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Abstract:		
The	purpose	of	this	paper	is	to	present	a	literature	review	of	the	AC	Optimal	Power	
Flow	(ACOPF)	problem	and	propose	areas	where	the	ACOPF	could	be	improved.		
The	ACOPF	is	at	the	heart	of	Independent	System	Operator	(ISO)	power	markets,	
and	is	solved	in	some	form	every	year	for	system	planning,	every	day	for	day‐ahead	
markets,	every	hour,	and	even	every	5	minutes.	It	was	first	formulated	in	1962,	and	
formulations	have	changed	little	over	the	years.	With	advances	in	computing	power	
and	solution	algorithms,	we	can	model	more	of	the	constraints	and	remove	
unnecessary	limits	and	approximations	that	were	previously	required	to	find	a	
solution	in	reasonable	time.	One	example	is	nonlinear	voltage	magnitude	
constraints	that	are	modeled	as	linear	thermal	proxy	constraints.	In	this	paper,	we	
refer	to	the	full	ACOPF	as	an	ACOPF	that	simultaneously	optimizes	real	and	reactive	
power.	Today,	50	years	after	the	problem	was	formulated,	we	still	do	not	have	a	fast,	
robust	solution	technique	for	the	full	ACOPF.		Finding	a	good	solution	technique	for	
the	full	ACOPF	could	potentially	save	tens	of	billions	of	dollars	annually.	Based	on	
our	literature	review,	we	find	that	the	ACOPF	research	community	lacks	a	common	
understanding	of	the	problem,	its	formulation,	and	objective	functions.	However,	we	
do	not	claim	that	this	literature	review	is	a	complete	review—our	intent	was	simply	
to	capture	the	major	formulations	of	the	ACOPF.	Instead,	in	this	paper,	we	seek	to	
clearly	present	the	ACOPF	problem	through	clear	formulations	of	the	problem	and	
its	parameters.	This	paper	defines	and	discusses	the	polar	power‐voltage,	
rectangular	power‐voltage,	and	rectangular	current‐voltage	formulations	of	the	
ACOPF.	Additionally,	it	discusses	the	different	types	of	constraints	and	objective	
functions.	This	paper	lays	the	groundwork	for	further	research	on	the	convex	
approximation	of	the	ACOPF	solution	space,	a	survey	of	solution	techniques,	and	
computational	performance	of	different	formulations.			

	
Disclaimer:	The	views	presented	are	the	personal	views	of	the	authors	and	not	the	Federal	Energy	

Regulatory	Commission	or	any	of	its	Commissioners.	 	
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1.		Introduction	

	 The	heart	of	economically	efficient	and	reliable	Independent	System	

Operator	(ISO)	power	markets	is	the	alternating	current	optimal	power	flow	

(ACOPF)	problem.	This	problem	is	complex	economically,	electrically	and	

computationally.	Economically,	an	efficient	market	equilibrium	requires	multi‐part	

nonlinear	pricing.	Electrically,	the	power	flow	is	alternating	current	(AC),	which	

introduces	additional	nonlinearities.	Computationally,	the	optimization	has	

nonconvexities,	including	both	binary	variables	and	continuous	functions,	which	

makes	the	problem	difficult	to	solve.	The	power	system	must	be	able	to	withstand	

the	loss	of	any	generator	or	transmission	element,	and	the	system	operator	must	

make	binary	decisions	to	start	up	and	shut	down	generation	and	transmission	

assets	in	response	to	system	events.	For	investment	planning	purposes,	the	problem	

needs	binary	investment	variables	and	a	multiple	year	horizon.		

