.6.5.1 Review for use of design principles (and
guidelines

2.4.6.6.6 Chose notations and tools that facilitate
achieving security and its assurance

2.4.6.6.7 Have expertise in technologies being used
and application domain

2.4.6.6.8 Avoid Known Pitfalls

2.4.6.6.8.1 Avoid common errors and vulnerabilities

2.4.6.6.8.2 Avoid and workaround tools’ security
endangering weaknesses

2.4.6.6.8.3 Avoid non-malicious pitfalls

Continuous Risk Management

2.4.6.7.1 Consider security or assurance risks
together with other risks

3 The Environment

3.1 Nature of Environment

8
SE

C
U

R
E

 S
O

FT
W

A
R

E

V
E

R
IF

IC
A

T
IO

N
,

V
A

L
ID

A
T

IO
N

, A
N

D

E
V

A
L

U
A

T
IO

N
13

5

8.

2
A

SS
U

R
A

N
C

E
 C

A
SE

13

5

8.

10
 T

H
IR

D
-P

A
R

T
Y

V

E
R

IF
IC

A
T

IO
N

 A
N

D

V
A

L
ID

A
T

IO
N

 A
N

D

E
V

A
L

U
A

T
IO

N
14

7

9

SE
C

U
R

E
 S

O
FT

W
A

R
E

T

O
O

L
S

A
N

D

M
E

T
H

O
D

S1
51

10

 S
E

C
U

R
E

 S
O

FT
W

A
R

E

PR
O

C
E

SS
E

S.
15

7

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

27
0

3.1.1 Security is a system, organizational, and
societal problem

3.2 Benefits to Environment

3.2.1 Do not cause security problems for systems in
the environment

3.2.2 Learn, Adapt, and Improve Organizational
Policy

3.3 Limit, Reduce, or Manage Environment-Related
Losses

3.3.1 Avoid assumptions about environment

Make only weak non-critical assumptions about
environment

3.3.2 Trust only services or components in
environment known to be trustworthy

3.3.3 More trustworthy components do not depend
on less trustworthy services or entities in
environment

Do not invoke untrusted services from within
system.

3.3.4 Avoid dependence on protection by
environment

3.4 Avoid Environment-Related Uncertainties

3.4.1 Do not rely only on obfuscation or hiding for
protection from entities in environment

3.4.2 Need adequate assurance for dependences

2
D

A
N

G
E

R
S

A
N

D
 D

A
M

A
G

E
 1

5

2.

3
A

T
T

A
C

K
E

R
S1

8

2.

4
M

E
T

H
O

D
S

FO
R

 A
T

T
A

C
K

S2
0

2.
5

N
O

N
-M

A
L

IC
IO

U
S

D
A

N
G

E
R

S
T

O

SO
FT

W
A

R
E

 2
3

2.
6

A
T

T
A

C
K

S
A

C
R

O
SS

 L
IF

E
C

Y
C

L
E

24

2.
7

IN
FO

R
M

A
T

IO
N

 A
B

O
U

T
 K

N
O

W
N

V

U
L

N
E

R
A

B
IL

IT
IE

S
A

N
D

 E
X

P
L

O
IT

S2
9

3
FU

N
D

A
M

E
N

T
A

L
 C

O
N

C
E

PT
S

A
N

D

PR
IN

C
IP

L
E

S
33

3.

3
B

A
S

IC
 C

O
N

C
E

PT
S

35

3.
3.

1
D

ep
en

da
bi

lit
y

35

3.
3.

2
Se

cu
ri

ty
 3

6

3.

3.
3

So
ft

w
ar

e
an

d
ot

he
r

Se
cu

ri
ty

-r
el

at
ed

C

on
ce

rn
s

 3
7

3.
3.

4
A

ss
et

s
 3

7

3.

3.
5

Se
cu

ri
ty

-V
io

la
ti

on
-r

el
at

ed

C
on

ce
pt

s3
8

3.
3.

6
A

ss
ur

an
ce

 3
8

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

27
1

3.1.1 Security is a system, organizational, and
societal problem

3.2 Benefits to Environment

3.2.1 Do not cause security problems for systems in
the environment

3.2.2 Learn, Adapt, and Improve Organizational
Policy

3.3 Limit, Reduce, or Manage Environment-Related
Losses

3.3.1 Avoid assumptions about environment

Make only weak non-critical assumptions about
environment

3.3.2 Trust only services or components in
environment known to be trustworthy

3.3.3 More trustworthy components do not depend
on less trustworthy services or entities in
environment

Do not invoke untrusted services from within
system.

3.3.4 Avoid dependence on protection by
environment

3.4 Avoid Environment-Related Uncertainties

3.4.1 Do not rely only on obfuscation or hiding for
protection from entities in environment

3.4.2 Need adequate assurance for dependences

3.
4

B
A

S
IC

 S
O

FT
W

A
R

E
 S

Y
ST

E
M

SE

C
U

R
IT

Y
 P

R
IN

C
IP

L
E

S4
5

3.
4.

1
L

ea
st

 P
ri

vi
le

ge
46

3.

4.
2

C
om

pl
et

e
M

ed
ia

tio
n

46

3.
4.

3
Fa

il-
Sa

fe
 D

ef
au

lts
.4

6

3.

4.
4

L
ea

st
 C

om
m

on
 M

ec
ha

ni
sm

46

3.
4.

5
Se

pa
ra

tio
n

of
 P

ri
vi

le
ge

46

3.
4.

6
Ps

yc
ho

lo
gi

ca
l A

cc
ep

ta
bi

lit
y

47

3.
4.

7
W

or
k

Fa
ct

or
.4

7

3.

4.
8

E
co

no
m

y
of

 M
ec

ha
ni

sm
 4

7

3.

4.
9

O
pe

n
D

es
ig

n4
7

3.
4.

10
 A

na
ly

za
bi

lit
y

 4
7

3.
4.

11
 R

ec
or

di
ng

 o
f

C
om

pr
om

is
es

.4
7

3.
4.

12
 D

ef
en

se
 in

 D
ep

th
 4

7

3.

4.
13

 T
re

at
 a

s
C

on
fl

ic
t

48

3.
4.

14
 T

ra
de

of
fs

49

3.
5

SA
FE

T
Y

 A
N

D
 S

E
C

U
R

IT
Y

 4
9

3.
5.

1
Pr

ob
ab

ili
ty

 v
er

su
s

Po
ss

ib
ili

ty
 4

9

3.

6
SE

C
U

R
E

 S
O

FT
W

A
R

E

E
N

G
IN

E
E

R
IN

G
50

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

27
2

3.1.1 Security is a system, organizational, and
societal problem

3.2 Benefits to Environment

3.2.1 Do not cause security problems for systems in
the environment

3.2.2 Learn, Adapt, and Improve Organizational
Policy

3.3 Limit, Reduce, or Manage Environment-Related
Losses

3.3.1 Avoid assumptions about environment

Make only weak non-critical assumptions about
environment

3.3.2 Trust only services or components in
environment known to be trustworthy

3.3.3 More trustworthy components do not depend
on less trustworthy services or entities in
environment

Do not invoke untrusted services from within
system.

3.3.4 Avoid dependence on protection by
environment

3.4 Avoid Environment-Related Uncertainties

3.4.1 Do not rely only on obfuscation or hiding for
protection from entities in environment

3.4.2 Need adequate assurance for dependences

3.
6.

4
Se

cu
ri

ty
-R

el
at

ed
 A

rc
hi

te
ct

ur
al

C

on
ce

pt
s

 5
3

3.
6.

5
Se

cu
re

 S
of

tw
ar

e
D

ev
el

op
m

en
t

A
ct

iv
it

ie
s5

7

3.

6.
6

Se
cu

ri
ty

 F
un

ct
io

na
lit

y
60

3.

6.
8

Se
cu

ri
ty

 R
is

k
M

an
ag

em
en

t f
or

So

ft
w

ar
e6

0

3.

7
SE

C
U

R
IT

Y
 P

R
O

PE
R

T
IE

S
E

L
A

B
O

R
A

T
E

D
63

3.

7.
1

C
on

fi
de

nt
ia

lit
y6

3

3.

7.
2

In
te

gr
it

y
65

3.

7.
3

A
va

ila
bi

lit
y6

5

3.

7.
4

A
cc

ou
nt

ab
ili

ty
 6

6

4

E
T

H
IC

S,
 L

A
W

, A
N

D
 G

O
V

E
R

N
A

N
C

E

71

4.
2

E
T

H
IC

S7
1

4.
3

L
A

W
.7

1

5

SE
C

U
R

E
 S

O
FT

W
A

R
E

R

E
Q

U
IR

E
M

E
N

T
S

77

5.
2

R
E

Q
U

IR
E

M
E

N
T

S
FO

R
 A

 S
O

L
U

T
IO

N

77

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

27
3

3.1.1 Security is a system, organizational, and
societal problem

3.2 Benefits to Environment

3.2.1 Do not cause security problems for systems in
the environment

3.2.2 Learn, Adapt, and Improve Organizational
Policy

3.3 Limit, Reduce, or Manage Environment-Related
Losses

3.3.1 Avoid assumptions about environment

Make only weak non-critical assumptions about
environment

3.3.2 Trust only services or components in
environment known to be trustworthy

3.3.3 More trustworthy components do not depend
on less trustworthy services or entities in
environment

Do not invoke untrusted services from within
system.

3.3.4 Avoid dependence on protection by
environment

3.4 Avoid Environment-Related Uncertainties

3.4.1 Do not rely only on obfuscation or hiding for
protection from entities in environment

3.4.2 Need adequate assurance for dependences

5.
2.

3
A

ss
et

 P
ro

te
ct

io
n

N
ee

ds
.7

8

5.

2.
4

T
hr

ea
t A

na
ly

si
s8

0

5.

2.
5

In
te

rf
ac

e
an

d
E

nv
ir

on
m

en
t

R
eq

ui
re

m
en

ts
82

5.

2.
13

 S
ys

te
m

 A
cc

re
di

ta
ti

on
 a

nd
 A

ud
iti

ng

N
ee

ds
 8

5

5.

3
R

E
Q

U
IR

E
M

E
N

T
S

A
N

A
L

Y
SE

S
 8

6

5.

3.
1

R
is

k
A

na
ly

si
s8

6

5.

3.
2

Fe
as

ib
ili

ty
 A

na
ly

si
s8

7

5.

3.
3

T
ra

de
of

f
A

na
ly

si
s8

7

5.

4
SP

E
C

IF
IC

A
T

IO
N

 8
8

5.
5

R
E

Q
U

IR
E

M
E

N
T

S
V

A
L

ID
A

T
IO

N
 9

0

5.

6
A

SS
U

R
A

N
C

E
 C

A
SE

91

6
SE

C
U

R
E

 S
O

FT
W

A
R

E
 D

E
S

IG
N

 9
5

6.
3

PR
IN

C
IP

L
E

S
A

N
D

 G
U

ID
E

L
IN

E
S

FO
R

 D
E

S
IG

N
IN

G
 S

E
C

U
R

E

SO
FT

W
A

R
E

.9
7

6.
3.

2
D

am
ag

e
C

on
fi

ne
m

en
t a

nd
 S

ys
te

m

R
es

ili
en

ce
 9

9

6.

3.
3

V
ul

ne
ra

bi
lit

y
R

ed
uc

ti
on

10
0

15
 M

ap
pi

ng
 to

 th
e

P
ri

n
ci

pl
es

 o
f S

of
tw

ar
e

A
ss

ur
an

ce
Ti

p
s

on
 U

si
ng

 th
is

 B
od

y
of

 K
no

w
le

dg
e

27
4

3.1.1 Security is a system, organizational, and
societal problem

3.2 Benefits to Environment

3.2.1 Do not cause security problems for systems in
the environment

3.2.2 Learn, Adapt, and Improve Organizational
Policy

3.3 Limit, Reduce, or Manage Environment-Related
Losses

3.3.1 Avoid assumptions about environment

Make only weak non-critical assumptions about
environment

3.3.2 Trust only services or components in
environment known to be trustworthy

3.3.3 More trustworthy components do not depend
on less trustworthy services or entities in
environment

Do not invoke untrusted services from within
system.

3.3.4 Avoid dependence on protection by
environment

3.4 Avoid Environment-Related Uncertainties

3.4.1 Do not rely only on obfuscation or hiding for
protection from entities in environment

3.4.2 Need adequate assurance for dependences

6.
4

D
O

C
U

M
E

N
T

A
T

IO
N

 O
F

D
E

S
IG

N

A
SS

U
M

P
T

IO
N

S1
01

6.

4.
1

E
nv

ir
on

m
en

ta
l A

ss
um

pt
io

ns
10

2

6.

7
A

R
C

H
IT

E
C

T
U

R
E

S
FO

R
 S

E
C

U
R

IT
Y

10

3

6.

8
SE

C
U

R
IT

Y
 F

U
N

C
T

IO
N

A
L

IT
Y

10
4

6.
8.

1
Id

en
ti

ty
 M

an
ag

em
en

t 1
05

6.

8.
2

A
cc

es
s

C
on

tr
ol

 M
ec

ha
ni

sm
s

 1
05

6.

9
PR

O
PE

R
 U

SE
 O

F
E

N
C

R
Y

PT
IO

N

A
N

D
 E

N
C

R
Y

PT
IO

N
 P

R
O

T
O

C
O

L
S1

06

6.
14

 M
E

T
H

O
D

S
FO

R
 T

O
L

E
R

A
N

C
E

 A
N

D

R
E

C
O

V
E

R
Y

10
8

6.
15

 D
E

C
E

PT
IO

N
 A

N
D

 D
IV

E
R

S
IO

N
10

8

6.

16
 S

O
FT

W
A

R
E

 P
R

O
T

E
C

T
IO

N
10

9

6.

17
 F

O
R

E
N

S
IC

 S
U

PP
O

R
T

 1
10

6.

18
 U

SE
R

 I
N

T
E

R
FA

C
E

 D
E

S
IG

N
11

0

6.

19
 A

SS
U

R
A

N
C

E
 C

A
SE

 F
O

R

D
E

S
IG

N
11

1

7

SE
C

U
R

E
 S

O
FT

W
A

R
E

C

O
N

ST
R

U
C

T
IO

N
11

5

7.

4
C

O
N

ST
R

U
C

T
IO

N
 O

F
U

SE
R

A

ID
S.

12
4

S
of

tw
ar

e
A

ss
u

ra
n

ce
:

A
 C

ur
ri

cu
lu

m
 G

ui
de

 to
 th

e
C

om
m

on

B
od

y
of

 K
no

w
le

dg
e

to
 P

ro
du

ce
, A

cq
ui

re
 a

nd
 S

u
st

ai
n

S
ec

ur
e

S
of

tw
ar

e

27
5

3.1.1 Security is a system, organizational, and
societal problem

3.2 Benefits to Environment

3.2.1 Do not cause security problems for systems in
the environment

3.2.2 Learn, Adapt, and Improve Organizational
Policy

3.3 Limit, Reduce, or Manage Environment-Related
Losses

3.3.1 Avoid assumptions about environment

Make only weak non-critical assumptions about
environment

3.3.2 Trust only services or components in
environment known to be trustworthy

3.3.3 More trustworthy components do not depend
on less trustworthy services or entities in
environment

Do not invoke untrusted services from within
system.

3.3.4 Avoid dependence on protection by
environment

3.4 Avoid Environment-Related Uncertainties

3.4.1 Do not rely only on obfuscation or hiding for
protection from entities in environment

3.4.2 Need adequate assurance for dependences

8
SE

C
U

R
E

 S
O

FT
W

A
R

E

V
E

R
IF

IC
A

T
IO

N
, V

A
L

ID
A

T
IO

N
, A

N
D

E

V
A

L
U

A
T

IO
N

13
5

8.
2

A
SS

U
R

A
N

C
E

 C
A

SE
 1

35

8.
10

 T
H

IR
D

-P
A

R
T

Y
 V

E
R

IF
IC

A
T

IO
N

A

N
D

 V
A

L
ID

A
T

IO
N

 A
N

D

E
V

A
L

U
A

T
IO

N
14

7

9

SE
C

U
R

E
 S

O
FT

W
A

R
E

 T
O

O
L

S
A

N
D

M

E
T

H
O

D
S1

51

10
 S

E
C

U
R

E
 S

O
FT

W
A

R
E

PR

O
C

E
SS

E
S.

15
7

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

277

16 Bibliography
[Abbott 1976] Abbott, Robert P., Chin, Janet S., Donnelley, James E., Konigsford, William L., Tukubo,

Shigeru, and Webb, Douglas A., "Security analysis and enhancements of computer operating
systems," NBSIR 76-1041, The RISOS Project, Lawrence Livermore Laboratory, Livermore, CA,
USA. Published by the Institute for Computer Sciences and Technology, National Bureau of
Standards, Washington, DC, USA. Apr. 1976.

[Abrams 1998] Abrams, M. D, “Security Engineering in an Evolutionary Acquisition Environment,” New
Security Paradigms Workshop, 1998.

[Abran 2004] Abran, Alain, James W. Moore (Executive editors); Pierre Bourque, Robert Dupuis,
Leonard Tripp (Editors). Guide to the Software Engineering Body of Knowledge, 2004 Version. IEEE
Computer Society, 2004.

[Abrial 1996] Abrial, J-R. The B-Book: Assigning programs to meanings. Cambridge Press, 1996.

[ACM] ACM Transactions on Information and System Security, Association for Computing Machinery.

[Alexander 1995] Alexander, Perry, “Best of Both Worlds: Combining Formal and Semi-formal Methods
in Software Engineering,” IEEE Potentials, December/January, 1995.

[Alexander 2001] Alexander, Ian. Systems Engineering Isn't Just Software. 2001. Available at
http://easyweb.easynet.co.uk/~iany/consultancy/systems_engineering/se_isnt_just_sw.htm.

[Alexander 2005] Alexander, Steven. "Why Teenagers Hack: A Personal Memoir", in Login, Vol. 10, No.
1, pp. 14-16, February 2005. Available at http://www.usenix.org/publications/login/2005-
02/pdfs/teenagers.pdf.

[Anderson 2001] Anderson, Ross J., Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley and Sons, 2001.

[Anderson 2004] Anderson, E. A., C. E. Irvine, and R. R. Schell. “Subversion as a threat in information
warfare.” Journal of Information Warfare, 3:51 -- 64, 2004.

[Andrews 2004] Andrews, Mike, and James A. Whittaker, “Computer Security,” IEEE Security and
Privacy, pp. 68-71, September/October 2004.

[Andrews et al 1990] Andrews, Peter B., Sunil Issar, Dan Nesmith & Frank Pfenning, The TPS Theorem
Proving System, 10th International Conference on Automated Deduction, edited by Mark E. Stickel,
Lecture Notes in Artificial Intelligence 449, Springer-Verlag, 1990, 641-642.

[ANSI/EIA 748-1998] ANSI/EIA 748-1998. Earned Value Management System Guidelines. EIA, 1998.

[ANSI/PMI 99-001-2004] No Author.. A Guide to the Project Management Body of Knowledge. Third
Edition. Newton Square, PA.: Project Management Institute, Inc. 2004.

[Apvrille 2005] Apvrille, Axelle, and Makan Pourzandi, “Secure Software Development by Example,”
IEEE Security and Privacy, p. 10-17, July/August 200.5

[Arthon 1990] Arthan, R. D. A formal specification of HOL. Technical Report DS/FMU/IED/SPC001,
ICL Defence Systems, April 1990.

[Ashton 2001] Ashton, Gerry. “Cleaning up your Security Act for Inspection”, Computer Weekly, Jan 18,
2001.

Bibliography

278

[Aslam 1995] Aslam, Taimur, “A taxonomy of security faults in the UNIX operating system,” Master's
thesis, Purdue University, Aug. 1995.

