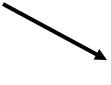


Yuanfu Xie

Global Systems Division


Design of an observation system

- -- Integration into existing systems
- Extremely expensive to build and maintain new observation systems;
- Unknown potential impact on weather and climate in addition to existing systems;
- Proper implementation and operation may maximize its impact.

OSSE

New instrument?

"True" Atmosphere

Nature Run

Old Observation instrument

Analysis and Forecast system

OSSE Design, Simulation and Demonstration

- Benefit Cost evaluation (design and decision);
- Operational experience (simulation and learning);
- Optimal design: where, when and what to observe for gaining best results (design and demonstration).

More importantly, OSSE can be done even before an observation network is physically built.

OSSE is a complex system Analysis, forecast, and verification

- A nature run (a model forecast as "true atmosphere") closely reflecting the reality;
- Construction of existing observation datasets and new observations from the nature run;
- Introduction of errors (obs, representative errors) representing those in reality;
- Calibration so that the existing obs impact in real and simulated atmospheres is similar based the forecast model and data assimilation technique.

ECMWF nature run

Low Resolution Nature Run

Spectral resolution: T511 Vertical levels: L91 3 hourly dump, total 3.8 TB

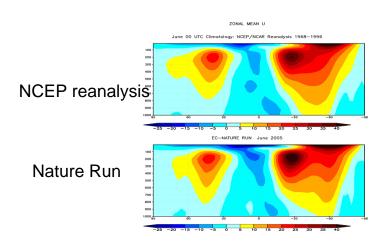
Initial conditions: 12Z May 1st, 2005 Ends at: 0Z Jun 1,2006 Daily SST and ICE: provided by NCEP Model: Version cy31r1 Completed in July 2006, rerun October 2006

ESRL copy saved at GSD mass storage

High Resolution Nature Run

for a selected period Hurricane season is recommended T799 resolution, 91 levels, one hourly dump Get initial conditions from low resolution-NR

Initial Diagnostics of the Nature run

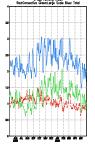

Study of drift in NR Michiko Masutani (NCEP)

Redsio

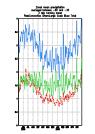
NH mid-latitudes

Area averaged precipitation

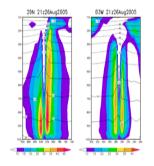

Zonal wind June 2006By Juan Carlos Jusem (NASA/GSFC)



It takes about two to three weeks to settle tropical precipitation.

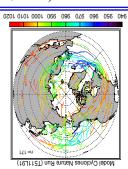

Michiko Masutani (NCEP/EMC)

> Convective precipitation Large Scale precipitation Total precipitation



SH mid-latitudes

The African Monsoon Region and the Tropical Atlantic
Oreste Reale NASA/GSFC



HL vortices: vertical structure

NH Cyclones Track

Joe Terry NASA/GSFC and Thomas Jung (ECMWF)

Vertical structure of a HL vortex shows, even at the degraded resolution of 1 deg, a distinct eye-like feature and a very prominent warm core.

-- Oreste Reale (NASA/GSFC/GLA)

A global OSSE test case

Model: Global Forecast System (GFS);

Analysis: Gridpoint Statistical Interpolation (GSI);

Nature Run: ECMWF forecast;

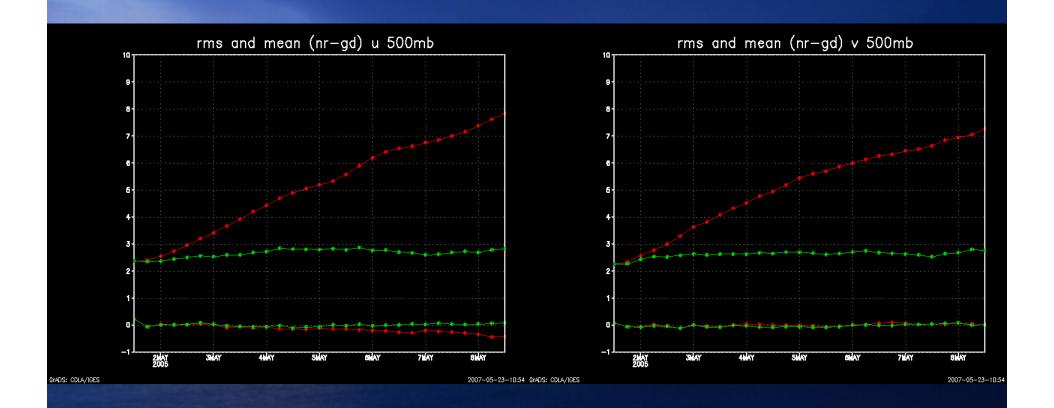
Platform: NCEP/IBM

Time period: May 1, to May 8, 2005;