	 	Even	50	years	after	the	problem	was	first	formulated,	we	still	lack	a	fast	and	

robust	solution	technique	for	the	full	ACOPF.	We	use	approximations,	

decompositions	and	engineering	judgment	to	obtain	reasonably	acceptable	

solutions	to	this	problem.	While	superior	to	their	predecessors,	today’s	

approximate‐solution	techniques	may	unnecessarily	cost	tens	of	billions	of	dollars	

per	year.	They	may	also	result	in	environmental	harm	from	unnecessary	emissions	

and	wasted	energy.	Using	EIA	data	on	wholesale	electricity	prices	and	U.S.	and	

World	energy	production,	Table	1	gives	a	range	of	potential	cost	savings	from	a	5%	

increase	in	market	efficiency	due	to	improvements	to	the	ACOPF.(EIA	2012).	Small	

increases	in	efficiency	of	dispatch	are	measured	in	billions	of	dollars	per	year.	Since	

the	usual	cost	of	purchasing	and	installing	new	software	for	an	existing	ISO	market	

is	less	than	$10	million	dollars	(O’Neill	et.	al.	2011),	the	potential	benefit/cost	ratios	

of	better	software		are	in	the	range	of	10	to	1000.	
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TABLE	1:	POTENTIAL	COST	SAVINGS	OF	INCREASED	EFFICIENCY	OF	DISPATCH	(EIA	2012)	

	 2009	gross	

electricity	

production	

(MWh)	

Production	cost	

($billion/year)	

assuming	

$30/MWh	energy	

price	

Savings	

($billion/year)	

assuming	5%	

increase	in	

efficiency	

Production	cost	

($billion/year)	

assuming	

$100/MWh	

energy	price	

Savings	

($billion/year)	

assuming	5%	

increase	in	

efficiency	

U.S.	 3,724,000	 112 6 372	 19

World	 17,314,000	 519 26 1731	 87

	 An	ultimate	goal	of	ISO	market	software,	and	a	topic	of	future	research,	is	the	

security‐constrained,	self‐healing	(corrective	switching)	AC	optimal	power	flow	

with	unit	commitment	over	the	optimal	network.	The	optimal	network	is	flexible,	

with	assets	that	have	time‐varying	dynamic	ratings	reflecting	the	asset	capability	

under	varying	operating	conditions.	The	optimal	network	is	also	optimally	

configured	–	opening	or	closing	transmission	lines	becomes	a	decision	variable,	or	

control	action,	rather	than	an	input	to	the	problem,	or	state.	When	possible,	the	

security	constraints	are	corrective	rather	than	preventive.	With	preventive	security	

constraints,	the	system	is	operated	conservatively	to	survive	loss	of	any	

transmission	element	or	generator.	In	contrast,	corrective	constraints	reconfigure	

the	system	with	fast‐acting	equipment	such	as	special	protection	systems	or	

remedial	action	schemes	immediately	following	loss	of	a	generator	or	transmission	

element,	allowing	the	system	to	be	reliably	used	closer	to	its	limits.	This	problem	

must	be	solved	weekly	in	8	hours,	daily	in	2	hours,	hourly	in	15	minutes,	each	five	

minutes	in	1	minute	and	for	self‐healing	post‐contingency	in	30	seconds.	Currently,	

the	problem	is	solved	through	varying	levels	of	approximation,	depending	on	

application	and	time	scale,	but	with	increases	in	computing	power	it	may	be	

possible	to	reduce	the	number	of	approximations	and	take	advantage	of	parallel	

computing.	

	 Today,	the	computational	challenge	is	to	consistently	find	a	global	optimal	

solution	with	speeds	up	to	three	to	five	orders	of	magnitude	faster	than	existing	

solvers.	There	is	some	promising	recent	evidence	that	this	could	be	a	reality	in	five	

to	ten	years.	For	example,	in	the	last	two	decades	mixed‐integer	programming	(MIP)	

has	achieved	speed	improvements	of	107;	that	is,	problems	that	would	have	taken	
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10	years	in	1990	can	be	solved	in	one	minute	today.	As	a	consequence,	MIP	is	

replacing	other	approaches	in	ISO	markets.	Implementation	of	MIP	into	the	day‐

ahead	and	real‐time	markets,	with	the	Commission’s	encouragement,	has	saved	

American	electricity	market	participants	over	one‐half	billion	dollars	per	year	

(FERC	2011).	More	will	be	saved	as	all	ISOs	implement	MIP	and	the	new	

formulations	it	permits	in	the	next	several	years.		