[Aslam 1996] Aslam, Taimur, Krsul, Ivan, and Spafford, Eugene, “Use of a taxonomy of security faults,”
In Proc. 19th NIST-NCSC National Information Systems Security Conference, pages 551-560, 1996.

[Atallah, Bryant and Sytz 2004] Atallah, Mikhail, Bryant, Eric, and Styz, Martin, “A Survey of Anti-
Tamper Technologies,” Crosstalk – The Journal of Defense Software Engineering, Nov 2004.

[Avizienis 2004] Avizienis, Algirdas, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,” IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 1, pp. 11-33, Jan.-Mar. 2004. Available at
http://csdl.computer.org/dl/trans/tq/2004/01/q0011.pdf

[Babich 1986] Babich, W., Software Configuration Management, Addison-Wesley, 1986.

[Backes 2002] Backes, M. and B. Pfitzmann. Computational probabilistic non-interference. In Proc. 7th
European Symposium on Research in Computer Security (ESORICS), volume 2502 of Lecture Notes
in Computer Science, pp. 1–23. Springer, 2002.

[Bahill 1998] Bahill, A.T. and B. Gissing, "Re-evaluating Systems Engineering Concepts Using Systems
Thinking". IEEE Transaction on Systems, Man and Cybernetics, Part C: Applications and Reviews,
Vol. 28 No. 4 pp. 516-527, November 1998.

[Barden 1995] Barden, Rosalind, Susan Stepney, and David Cooper, Z in Practice, Prentice Hall, 1995.

[Barnes 2003] Barnes, John. High Integrity Software: The SPARK Approach to Safety and Security,
Addison Wesley, 2003.

[Barnum 2005] Sean Barnum and Gary McGraw. “Knowledge for Software Security,” IEEE Security and
Privacy, vol.03, no.2, pp. 74-78, March/April 2005.

[Baskerville 2003] Baskerville, R., and Portougal, V. “A Possibility Theory Framework for
Security Evaluation in National Infrastructure Protection.” Journal of Database Management, 14(2),
1-13, 2003.
[Baskerville 2005a] Baskerville, R., and Portougal, V. “Possibility Theory in Protecting National
Information Infrastructure.” In K. Siau (Ed.), Advanced Topics in Database Research (Vol. 4). Idea
Group, 2005.

[Baskerville 2005b] Baskerville, R., and Sainsbury, R. “Securing Against the Possibility of an Improbable
Event: Concepts for Managing Predictable Threats and Normal Compromises.” European Conference
on Information Warfare and Security, Glamorgan University, UK, 11-12 July 2005.

[Bass 1998] Bass, L., Clements, P., and R. Kazman, Software Architecture in Practice, SEI Series in
Software Engineering, Reading, MA: Addison Wesley Longman, Inc, 1998.

[Bass 2001] Bass, L., M. Klein, and G. Moreno, Applicability of General Scenarios to the Architecture
Tradeoff Analysis Method, CMU/SEI-2001-TR-014, ADA396098, Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2001.
Available at: http://www.sei.cmu.edu/publications/documents/01.reports/01tr014.html.

[Bazaz 2005] Bazaz, Anil and Arthur, James D., “On Vulnerabilities, Constraints and Assumptions,” 2005

[Beitler 2003] Beitler, Michael A., Strategic Organizational Change, Practitioner Press International;
January 17, 2003.

[Bejtlich 2005] Bejtlich, Richard. Extrusion Detection: Security Monitoring for Internal Intrusions.
Addison-Wesley Professional, 2005

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

279

[Bell 2005] Bell, David Elliot. “Looking Back at the Bell-La Padula Model,” Proceedings of the 21st
Annual Computer Security Applications Conference (ACSAC ’05). pp 337-351, December 2005.

[Berg 2005] Berg, Clifford J, High-Assurance Design: Architecting Secure and Reliable Enterprise
Applications, Addison Wesley, 2005.

[Berry 2001] Berry, John, “IT ROI Metrics Fall Into Four Groups,” Internet Week, July 16, 2001.

[Bernstein 2005] Bernstein, Lawrence and C. M. Yuhas. Trustworthy Systems through Quantitative
Software Engineering. Wiley-IEEE Computer Society Press, 2005. About reliability not security.

[Bersoff 1980] Bersoff, E., V. Henderson, and S. Siegel., Software Configuration Management, Prentice-
Hall, 1980.

[Bertino 2005] Bertino,Elisa, and Ravi Sandhu, Database Security-Concepts, Approaches, and Challenges,
IEEE Transactions on Dependable and Secure Systems, Vol. 2, No. 1, pp. 2-19, January-March 2005

[Besnard 2001] Besnard, Denis, "Attacks in IT Systems: a Human Factors-Centred Approach". University
of Newcastle upon Tyne, 2001. Available at
http://homepages.cs.ncl.ac.uk/denis.besnard/home.formal/Publications/Besnard-2001.pdf.

[Beznosov 2004] Beznosov, K. and Kruchten, P. “Towards agile security assurance.” Proceedings of the
2004 Workshop on New Security Paradigms. NSPW '04. ACM Press, New York, NY, p. 47-54,
September 20 - 23, 2004.

[Birman 1996] Birman, Kenneth, Building Secure and Reliable Network Applications, Manning
Publications, Inc., 1996.

[Bishop 1995] Bishop, Matt, “A Taxonomy of UNIX System and Network Vulnerabilities,” Technical
Report CSE-95-10, Department of Computer Science at the University of California at Davis, May
1995.

[Bishop 1996] Bishop, Matt, and Bailey, David, “A critical analysis of vulnerability taxonomies,”
Technical Report CSE-96-11, Department of Computer Science at the University of California at
Davis, Sept. 1996.

[Bishop 1999] Bishop, Matt, “Vulnerabilities analysis,” In Proceedings of Recent Advances in Intrusion
Detection, pages 125–136, 1999.

[Bishop 2003] Bishop, Matt. Computer Security: Art and Practice, Addison-Wesley, 2003.

[Bishop 2006] Bishop, Matt, and Sophie Engle. “The Software Assurance CBK and University Curricula.”
Proceedings of the 10th Colloquium for Information Systems Security Education, 2006.

[Blackburn 2001] Blackburn, Mark, Robert Busser, Aaron Nauman, and Ramaswamy Chandramouli,
Model-based Approach to Security Test Automation, National Institute of Standards and Technology,
2001.

[Boehm 2003], Boehm, Barry, and Richard Turner, Balancing Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley, 2003.

[Bosworth and Kabay 2002] Bosworth, Seymour and Kabay, M. eds. Computer Security Handbook. 4th
Edition, John Wiley and Sons, 2002.

[Boudra 1993] Boudra, P., Jr. Report on rules of system composition: Principles of secure system design.
Technical Report, National Security Agency, Information Security Systems Organization, Office of
Infosec Systems Engineering, I9 Technical Report 1-93, Library No. S-240, 330, March 1993.

Bibliography

280

[Breu 2003] Breu, R., K. Burger, M. Hafner, J. Jürjens, G. Popp, G. Wimmel, and V. Lotz, “Key Issues of
a Formally Based Process Model for Security Engineering,” Proceedings of the 16th International
Conference on Software & Systems Engineering and their Applications (ICSSEA03), 2003.

[Broadfoot and Broadfoot 2003] Broadfoot, G. and P. Broadfoot, “Academia and Industry Meet: Some
Experiences of Formal Methods in Practice,” Proceedings of the Tenth Asia-Pacific Software
Engineering Conference, Chiang Mai, Thailand, IEEE Computer Society, December 2003.

[BS 15000-1] BS 15000-1: 2000, Specification for Service Management. BSI, 2000.

[BS 15000-2] BS 15000-2, 2000, Code of Practice for Service Management. BSI, 2000.

[BS ISO/IEC 17799] BS ISO/IEC 17799:2000, Information Technology - Code of practice for information
security management.

[BSI 100-2 2005] Bundesamt für Sicherheit in der Informationstechnik version 1. IT-Grundschutz
Methodology. Bundesamt für Sicherheit in der Informationstechnik, 2005.

[DHS BSI] Department of Homeland Security National Cyber Security Division's “Build Security In”
(BSI) web site, (http://buildsecurityin.us-cert.gov).

[Burrows and Martin 1989] Burrows, Michael, Abadi, Martin, and Needham, Roger, “A Logic of
Authentication”, Proceedings of the Royal Society, Volume 426, Number 1871, 1989.

[Bush 2000] Bush, W.R., J.D. Pincus, and D.J. Sielaff, “A Static Analyzer for Finding Dynamic
Programming Errors,” Software Practice and Experience, vol. 30, June 2000.

[Bynum 2001] Bynum, Terrell. “Computer Ethics: Basic Concepts and Historical Overview,” The
Stanford Encyclopedia of Philosophy, 2001 ed., Edward N. Zalta (ed.).
Available at: http://plato.stanford.edu/archives/win2001/entries/ethics-computer/

[Bynum and Rogerson 2004] Bynum, Terrell (ed.) and Simon Rogerson. Computer Ethics and
Professional Responsibility: Introductory Text and Readings, Blackwell Publishing, 2004.

[Campara 2005] Campara, Djenana. Secure Software: A Manager’s Checklist. Klocwork Whitepaper, June
20, 2005. Available at www.klocwork.com/company/downloads/
SecureSoftwareManagerChecklist.pdf.

[Cannon 2005] Cannon, J. C. Privacy, Addison Wesley, 2005.

[Carnegie Mellon University] Carnegie Mellon University Fox Project: Proof-Carrying Code. Available at
http://www.cs.cmu.edu/~fox/pcc.html.

[Carter 2004] Carter, Earl, Cisco Systems Inc., CCSP Self-Study: Cisco Secure Intrusion Detection
System, Cisco Press, 2004.

[CASIS3 2004] Third Annual Conference on the Acquisition of Software-Intensive Systems, sponsored by
the Software Engineering Institute (SEI) and the Office of the Under Secretary of Defense
(Acquisition, Technology, and Logistics), Defense Systems, Software-Intensive Systems, January 26-
28, 2004. Available at http://www.sei.cmu.edu/products/events/acquisition/2004-presentations/

[CC 1999] No Author (1999, October). Common Criteria User Guide. (downloaded on September 11,
2005)
Available at: http://www.commoncriteriaportal.org/public/consumer/index.php?menu=1

[CC 2005] No Author. Common Criteria v. 3.0, The National Institute of Standards and Technology, July,
2005.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

281

[CC 2005, Part 1] No Author. Common Criteria for Information Technology Security Evaluation. Part 1:
Introduction and General Model. V. 3.0, Rev. 2. 2005.

[CC 2005, Part 2] No Author. Common Criteria for Information Technology Security Evaluation. Part 2:
Security Functional Components. V. 3.0, Rev. 2. 2005.

[CC 2005, Part 3] No Author. Common Criteria for Information Technology Security Evaluation. Part 3:
Security Assurance Components. V. 3.0, Rev. 2. 2005.

[CCEVS 2005] The Common Criteria Evaluation and Validation Scheme website (August 2005) Available
at: http://niap.nist.gov/cc-scheme/vpl/vpl_vendor.html.

[CCIMB-2004-01-001] CCIMB-2004-01-001, Common Criteria for Information Technology Security
Evaluation, 2004.

[CERIAS TR 2000-01] Center for Education and Research in Information Assurance and Security and
Andersen Consulting, Policy Framework for Interpreting Risk in Ecommerce Security, CERIAS Tech
Report 2000-01, Center for Education and Research in Information Assurance and Security, Purdue
University, 2000.
Available at: https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2000-01.pdf.

[Cerven 2002] Cerven, Pavol. Crackproof Your Software: Protect Your Software Against Crackers, First
Edition. No Starch Press, 2002.

[Chaves et al, 2005] Chaves, C., H. P. C., L.H Franco, and A. Montest. “Honetnet Maintenance
Procedures and Tools”, Proceedings 6th IEEE Systems, Man and Cybernetics Information Assurance
Workshop (IAW 05), pp.252-257, 2005.

[Chen 2004] Chen, Peter, Marjon Dean, Don Ojoko-Adams, Hassan Osman, Lilian Lopez, Nick Xie.
System Quality Requirements Engineering (SQUARE) Methodology: Case Study on Asset
Management System. CMU/SEI-2004-SR-015, Software Engineering Institute, December 2004.
Available at http://www.sei.cmu.edu/publications/documents/04.reports/04sr015.html

[Chirillo 2002] Chirillo, John. Hack Attacks Revealed: A Complete Reference for UNIX, Windows, and
Linux with Custom Security Toolset. Wiley Publishing, Inc., 2002.

[Christensen 2003] Christensen, Clayton M., The Innovator's Dilemma. HarperBusiness, January 7, 2003.

[Chung 1999] Chung, Lawrence, et al. Non-Functional Requirements in Software Engineering, Kluwer,
1999.

[CJCSI 3401.03A] Chairman of the Joint Chiefs of Staff Instruction (CJCSI) 3401.03A (current as of
August 2005). Information Assurance (IA) and Computer Network Defense (CND) Joint Quarterly
Readiness Review (JQRR) Metrics. Washington, DC.: Chairman of the Joint Chiefs of Staff.

[CJCSM 6510.01 2004] CJCSM 6510.01, Defense-In-Depth: Information Assurance (IA) and Computer
Network Defense (CND), DoD Joint Staff, 2004. (Official Use Only)

[Clark and Wilson 1987] Clark, David D. and David R. Wilson, “A Comparison of Commercial and
Military Computer Security Policies,” Proc. of the 1987 IEEE Symposium on Security and Privacy,
IEEE, pp. 184-196, 1987.

[Clarke 2003] Clarke, Patrick E. “Project Targets Software Security,” Military Information Technology,
Volume: 7 Issue: 1, Jan 17, 2003.
Available at: http://www.military-information-technology.com/article.cfm?DocID=38

[Clarke and Grumberg 1999] Clarke, Edmund, Orna Grumberg, and Doron Peled, Model Checking, MIT
Press, December 1999.

Bibliography

282

[Clarke and Wing 1996] Clarke, Edmund and Jeannette Wing, “Formal Methods: State of the Art and
Future Directions”, ACM Computing Surveys, Vol. 28, No. 4, December 1996.

[CNSSI 4009] CNSS, National Information Assurance Glossary, May 2003. Available at
http://www.cnss.gov/full-index.html

[COBIT] COBIT (Control Objectives for Information and Related Technology) framework for IT
governance at
http://www.isaca.org/Template.cfm?Section=COBIT_Online&Template=/ContentManagement/Conte
ntDisplay.cfm&ContentID=15633.

[Cohen 2001] Cohen, Fred, Dave Lambert, Charles Preston, Nina Berry, Corbin Stewart, and Eric
Thomas, “A Framework for Deception'', Final Report IFIP-TC11, 2001.

[Cohen 2004] Cohen, Lazaro Issi, and Joseph Issi Cohen, The Web Programmer's Desk Reference, No
Starch Press, 2004.

[Common Criteria Part 1] Common Criteria Project, Common Criteria for Information Technology
Security Evaluation Part 1: Introduction and general model, Version 2.1, CCIMB-99-031, August
1999.

[Common Criteria Part 2] Common Criteria Project, Common Criteria for Information Technology
Security Evaluation Part 2: Security Functional Requirements, Version 2.1. CCIMB-99-031, August
1999.

[Cranor 2005] Cranor, Lorrie, and Simson Garfinkel. Security and Usability: Designing Secure Systems
that People Can Use. O’Reilly, 2005.

[Croll 2004] Croll, Paul R. “Best Practice Approach for Software Maintenance - Sustaining Critical
Capability,” Proceedings, 16th Annual Systems and Software Technology Conference, IEEE, April
2004, pp. 1355-1440.

[CSTB 2004] Committee on Certifiably Dependable Software Systems. Summary of a Workshop on
Software Certification and Dependability. National Academies Computer Science and
Telecommunications Board, National Academies Press, 2004.

[Cusumano 2005] Cusumano, Michael A., “Who is Liable for Bugs and Security Flaws in Software?
Attempting to determine fault and responsibility based on available evidence”, Communications of the
ACM, March 2004/Vol. 47, No. 3 pp. 25-27.

[DACS API] DACS Gold Practice, Acquisition Process Improvement. Available at
http://www.goldpractices.com/practices/api/

[Dart 1996] Dart, Susan A., “Achieving the Best Possible Configuration Management Solution,”
Crosstalk, September 1996.

[DAU (SEF) 2001] No Author (January 2001). Systems Engineering Fundamentals. Fort Belvoir, VA:
Defense Acquisition University, 2001.

[Davis 1993] Davis, A.M. Software Requirements: Objects, Functions and States, Prentice Hall, 1993.

[Davis and Mullaney 2003] Davis, Noopur, and Mullaney, Julia, “The Team Software Process in Practice:
A Summary of Recent Results,” Technical Report CMU/SEI-2003-TR-014, September 2003.

[DCID 6/3 2000] Director Central Intelligence. Protecting Sensitive Compartmented Information Within
Information Systems, (DCID 6/3) Manual. 24 May 2000.

[Dean 1996] Dean, C. Neville. Teaching and Learning Formal Methods. Morgan Kaufmann,1996.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

283

[Dean 2004] Dean, C. Neville and Raymond T. Boute, (Eds.). Teaching Formal Methods:
CoLogNET/FME Symposium, TFM 2004, Ghent, Belgium, November 18-19, 2004. Lecture Notes in
Computer Science, Vol. 3294, Springer, 2004
[Despotou 2004] Despotou, Georgios, and Tim Kelly. “Extending the Safety Case Concept to Address
Dependability,” Proceedings of the 22nd International System Safety Conference, 2004.

[Delahaye 1998] Delahaye, Brian L. and Barry J. Smith. How to Be an Effective Trainer: Skills for
Managers and New Trainers. Wiley; 3rd edition 1998.

[DeLooze 2004] DeLooze, L. “Classification of computer attacks using a self-organizing map,”
Proceedings from the Fifth Annual IEEE SMC, 10-11 June 2004, Pages: 365-369, 2004.

[Deming 1986] Deming, W. Edward. Out of the Crisis. Cambridge, MA: MIT Center for Advanced
Engineering, 1986.

[Denning 1999] Denning, Dorothy E. Information Warfare and Security, pp 46-50. Reading MA:
Addison-Wesley, 1999.

[Despotou 2004] Despotou, Georgios, and Tim Kelly, “Extending the Safety Case Concept to Address
Dependability,” Proceedings of the 22nd International System Safety Conference, p. 645-654, 2004.

[Devanbu et al. 1999] Devanbu, P., M. Gertz and Stuart Stubblebine. Security for Automated, Distributed
Configuration Management. Proceedings, ICSE 99 Workshop on Software Engineering over the
Internet, 1999.
http://www.stubblebine.com/99icse-workshop-stubblebine.pdf

[DIAM 50-4 1997] DIAM 50-4 Security of Compartmented Computer Operations. Department of Defense
(DoD) Intelligence Information System (DODIIS) Information Systems Security (INFOSEC)
Program, 30 April 1997.

[DITSCAP 1997] DoD Instruction 5200.40, DoD Information Technology Security Certification and
Accreditation Process (DITSCAP), December 30, 1997.

[DoD 5200.28-STD 1985] DOD 5200.28-STD, Department of Defense Trusted Computer System
Evaluation Criteria, 1985.

[DoD 8510.1-M] DoD 8510.1-M DoD Information Technology Security Certification and Accreditation
Process (DITSCAP) Application Manual, July 31, 2000.

[DoD 8510.1-M] DoD 8510.1-M, DoD Information Technology Security Certification and Accreditation
Process (DITSCAP) Application Manual, July 31, 2000.

[DoD EVMS 2005] Department of Defense (7 April 2005). Earned Value Management Implementation
Guide. Washington, DC: US Department of Defense, 2005.

[DoD PMI 2003] No Author (June 2003). US Department of Defense Extension to: A Guide to the Project
Management Body of Knowledge (PMBOK® Guide). V. 1.0. Fort Belvoir, VA: Defense Acquisition
University, 2003.