Test dataset: 17,835 (spd); 64,458 (q); 48,104 (t)

477,874 (uv), 53,574 (ps)

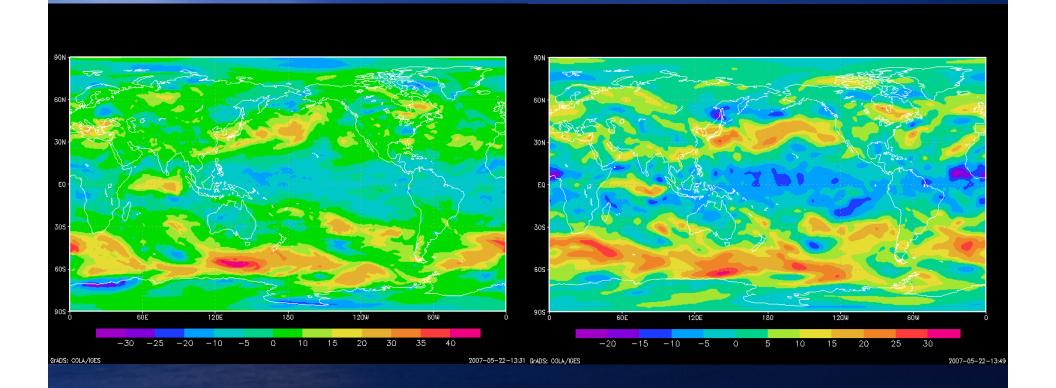
Including:


raob, pibal, acar,airep,pirep,cloud tracked wind,profilers,metar,ship, buoy,ssmi/wind,quikscat,

generated

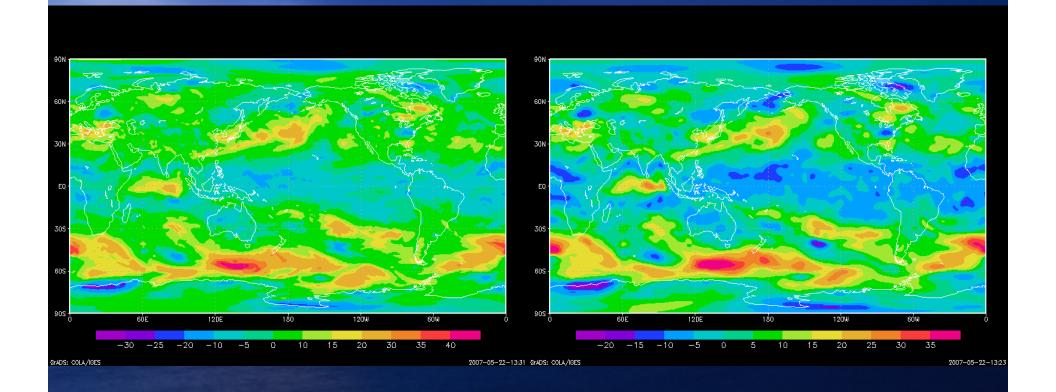
from the nature run.

Time sequence of RMS and mean at 500mb (wind)


red: NR-NO; green: NR-CO

Wind (U) comparison (700mb) at 12Z May 8, 2005

ECWMF nature run


OSSE without obs

Wind (U) comparison (700mb) at 12Z May 8, 2005

ECWMF nature run

OSSE with "convention" obs

ESRL OSSE

Goal: support future observation systems

- Joint effort with several institutes, NCEP,
 JCSDA, NASA, ECWMF, SWA;
- Usage of ECMWF one year forecast as nature, GFS as forecast model, GSI as data assimilation technique;
- Potential applications to UAS and HMT.

Summary

An OSSE is a useful tool for evaluating a new observation system before it is built or deployed.

Question?

More interesting presentations on UAS and HMT...