	 Due	to	idiosyncrasies	in	design,	current	software	oversimplifies	the	problem	

in	different	ways,	and	requires	operator	intervention	to	address	real‐time	problems	

that	do	not	show	up	in	models.	This	operator	intervention	unnecessarily	alters	

settlement	prices	and	produces	suboptimal	solutions.	The	Joint	Board	on	Economic	

Dispatch	for	the	Northeast	Region	stated	in	2006	that	improved	modeling	of	system	

constraints	such	as	voltage	and	stability	constraints	would	result	in	more	precise	

dispatches	and	better	market	signals,	but	that	the	switch	to	AC‐based	software	

would	increase	the	time	to	run	a	single	scenario	from	minutes	to	over	an	hour,	

making	use	of	ACOPF	impractical,	even	for	the	day‐ahead	market	(FERC	2006).	One	

example	is	the	Midwest	Independent	System	Operator	(MISO),	where	operators	

have	to	commit	resources	before	the	unit	commitment	and	economic	dispatch	

software	models	are	run	to	address	local	voltage	issues	that	MISO	has	had	difficulty	

modeling	in	its	market	software	(FERC	2012).	PJM	Interconnection	(PJM)	employs	

an	approach,	called	Perfect	Dispatch,	that	ex‐post	solves	the	real‐time	market	

problem	with	perfect	information	(PJM	2012).	The	Perfect	Dispatch	solution	is	used	

to	train	operators,	where	they	can	compare	the	“perfect	dispatch,”	which	is	based	on	

“perfect”	after‐the‐fact	information	to	the	actual	dispatch,	which	is	based	on	the	

information	available	at	the	time.	ISO	models	solve	proxies	or	estimates	for	reactive	

power	and	voltage	constraints,	where	they	calculate	linear	thermal	constraints	to	

approximate	quadratic	voltage	magnitude	constraints.	The	details	of	transmission	

constraint	modeling	and	transmission	pricing	have	been	neglected,	but	need	to	be	

considered	to	improve	the	accuracy	of	ACOPF	calculations.	Transmission	

constraints	can	be	modeled	in	terms	of	current,	real	power,	apparent	power,	voltage	

magnitude	differences,	or	angle	differences.	The	choice	of	constraint	depends	on	the	

type	of	model,	data	availability,	and	physical	limit	(voltage,	stability,	or	thermal	
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limit).	Surrogate	constraints	can	be	calculated	based	on	the	line	flow	equations,	but	

these	calculations	have	inherent	assumptions.	One	example	is	the	Arizona‐Southern	

California	outage	in	2011,	where	some	line	limits	were	modeled	and	monitored	as	

real	power	transfer	limits	while	others	were	modeled	as	current	transfer	limits	

(FERC/NERC	2012).	This	paper	seeks	to	better	understand	the	ACOPF	problem	

through	clear	formulations	of	the	problem,	theoretical	properties	of	the	problem	

and	its	parameters,	approximations	to	the	nonlinear	functions	that	are	necessary	to	

make	the	problem	solvable,	and	to	produce	computational	results	from	large	and	

small	test	problems	using	various	solvers	and	starting	points.	Discrete	variables	

such	as	equipment	states,	generator	commitments,	and	transmission	switching	

further	complicate	the	ACOPF,	but	we	do	not	discuss	these	in	this	paper.	With	the	

increased	measurements	and	controls	inherent	in	smart	grid	upgrades,	the	potential	

savings	are	greater,	although	the	problem	may	become	more	complex	with	more	

discrete	devices	to	model.		

In	the	rest	of	the	paper,	we	provide	a	brief	history	of	power	system	

optimization,	present	notation	and	nomenclature,	formulate	the	admittance	matrix	

and	power	flow	equations,	formulate	constraints,	present	different	formulations	of	

the	ACOPF,	and	present	a	literature	review	of	ACOPF	formulations.	