[DoDD 5200.39] Department of Defense Directive 5200.39, Security, Intelligence and Counterintelligence
Support to Acquisition Program Protection. 10 September 1997.

[DoDD 8500.1] Department of Defense Directive 8500.1 (24 October 2002-certified current as of 21
November 2003). Information Assurance (IA). Washington, DC: US Department of Defense, 2002.

[DoDI 5000.2] Department of Defense Instruction (12 May 2003). Operation of the Defense Acquisition
System. Washington, DC: US Department of Defense, 2003.

Bibliography

284

[DoDI 8500.2] Department of Defense Instruction 8500.2 (6 February 2003). Information Assurance (IA)
Implementation. Washington, DC: US Department of Defense, 2003.

[DoDI S-3600.2] DOD Instruction S-3600.2, Information Operations (IO) Security Classification
Guidance, 6 August 1998.

[DoD PMI 2003] No Author (June 2003). US Department of Defense Extension to: A Guide to the Project
Management Body of Knowledge (PMBOK® Guide). V. 1.0. Fort Belvoir, VA: Defense Acquisition
Univeristy, 2003.

[Dorofee 1997] Dorofee A.J., JA Walker, and RC Williams. “Risk Management in Practice”, Crosstalk,
Volume 10 #4, April 1997.

[DTI UK 2004] Price, Waterhouse and Coopers, Information Security Breaches 2003, Department of
Trade and Industry (DTI), U.K., 2004.

[Du 1998] Du, Wenliang, and Aditya P. Mathur. “Vulnerability Testing of Software System Using Fault
Injection,” COAST, Purdue University, 1998.

[Duce 2003] Duce, David, et al. Teaching Formal Methods: Practice and Experience. Workshop at
Oxford Brookes University, December 12, 2003. Available at http://cms.brookes.ac.uk/tfm2003/
[Dustin et al. 2001] Dustin, Elfriede, Jeff Rashka and Douglas McDiarmid. Quality Web Systems:
Performance, Security, and Usability, First Edition. Boston, MA: Addison-Wesley Professional, 2001.

[EC-Council 2003] International Council of Electronic Commerce Consultants. Ethical Hacking. Osb
Publisher Pte Ltd, 2003.

[EC-Council CEH 312-50] International Council of Electronic Commerce Consultants. Certified Ethical
Hacker Exam Study Guide. International Council of Electronic Commerce Consultants, n.d.
Available through http://www.itcertkeys.com/shop/product_info.php/products_id/307

[Eeles 2004] Eeles, Peter, Appendix C: Sample Architectural Requirements Questionnaire, IBM 30 Apr
2004.
Available at: http://www-128.ibm.com/developerworks/rational/library/4710.html

[Ellison 2003] Ellison, Robert J., and Andrew P. Moore. Trustworthy Refinement Through Intrusion-
Aware Design (TRIAD). Technical Report CMU/SEI-2003-TR-002. Software Engineering Institute,
October 2002 Revised March 2003.

[Endicott-Popovsky 2003] Endicott-Popovsky, Barbara, “Ethics and Teaching Information Assurance,”
IEEE Security and Privacy Vol. 1, No. 4, July-August 2003, pp. 65-67

[Epstein 2005] Epstein, Jeremy, Scott Matsumoto, and Gary McGraw. “Software Security and SOA:
Danger, Will Robinson!” IEEE Security & Privacy. Vol. 4, No.1, pp 80-83, January/February 2006.

[Ernst 2003] Ernst, Michael D. “Static and dynamic analysis: Synergy and duality,” WODA 2003: ICSE
Workshop on Dynamic Analysis, (Portland, OR), May 9, 2003, pp. 24-27.

[Escamilla 1996] Escamilla, T. “Intrusion Detection: Network Security Beyond the Firewall,”, Wiley,
1998, Chap. 5.Jones, Capers, Software Defect Removal Efficiency, Computer, April 1996, Vol.29, #4.

[EU 1995] “Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the
protection of individuals with regard to the processing of personal data and on the free movement of
such data,” Official Journal of the European Communities of 23 November 1995 No L. 281 p. 31.
Available at: http://www.cdt.org/privacy/eudirective/EU_Directive_.html

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

285

[Evans 2005] Evans, S. and J. Wallner. “Risk-Based Security Engineering Through the Eyes of the
Adversary,” Proc. 6th Ann. IEEE Systems, Man and Cybernetics Information Assurance Workshop
(IAW 05), IEEE CS Press, 2005, pp.158-165.

[Evans and Larochelle 2002] “Improving Security Using Extensible Lightweight Static Analysis,” IEEE
Software, Jan. 2002, pp. 42-51.

[FAR, 2005] Federal Acquisition Regulation.

[Feathers 2005] Feathers, M.C., Working Effectively with Legacy Code, Prentice Hall, 2005.

[Feiler 1990] Feiler, P., “Software Process Support in Software Development Environments,” Fifth
International Software Process Workshop, ACM Press, October 1990.

[Feiler 1991] Feiler, P., Configuration Management Models in Commercial Environments, Tech. report
CMU/SEI-91-TR-7, ADA235782, Software Engineering Institute, Carnegie-Mellon University, April
1991.

[Fench 1999] French, Wendell L. Organization Development and Transformation: Managing Effective
Change. McGraw-Hill/Irwin; 5th edition July 13, 1999.

[Fernandez 2005]E.B.Fernandez and Maria M. Larrondo-Petrie, “Using UML and security patterns to
teach secure systems design.” Proceedings of the American Society for Engineering Education
(ASEE 2005) Annual Conference.

[Fichman 1993] Fichman and Kemerer, “Adoption of Software Engineering Process Innovations: The
Case of Object Orientation,” Sloan Management Review, Winter 1993, pp. 7-22.

[FIPS 188] FIPS 188, Standard Security Labels for Information Transfer, September 1994.

[FIPS Pub 199] Federal Information Processing Standard (FIPS) Publication 199 (February 2004).
Standards for Security Categorization of Federal Information and Information Systems. Gaithersburg,
MD.: National Institute of Standards and Technology (NIST), U.S. Department of Commerce.

[FIPS Pub 200] Federal Information Processing Standard (FIPS) Publication 200 (July 2005). Minimum
Security Standard for Federal Information Systems. Gaithersburg, MD.: National Institute of
Standards and Technology (NIST), U.S. Department of Commerce, 2005.

[Firesmith 2005] Firesmith, Donald G., "A Taxonomy of Security-Related Requirements," Software
Engineering Institue, Carnegie Mellon University, 2005.

[FISMA 2002] Federal Information Security Management Act of 2002, 44 U.S.C. § 3541 et seq.

[Fitzgerald et al 2005] Fitzgerald, John, Peter Gorm Larsen, Nic Plat and Marcel Verhoef. Validated
Designs for Object-oriented Systems. Springer Verlag, NewYork. 2005.

[Fitzgerald 2002] Fitzgerald, Kevin J., “U.S. Defense Department Requirements for Information
Security”, Crosstalk, May 2002.

[Flechais 2003] Flechais, I., Sasse, M. A., and Hailes, S. M., “Bringing security home: a process for
developing secure and usable systems,” In Proceedings of the 2003 Workshop on New Security
Paradigms (Ascona, Switzerland, August 18 - 21, 2003). C. F. Hempelmann and V. Raskin, Eds.
NSPW '03. ACM Press, New York, NY, 49-57.

[Flickenger 2003] Flickenger, Rob. Wireless Hacks. O’Reilly and Associates, Inc., 2003.

[Foster and Foster 2005] Foster, James and Steven Foster, Programmers Ultimate Security Desk
Reference, Syngress Press, 2005.

Bibliography

286

[Foster and Osipov 2005] Foster, James and Osipov, Vitaly, et al., Buffer Overflow Attacks: Detect,
Exploit, Prevent, Syngress Press, 2005.

[Fötinger and Ziegler 2004] Fötinger, Christian S. and Wolfgang Ziegler, "Understanding a Hacker's
Mind - A Psychological Insight into the Hijacking of Identities". Krems, Austria: Donau-Universität
Krems, 2004. Available at http://www.donau-
uni.ac.at/de/studium/fachabteilungen/tim/zentren/zpi/DanubeUniversityHackersStudy.pdf.

[Fowler 1995] Fowler, C. A., and R. F. Nesbit. “Tactical deception in air-land warfare,” Journal of
Electronic Defense, vol. 18, no. 6. June, 1995, pp. 37-44 & 76-79.

[FTC 2000] US Federal Trade Commission, Fair Information Practices Report to Congress, US Federal
Trade Commission, 2000
Available at: www.ftc.gov/reports/privacy2000/privacy2000.pdf

[Fugini 2004] Fugini, Mariagrazia, and Carlos Bellettini (Editors). Information Security Policies and
Actions in Modern Integrated Systems. Idea Group Publishing, 2004.

[Futrell et al. 2002] Futrell, Robert T., Donald F. Shafer and Linda I. Shafer. Quality Software Project
Management, First Edition. Upper Saddle River, NJ: Prentice Hall Professional Technical Reference,
2002.

[Gaines & Michael, 2005] Gaines, L. and J. Michael (2005, March). “Service Level Agreements as
Vehicles for Managing Acquisition of Software-Intrensive Systems”. Defense Acquisition Review
Journal, 37, 284-303, 2005.

[Gallagher et al. 2006] Gallagher, Tom, Bryan Jeffries and Lawrence Landauer. Hunting Security Bugs.
Microsoft Press, 2006]

[GAO 1999] General Accounting Office, GAO Internal Control Standard, 1999.

[GAO 2004] GAO, Defense Acquisitions: Stronger Management Practices Are Needed to Improve DoD’s
Software-Intensive Weapon Acquisitions, GAO Report GAO-04-393, March 2004. Available at
http://www.gao.gov/new.items/d04393.pdf.

[Garfinkel 2003] Simson L. Garfinkel, Abhi Shelat, "Remembrance of Data Passed: A Study of Disk
Sanitization Practices," IEEE Security and Privacy, vol. 01, no. 1, pp. 17-27, 2003.

[Garfinkel 2005a] Garfinkel, Simson L. Design Principles and Patterns for Computer Systems that are
Simultaneously Secure and Usable, PhD Thesis MIT, 2005
Available at: http://www.simson.net/thesis/

[Garfinkel 2005b] Garfinkel, Simson L., "CSCI E-170 Lecture 09: Attacker Motivations, Computer Crime
and Secure Coding". Cambridge, MA: Harvard University Center for Research on Computation and
Society, 21 November 2005. Available at http://www.simson.net/ref/2005/csci_e-170/slides/L09.pdf.

[Gasser 1988] Gasser, M. Building a Secure Computer System. Van Nostrand Reinhold, 1988.
 Available: http://nucia.ist.unomaha.edu/library/gasser.php

[GASSP 1999] GASSP, “Generally Accepted System Security Principles,” International Information
Security Forum, June 1999.

[Gilb 1988] Gilb, Tom. Principles of Software Engineering Management. Boston: Addison-Wesley, 1988.

[Giorgini 2004] P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zannone. “Requirements Engineering
meets Trust Management: Model, Methodology, and Reasoning.” Proc. of the 2nd Int. Conf. on Trust
Management (iTrust) 2004.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

287

[Giorgini 2005] Giorgini, Paolo, Fabio Massacci, John Mylopoulos, Nicola Zannone. “Modeling Security
Requirements Through Ownership, Permission and Delegation,” 13th IEEE International Conference
on Requirements Engineering (RE'05). pp. 167-176, 2005.

[Godbole 2004] Godbole, Nina S. Software Quality Assurance: Principles And Practice. Oxford, UK:
Alpha Science International, Ltd., 2004.

[Goertzel 2005] Goertzel, K. Application Developer’s Guide to Secure Assembly of Software Components.
Washington, D.C: Booze Allen Hamilton, 2005.

[Goertzel 2006] Goertzel, Karen Mercedes, et al: Security in the Software Lifecycle: Making Application
Development Processes—and Software Produced by Them—More Secure, Version 1.0 DRAFT.
Washington, DC: Department of Homeland Security, 2006. Available at https://buildsecurityin.us-
cert.gov/daisy/bsi/89.html.

[Goertzel and Goguen 2005] Goertzel, Karen and Alice Goguen, et al., Application Developer’s Guide to
Security-Enhancing the Software Development Lifecycle. DRAFT, June 2005.

[Goguen and Linde, 1993] J. Goguen and C. Linde, “Techniques for Requirements Elicitation,”
International Symposium on Requirements Engineering, 1993.

[Goguen and Meseguer 1982] Goguen, J. A. and Meseguer, J., “Security Policies and Security Models,”
1982 Symposium on Security and Privacy, pp.11-20, IEEE, April 1982.

[Goldenson and Gibson 2003] Goldenson, Dennis R. and Gibson, Diane L. Demonstrating the Impact and
Benefits of CMMI. Special Report CMU/SEI-2003-SR-009, The Software Engineering Institute,
Carnegie Mellon University, 2003.

[Gotterbarn 1991] Gotterbarn, Donald. “Computer Ethics: Responsibility Regained,” National Forum, vol.
71, pp. 26-31, 1991.

[Graff and van Wyk 2003] Graff, Mark G. and Kenneth R. Van Wyk. Secure Coding: Principles and
Practices. O'Reilly & Associates, 2003.

[Gray 1990] Gray, J. W. “Probabilistic Interference.” Proceedings of the IEEE Symposium on Research in
Security and Privacy. IEEE, pp. 170-179, 1990.

[Guimaraes 2004] Guimaraes, Mario, Herb Mattord, and Richard Austin, “Incorporating security
components into database courses,” Proceedings of the 1st annual conference on Information security
curriculum development, ACM, October 2004.

[Gutmann 2004] Gutmann, P. Cryptographic Security Architecture: Design and Verification. Springer-
Verlag, 2004.

[Haddad 2004] Haddad, M. and A. Salle. “Identifying Risks in Outsourcing Software-Intensive Projects,”
3rd Annual Conference, Acquisition of Software Intensive Systems, January 2004.

[Hafiz 2004] Hafiz, M., R. Johnson, and R. Afandi, “The Security Architecture of qmail,” Conference on
Pattern Languages of Programs, Conference on Pattern Languages of Programs (PLoP 2004), ACM,
2004.

[Hall 2002a] Hall, Anthony and Rodrick Chapman. “Correctness by Construction: Developing a
Commercial Secure System,” IEEE Software, vol. 19, no. 1, pp.18-25, Jan/Feb 2002.

[Hall 2002b] Hall, Anthony, “Z Styles for Security Properties and Modern User Interfaces,” Formal
Aspects of Security, LNCS 2629, Springer, pp152 – 166, 2002.
Available at: http://www.anthonyhall.org/zstyle.pdf

Bibliography

288

[Hall 2004] Hall, Anthony, and Rod Chapman. “Correctness-by-Construction”. Cyber Security Summit
Taskforce SubgIbraroup on Software Process. January 2004.

[Han 1997] Han, Jun. “Designing for Increased Software Maintainability,” International Conference on
Software Maintenance (ICSM, 97), January 1, 1997.

[Hansman 2003] Hansman, Simon, “A Taxonomy of Network and Computer Attack Methodologies,”
Department of Computer Science and Software Engineering, University of Caterbury, Christchurch,
New Zealand, Nov. 2003.

[Harris 2003] Harris, Shon. All-in-One CISSP Certification. McGraw-Hill Inc., 2003.

[Harris et al. 2005] Harris, Shon, Allen Harper, Chris Eagle, Jonathan Ness, and Michael Lester. Gray Hat
Hacking: The Ethical Hacker’s Handbook. McGraw-Hill/Osborne, 2005.

[Hatton 1999] Hatton, L. (1999) “Repetitive failure, feedback and the lost art of diagnosis,” Journal of
Systems and Software, 1999.

[Hatton 2001] Hatton, L. “Exploring the role of Diagnosis in Software Failure”, IEEE Software, July 2001.

[Hatton 2002] Hatton, L. “Safer Language Subsets: an overview and a case history,” MISRA C,
Information and Software Technology, June 2002.

[Havana, 2003] Havana Tiina, Juha Ro ̈ning, Communication in the Software Vulnerability Reporting
Process, Oulu University Secure Programming Group (OUSPG), Computer Engineering Laboratory,
PL 4500, FIN-90014 University of Oulu, Finland.

[Hayes and Over 1997] Hayes, W. and J. W. Over, The Personal Software Process (PSP): An Empirical
Study of the Impact of PSP on Individual Engineer,. CMU/SEI-97-TR-001, ADA335543. Pittsburgh,
PA: The Software Engineering Institute, Carnegie Mellon University, 1997.

[Heitmeyer 1998] Heitmeyer, Constance. “Using the SCR* Toolset to Specify Software Requirements,”
Second IEEE Workshop on Industrial Strength Formal Specification Techniques, p. 12, 1998.

[Heitmeyer 2005] Heitmeyer, Constance, Myla Archer, Ramesh Bharadwaj and Ralph Jeffords, “Tools for
constructing requirements specifications: The SCR toolset at the age of ten,” International Journal of
Computer Systems Science and Engineering, 20(1): 19-35, January 2005.

[Herbert and Chase 2005] Herbert Thompson, and Chase, Scott. The Software Vulnerability Guide.
Charles River Media, 2005.

 [Herbsleb et al, 1994] Herbsleb, J. et al. Benefits of CMM-Based Software Process Improvement: Initial
Results, CMU/SEI-94-TR-013, Software Engineering Institute, Carnegie Mellon University, 1994.

[Herrmann 2001] Herrmann, Debra S. A Practical Guide to Security Engineering and Information
Assurance. Auerbach, 2001.

[HMAC 2002] “The Keyed-Hash Message Authentication Code (HMAC)”, FIPS 198, March 2002.

[Hofmeister 2000] Hofmeister, C., R. Nord., D. Soni, Applied Software Architecture. Reading, MA:
Addison Wesley Longman, Inc, 2000.

[Hoglund 2004] Hoglund, Greg, and Gary McGraw. Exploiting Software: How to break code. Addison-
Wesley, 2004.

[Hoglund 2005] Hoglund, Greg and Jamie Butler, Rootkits: Subverting the Windows Kernel. Addison-
Wesley Professional, 2005.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

289

[Holz and Ravnal 2005] Holz, T. and F. Ravnal, “Detecting Honeypots and Other Suspicious
Environments,” Proc. 6th Ann. IEEE Systems, Man and Cybernetics Information Assurance Workshop
(IAW 05), IEEE CS Press, pp.29-36, 2005.

[Honeynet 2002] “The Honeynet Project”. Know Your Enemy. Addison-Wesley, 2002.

[Hope 2004] Hope, Paco, Gary McGraw, and Annie I. Anton, “Misuse and Abuse Cases: Getting Past the
Positive,” IEEE Security and Privacy, pp. 90-92, May 2004.

[Houston and King 1991] Houston, I., and S. King, “CICS Project Report: Experiences and Results from
the Use of Z,” Proc. VDM 1991: Formal Development Methods, Springer-Verlag, New York, 1991.

[Howard 2002] Howard, Michael, and David C. LeBlanc. Writing Secure Code, 2nd ed., Microsoft Press,
2002.

[Howard 2003a] Howard, M., and S. Lipner, “Inside the Windows Security Push,” IEEE Security &
Privacy, vol.1, no. 1, pp. 57-61, 2003.

[Howard 2003b] Howard, M., J. Pincus and J. Wing. “Measuring relative attack surfaces,” Proceedings of
the Workshop on Advanced Developments in Software and Systems Security, Available as CMU-
TR-03-169, August 2003.

[Howard 2005] Howard, Michael, David LeBlanc, and John Viega, 19 Deadly Sins of Software Security,
McGraw-Hill Osborne Media, 1st edition, 2005.

[Howard 2006] Howard, Michael, and Steve Lipner. The Security Development Lifecycle. Microsoft Press,
2006.

[Howard and LeBlanc 2003] Howard, Michael and LeBlanc, David, Writing Secure Code, 2nd Edition,
Microsoft Press, 2003.

[Howell 2005] Howell, C. “Assurance Cases for Security Workshop,” (follow-on workshop of the 2004
Symposium on Dependable Systems and Networks), Arlington, Virginia, June 13-15, 2005.

[Huang 2004] Huang, Y., F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo, “Securing Web Application Code
by Static Analysis and Runtime Protection,” Proceedings of the 13th International Conference on
World Wide Web (WWW '04). ACM Press, pp. 40-52. 2004.

[Hughes n. d.] Hughes, Jeff, and Martin R. Stytz, Advancing Software Security–The Software Protection
Initiative, n.d.
Available at: http://www.preemptive.com/documentation/SPI_software_Protection_Initative.pdf

[Humphrey 2000] Humphrey, Watts S. Introduction to the Team Software Process, Reading, MA:
Addison Wesley, 2000.

[Humphrey 2002] Humphrey, Watts S. Winning with Software: An Executive Strategy. Reading, MA:
Addison-Wesley, 2002.

[Hunt et al, 2005] Hunt, C., J. R. Bowes, and D. Gardner, “Net Force Maneuver,” Proc. 6th Ann. IEEE
Systems, Man and Cybernetics Information Assurance Workshop (IAW 05), IEEE CS Press, pp.419-
423, 2005.

[Huseby 2004] Sverre H. Huseby. Innocent Code: A Security Wake-up Call for Web Programmers. John
Wiley & Sons, 2004).

[IBM 2005] IBM. The IBM Risk and Compliance Framework: addressing the challenges of compliance,
2005 www.ibm.com/software/info/openenvironment/rcf/pdfs/rcf-white-paper-01-25-05.pdf

Bibliography

290

[Ibrahim et al, 2004] Ibrahim, Linda, et al, Safety and Security Extensions for Integrated Capability
Maturity Models. Washington D.C.: United States Federal Aviation Administration, Sept. 2004.
Available at http://www.faa.gov/ipg/pif/evol/index.cfm

[IEE 1999] IEE, Safety, Competency and Commitment, IEE, ISBN 0 85296 787 X, 1999.

[IEEE 730] IEEE 730 1998 Software Quality Assurance Plans.

[IEEE 730.1] IEEE 730.1 1995 Software Quality Assurance Planning.

[IEEE 828] IEEE 828 1998 Software Configuration Management Plan.

[IEEE 829] IEEE 829 1998 Software Test Documentation.

[IEEE830-98] IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements
Specifications, IEEE, 1998.

[IEEE 1008] IEEE 1008 Standard for Software Unit Testing.

[IEEE 1012] IEEE 1012 1986 Software Validation and Verification Plan.

[IEEE 1012a] IEEE 1012a-1998 Content Map to IEEE/EIA 12207.1-1997.

[IEEE 1028] IEEE 1028-1997 Standard for Software Reviews.

[IEEE 1045] IEEE 1045-1992 IEEE Standard for Software Productivity Metrics.

[IEEE 1059] IEEE 1059 1993 Guideline for SVV Planning.

[IEEE 1062] IEEE Std. 1062:1993, IEEE recommended practice for software acquisition, Institute for
Electrical and Electronics Engineers, 1993.

[IEEE 12207] IEEE/EIA Std. 12207.0:1996, Industry Implementation of International Standard ISO/IEC
12207:1995 – Standard for Information Technology – Software Lifecycle Processes, Institute of
Electrical and Electronics Engineers, March, 1998.

[IEEE/ANSI 1042] IEEE Guide to Software Configuration Management, IEEE/ANSI Standard 1042-
1987,1987.

[IEEE/ANSI 828] IEEE Standard for Software Configuration Management Plans, IEEE/ANSI Standard
828-1998, 1998.

[IEEE/EIA 12207.1] IEEE/EIA 12207.1-1997, IEEE/EIA Guide: Industry Implementation of International
Standard ISO/IEC 12207:1995, 1998.

[IEEE/EIA 12207.2] IEEE/EIA 12207.2-1997, IEEE/EIA Guide: Industry Implementation of International
Standard ISO/IEC 12207:1995, 1998.

[IEEE] IEEE Security and Privacy magazine and IEEE Transactions on Dependable and Secure
Computing. Institute for Electrical and Electronics Engineers Computer Society.

[IEEE] IEEE Security and Privacy magazine and IEEE Transactions on Dependable and Secure
Computing. Institute for Electrical and Electronics Engineers Computer Society.

[IEEE830-98] IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements
Specifications, IEEE, 1998.

[INCOSE] International Council on Systems Engineering (INCOSE). Guide to Systems Engineering Body
of Knowledge (G2SEBoK). Available at http://g2sebok.incose.org/.

[Ingalsbe 2004] Ingalsbe, Jeffery A. “Supporting the Building and Analysis of an Infrastructure Portfolio
of software Using UML Deployment Diagrams,” UML Satellite Activities 2004, pp 105-117, 2004.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

291

[Intek] http://www.intek.net/Secure/PIS/PIS.htm

[ISACA (AS) 1999] ISACA, “Audit Sampling”, IS Auditing Guideline, 1999.

[ISACA (CM) 2004] IT Governance Institute, CobiT Mapping, ISACA, 2004.

[ISACA (CRSA) 2003] ISACA, “Control Risk Self Assessment”, IS Auditing Guideline, 2003.

[ISACA (DPC) 1999] ISACA, “Due Professional Care”, IS Auditing Guideline, 1999.

[ISACA (ICO) 1999] IT Governance Institute, IT Control Objectives for Enterprise Governance, ISACA,
1999.

[ISACA (ID) 2003] ISACA, “Intrusion Detection”, IS Auditing Guideline, 2003.

[ISACA (ISC) 2003] IT Governance Institute, IT Strategy Committee, ISACA, 2003.

[ISACA (SDLC) 2003] ISACA, “SDLC Reviews,” IS Auditing Guideline, 2003.

[ISACA (SO) 2004] IT Governance Institute, IT Control Objectives for Sarbanes-Oxley, ISACA, 2004.

[ISACA (URA) 2000] ISACA, “Use of Risk Assessment,” IS Auditing Guideline, 2000.

[ISACA 2004-CobiT] “CobiT in Academ," IT Governance Institute, 2004, available from Information
Systems Audit and Control Association: http://www.isaca.org, Accessed: July 20, 2005.

[ISACA 2005-COBIT] “COBIT 3rd Edition Executive Summary,” IT Governance Institute, Available
from Information Systems Audit and Control Association: http://www.isaca.org, Accessed: July 2005.

[ISC 2005] International Information Systems Security Certification Consortium, Code of Ethics, 2005.
Available at: http://www.isc2.org

[ISO/IEC 9126:1991] ISO/IEC 9126:1991 Information technology - Software product evaluation - quality
characteristics and guidelines for their use. ISO, 1991.

[ISO TR 15443 - 1]. ISO JTC 1/SC 27. Information technology – Security techniques – A framework for
IT security assurance – Part 1: Overview and framework. International Organization for
Standardization, 2005.

[ISO/IEC 12207] ISO/IEC Std. 12207:1995, Information Technology - Software Life Cycle Processes,
International Standards Organization, 1995.

[ISO/IEC 12207b] ISO/IEC Std. 12207:1995/2002, Information Technology - Software Life Cycle
Processes (Amendment 1), International Standards Organization, 1995.

[ISO/IEC 13526:2002] ISO/IEC 13526:2002. Information Technology – Z formal specifications notation –
Syntax, type system and semantics. International Standards Organization, 2002.

[ISO/IEC 13817-1:1996] ISO/IEC 13817-1:1996. Information Technology – Programming languages,
their environments and system software interfaces – Vienna Development Method – Specification
Language – Part 1: Base language. International Organization for Standardization, 1996.

[ISO/IEC 13888] ISO/IEC 13888, Information technology – Security techniques – Non-repudiation

[ISO/IEC 14764] ISO/IEC Std. 14764:1999, Information Technology – Software Maintenance,
International Standards Organization, 1999.

[ISO/IEC 15026] ISO/IEC Std. 15026:1998, Information Technology - System and Software Integrity
Levels, International Standards Organization, 1998.

[ISO/IEC 15288] ISO/IEC Std. 15288:2002, E, Systems Engineering – System Lifecycle Processes,
International Standards Organization, 2002.

Bibliography

292

[ISO/IEC 15408-3] International Standards Organization, International Standard ISO/IEC 15408-3:1999,
Information technology – Security techniques – Evaluation criteria for IT security, 1999.

[ISO/IEC 15443] ISO/IEC 4th WD 15443-3, IT Security Techniques – A Framework for IT Security
Assurance – Part 3: Analysis of Assurance Methods, International Standards Organization, 2004.

[ISO/IEC-15448] ISO/IEC TR 15446:2004, Information technology - Security techniques - Guide for the
production of Protection Profiles and Security Targets, JTC1/SC27 Technical Report, International
Standards Organization, 2004.

[ISO/IEC 15846] ISO/IEC 15846: 1998, Information technology - Software life cycle processes -
Configuration Management, May 5, 1998.

[ISO/IEC 17799] ISO/IEC Std. 17799:2000, Information Technology - Code of Practice for Information
Security Management, International Standards Organization, 2000.

[ISO/IEC 27001] ISO/IEC 27001: 2005, Information Security Management - Specification With Guidance
for Use, 2005.

[ISO/IEC 27003] ISO/IEC 27003: 2005, Information Security Management – Implementation of ISO
27001, 2005.

[ISO/IEC 27004] ISO/IEC 27004: 2005, Information Security Management – Information Security
Metrics and Measurement, 2005.

[ISO/IEC-15448] ISO/IEC TR 15446:2004, Information technology - Security techniques - Guide for the
production of Protection Profiles and Security Targets, JTC1/SC27 Technical Report, International
Standards Organization, 2004.

[ISO/IEC PRF TR 19791] ISO/IEC PRF TR 19791 Information technology -- Security techniques --
Security assessment for operational systems. International Organization for Standards, February 6,
2006.

[ISO/TR 13569] ISO/TR 13569, Banking and related financial services – Information security guidelines.

[ISO/TR 17944] ISO/TR 17944:2002 (E) Banking – Security and other financial services – Framework for
security in financial systems, ISO, 2002.

[ITIL 1999] IT Infrastructure Library – “ITIL v2: 1999 Best Practice in IT Service,” Management, 1999.

[Jackson 2005a] Jackson, David, CESG EAL4 Study: Study Report, S.P1273.40.1 Issue: 1.4 (Abridged),
Praxis Critical Systems, 22 September 2004.

[Jackson 2005b] Jackson, David and David Cooper, “Where Do Software Security Assurance Tools Add
Value?”, NIST Workshop on Software Security Assurance Tools, Techniques, and Metrics, November,
2005.

[Jackson 2006] Jackson, Daniel. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

[Jacky 1996] Jacky, Jonathan, The Way of Z: Practical Programming with Formal Methods, Cambridge
University Press, 1996.

[Jacquith 2002] Jacquith, Andrew, “The Security of Applications: Not All Are Created Equal,” At Stake
Research, February 2002.
Available at: http://www.atstake.com/research/reports/acrobat/atstake_app_unequal.pdf

[Jalote 1994] Jalote, Pankaj, Fault Tolerance in Distributed Systems, Prentice Hall PTR, 1994.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

293

[JDCSISSS 2001] Joint DoDIIS/Cryptologic SCI Information Systems Security Standards. DIA DoDIIS
Information Assurance (IA) Program, Official Use Only 31 March 2001.

[Jones 2000] Jones, Capers. Software Assessments, Benchmarks, and Best Practices, Reading, MA:
Addison-Wesley, 2000.

[Jones 2004] Jones, Capers, Software “Project Management Practices: Failures versus Success,”
Crosstalk, pp, 5-9, October 1, 2004.

[Jones 1990] Jones, Cliff. Systematic Software Development using VDM. Prentice Hall: 1990.

[Jordan 2001] Jordan, Tim, “Mapping Hacktivism: Mass Virtual Direct Action (MVDA), Individual
Virtual Direct Action (IVDA) and Cyberwars”, in Computer Fraud & Security. Issue 4, 2001.

[Jürjens 2004] Jürjens, Jan, Secure Systems Development with UML, Springer-Verlag, 2004.

[Jürjens 2004] Jürjens, Jan, Secure Systems Development with UML, Springer-Verlag, 2004.

[Jürjens 2005] Jürjens, Jan, “Sound Methods and Effective Tools for Model-based Security Engineering
with UML,” 27th International Conference on Software Engineering, St.Louis, Missouri, USA; 15 -
21 May 2005.

[Kairab 2005] Kairab, S. A Practical Guide to Security Assessments, Auerbach Publications, 2005.

[Karger et al, 1990] Karger, Paul A., Mary Ellen Zurko, Douglas W. Benin, Andrew H. Mason, and
Clifford E. Kahn. “A VMM Security Kernel for the VAX Architecture,” 1990 IEEE Symposium on
Security and Privacy, IEEE, 1990.

[Kaspersky 2003] Kaspersky, Kris. Hacker Disassembling Uncovered. A-List Publishing, 2003.

[Kazman 2000] Kazman R., M. Klein, and P. Clements, ATAM: Method for Architecture Evaluating the
Quality Attributes of a Software Architecture. Technical Report CMU/SEI-200-TR004. Software
Engineering Institute, Carnegie Mellon University, 2000.

[Kazman 2002] Kazman R., J. Asundi, and M. Klein, Making Architecture Design Decisions: An
Economic Approach, SEI-2002-TR-035. Software Engineering Institute, Carnegie Mellon University,
2002.

[Kelly 1994] Kelly, Leslie. The ASTD Technical and Skills Training Handbook. McGraw-Hill
Professional, 1994.

[Kelly 2003] Kelly, T. P., Managing Complex Safety Cases, Department of Computer Science University
of York, 2003.
Available at: http://www.cs.york.ac.uk/~tpk/sss03.pdf

[Keeney 2005] Keeney, Michelle, Eileen Kowalski, Dawn Cappelli, Andrew Moore, and Timothy
Shimeall. Insider Threat Study: Computer System Sabotage in Critical Infrastructure Sectors. CERT
Coordination Center/SEI, May 2005.

[Keus and Gast 1996] Keus, Klaus and Thomas Gast, “Configuration Management in Security-related
Software Engineering Processes”. Proceedings of the National Information Systems Security
Conference, 1996.
http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper035/scm_kk96.pdf

[King 2001] King, C., C. Dalton and E. Osmanoglu, Security Architecture: Design Deployment and
Operations, McGraw-Hill/Osborne, 2001.

[King et al. 2000] King, Steve, Jonathan Hammond, Rod Chapman, and Andy Pryor, “Is Proof More Cost-
Effective Than Testing?”, IEEE Transactions of Software Engineering, VOL. 26, No. 8, August 2000.

Bibliography

294

[Kleen 2001] Kleen, Laura J. Malicious Hackers: A Framework for Analysis and Case Study. Master's
Thesis, AFIT/GOR/ENS/01M-09. Wright-Patterson Air Force Base, OH: Air Force Institute of
Technology, March 2001. Available at
http://www.iwar.org.uk/iwar/resources/usaf/maxwell/students/2001/afit-gor-ens-01m-09.pdf.

[Knight 2000] Knight, Eric, “Computer vulnerabilities,” Technical report, Draft release 4, Security
Paradigm, http://www.securityparadigm.com/compvuln_draft.pdf, 2000.

[Kolawa 2005] Kolawa, Adam, “Hold the Line against App Attacks,” Software Test and Performance,
November 2005.

[Kornecki 2005] Kornecki, A., and J. Zalewski, “Experimental Evaluation of Software Development
Tools for Safety Critical Real-Time Systems” NASA Journal Innovations in Systems and Software
Engineering, July, 2005.

[Kotonya 2000] Kotonya, G. and I. Sommerville, Requirements Engineering: Processes and Techniques,
John Wiley & Sons, 2000.

[Kotter 1996] Kotter, John P., Leading Change. Harvard Business School Press; 1st edition January 15,
1996.

[Koziol et al. 2004] Koziol, Jack et al. The Shellcoder’s Handbook: Discovering and Exploiting Security
Holes. Wiley Publishing, Inc., 2004.

[Krone 2005] Krone, Tony, "Hacking Motives", in High Tech Crime Brief. Australian High Tech Crime
Centre, June 2005. Available at: http://www.aic.gov.au/publications/htcb/htcb006.pdf.

[Krsul 1997] Krsul, Ivan, "Computer Vulnerability Analysis - Thesis Proposal," The COAST Laboratory,
Department of Comuter Sciences, Purdue University, Technical Report CSD-TR-97-026, Apr., 1997.

[Krsul 1998] Krsul, Ivan, Spafford, Eugene, and Tripunitara, Mahesh, “An Analysis of Some Software
Vulnerabilities," in Proceedings of the 21st NIST-NCSC National Information Systems Security
Conference, pp. 111–125, 1998.

[Krutz 2004] Krutz, R., R. Vines, The CISSP Prep Guide: Mastering the CISSP and ISSEP Exams, Second
Edition, John Wiley & Sons, Chap. 5, 6, 10, 2004.

[Krutz and Vines 2003] Krutz, Ronald and Russell Vines. The CISSP Prep Guide. John Wiley and Sons,
2003.

[Laitenberger n. d.] Laitenberger, Oliver, The Perspective-based Inspection Approach, Fraunhofer Istitut
Experimentelles Software Engineering, Kaiserslautern, n.d.
Available at: http://www.tol.oulu.fi/projects/tarjous/perspective.pdf

[Lakhani and Wolf 2005] Lakhani, Karim R. and Robert G Wolf, "Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source Software Projects", in Perspectives on
Free and Open Source Software. Cambridge, MA: MIT Press, 2005. Available at
http://ocw.mit.edu/NR/rdonlyres/Sloan-School-of-Management/15-352Spring-2005/D2C127A9-
B712-4ACD-AA82-C57DE2844B8B/0/lakhaniwolf.pdf.

[Landwehr 1993] Landwehr, Carl E., Bull, Alan R., McDermott, John P., and Choi, William S., "A
Taxonomy of Computer Program Security Flaws, with Examples," Naval Research Laboratory,
Center for Computer High Assurance Systems Information Technology Division, NRL/FR/5542--93-
9591, Nov. 1993.

[Landwehr 2001] Landwehr, Carl, “Computer Security,” IJIS vol. 1, pp. 3-13, 2001.

[Langley 2005] Langley, Formal Methods, 2005. Available at: shemesh.larc.nasa.gov/fm/fm-what.html

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

295

[Larus 2004] Larus, James R., Ball, Thomas, Das, Manuvir, DeLine, Robert, Fahndrich, Manuel, Pincus,
Jon, Rajamani, Sriram K., Venkatapathy, Ramanathan, “Righting Software,” IEEE Software,
May/June 2004.

[Leavens 2005] Leavens, Gary T., Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok, “How
the design of JML accommodates both runtime assertion checking and formal verification,” Science
of Computer Programming, Volume 55, pp. 185-205, Elsevier, 2005.

[Le Grand 2005] Le Grand, Charles H. Software Security Assurance: A Framework for Software
Vulnerability Management and Audit. Longwood, FL: CHL Global Associates, 2005.

[Lee 1997] Lee, E. “Software Inspections: How to Diagnose Problems and Improve the Odds of
Organizational Acceptance”, Crosstalk, Vol.10 #8 1997.

[Leeson and Coyne 2006] Leeson, Peter T. and Christopher J. Coyne, "The Economics of Computer
Hacking", in Journal of Law, Economics and Policy, Vol. 1, No. 2, pp. 473-495, 2006. Available at
http://www.ccoyne.com/Economics_of_Computer_Hacking.pdf.

[Leon 2004] Leon, Alexis. Software Configuration Management Handbook, Second Edition. Norwood,
MA: Artech House Publishers, 2004.