2.		History	of	Power	System	Optimization	

	 Power	system	optimization	has	evolved	with	developments	in	computing	

and	optimization	theory.	In	the	first	half	of	the	20th	century,	the	optimal	power	flow	

problem	was	“solved”	by	experienced	engineers	and	operators	using	judgment,	

rules	of	thumb,	and	primitive	tools,	including	analog	network	analyzers	and	

specialized	slide	rules.	Gradually,	computational	aids	were	introduced	to	assist	the	

intuition	of	operator	experience.	The	optimal	power	flow	problem	was	first	

formulated	in	the	1960’s	(Carpentier	1962),	but	has	proven	to	be	a	very	difficult	

problem	to	solve.	Linear	solvers	are	widely	available	for	linearized	versions	of	the	

optimal	power	flow	problem,	but	nonlinear	solvers	cannot	guarantee	a	global	

optimum,	are	not	robust,	and	do	not	solve	fast	enough.	In	each	electricity	control	

room,	the	optimal	power	flow	problem	or	an	approximation	must	be	solved	many	

times	a	day,	as	often	as	every	5	minutes.		
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There	are	three	types	of	problems	commonly	referred	to	in	power	system	

literature:	power	flow	(load	flow),	economic	dispatch,	and	optimal	power	flow.	

Three	other	classes	of	power	system	optimization,	specifically	unit	commitment,	

optimal	topology,	and	long‐term	planning,	involve	binary	and	integer	variables,	and	

are	not	discussed	in	this	paper;	but	combined	with	the	insights	on	formulations	in	

this	paper,	could	be	promising	areas	for	future	research.		

Table	2	compares	the	major	characteristics	of	the	power	flow,	economic	

dispatch,	and	optimal	power	flow	problems.	The	power	flow	or	load	flow	refers	to	

the	generation,	load,	and	transmission	network	equations.	Power	flow	methods	find	

a	mathematically	but	not	necessarily	physically	feasible	or	optimal	solution.	The	

power	flow	equations	themselves	do	not	take	account	of	limitations	on	generator	

reactive	power	limits	or	transmission	line	limits,	but	these	constraints	can	be	

programmed	into	many	power	flow	solvers.	

A	second	type	of	problem,	economic	dispatch,	describes	a	variety	of	

formulations	to	determine	the	least‐cost	generation	dispatch	to	serve	a	given	load	

with	a	reserve	margin,	but	these	formulations	simplify	or	sometimes	altogether	

ignore	power	flow	constraints.		

A	third	type	of	problem,	the	optimal	power	flow,	finds	the	optimal	solution	to	

an	objective	function	subject	to	the	power	flow	constraints	and	other	operational	

constraints,	such	as	generator	minimum	output	constraints,	transmission	stability	

and	voltage	constraints,	and	limits	on	switching	mechanical	equipment.	Optimal	

power	flow	is	sometimes	referred	to	as	security‐constrained	economic	dispatch	

(SCED);	most	implementations	of	SCED	include	only	thermal	limits,	and	proxies	for	

voltage	limits.	There	are	a	variety	of	formulations	with	different	constraints,	

different	objective	functions,	and	different	solution	methods	that	have	been	labeled	

optimal	power	flow;	these	are	discussed	in	the	formulations	section	later	in	this	

paper.	Formulations	that	use	the	exact	AC	power	flow	equations	are	known	as	

“ACOPF.”	Simpler	versions,	known	as	DCOPF,	assume	all	voltage	magnitudes	are	

fixed	and	all	voltage	angles	are	close	to	zero.	DC	stands	for	direct	current,	but	is	a	bit	

of	a	misnomer;	a	DCOPF	is	a	linearized	form	of	a	full	alternating	current	network	

(ACOPF)	and	not	a	power	flow	solution	for	a	direct	current	network.	We	use	the	
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general	term	OPF	to	include	both	ACOPF	and	DCOPF.	The	ACOPF	is	often	solved	

through	decoupling,	which	takes	advantage	of	the	structure	of	the	problem,	where	

real	power	(P)	and	voltage	angle	(θ)	are	tightly	coupled	and	voltage	magnitude	(V)	

and	reactive	power	(Q)	are	tightly	coupled,	but	the	P‐θ	and	V‐Q	problems	are	

weakly	coupled	due	to	the	assumptions	that	the	phase	angle	differences	between	

adjacent	buses	are	rather	small,	and	high‐voltage	transmission	networks	have	much	