[Leveson 1986] Leveson, N. G. 1986. “Software safety: why, what, and how.” ACM Comput. Surv. 18, 2
(Jun. 1986), 125-163. http://doi.acm.org/10.1145/7474.7528

[Leveson 1995] Leveson, Nancy G. Safeware: System Safety and Computers, Addison-Wesley, 1995.

[Leveson 2004] Leveson, Nancy. “A Systems-Theoretic Approach to Safety in Software-Intensive
Systems,” IEEE Transactions on Dependable and Secure Computing 1, 1 (January-March 2004): 66-
86, 2004.

[Lin 2004] Lin, Yuwei. Hacking Practices and Software Development. Doctoral Thesis. York, UK:
University of York, September 2004. Available at http://opensource.mit.edu/papers/lin2.pdf.

[Linger 1994] Linger, Richard. “Cleanroom Process Model,” IEEE Software, IEEE Computer Society,
March 1994.

[Linger 2004] Linger, Richard, and Stacy Powell, “Developing Secure Software with Cleanroom Software
Engineering.” Paper prepared for the Cyber Security Summit Task Force Subgroup on Software
Process, February 2004.

[Lipner 2005a] Lipner, Steve and Michael Howard, The Trustworthy Computing Security Development
Lifecycle, Microsoft, 2005.
Available at : http://msdn.microsoft.com/security/default.aspx?pull=/library/en-
us/dnsecure/html/sdl.asp#sdl2_topic8?_r=1

[Lipner 2005b] Personal conversation with Samuel Redwine, July 13, 2005.

[Lipson 2002] Lipson, H.F., N.R. Mead, A.P. Moore. "Assessing the Risk of COTS Usage in Survivable
Systems," Cutter IT Journal 15:5. May 2002.

[Lough 2001] Lough, Daniel L., “A Taxonomy of Computer Attacks With Applications to Wireless
Networks,” Virginia Polytechnic Institute and State University, 2001.

[Lukatsky 2003] Lukatsky, Protect Your Information with Intrusion Detectio, A-LIST Publishing, Chap.
1, 4, 6, 2003.

[Magnusson and Nordström 1994]Magnusson, L. and Nordström, B., "The ALF proof editor and its proof
engine" In Types for Proofs and Programs, LNCS Vol 806, Nijmegen, 1994, pp 213-237.

Bibliography

296

[Manadhata and Wing 2004] Manadhata, P. and J. M. Wing. “Measuring A System's Attack Surface,”
CMU-TR-04-102, January 2004.
Available at: http://www-2.cs.cmu.edu/afs/cs/project/calder/www/tr04-102.pdf

[Mann 1999] Mann, D and D. Christey, “Towards a Common Enumeration of Vulnerabilities,” The
MITRE Corporation, Bedford MA, 1999.

[Mantel 2002] Mantel, Heiko, “On the Composition of Secure Systems,” IEEE Symposium on Security
and Privacy, p. 88, 2002.

[Martin 2003] Martin, R. “Integrating your information security vulnerability management capabilities
through industry standards (CVE&OVAL.” Systems, Man and Cybernetics, IEEE International
Conference, Volume 2, 5-8 Oct. 2003 Page(s):1528-1533, 2003.

[Martin 2005] Martin, Robert A., Christey, Steven M., Jarzombek, Joe, “The Case for Common Flaw
Enumeration,” NIST Workshop on Software Security Assurance Tools, Techniques, and Metrics, Long
Beach, CA., Nov., 2005.

[McDermott 1999] McDermott, J. and Fox, C. “Using Abuse Case Models for Security Requirements
Analysis.” In Proceedings of the 15th Annual Computer Security Applications Conference). IEEE
Computer Society, p. 55, 1999.

[McDermott 2001] McDermott, J., “Abuse-Case-Based Assurance Arguments,” Proc. Annual Computer
Security Applications Conference, December 2001.

[McGraw 2003] McGraw, Gary E., “On the Horizon: The DIMACS Workshop on Software Security”,
IEEE Security and Privacy, March/April 2003.

[McGraw 2004a] McGraw, Gary, “Software Security,” IEEE Security and Privacy, March 2004.

[McGraw 2004b] McGraw, Gary, and Bruce Potter, “Software Security Testing.” IEEE Security and
Privacy, pp. 81-85, September/October 2004.

[McGraw 2005] McGraw, Gary, “The 7 Touchpoints of Secure Software,” Software Development,
September 2005.

[McGraw 2006] McGraw, Gary. Software Security: Building Security In. Addison Wesley, 2006.

[McGraw and Morrisett] Gary McGraw and Greg Morrisett, “Attacking Malicious Code: A report to the
Infosec Research Council.” submitted to IEEE Software and presented to the Infosec Research
Council.
Available at: http://www.cigital.com/~gem/malcode.pdf

[McLean 1994] McLean, J. “Security Models.” Encyclopedia of Software Engineering (J. Marciniak
editor). Wiley 1994.
[Mead 2003] Mead, Nancy R. “Lifecycle Models for High Assurance Systems,” Proc. of Software
Engineering for High Assurance Systems: Synergies between Process, Product, and Profiling (SEHAS
2003), Software Engineering Institute, p. 33, 2003.
Available at: http://www.sei.cmu.edu/community/sehas-workshop/

[Mead 2005] Mead, Nancy R., and Ted Stehney. “Security Quality Requirements Engineering (SQUARE)
Methodology”. Software Engineering for Secure Systems (SESS05), 2005.

[Meadows 1996] Meadows, C. The NRL Protocol Analyzer: An overview. Journal of Logic Programming,
26(2):113-131, 1996.

[Meier 2004] Meier, J.D., Alex Mackman, Srinath Vasireddy, Michael Dunner, Ray Escamilla, and
Anandha Murukan, Improving Web Application Security: Threats and Countermeasures, Microsoft,

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

297

2004.
Available at: http://download.microsoft.com/download/d/8/c/d8c02f31-64af-438c-a9f4-
e31acb8e3333/Threats_Countermeasures.pdf

[Meier 2005a] Meier, J.D., Alex Mackman, and Blaine Wastell, Threat Modeling Web Applications,
Microsoft Corporation, May 2005.
Available at: http://msdn.microsoft.com/security/default.aspx?pull=/library/en-
us/dnpag2/html/tmwa.asp

[Meier 2005b] Meier, J.D., Alex Mackman, and Blaine Wastell, Cheat Sheet: Web Application Security
Frame, Microsoft Corporation, May 2005.
Available at: http://msdn.microsoft.com/security/default.aspx?pull=/library/en-
us/dnpag2/html/tmwacheatsheet.asp?_r=1

[Meier 2005c] Meier, J.D., Alex Mackman, and Blaine Wastell, Template Sample: Web Application
Threat Model, Microsoft Corporation, May 2005.
Available at: http://msdn.microsoft.com/security/default. aspx?pull=/library/en-
us/dnpag2/html/tmwatemplatesample.asp?_r=1

[Mell et al. 2005] Mell, Peter, Tiffany Bergeron and David Henning, “NIST Special Publication 800-40,
Creating a Patch and Vulnerability Management Program, Version 2.0”. NIST, November 2005.

[Meredith 2000] Meredith, J. and S. Mantel, Project Management – A Managerial Approach. Fourth
Edition. New York, NY: John Wiley & Sons, 2000.

[Merkow 2005] Merkow, Mark S. and Jim Breithaupt, Computer Security Assurance Using the Common
Criteria, Thompson Delamr Learning, 2005.

[Merkow and Breithaupt 2004] Merkow, Mark S. and Jim Breithaupt, Computer Security Assurance,
Thomson Delmar Learning, 2004.

[Meunier 2004] Meunier, Pascal, “Secure Programming Educational Material,” Purdue University, 2004.
Available at: http://www.cerias.purdue.edu/homes/pmeunier/secprog/

[Meunier 2004] Meunier, Pascal, “Secure Programming Educational Material,” Purdue University, 2004.
Available at: http://www.cerias.purdue.edu/homes/pmeunier/secprog/

[Meyer 1991] Meyer, B. “Design by Contract,” Advances in Object-Oriented Software Engineering, D.
Mandrioli and B. Meyer. eds. Prentice Hall. Englewood Cliffs, N.J. pp. I-50, 1991.

[Microsoft 2006] Microsoft. Regulatory Compliance Planning Guide Version: 1.0. Microsoft, 7/7/2006
http://www.microsoft.com/downloads/details.aspx?FamilyID=BD930882-0D39-4900-9A79-
B91F213ED15D&displaylang=en

[Microsoft Security Regulatory Compliance Site]
http://www.microsoft.com/technet/security/learning/compliance/all/default.mspx

[MIL-HDBK-245D] No Author, Department of Defense Handbook for Preparation of Statement of Work,
April 3rd, 1996.

[Miller 1990] Miller, B. P., Fredriksen, L., and So, B. “An empirical study of the reliability of UNIX
utilities,” Commun. ACM 33, 12 (Dec. 1990), pp. 32-44.

[Mills and Linger 2002] H. Mills and R. Linger, “Cleanroom Software Engineering,” Encyclopedia of
Software Engineering, 2nd ed., (J. Marciniak, ed.), John Wiley & Sons, New York, 2002.

[Ministry of Defence 2003b] Ministry of Defence. Defence Standard 00-42 Issue 2, Reliability and
Maintainability (R&M) Assurance Guidance Part 3 R&M Case, 6 June 2003.

Bibliography

298

[Ministry of Defence 2004a] Ministry of Defence. Interim Defence Standard 00-56, Safety Management
Requirements for Defence Systems Part 1: Requirements, 17 December 2004.

[Ministry of Defence 2004b] Ministry of Defence. Interim Defence Standard 00-56, Safety Management
Requirements for Defence Systems Part 2: Guidance on Establishing a Means of Complying with Part
1, 17 December 2004.

[MOD Def Std 00-42, Part 3, 2003] Ministry of Defence Standard 00-42 Issue 2, Reliability and
Maintainability (R&M) Assurance Guidance. Part 3, R&M Case, 6 June 2003.

[Moffett 2004] Moffett, Jonathan D. Charles B. Haley, and Bashar Nuseibeh, Core Security Requirements
Artefacts, Security Requirements Group, The Open University, UK, 2004.

[Moffett and Nuseibeh 2003] Moffett, Jonathan D. and Bashar A. Nuseibeh, A Framework for Security
Requirements Engineering, Report YCS 368, Department of Computer Science, University of York,
2003.

[Moore 1999] Moore, Geoffrey A., Inside the Tornado : Marketing Strategies from Silicon Valley's
Cutting Edge. Harper Business; Reprint edition July 1, 1999.

[Moore 2002] Moore, Geoffrey A. Crossing the Chasm. Harper Business, 2002.

[Moteff 2004] Moteff, John, Computer Security: A Summary of Selected Federal Laws, Executive Orders,
and Presidential Directives (Order Code RL32357), Congressional Research Services, April 16, 2004.

[Murdock 2005] Murdock, J (editor). Security Measurement White Paper V.2.0. – Prepared on behalf of
the PSM Safety & Security TWG. (Practical Software and Systems Measurement) York, UK, 12 July
2005.

[NASA 1995] Formal Methods Specification and Verification Guidebook for Software and Computer
Systems: Volume 1: Planning and Technology Insertion , July 1995.
Available at http://www.fing.edu.uy/inco/grupos/mf/TPPSF/Bibliografia/fmguide1.pdf

[NASA Guidebook] National Aeronautics and Space Administration (NASA) Software Assurance
Guidebook (NASA-GB-A201). Available at http://satc.gsfc.nasa.gov/assure/agb.txt.

[Naur 1993] Naur, P. “Understanding Turing's Universal Machine - Personal Style in Program
Description,” The Computer Journal, Vol 36, Number 4, 1993.

[NCSC 1993] National Computer Security Center. A Guide to Understanding Covert Channel Analysis of
Trusted Systems, NCSC-TG-030, NCSC, November 1993.
Available at: http://www.radium.ncsc.mil/tpep/process/overview.html

[NCSC-TG-006-88] NCSC-TG-006-88. A Guide to Understanding Configuration Management in Trusted
Systems. National Computer Security Center, 1988.

[Neumann 1986] Neumann, Peter G. “On Hierarchical Design of Computer Systems for Critical
Applications.” IEEE Transactions on Software Engineering, Volume 12, Number 9, September pp.
905-920, 1986

[Neumann 1995] Neumann, Peter G, Architectures and Formal Representations for Secure Systems, Final
Report SRI Project 6401, October 2, 1995.

[Neumann 2000] Neumann, P. G., Practical architectures for survivable systems and networks, Technical
report, Final Report, Phase Two, Project 1688, SRI International, Menlo Park, California, 2000.

[Neumann 2003] Neumann, P.G. Principled Assuredly Trustworthy Composable Architectures (Draft),
Dec., 2003.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

299

[NIPP 2006] Department of Homeland Security. National Infrastructure Protection Plan. Department of
Homeland Security, 2006. Available at www.dhs.gov/nipp.

[NIST 800-26] National Institute of Standards and Technology (NIST 800-26), Security Self-Assessment
Guide for Information Technology Systems, November 2001.

[NIST SAMATE 2005] National Institute of Standards and Technology, Software Diagnostics
Conformance and Testing Division, Software Diagnostics and Conformance Testing Division, web
site: samate.nist.gov, Accessed 8 Aug 2005.

[NIST Special Pub 800-23] National Institute of Standards and Technology (NIST) Special Publication
800-23, Guidelines to Federal Organizations on Security Assurance and Acquisition/Use of
Tested/Evaluated Products. Gaithersburg, MD: US Department of Commerce, August 2000.

[NIST 800-26] National Institute of Standards and Technology (NIST 800-26), Security Self-Assessment
Guide for Information Technology Systems, November 2001.

[NIST Special Pub 800-27] Stoneburner, Gary, Clark Hayden, and Alexis Feringa, Engineering Principles
for Information Technology Security (A Baseline for Achieving Security), NIST Special Publication
800-27 Rev A, June 2004.

[NIST Special Pub 800-30] National Institute of Standards and Technology (NIST) Special Publication
800-30, Risk Management Guide for Information Technology Systems. Gaithersburg, MD: US
Department of Commerce, July 2002.

[NIST Special Pub 800-33 2001] NIST SP 800-33, Underlying Technical Models for Information
Technology Security, December 2001.

[NIST Special Pub 800-37] Ross, Ron, Marianne Swanson, Gary Stoneburner, Stu Katzke, and Arnold
Johnson, NIST Special Publication 800-37, Guide for the Security Certification and Accreditation of
Federal Information Systems, May 2004.

[NIST Special Pub 800-40] NIST SP 800-40 Procedures for Handling Security Patches, NIST, September
2002.

[NIST Special Pub 800-53] Ross, Ron et al. Recommended Security Controls for Federal Information
Systems, NIST Special Publication 800-53, Feb. 2005.

[NIST Special Pub 800-55] National Institute of Standards and Technology (NIST) Special Publication
800-55, Security Metrics Guide for Information Technology Systems. Gaithersburg, MD: US
Department of Commerce, July 2005.

[NIST Special Pub 800-60] Barker, William C. Guide for Mapping Types of Information and Information
Systems to Security Categories, NIST Special Publication 800-60, June 2004.

[NIST Special Pub 800-64] Grance, Tim, Joan Hash, and Marc Stevens, Security Considerations in the
Information System Development Life Cycle, Revision 1, National Institute of Standards and
Technology, 2004.

[NIST Special Pub 800-67] National Institute of Standards of Technology (NIST) Special Publication 800-
67, Rev 1, Security Considerations in the Information System Development Life Cycle, June 2004.

[NIST FIPS 200] NIST: Federal Information Processing Standards Publication (FIPS PUB) 200: Minimum
Security Requirements for Federal Information and Information Systems. March 2006. Available at
http://csrc.nist.gov/publications/fips/fips200/FIPS-200-final-march.pdf.

[Northcutt 2003] Northcutt, S, "Computer Security Incident Handling: An Action Plan for Dealing with
Intrusions, Cyber-Theft, and Other Security-Related Events", SANS Institute, 2003.

Bibliography

300

[NRC 1999] Committee on Information Systems Trustworthiness, Trust in Cyberspace, Computer Science
and Telecommunications Board, National Research Council, 1999.

[NRC 2001] National Research Council (NRC) Computer Science and Telecommunications Board
(CSTB). Cybersecurity Today and Tomorrow: Pay Now or Pay Later. National Academies Press,
2002. Available at http://darwin.nap.edu/books/0309083125/html.

[NRL Handbook 1995] Naval Research Laboratory, Handbook for the Computer Security Certification of
Trusted Systems, US Naval Research Laboratory, 1995

[NSA 1990] National Security Agency, NSA/CSS Manual 130-1, Operational Computer Security,
October 1990.

[NSA 2002] National Security Agency, The Information Systems Security Engineering Process (IATF)
v3.1. 2002.

[NSA 2004] Information Assurance Directorate, National Security Agency, U.S. Government Protection
Profile for Separation Kernels in Environments Requiring High Robustness, Version 0.621. National
Security Agency, 1 July 2004.

[NSTISSAM INFOSEC/2-00] National Security Telecommunications and Information Systems Security
Advisory Memorandum (NSTISSAM)/2-00, Advisory Memorandum on the Strategy for Using the
National Information Assurance Partnership (NIAP) for the Evaluation of Commercial Off-The-Shelf
(COTS) Security Enabled Information Technology Products. Fort Mead, MD: US National Security
Agency, 8 February 2000.

[NSTISSP No. 11] National Security Telecommunications and Information Systems Security Policy
(NSTISSP) No. 11, National Policy Governing the Acquisition of Information Assurance (IA) and IA-
Enabled Information Technology Products, Fort Mead, MD: US National Security Agency, July
2003.

[OCEG 2006] Open Compliance & Ethics Group. Foundation Guidelines v1. Open Compliance & Ethics
Group, 7/3/2006 http://www.oceg.org/ItemView.aspx?Id=13892

[OCL 2.0] Object Management Group, UML 2.0 OCL Specification. Object Management Group, 2005.
Available at http://www.omg.org/docs/ptc/03-10-14.pdf

[OIS, 2004] Guidelines for Security Vulnerability Reporting and Response, Organization for Internet
Safety, Version 1.5, 19 April 2004.

[OMB 1999] Office of Management and Budget, Evaluating Information Technology Investments, 1999.
Available at: at http://www.itmweb.com

[OMB A11, Part 7] Office of Management and Budget, Circular No.A-11, Part 7, Planning, Budgeting,
Acquisition, and Management of Capital Assets. Washington, DC: OMB, June 2005.

[Open Group 2004] Open Group, Security Design Patterns (SDP) Technical Guide v.1, April 2004.

[OWASP 2005] OWASP. A Guide to Building Secure Web Applications and Web Services 2.0. The Open
Web Application Security Project, Black Hat Edition, July 27, 2005.

[OWASP 2006] Open Web Application Security Project. “Software Quality Assurance” chapter in A
Guide to Building Secure Web Applications and Web Services, 2.1 (Draft 3). OWASP Foundation,
February 2006.
http://www.owasp.org/index.php/Software_Quality_Assurance

[Owre et al 1999] Owre, S., N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

301

[Parnas 1985] Parnas, D. L. and D. M.Weiss, “Active design reviews: principles and practices,” In
Proceedings of the 8th international Conference on Software Engineering (London, England, August
28 - 30, 1985), International Conference on Software Engineering, IEEE Computer Society Press, p.
132-136. 1985.

[Patterson and Conner 1983] Patterson, Robert W. and Darryl R. Conner, “Building Commitment to
Organizational Change,” Training and Development Journal, pp. 18-30, April 1983.

[Payne 2004] Payne, Jeffery E., “Regulation and Information Security: Can Y2K Lessons Help Us?”,
IEEE Security and Privacy, March/April 2004.

[Peltier 2003] Peltier, T., J. Peltier, and J. Blackley, Managing a Network Vulnerability Assessment,
Auerbach Publications, 2003.

[Peterson 2006] Pederson, Allan, Navi Partner, and Anders Hedegaard. “Designing a Secure Point-of-Sale
System”, Proceedings of the Fourth IEEE International Workshop on Information Assurance (IWIA
’06). pp 51-65, April 2006.

 [Pfleeger 1997a] Pfleeger, Charles, Security in Computing, Prentice Hall PTR, 1997.

[Pfleeger 1997b] Pfleeger, S. and L. Hatton, "Do formal methods really work", IEEE Computer, Jan 1997.

[Pfleeger 1997c] Pfleeger, Shari Lawrence, and Les Hatton, "Investigating the Influence of Formal
Method", IEEE Computer, vol. 30, no. 2, Feb 1997.

[Pfleeger 2003] Pfleeger, Charles P. and Shari Lawrence Pfleeger. Security in Computing Third Edition.
Prentice Hall PTR, 2003.

[Piessens 2002] Piessens, Frank, "A taxonomy of causes of software vulnerabilities in internet software,"
Supplementary Proceedings of the 13th International Symposium on Software Reliability Engineering
(Vouk, M., ed.), pp. 47-52, 2002.

[PLOVER 2005] “The Preliminary List Of Vulnerability Examples for Researchers (PLOVER),” MITRE
Corporation, 2005 Available at http://cve.mitre.org/docs/plover/.

[PMBOK 2004] Bolles, D., and Fahrenkrog, S. A Guide to the Project Management Body of Knowledge
(PMBOK— ANSI/PMI 99-001-2004. Third Edition. Newton Square, PA.: Project Management
Institute, Inc. 2004

[Pomeroy-Huff 2005] Marsha Pomeroy-Huff, Julia Mullaney, Robert Cannon, and Mark Sebern. The
Personal Software Process (PSP) Body of Knowledge, Version 1.0. Special Report CMU/SEI-2005-
SR-003, Software Engineering Institute, 2005. Available at
http://www.sei.cmu.edu/publications/documents/05.reports/05sr003.html

[Pooya 2005] Pooya Jaferian et. al., "RUPSec: Extending Business Modeling and Requirements
Disciplines of RUP for Developing Secure Systems," 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, August 2005, pp. 232-239.

[Powell 1999] Powell, S., C. Trammell, R. Linger, and J. Poore, Cleanroom Software Engineering:
Technology and Process, Addison Wesley, Reading, MA, 1999.

[Prasad 1998] Prasad, D., Dependable Systems Integration using Measurement Theory and Decision
Analysis, PhD Thesis, Department of Computer Science, University of York, UK, 1998.

[Praxis 2004] Praxis Critical Systems Ltd, EAL4 Common Criteria Evaluations Study, September 2004.
Available at: http://www.cesg.gov.uk/site/iacs/itsec/media/techniques_tools/eval4_study.pdf

Bibliography

302

[Prieto -Diaz 2003] Prieto -Diaz, Ruben, Common Criteria Evaluation Process, Commonwealth
Information Security Center Technical Report CISC-TR-2002-003, 2003.
Available at: http://www.jmu.edu/cisc/research/publications/CCevaluationProcesTR03-5.pdf

[Princeton University] Princeton University Secure Internet Programming: Proof-Carrying Code.
Available at http://www.cs.princeton.edu/sip/projects/pcc/.

[Pullum 2001] Pullum, L. L. Software Fault Tolerance, Artech House, 2001.

[Purser 2004] Purser, S., A Practical Guide to Managing Information Security, Artech House, Chap. 1, 8,
2004.

[Radack 2005] Radack, Shirley, editor, Standards for Security Categorization of Federal Information and
Information Systems, Federal Information Processing Standard (FIPS) 199, July 10, 2005.

[Ramachandran 2002] Ramachandran, J., Designing Security Architecture Solutions, New York: John
Wiley & Sons, 2002.

[Ramfos 2004] Ramfos, Antonis, and Ross Velentzas, “An eye opener on open source Internet security,”
IST Features, 22 July 2004.
Available at:
http://istresults.cordis.lu/index.cfm/section/news/Tpl/article/BrowsingType/Long%20Feature/ID/6916
6

[Rasmussen 2004] Rasmussen, Michael and Natalie Lambert, Security Assurance Needed In Software
Development Contracts, Research Report, Forrester, May 24, 2004.
Available at: http://www.forrester.com/ER/Research/List/Analyst/Personal/0,2237,830,00.html

[Rattray 2001] Rattray, Gregory J., "The Cyberterrorism Threat", Chapter 5 in Smith, James M. and
William C. Thomas (editors), The Terrorism Threat and U.S. Government Response: Operational and
Organizational Factors. U.S. Air Force Academy, Colorado: March 2001. Available at
http://www.usafa.af.mil/df/inss/Ch%205.pdf.

[Rechtin 2000] Rechtin, E. Systems Architecting of Organizations: Why Eagles Can't Swim. Boca Raton,
FL: CRC Press, 2000.

[Redmill 2005] Redmill, Felix, “Theory and practice of risk-based testing,” Software Testing, Verification
and Reliability, Volume 15, Issue 1, p. 3-20, March 2005.

[Redwine 2004] Redwine, Samuel T., Jr., and Noopur Davis (Editors). Processes for Producing Secure
Software: Towards Secure Software. vols. I and II. Washington, D.C.: National Cyber Security
Partnership, 2004.
Available at http://www.cigital.com/papers/download/secure_software_process.pdf

[Redwine 2005a] Redwine, Samuel T., Jr., Dependability Properties: Enumeration of Primitives and
Combinations with Observations on their Measurement. Commonwealth Information Security Center,
Technical Report CISC-TR-2004-001, June 2005.

[Redwine 2005b] Samuel T. Redwine, Jr., Principles for Secure Software: A Compilation of Lists,
Commonwealth Information Security Center, Technical Report CISC-TR-2005-002, 2005.

[Redwine 2006] Redwine, Samuel T. (editor), Software Assurance: A Guide to the Common Body of
Knowledge, US Department of Homeland Security, 2006 (available on Build Security In website)

[Reed 2004] Reed, Thomas C., At the Abyss: An Insider's History of the Cold War, Presidio Press, 2004.

[Rescorla 2001] Rescorla, Eric, SSL and TLS: Designing and Building Secure Systems, Addison-Wesley,
2001.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

303

[Riggs 2003] Riggs, S., Network Perimeter Security: Building Defense In-Depth, Auerbach Publications,
2003.

[Riguidel 2004] Riguidel, Michel, Gwendal Le Grand, Cyril Chiollaz, Sved Naqvi, Mikael Formanek,
“D1.2 Assessment of Threats and Vulnerabilities in Networks”, Version 1.0. European Union
Security Expert Initiative (SEINIT), 31 August 2004. Available at
http://www.seinit.org/documents/Deliverables/SEINIT_D1.2_PU.pdf

[Robertson 1999] Robertson S. and J. Robertson, Mastering the Requirements Process, Addison-Wesley,
1999.

[Rogers 1995] Rogers, Everett, Diffusion of Innovations, Free Press, 1995.

[Rowe 2004a] Rowe, Neil C., “Designing Good Deceptions in Defense of Information Systems,” ACSAC,
2004.
Available at: http://www.acsac.org/2004/abstracts/36.html

[Rowe 2004b] Rowe, N., and H. Rothstein, “Two Taxonomies of Deception for Attacks on Information
Systems,” Journal of Information Warfare, Vol. 3, No. 2, pp. 27-39, July 2004.

[Ryan 2002] Ryan, Julie J. C. H. and Daniel J. Ryan, Institutional and Professional Liability in
Information Assurance Education. 2002. Available at http://www.danjryan.com/Institutional and
Professional Liability in Information Assurance Education.doc

[S4EC] System Security, Survivability, and Safety Engineering Criteria (S4EC) Project, www.s4ec.org

[Safe Harbor 2000] U.S. Department of Commerce, Safe Harbor Privacy Principles, U.S. Department of
Commerce, July 21, 2000.
Available at: http://www.export.gov/safeharbor/SHPRINCIPLESFINAL.htm

[Safire 2004] Safire, William, The Farewell Dossier, New York Times, February 2, 2004.

[SafSec Guidance] “SafSec Methodology: Guidance Material”, SafSec: Integration of Safety and Security.
Available at: http://www.safsec.com/safsec_files/resources/50_3_SafSec_Method_
Guidance_Material_3.0.pdf.

[SafSec Introduction] “Why SafSec?”, SafSec: Integration of Safety and Security.
Available at: http://www.safsec.com/safsec_files/resources/50.6_Why_SafSec.pdf

[SafSec Standard] “SafSec Methodology: Standard.” SafSec: Integration of Safety and Security. Available
at: http://www.safsec.com/safsec_files/resources/50_2_SafSec_Method_Standard_3.0.pdf

[Saitta 2005] Saitta, Paul, Brenda Larcom and Michael Eddington, “Trike v.1 Methodology Document,”
[Draft], 20 June 2005.
Available at: http://www.hhhh.org/trike/papers/Trike_v1_Methodology_Document-draft.pdf

[Saltzer and Schroeder 1975] Saltzer, J. H. and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-1308, 1975.
Available online at http://cap-lore.com/CapTheory/ProtInf/

[SAMATE 2005] “The Software Assurance Metrics and Tool Evaluation (SAMATE) project,” National
Institute of Science and Technology (NIST), (http://samate.nist.gov).

[SCC Part 1 2002] Sherwood, J. E., The Security Certification Criteria Project, Information Assurance
Engineering Division SPAWAR System Center Charleston, 1August 2002.
Available at: http://www.s4ec.org/scc_overview.pdf

[SCC Part 2 2002] Information Assurance Engineering Division SPAWAR System Center Charleston,
Security Certification Criteria for Information Assurance Enabled Systems and Infrastructures Part 2:

Bibliography

304

Functional Certification Criteria, Version 0.2, Information Assurance Engineering Division SPAWAR
System Center Charleston, 1 August 2002.
Available at: http://www.s4ec.org/scc_part2_ver0-21.pdf

[Schell 2005] Schell, Roger. “Creating High Assurance for a Product: Lessons Learned from GEMSOS.”
(Keynote Talk) Third IEEE International Workshop on Information Assurance, College Park, MD,
USA March 23-24, 2005. Available at http://www.iwia.org/2005/Schell2005.PDF

[Schlesinger 2004] Schlesinger, Rich (ed.). Proceedings of the 1st annual conference on Information
security curriculum development. Kennesaw, Georgia, ACM, October 08 - 08, 2004

[Schneier 1999] Schneier, Bruce, “Attack Trees: Modeling security threats,” Dr. Dobb's Journal,
December 1999.

[Schneier 2000] Schneier, Bruce, Secrets and Lies: Digital Security in a Networked World, John Wiley &
Sons, 2000.

[Schoonover 2005] Schoonover, Glenn, Presentation, Software Assurance Summit, National Defense
Industries Association, September 7-8, 2005.

[Schumacher 2006] Schumacher, Markus, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank
Buschmann, Peter Sommerlad. Security Patterns: Integrating Security and Systems Engineering. John
Wiley & Sons, 2006. (forthcoming)

[Schwalbe 2006] Schwalbe, K., Information Technology Project Management. Fourth Edition. Boston,
MA: Thompson Course Technology, 2006.

[SDI 1992] Department of Defense Strategic Defense Initiative Organization. Trusted Software
Development Methodology, SDI-S-SD-91-000007, vol. 1, 17 June 1992.

[Seacord 2005] Seacord, R., Secure Coding in C and C++, Boston, MA: Addison Wesley Professional,
2005.

[Seacord and Householder 2005] Seacord, R. and A. Householder, A Structured Approach to Classifying
Security Vulnerabilities, Technical Note: CMU/SEI-2005-TN-003, Carnegie Mellon University:
Software Engineering Institute, January 2005.

[SEI 1990] "Configuration Management: State of the Art", SEI Bridge, Software Engineering Institute,
Carnegie-Mellon University, March 1990.

[SEI TT] SEI, Technology Transition Practices.
Available at: http://www.sei.cmu.edu/ttp/value-networks.html

[Seminal Papers] Seminal Papers - History of Computer Security Project, University of California Davis
Computer Security Laboratory
Available at: http://seclab.cs.ucdavis.edu/projects/history/seminal.html

[Senge 1994] Senge, Peter M., “The Fifth Discipline,” Currency, 1st edition, October 1, 1994.

[Sheyner 2002] Sheyner, Oleg, Somesh Jha, and Jeannette M. Wing, “Automated Generation and Analysis
of Attack Graphs,” Proceedings of the IEEE Symposium on Security and Privacy, 2002.

[SHS 2002] Secure Hash Standard (SHS), FIPS 180-2, August 2002.

[Sinclair 2005] Sinclair, David, “Introduction to Formal Methods”, Course Notes, 2005.
Available at: www.computing.dcu.ie/~davids/courses/CA548

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

305

[Sindre 2000] Sindre, G. and A.L. Opdahl, "Eliciting Security Requirements by Misuse Cases," Proc. 37th
Int'l Conf. Technology of Object-Oriented Languages and Systems (TOOLS-37 '00), IEEE Press, pp.
120-131, 2000.

[Skoudis 2002] Skoudis, Ed, Counter Hack: A Step-by-step Guide to Computer Attacks and Effective
Defenses, Prentice Hall, 2002.

[Smedinghoff 2003] Smedinghoff, Thomas J., “The Developing U.S. Legal Standard for Cybersecurity,”
Baker and McKenzie, Chicago, May 2003.
Available at: www.bakernet.com/ecommerce/us%20cybersecurity%20standards.pdf

[Smedinghoff 2004] Smedinghoff, Thomas J. “Trends in the Law of Information Security,” World Data
Protection Report, The Bureau of National Affairs, Inc. vol. 4, no. 2, August 2004.

[Snow 2005] Snow, Brian. “We need Assurance!” Proceedings of the 21st Annual Computer Security
Applications Conference (ACSAC ’05). pp 3-10, December 2005.

[Sobel 2000] Sobel, Ann E. Kelley. “Empirical Results of a Software Engineering Curriculum
Incorporating Formal Methods,” ACM Inroads, March 2000

[Software Tech News 2005] “Secure Software Engineering”, DoD Software Tech News, Data Analysis
Center for Software, July 2005.
Available at: http://www.softwaretechnews.com

[Sommerville 1997] Sommerville, Ian, and P. Sawyer, Requirements Engineering: A Good Practice
Guide, John Wiley & Sons, 1997.

[Sommerville 2004] Sommerville, I., Software Engineering, 7th ed., Pearson Education, 2004.

[Sommerville 2006] Sommerville, Ian, Software Engineering, 8th ed., Pearson Education, 2006.

[SOUPS 2005] Symposium on Usable Privacy and Security (SOUPS), ACM, July 6-8, 2005 Available at:
http://cups.cs.cmu.edu/soups/2005/program.html

[Spivey 1992] Spivey, J.M., The Z Notation: A Reference Manual, 2nd Edition, Prentice-Hall, 1992.

[SREIS 2005] Symposium on Requirements Engineering for Information Security (SREIS 2005) Paris,
France, August 29, 2005. See http://www.sreis.org/

[Srivatanakul 2003] Srivatanakul, Thitima, John A. Clark, Susan Stepney, Fiona Polack. "Challenging
Formal Specifications by Mutation: a CSP security example," apsec, , 10th Asia-Pacific Software
Engineering Conference (APSEC'03), 2003, p. 340.

[SSE-CMM 3.0] Systems Security Engineering Capability Maturity Model (SSE-CMM) version 3.0,
International Systems Security Engineering Association (ISSEA), 2004.
Available at: http://www.sse-cmm.org/model/model.asp

[Stavridou 2001] Stavridou, Victoria, Bruno Dutertre, R. A. Riemenschneider, and Hassen Sa¨ıdi,
Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEXII’01),
2001.

[Stoneburner 2001] NIST SP 800-33, Underlying Technical Models for Information Technology Security,
December 2001.

[Stroud 2004] Stroud, R., I. Welch, J. Warne, and P. Ryan, “A qualitative analysis of the intrusion-
tolerance capabilities of the MAFTIA architecture,” International Conference on Dependable Systems
and Networks, IEEE, 2004.

Bibliography

306

[Sturm, Morris, Jander, 2000] Sturm, R., W. Morris, and M. Jander, Foundations of Service Level
Management, Indianapolis, IN: Sams, 2000.

[Swanson ND] Swanson, Marianne, Security Self Assessment Guide for Information Technology Systems,
ND.

[SWEBOK] Abran, Alain, James W. Moore (Executive editors); Pierre Bourque, Robert Dupuis, Leonard
Tripp (Editors). Guide to the Software Engineering Body of Knowledge. 2004 Edition. Los Alamitos,
California: IEEE Computer Society, Feb. 16, 2004. Available at http://www.swebok.org

[Swiderski 2004] Swiderski, F. and W. Snyder, Threat Modeling, Microsoft Press, 2004.

[Szor 2005] Szor, Peter, The Art of Computer Virus Research and Defense, Addison-Wesley Professional,
2005.

[Thayer and Yourdon 2000] Thayer, Richard H., editor, and Edward Yourdon. Software Engineering
Project Management, Second Edition (Paperback) Hoboken, NJ: Wiley-IEEE Computer Society
Press, 2000.

[Thomas 2002] Thomas, Douglas. Hacker Culture. Minneapolis, MO: University of Minnesota Press,
2002.

[Thompson 1984] Thompson, Ken, “Reflections on Trusting Trust”, Communication of the ACM, Vol. 27,
No. 8, pp. 761-763, August 1984.

[Thompson 2005] Thompson, H. H. and S. G. Chase, The Software Vulnerability Guide, Charles River
Media, 2005.

[Thuraisingham 2005] Thuraisingham, Bhavani, Database and Applications Security: Integrating
Information Security and Data Management, CRC Press, 2005.

[Thornburgh 2005] Thornburgh, Nathan. “The Invasion of the Chinese Cyberspies (And the Man Who
Tried to Stop Them) -
An exclusive look at how the hackers called TITAN RAIN are stealing U.S. secrets”, Time, 9/5/2005]

[Tsipenyuk 2005] Tsipenyuk, Katrina, Brian Chess, and Gary McGraw. Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors. IEEE Security & Privacy. Vol. 4, No.2, pp 81-84,
November/December 2005.

[Turner 2002] Turner, R.G., Implementation of Best Practices in U.S. Department of Defense Software-
Intensive System Acquisitions, Ph.D. Dissertation, George Washington University, 31 January 2002.
Available at http://www.goldpractices.com/survey/turner/index.php.

[University of California-Berkeley] University of California-Berkeley: Proof Carrying Code. Available at
http://raw.cs.berkeley.edu/pcc.html.

[US Army 2003] US Army, Field Manual (FM) 3-13: Information Operations: Doctrine, Tactics,
Techniques, and Procedures, 28th Nov., 2003. (Particularly Chapter 4 on Deception)

[DOS 5220.22-M Matrix 1995] US Department of Defense, “Cleaning and Sanitization Matrix,” Section
8, DOS 5220.22-M, Washington, D.C., 1995; www.dss.mil/isec/nispom_0195.htm.

[US DoD 1996] Joint Chiefs of Staff, DoD JP 3-58, Joint Doctrine for Military Deception, 31 May 1996.

[Van Grembergen 2004] Van Grembergen, W., Strategies for Information Technology Governance, Idea
Group Publishing, Chap.11, 2004.

[Vaughn 2003] Vaughn, Steven J., “Building Better Software with Better Tools”, IEEE Computer, Vol 36,
No 9, September 2003.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

307

[Vaughn and George 2003] Vaughn, Rayford and Vinu George, “Application of Lightweight Formal
Methods in Requirement Engineering,” Crosstalk: The Journal of Defense Software Engineering,
January 2003.

[Verdon 2006] Verdon, Denis, "Security Policies and the Software Developer," IEEE Security and
Privacy, vol. 4, no. 4, pp. 42-49, Jul/Aug, 2006.

[Vernon 2006] Richard C. Vernon, Cynthia E. Irvine and Timothy E. Levin. “Toward a Boot Odometer,”
7th Annual IEEE Information Assurance Workshop. West Point, New York, June 21 June 21-23, 2006

[Verton 2005] Verton, Dan. The Insider: A True Story. Llumina Press, 2005.
[Viega 2000] Viega, John, et al, “Statically Scanning Java Code: Finding Security Vulnerabilities,”
IEEE Software, vol. 17, no. 5, pp. 68-74, Sept/Oct 2000.

[Viega 2005] Viega, J., The CLASP Application Security Process, Secure Software, 2005. Available at
http://www.securesoftware.com

[Viega and McGraw 2001] Viega, John, and Gary McGraw, Building Secure Software: How to Avoid
Security Problems the Right Way, Reading, MA: Addison Wesley, 2001.

[Viega and McGraw 2002] Viega, John and Gary McGraw, Building Secure Software, Addison-Wesley,
2002.

[Viega and Messier 2003] Viega, John and Matt Messier, Secure Programming Cookbook, O’Reilly and
Associates, Inc., 2003.

[Violino 1997] Violino R, “Measuring Value: Return on Investment”, Information Week, No. 637, pp. 36-
44, June 30, 1997.

[Vizedom 1976] Vizedom, Monika, Rites and Relationships: Rites of Passage and Contemporary
Anthropology, Beverly Hills, CA: Sage Publications, 1976 [Abrams 1998] Abrams, M. D, “Security
Engineering in an Evolutionary Acquisition Environment,” New Security Paradigms Workshop, 1998.

[Walsh 2003] Walsh, L., "Trustworthy Yet?", Information Security Magazine, Feb. 2003.
Available at: http://infosecuritymag.techtarget.com/2003/feb/cover.shtml

[Warkentin and Vaughn 2006] Warkentin, Merrill and Rayford Vaughn. Enterprise Information Systems
Assurance and System Security: Managerial and Technical Issues. Idea Group Publishing, 2006.

[Weber 2004] Weber, Sam, Karger, Paul A., Paradkar, Amit, “A Software Flaw Taxonomy: Aiming Tools
at Security,” ACM Software Engineering for Secure Systems - Building Trustworthy Applications
(SESS'05) St. Louis, Missouri, USA., June 2004.

[Weinberg] The Virginia Satir change model, adapted from G. Weinberg, Quality Software Management,
Vol. 4: Anticipating Change, Ch 3.

[Weiss ND] Weiss, Gus W. The Farewell Dossier – Duping the Soviets
Available at: http://www.cia.gov/csi/studies/96unclass/farewell.htm.

[Wheeler 2003] Wheeler, David, Secure Programming for Linux and Unix HOWTO v3.010, 3 March,
2003.
Available at: www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.pdf.

[Wheeler 2005] Wheeler, David A., “Software Configuration Management (SCM) Security”. May 2005.
http://www.dwheeler.com/essays/scm-security.html

[Whitgift 1991] Whitgift, D., Methods and Tools for Software Configuration Management, John Wiley
and Sons, England, 1991.

Bibliography

308

[Whitman and Mattord 2005] Whitman, Michael and Herbert Mattord, Principles of Information Security,
2nd Edition, Thomson Course Technology, 2005.

[Whittaker and Thompson 2003] Whittaker, James, and Herbert Thompson. How to Break Software
Security. Addison-Wesley, 2003.

[Whittaker and Thompson 2004] Whittaker, J. A. and H. H. Thompson. How to Break Software Security:
Effective Techniques for Security Testing. Pearson Education, 2004.

[Whitten 1999] Whitten, A. and J.D. Tygar, “Why Johnny Can’t Encrypt: A Usability Evaluation of PGP
5.0,” Proc. Ninth USENIX Security Symposium, 1999.

[Williams 1982] Williams, T. W., and K. P. Parker, “Design for Testability - A Survey,” IEEE Trans.
Computers, Vol. C-31, No. 1, pp. 2-15, January 1982.

[Williams 1998] Williams, Jeffrey R. and George F. Jelen, A Framework for Reasoning about Assurance,
Document Number ATR 97043, Arca Systems, Inc., 23 April 1998.

[Williams and Fagan 1992] Williams, S. and P. Fagan, “Secure Software: Management Control Is a Key
Issue”. London, UK: Institute o Electrical Engineers (IEE) Colloquium on Designing Secure Systems,
June 1992.

[Wimmel 2002] Wimmel, Guido, Jan Jürjens, Specification-Based Test Generation for Security-Critical
Systems Using Mutations, Proceedings of the 4th International Conference on Formal Engineering
Methods: Formal Methods and Software Engineering, p.471-482, October 21-25, 2002.

[Wong 2001] Wong, Kelvin, "Friend Or Foe: Understanding The Underground Culture and the Hacking
Consciousness". Melbourne, Australia: RMIT University, 20 March 2001. Available at
http://www.security.iia.net.au/downloads/friend_or_foe.pdf and
http://www.security.iia.net.au/downloads/new-lec.pdf.

[Woodcock and Davies 1996] Woodcock, Jim and Jim Davies. Using Z: Specifications, Refinement, and
Proof. Prentice Hall. 1996.

[Wyk and McGraw 2005] van Wyk, Kenneth and Gary McGraw, After the Launch: Security for App
Deployment and Operations, Presentation at Software Security Summit, April 2005.

[Wyk and Graff 2003] Van Wyk, Kenneth R. and Mark G. Graff: Secure Coding: Principles and
Practices. Sebastopol, CA: O’Reilly Media Inc., 2003.

[YCC 2003] Your Computer Center, “Viruses and Software Vulnerabilities,” 2003. Available at
www.ycc.com/security/details/virus.htm

[Yee 2002] Yee, Ka-Ping , “User interaction design for secure systems,” In Proceedings of the 4th
International Conference on Information and Communications Security, Springer-Verlag, LNCS
2513, 2002.

[Yee 2003] Yee, Ka-Pin, “Secure interaction design and the principle of least authority,” Workshop on
Human-Computer Interaction and Security Systems, part of CHI2003, ACM SIGCHI, 2003.
Available at: http://sims.berkeley.edu/˜ping/sid/yee-sidchi2003-workshop.pdf

[Yee 2004] Yee, Ka-Pin, “Aligning security and usability,” Security & Privacy Magazine, 2: 48–55,
Sept/Oct 2004

[Yee 2005] Yee, Ka-Pin, “Guidelines and strategies for secure interaction design,” Lorrie Cranor and
Simson Garfinkel, editors, Security and Usability. O’Reilly, 2005.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

309

[Younan 2003] Younan, Yves, “An Overview of Common Programming Security Vulnerabilities and
Possible Solutions,” Vrije Universiteit Brussel Faculteit Wetenschappen Departement Informatica en
Toegepaste Informatica, Aug., 2003.

[Younan 2004] Younan, Yves, Joosen, Wouter, and Piessens, Frank, “Code Injection in C and C++ - A
Survey of Vulnerabilities and Countermeasures,” Katholieke Universiteit Leuven Department of
Computer Science, Jul., 2004.

[Zimmerman 1997] Zimmerman, Michael, “Configuration Management, Just a Fashion or a Profession.”
White Paper, usb GmbH, 1997.

[Zitser 2005] Zitser, Misha, Leek, Tim, Lippmann, Richard, “Testing Static Analysis Tools Using
Exploitable Buffer Overflows From Open Source Code,” Foundations of Software Engineering,
Newport Beach, CA, December, 2005.

[Zwicky et al, 2000] Zwicky, Elizabeth D., Simon Cooper, and D. Brent Chapman. Building Internet
Firewalls (2nd ed.), O'Reilly, 2000.

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

311

17 Index
access

access control, 6, 36, 52, 53, 54, 56, 57,
60, 63, 81, 87, 96, 101, 104, 105,
106, 118

access control policy, 52
access rights, 55, 106

accident, 23, 29, 46, 145
accountability, 6, 36, 37, 38, 52, 72, 78, 96,

105, 117, 158, 217
accreditation. See evaluation, accreditation
accuracy, 15, 37, 38, 72, 179
acquisition, ii, iii, vii, viii, 5, 7, 51, 103, 170,

178, 188, 190, 194, 201, 202, 203,
206, 210, 215, 216, 221, 235, 238,
240, 241, 242, 243, 244, 245, 257,
258, 265

RFP, 51, 201, 208, 212, 214
administration, 11, 60, 80, 106, 132, 155,

156, 162, 185, 248
adversary, vi, 18, 38, 48, 49, 79, 80, 109,

110, 243
anonymity, 37, 48, 63, 64, 77, 117
archive, 192, 239
asset, 9, 28, 37, 38, 48, 56, 77, 78, 79, 80, 81,

82, 86, 88, 99, 103, 105, 191, 202,
205, 212, 217, 258

assurance
quality assurance, 103, 182, 206, 213,

248
assurance case, iii, 33, 39, 40, 41, 42, 43, 50,

77, 83, 84, 88, 90, 91, 95, 96, 97, 102,
103, 111, 112, 113, 135, 137, 138,
139, 142, 144, 147, 148, 157, 169,
181, 185, 189, 190, 191, 192, 194,
195, 206, 207, 208, 210, 211, 212,
213, 214, 217, 218, 219, 220, 226,
231

safety case, 226
assurance case,, 138
attack, vi, 4, 7, 15, 18, 19, 20, 21, 23, 25, 26,

27, 28, 29, 30, 38, 48, 49, 55, 61, 66,
80, 81, 83, 86, 87, 90, 92, 95, 98, 99,
101, 102, 103, 104, 108, 110, 115,
116, 117, 118, 122, 139, 140, 141,
142, 146, 149, 153, 156, 158, 160,
162, 165, 180, 193, 211, 228, 232,
239, 241, 244, 246, 247, 252, 253,
254, 261, 262, 263

attacker, 18, 19, 24, 25, 26, 27, 37, 47,
51, 53, 54, 64, 80, 81, 87, 104,
108, 109, 110, 115, 117, 140,
144, 153, 242

attack tree, 81
audience, v, ix, 3, 5, 7, 189, 221, 222
audit, 53, 57, 60, 85, 86, 87, 98, 100, 110,

135, 144, 162, 179, 181, 182, 190,
191, 192, 196, 208, 209, 211, 215,
218, 248, 249

authenticity, 6, 36, 37, 44, 52, 77, 81, 82, 88,
91, 96, 101, 113, 119, 152, 154, 209,
217, 238, 246

password, 47, 66, 81, 154, 162
authorization, 15, 24, 26, 27, 28, 36, 44, 46,

50, 65, 96, 98, 105, 159, 178, 179,
184, 186, 191, 192, 202

availability, 6, 15, 36, 38, 52, 64, 65, 66, 67,
77, 81, 83, 88, 101, 103, 105, 135,
140, 141, 142, 149, 205, 208, 217,
218, 224, 225, 226

denial of service, 21, 27, 66, 116, 142
backup, 79, 217
baseline, 8, 68, 92, 113, 191, 192, 205, 257
behavior, 38, 47, 49, 55, 73, 77, 87, 88, 89,

90, 91, 95, 96, 99, 110, 112, 118, 135,
141, 153, 155, 160, 189, 202, 212,
225, 232

body of knowledge, 1, 2, i, ii, vi, vii, viii, ix,
5, 6, 8, 10, 68, 71, 113, 132, 156, 161,
174, 206, 221, 235, 241, 242, 259,
264

buffer overflow, vi, 100, 116, 117, 122, 153,
154, 224

cache, 79
category, viii, 7, 19, 24, 61, 80, 92, 100, 109,

113, 151, 152, 157, 205, 208, 210,
217, 218, 257

certification. See evaluation, certification
CESG, 250
Commercial Off The Shelf, 156, 203, 209,

211
Commercial Off-The-Shelf, 202, 211
Commercial Off–The-Shelf, 211
Commerial Off The Shelf, 100, 102, 253,

258
Common Criteria, vii, 34, 41, 44, 45, 60, 71,

84, 85, 89, 92, 104, 105, 139, 147,

Index

312

150, 155, 158, 164, 182, 196, 202,
203, 210, 212, 231, 239, 240, 255,
260

competency, ix, 163, 215, 230, 231
compiler, 117, 119, 122, 148, 152, 153, 154
complete, 18, 25, 42, 46, 90, 118, 138, 142,

149, 155, 157, 179, 194, 210, 239
confidence, vi, ix, 7, 19, 30, 38, 39, 40, 41,

43, 49, 95, 97, 99, 102, 103, 113, 136,
137, 138, 139, 148, 151, 164, 178,
192, 207, 210, 217, 231, 232

justifable, 39, 41, 43
confidentiality, 4, 6, 15, 28, 29, 36, 37, 38,

47, 51, 52, 54, 57, 63, 64, 66, 77, 83,
84, 85, 86, 88, 100, 103, 106, 110,
135, 141, 205, 208, 217, 218

configuration, viii, 88, 107, 118, 124, 138,
154, 159, 161, 162, 170, 179, 180,
183, 186, 187, 191, 192, 209, 210,
213, 236, 237, 240, 243, 248, 250,
262, 265, 267

confinement, 55, 99, 103, 104, 108
conflict, x, 7, 29, 48, 49, 61, 87, 104, 106,

209
consequence, 139, 163, 190
constraint, 51, 53, 73, 77, 78, 88, 89, 90, 95,

97, 98, 112, 120, 137, 203, 208, 236
construction, viii, x, 25, 40, 45, 81, 91, 95,

100, 109, 115, 119, 120, 124, 135,
158, 171, 225, 226, 229, 245

context, vii, 30, 77, 89, 110, 115, 116, 118,
121, 140, 179, 180, 188, 209, 223,
224, 225, 226

control, 6, 18, 36, 41, 52, 53, 54, 56, 57, 60,
63, 72, 80, 81, 82, 96, 98, 101, 102,
103, 104, 105, 106, 110, 118, 138,
140, 141, 153, 163, 164, 167, 179,
180, 182, 184, 185, 186, 189, 191,
194, 195, 196, 197, 205, 206, 209,
212, 219, 240, 244, 249

CORBA, 119
cost, vi, 3, 4, 15, 48, 80, 82, 84, 86, 96, 101,

113, 117, 144, 147, 148, 149, 151,
155, 167, 185, 189, 202, 203, 204,
207, 210, 211, 213, 215, 231, 251

covert channel, 53, 56, 59, 63, 64, 104, 137
critical, vi, 23, 26, 47, 49, 81, 83, 86, 89, 98,

100, 103, 109, 110, 112, 118, 121,
150, 153, 155, 164, 189, 214, 215,
222, 223, 226, 237, 240, 250, 252,
256, 260, 266

cryptography, 44, 52, 56, 57, 60, 66, 81, 88,
91, 105, 106, 107, 109, 124, 138, 139,
147, 153, 164, 206, 209, 245

decryption, 56, 57, 107, 110
damage, 19, 29, 37, 48, 55, 78, 96, 99, 103,

104, 108, 207, 209, 211, 217
confinement, 103

data, 4, 15, 19, 24, 27, 37, 38, 40, 51, 52, 55,
57, 60, 64, 65, 72, 73, 78, 82, 83, 86,
98, 101, 105, 109, 110, 116, 117, 121,
122, 135, 140, 149, 177, 179, 184,
193, 205, 209, 242

data flow, 60, 177
deception, 4, 29, 46, 53, 55, 80, 83, 93, 96,

108, 109, 114, 240, 244, 261, 264
declassify, 56
defense in depth, 47, 99
demonstrate, 136, 141, 209, 219
dependability, i, vii, 10, 11, 35, 59, 68, 103,

132, 136, 149, 178, 213, 235, 236,
237, 240, 241, 247, 248, 253, 259,
260, 263

design
architecture, 53, 91, 92, 95, 97, 112, 113,

119, 158, 160, 167, 178, 184,
185, 194, 195, 196, 202, 209,
211, 212, 214, 215, 220, 232,
236, 245, 246, 251, 260, 263

detailed, 112
detection, 3, 26, 37, 53, 54, 63, 72, 80, 83, 99,

100, 108, 110, 116, 147, 153, 154,
161, 178, 179, 182, 189, 196, 237,
238, 242, 244, 249

development environment, 25, 88, 102, 213
diagnosis, 84, 108, 186, 246
digital rights management. See intellectual

property
disaster, 53, 66, 83, 108, 180, 185
distributed system, 52, 56, 104, 119
documentation, 44, 102, 107, 124, 145, 147,

184, 191, 192, 193, 195, 213, 247
domain, 9, 37, 55, 56, 63, 71, 82, 98, 101,

104, 106, 135, 168, 201, 203, 205,
206, 207

trust domain, 35, 44
ecommerce, 38, 78, 239, 263
encapsulation, 97
encryption, 36, 54, 55, 56, 57, 63, 90, 104,

106, 107, 109, 110, 117, 266
engineer, vi, vii, ix, 5, 7, 9, 10, 44, 45, 47, 48,

49, 50, 57, 59, 65, 87, 95, 109, 110,

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

313

115, 135, 139, 144, 145, 146, 149,
157, 158, 161, 162, 164, 204, 208,
212, 213, 222, 223, 224, 225, 228,
229, 230, 231, 246

ensure, 2, ix, 5, 46, 47, 57, 80, 82, 84, 86, 89,
90, 96, 100, 101, 102, 112, 116, 120,
122, 124, 138, 143, 144, 145, 153,
163, 170, 171, 178, 180, 181, 184,
188, 189, 190, 191, 192, 194, 195,
202, 206, 211, 213, 214, 215, 230

error, vi, 47, 54, 55, 100, 108, 110, 117, 140,
152, 154, 168, 178, 238

ethics, x, 7, 10, 48, 71, 226, 228, 238
evaluation, viii, 40, 44, 77, 84, 90, 91, 111,

113, 121, 135, 136, 139, 147, 182,
196, 207, 210, 211, 214, 218, 226,
230, 231, 239, 240, 241, 250, 252,
258, 260, 261, 266

accreditation, 33, 44, 45, 80, 84, 85, 86,
96, 113, 144, 147, 148, 167, 180,
192, 202, 206, 211, 215, 224,
241, 257

DITSCAP, 45, 85, 148, 206, 241
certification, 33, 44, 45, 57, 71, 80, 84,

85, 89, 96, 113, 136, 137, 138,
139, 144, 147, 148, 149, 158,
159, 167, 180, 190, 191, 192,
195, 202, 204, 206, 211, 213,
215, 230, 240, 241, 246, 249,
257, 258, 262

FIPS 140 Certification, 44, 106, 206
evidence, 9, 30, 38, 39, 40, 41, 47, 50, 53, 57,

65, 74, 77, 83, 84, 86, 95, 97, 102,
103, 111, 112, 119, 135, 136, 137,
138, 139, 140, 142, 144, 154, 157,
163, 181, 182, 186, 191, 195, 206,
207, 210, 213, 219, 223, 224, 231,
240

evolve, 80, 83, 84, 95, 97, 98, 105, 142, 194,
201, 213

execution, vi, 54, 65, 96, 99, 112, 117, 121,
122, 138, 140, 142, 153, 190, 212,
218

exploit, 15, 20, 21, 25, 29, 48, 80, 83, 96, 115,
117, 118, 119, 121, 122, 140, 153,
160, 162, 180, 188, 189, 225, 226,
244

External Behavior Specification, 89, 91
failure, 23, 24, 79, 80, 83, 99, 100, 140, 141,

154, 186, 190, 219, 228, 246, 251

fault, vi, 4, 24, 26, 53, 54, 74, 81, 83, 99, 102,
108, 135, 139, 140, 141, 144, 145,
146, 148, 159, 161, 168, 182, 204,
206, 232, 236, 240, 242, 250, 260

fault tolerance, 53, 54, 81, 99, 108, 140
feasible, 83, 102, 180, 185, 186

feasibility analysis, 87
feature, 25, 49, 72, 78, 82, 107, 112, 115,

119, 141, 155, 158, 162, 185, 209,
223, 224

firewall, 53, 54, 56, 88, 93, 100, 104, 114,
182, 242, 267

FISMA, vii, 72, 243
forensics, 51, 52, 59, 66, 81, 86, 100, 110,

184
formal methods, 8, 40, 97, 111, 139, 141,

143, 148, 151, 152, 157, 158, 164,
165, 185, 186, 224, 226, 227, 229,
232, 238, 240, 241, 242, 250, 252,
256, 259, 263, 265, 266

function, 57, 154, 178, 179, 184, 188, 191,
192, 194, 195

goal, vii, 4, 6, 41, 81, 88, 136, 137, 142, 144,
148, 162, 163, 164, 177, 178, 230

guidance, 2, vi, 50, 59, 72, 73, 78, 85, 89,
152, 163, 170, 203, 204, 208, 223,
230

hash, 57, 91, 92, 107, 113, 114, 246, 257, 262
HIPAA, 72
identify, iii, v, vii, ix, 3, 5, 15, 19, 37, 38, 52,

53, 57, 64, 66, 77, 78, 80, 81, 86, 88,
98, 100, 110, 116, 122, 142, 144, 154,
158, 159, 160, 163, 178, 180, 181,
184, 185, 186, 189, 190, 191, 203,
204, 205, 208, 209, 213, 222, 230,
231

implement, vi, vii, viii, 3, 25, 47, 69, 72, 73,
98, 100, 101, 105, 115, 117, 119, 137,
146, 157, 158, 159, 160, 163, 178,
183, 184, 185, 186, 187, 193, 195,
197, 202, 206, 210, 216, 241, 242,
248, 250, 264

incident, 4, 51, 72, 80, 100, 138, 163, 180,
181, 182, 207, 213, 258

information flow, 52, 53, 55, 96, 101, 120,
143, 224

inheritance, 97
insider, 19, 24, 25, 26, 27, 49, 80, 81, 261
install, 20, 25, 26, 60, 180
integrity, i, iii, vii, 6, 15, 19, 28, 29, 36, 37,

38, 52, 54, 57, 65, 71, 77, 81, 82, 83,

Index

314

86, 88, 101, 103, 107, 109, 110, 117,
122, 124, 135, 138, 141, 155, 163,
168, 188, 191, 192, 193, 205, 208,
209, 217, 218, 220, 231, 236, 249

intellectual property, 63, 71, 77, 78, 79, 109,
124

interface, 47, 49, 82, 90, 95, 102, 106, 110,
117, 136, 153, 159, 184, 191

intrusion, 3, 26, 27, 53, 54, 55, 99, 108, 178,
179, 182, 196, 237, 238, 242, 249,
253, 258, 263

key management, 57, 209
learning, v, 3, 5, 19, 81, 108, 140, 150, 164,

168, 221, 222, 223, 224, 225, 226,
227, 228, 229, 233, 241, 255

curricula, vi, viii, ix, 4, 5, 6, 8, 221, 223,
229, 230, 233, 245, 262, 263

education, 1, 2, i, iv, vi, ix, 4, 5, 11, 74,
114, 133, 156, 158, 181, 201,
211, 213, 215, 222, 223, 224,
227, 228, 229, 230, 232, 233,
239, 243, 261, 263, 266

institution, i, ii, iii, iv, vi, xi, 4, 6, 8, 11,
33, 165, 167, 187, 216, 223, 225,
228, 229, 236, 237, 239, 240,
241, 242, 243, 245, 246, 250,
251, 252, 253, 255, 256, 259,
262, 264

instruction, 1, 2, i, iv, vi, ix, 4, 5, 6, 19,
124, 145, 146, 162, 164, 180,
181, 195, 201, 209, 210, 211,
213, 214, 215, 216, 221, 222,
223, 224, 225, 226, 227, 228,
229, 230, 232, 233, 243, 259

self-study, ix, 221, 222
student, 222, 223, 224, 225, 226, 228
textbook, 8, 10, 222, 223
training, 1, 2, i, iv, vi, ix, 4, 5, 6, 19, 124,

145, 146, 162, 164, 180, 181,
195, 201, 209, 210, 211, 213,
214, 215, 216, 221, 222, 223,
224, 225, 226, 227, 228, 229,
232, 259

least privilege, 46
legal, viii, ix, 7, 10, 15, 18, 19, 30, 48, 49, 51,

71, 72, 73, 77, 80, 81, 82, 86, 108,
144, 149, 153, 184, 208, 219, 228,
263

legitimacy, 27, 28, 47, 53, 65, 66, 82, 83, 90,
97, 108, 113, 192

liability, 71, 74, 207, 228, 240, 261

lifecycle, vii, x, 6, 7, 100, 136, 146, 155, 157,
158, 163, 165, 182, 187, 192, 197,
204, 207, 209, 213, 218, 219, 225,
245, 248, 249, 250, 253, 254

liveness property, 53
maturity, vii, 11, 132, 156, 162, 248, 263
MCAD, 45
measurement, vi, 48, 107, 112, 116, 119,

139, 145, 146, 147, 150, 151, 157,
158, 159, 164, 168, 183, 187, 195,
197, 208, 210, 211, 215, 223, 237,
239, 248, 250, 254, 256, 257, 259,
260, 261

method, x, 8, 9, 46, 57, 82, 90, 105, 110, 112,
119, 135, 139, 141, 143, 145, 148,
149, 151, 152, 154, 157, 158, 164,
181, 185, 186, 189, 190, 192, 195,
205, 210, 224, 236, 251, 259, 261

methodology, 68, 91, 165, 185, 195, 244,
254, 261, 262

Microsoft, ii, iii, 9, 11, 15, 20, 45, 82, 87,
107, 139, 146, 158, 182, 228, 229,
233, 247, 253, 254, 255, 264

migration
lifecycle, 178, 192

mishap, 29, 59
mistake, 23, 29, 59, 79, 82, 142
model, 64, 82, 91, 101, 118, 121, 124, 135,

141, 143, 146, 151, 152, 153, 158,
160, 161, 162, 164, 165, 177, 209,
212, 213, 237, 238, 239, 240, 244,
251, 253, 255, 263, 265

modularity, 97, 98, 136
modularity:, 136
National Information Assurance

Certification and Accreditation
Process, 85

National Institute for Standards and
Technology, iii, vii, 44, 45, 68, 69,
73, 78, 85, 86, 92, 97, 106, 113, 147,
150, 151, 154, 197, 201, 202, 203,
204, 205, 206, 207, 208, 209, 211,
218, 236, 243, 250, 252, 254, 257,
261

National Institute of Standards and
Technology, 148

networking, 9, 19, 27, 44, 45, 51, 54, 57, 88,
92, 98, 100, 101, 114, 115, 118, 148,
153, 154, 179, 180, 182, 193, 205,
221, 223, 224, 228, 237, 239, 242,
246, 259, 261, 262

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

315

non-repudiation, 6, 52, 57, 66, 77, 82, 105,
249

notify, 53, 54, 72, 108, 188
object, 46, 97, 106, 110, 119, 154, 243, 255,

258, 263
objective, ix, 27, 222, 230
online, 56, 72, 124, 145, 240
open source software, 102, 202, 206, 207
operations, vii, 9, 18, 29, 93, 109, 114, 118,

161, 163, 177, 180, 196, 202, 217,
241, 242, 251, 264, 266

opportunity, iv, 4, 19, 26, 97, 146, 147
Oracle, i, iii, 141, 146, 155, 162
patch, 4, 25, 26, 83, 102, 115, 188, 207, 257

patch management, 207
penetration, 47, 137, 139, 140, 160, 179,

226, 227, 232
performance, 5, 51, 59, 72, 87, 90, 113, 117,

122, 141, 146, 147, 148, 149, 165,
178, 203, 208, 209, 210, 211, 214,
215, 252

policy, 2, x, 3, 50, 51, 52, 53, 54, 55, 56, 60,
65, 72, 73, 77, 78, 84, 87, 88, 89, 90,
91, 95, 96, 97, 101, 104, 105, 106,
107, 112, 137, 142, 143, 144, 149,
153, 159, 162, 163, 167, 171, 178,
179, 180, 181, 184, 185, 188, 192,
194, 195, 211, 219, 226, 228, 232,
239, 258

organizational, 192
security policy, 3, 52, 54, 65, 73, 77, 78,

87, 88, 89, 90, 91, 95, 97, 111,
112, 137, 142, 153, 159

systems security policy, 77, 78, 88, 95,
111

polymorphism, 97
post-condition, 120, 142, 226
Praxis High-Integrity Systems, i, iii, vii,

150, 151, 155, 168, 250, 260
privacy, 37, 64, 71, 72, 73, 77, 78, 80, 82, 87,

92, 111, 113, 156, 235, 236, 238, 239,
242, 243, 247, 248, 251, 254, 259,
261, 262, 263, 266

privilege, 18, 28, 46, 65, 80, 81, 95, 98, 100,
106, 170

processor, 109
product, 3, 5, 24, 25, 26, 27, 39, 40, 49, 50,

59, 63, 87, 90, 103, 109, 112, 113,
124, 135, 138, 141, 145, 146, 147,
155, 157, 158, 161, 162, 163, 165,
169, 170, 191, 207, 212, 213, 219,

221, 222, 226, 228, 230, 231, 242,
254

progress, 41, 48, 53, 138, 209, 210, 223
project management, viii, ix, 148, 167, 168,

169, 170, 174, 186, 204, 215, 235,
241, 242, 251, 255, 259, 262

protocol, 9, 57, 101, 106, 117, 118, 152, 154,
181

prototype, 102, 142, 152
prove, 8, 136, 140, 148, 156, 222, 226

proof, 40, 82, 90, 120, 152, 155, 223, 251
prudent man rule, 72
public key encryption, 57

public key, 57
recovery, 19, 30, 37, 53, 66, 79, 83, 86, 99,

100, 103, 108, 180, 185
disaster recovery, 53, 66, 83, 108

redundancy, 23, 46, 89, 100
references

bibliographic, 10, 11, 31, 68, 91, 113,
132, 149, 156, 165, 174, 187,
193, 196, 216, 230, 233, 235

dictionaries, 73
glossaries, 3

refinement, 242
regulatory policies, 72
relation, 109
relational, 65
requirements, viii, 77, 231

functional requirements, 89, 151, 239,
240

needs, 78, 82, 83, 84, 85, 87, 88, 97, 211
resilience, 29, 48, 83, 96, 99, 103, 104, 108
resource, iii, 4, 15, 18, 19, 26, 27, 28, 38, 48,

49, 53, 55, 57, 64, 66, 80, 81, 87, 88,
98, 99, 100, 107, 108, 109, 117, 118,
147, 153, 155, 159, 160, 167, 170,
178, 184, 185, 189, 191, 192, 194,
204, 219, 222, 225, 232, 239, 261

response, 55, 72, 99, 100, 110, 178, 180, 181,
184, 185, 186, 188, 189, 191, 194,
201, 212, 213, 218, 220, 258

retirement, 157, 178, 192
return on investment, 185, 187, 237
review, i, ii, ix, 40, 47, 57, 59, 80, 90, 97,

100, 102, 113, 135, 138, 144, 146,
147, 149, 157, 158, 159, 161, 162,
164, 170, 171, 179, 183, 190, 196,
207, 208, 211, 215, 218, 222, 223,
231, 232, 239, 243, 244, 248, 249,
259

Index

316

rigorous, vi, 8, 143, 151, 191, 192, 225
risk, vii, 6, 18, 19, 22, 29, 41, 42, 48, 81, 82,

86, 103, 119, 136, 139, 148, 149, 156,
159, 160, 161, 163, 168, 169, 177,
178, 179, 185, 186, 188, 196, 202,
203, 204, 205, 206, 207, 208, 211,
212, 213, 215, 218, 219, 231, 239,
242, 243, 249, 253, 257, 260

robust, 46, 53, 54, 83, 167, 258
safety, i, vii, viii, 4, 10, 11, 36, 40, 45, 49, 50,

53, 59, 77, 113, 132, 135, 148, 155,
156, 157, 158, 162, 163, 164, 168,
184, 185, 192, 207, 213, 224, 226,
231, 236, 241, 248, 251, 252, 253,
256, 258, 261

safety property, 53
Sarbanes-Oxley Act of 2002, 72
secret sharing, 57, 83, 100, 106
secure development, 5, 151
secure software, 2, i, iv, vi, vii, viii, ix, x, 3,

4, 5, 6, 7, 8, 9, 10, 15, 26, 33, 38, 39,
40, 41, 45, 48, 50, 57, 59, 63, 71, 72,
77, 87, 89, 90, 95, 96, 97, 99, 101,
107, 115, 120, 135, 137, 138, 139,
140, 144, 146, 148, 151, 155, 157,
158, 160, 161, 162, 169, 170, 171,
201, 203, 204, 208, 210, 214, 217,
221, 222, 223, 224, 225, 228, 229,
230, 231, 232

security analysis, 59, 159, 160, 235
security functionality, 6, 36, 41, 44, 45, 60,

84, 85, 89, 95, 98, 104, 105, 137, 159,
160, 167, 179, 180, 209

security policy, 3, 52, 54, 65, 73, 77, 78, 87,
88, 89, 90, 91, 95, 97, 111, 112, 137,
142, 153, 159

security policy,, 137
sensitive, 15, 28, 46, 78, 85, 86, 147, 170,

204, 205, 206, 217, 241
Sensitive Compartmented Information, 85,

147, 205, 206, 241, 251
separation, 46, 52, 55, 56, 95, 98, 104, 161,

170
separation of domains, 98
separation of duties, 83, 98, 100
separation of privilege, 87, 98
separation of roles, 98
show, 41, 77, 88, 116, 136, 139, 143, 151,

152, 156
signature, 189, 209

Software Assurance Plan, 212, 213, 218,
220

software engineering, vi, ix, 5, 10, 44, 45,
57, 59, 95, 135, 157, 161, 162, 204,
221, 222, 223, 224, 225, 228

software process, viii, 59, 151, 157, 168,
169, 187, 240, 243, 245, 246, 247,
253

sort, 116
speciality, 10
specialization, 57
specification, vi, 25, 47, 53, 73, 77, 86, 88,

89, 90, 91, 92, 95, 96, 111, 112, 113,
137, 139, 141, 143, 144, 147, 150,
151, 152, 155, 181, 189, 193, 195,
196, 197, 204, 210, 224, 226, 232,
238, 246, 248, 250, 256, 258, 263,
266

stakeholder, 37, 51, 77, 78, 86, 88, 113, 163
standard, 2, iii, vii, ix, 5, 37, 40, 41, 44, 45,

50, 51, 71, 73, 78, 84, 91, 92, 111,
114, 118, 120, 136, 137, 140, 147,
148, 149, 150, 153, 155, 156, 160,
179, 180, 181, 182, 183, 184, 187,
189, 192, 193, 194, 195, 196, 197,
202, 205, 210, 211, 212, 221, 226,
230, 231, 235, 237, 239, 243, 244,
248, 249, 250, 251, 256, 257, 260,
261, 262, 263

state, iii, iv, viii, 7, 10, 49, 53, 54, 65, 73, 89,
97, 99, 100, 108, 109, 121, 141, 151,
152, 155, 158, 164, 180, 187, 191,
193, 194, 217, 218, 226, 231, 240,
253, 262

state space, 152
structural, 47
subset, 119, 210
support, ii, v, vi, x, 3, 5, 7, 25, 40, 52, 59, 66,

97, 100, 103, 106, 110, 112, 117, 118,
122, 124, 135, 141, 143, 145, 148,
152, 155, 158, 163, 170, 184, 186,
187, 195, 202, 207, 211, 213, 217,
220, 221, 224, 225, 241, 243

survivability, 96, 99, 261, 263
sustainment, 2, i, ii, vii, viii, x, 4, 5, 7, 8, 9,

20, 24, 25, 26, 41, 45, 50, 71, 81, 83,
91, 96, 136, 157, 170, 177, 178, 179,
181, 186, 188, 194, 195, 239, 240,
246, 249

legacy software, 8, 59, 110, 157, 160,
169, 203

Software Assurance: A Curriculum Guide to the Common
Body of Knowledge to Produce, Acquire and Sustain Secure Software

317

system security, 33, 39, 44, 51, 52, 53, 60,
71, 77, 78, 79, 80, 84, 88, 95, 96, 97,
98, 108, 111, 146, 160, 167, 189, 206,
219, 224, 233, 243, 266

systems engineer, ix
task, 82, 106, 110, 205, 230, 253
test, 26, 101, 112, 135, 137, 138, 139, 140,

141, 142, 147, 165, 179, 183, 185,
190, 209, 210, 213, 232, 237, 248,
252, 266

threat, 11, 15, 23, 29, 38, 48, 50, 66, 77, 78,
80, 81, 82, 83, 86, 88, 92, 97, 100,
101, 105, 115, 116, 135, 137, 138,
144, 146, 158, 160, 161, 162, 163,
178, 179, 180, 182, 184, 185, 189,
194, 195, 204, 205, 210, 235, 254,
255, 262, 264

tolerance, 29, 53, 54, 55, 80, 81, 83, 99, 108,
138, 140, 177, 263

fault, 53, 54, 81, 99, 108, 140
input, 53, 54
intrusion, 53, 54, 99, 108

traceable, 77, 78, 90, 95, 102, 105, 112, 117,
137, 155, 186, 191, 192, 213

type, 19, 82, 107, 109, 110, 115, 116, 119,
121, 122, 152, 154, 177, 185, 203,
206, 215

UK Ministry of Defence, vii, 23, 40, 41, 48,
135, 136, 137, 149, 150, 256

understand, 15, 105, 115, 144, 170, 179, 180,
184, 189, 190, 192, 204, 230

Unix
Linux, 8, 149, 206, 239, 265

usability, vi, 37, 47, 49, 82, 87, 90, 91, 110,
135, 137, 141, 145, 159, 167, 240,
243, 244, 263, 266

valid, viii, x, 5, 40, 41, 44, 45, 56, 77, 80, 84,
90, 91, 96, 100, 111, 113, 121, 135,
137, 138, 144, 145, 147, 148, 154,
155, 161, 180, 183, 185, 191, 193,
207, 210, 211, 212, 213, 218, 221,
226, 231, 239, 248

verification, viii, x, 40, 45, 51, 77, 84, 90, 91,
96, 111, 113, 115, 121, 135, 137, 138,
142, 143, 144, 145, 147, 148, 151,
152, 158, 161, 183, 185, 191, 193,
207, 210, 211, 213, 218, 226, 231,
245, 248, 253, 256, 260

verify, 137, 142, 152, 159, 160, 163, 184,
188, 232

virtual machine, 56, 104
virtual memory, 79
vulnerability, vi, 3, 4, 7, 15, 19, 20, 24, 25,

26, 29, 38, 71, 83, 84, 86, 93, 98, 99,
100, 101, 102, 107, 108, 115, 116,
117, 118, 119, 121, 122, 139, 140,
143, 145, 146, 147, 148, 153, 154,
155, 159, 162, 163, 171, 178, 179,
180, 181, 182, 184, 185, 188, 189,
190, 193, 204, 206, 207, 209, 210,
211, 213, 217, 236, 237, 242, 246,
252, 254, 258, 259, 262, 264, 265,
266, 267

web, 11, 18, 78, 95, 97, 121, 132, 155, 161,
229, 238, 240, 247, 254, 255

Please see back of title page for how to make contact regarding this document and find out more.

Software Assurance

A Guide to the Common Body of Knowledge to Produce, Acquire, and Sustain Secure Software

Workforce Education and Training Working Group

DHS/DoD Software Assurance

Edited by Samuel T. Redwine, Jr.