higher	reactance	compared	to	resistance.	The	decoupled	OPF	divides	the	ACOPF	

into	two	linear	subproblems,	one	with	power	and	voltage	angle	and	another	with	

voltage	magnitude	and	reactive	power.	In	this	paper,	we	use	the	term	ACOPF	to	

refer	to	the	full	ACOPF	that	simultaneously	optimizes	real	and	reactive	power,	and	

decoupled	OPF	to	refer	to	the	decoupled	problems	that	separately	optimize	real	and	

reactive	power	and	iterate	between	the	two	to	reach	an	optimal	solution.
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TABLE	2:	MAJOR	TYPES	OF	POWER	SYSTEM	PROBLEMS	

General	
problem	
type	

Problem	name	 Includes	
voltage	angle	
constraints?	

Includes	
bus	voltage	
magnitude	
constraints?

Includes	
transmission	
constraints?	

Includes	
losses?	

Assumptions Includes	
generator	
costs?	

Includes	
contingency	
constraints?

OPF	 ACOPF,	or	Full	
ACOPF	

Yes	 Yes Yes Yes 	 Yes No

OPF	 DCOPF	 No	 No;	all	
voltage	
magnitudes	
fixed	

Yes Maybe Voltage	magnitudes	are	
constant	

Yes No

OPF	 Decoupled	OPF	 Yes	 Yes Yes Yes Power‐voltage	angle	are	
independent	of	voltage	
magnitude‐reactive	
power	

Yes No

OPF	 Security‐
Constrained	
Economic	
Dispatch	(SCED)	

Yes	 No Yes Yes Voltage	magnitudes	are	
constant	

Yes Yes

Power	
flow	

Power	Flow,	or	
Load	Flow	

No,	but	can	be	
added	

Yes No,	but	can	
be	added	

Yes 	 No No

Economic	
dispatch	

Economic	
Dispatch	

No	 No No Depends No	transmission	
constraints	

Yes No

OPF	 Security	
Constrained	OPF	
(SCOPF)	

Yes	 Depends Yes Yes Depends Yes Yes
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We	now	discuss	early	research	of	the	three	types	of	problems	in	power	

system	optimization:	economic	dispatch,	power	flow,	and	optimal	power	flow.		

As	early	as	the	1930’s,	the	economic	dispatch	problem	was	solved	by	hand	or	

specially‐developed	slide	rule	using	the	principle	of	equal	incremental	loading,	

taking	as	long	as	8	hours	to	complete	(Happ	1977).	Early	computations	of	economic	

dispatch	were	slow.	Kirchmayer	estimated	that	it	would	take	10	minutes	of	

computational	time	to	produce	the	schedules	for	a	10	generator	system	at	a	given	

system	price	(Kirchmayer	1958).	In	contrast,	RTOs	today	solve	systems	of	hundreds	

of	generators	in	a	matter	of	seconds.	In	the	survey	of	economic	dispatch	methods	up	

through	the	1970’s,	Happ	provides	an	overview	of	the	evolution	of	economic	

dispatch	formulations	and	different	ways	to	account	for	losses.			

Prior	to	digital	computers,	as	early	as	1929,	the	power	flow	problem	was	

solved	with	analog	network	analyzers	that	simulated	power	systems	(Sasson	1967).	

Ward	and	Hale	published	the	first	automated	digital	solution	to	the	power	flow	

problem	in	1956	(Ward	1956).	Sasson	and	Jaimes	provide	a	survey	and	comparison	

of	early	load	flow	solution	methods,	which	are	various	iterative	methods	based	on	

the	nodal	admittance	matrix	(Y	matrix)	or	its	inverse,	the	nodal	impedance	matrix	

(Z	matrix)	(Sasson	1967).	Early	researchers,	including	Carpentier,	used	the	Gauss‐

Seidel	method.	The	Newton‐Raphson	method	became	the	commonly	used	solution	

method	during	the	1960’s	(Peschon	et.	al.	1968),	after	Tinney	and	others	developed	

sparsity	techniques	to	take	advantage	of	the	structure	of	the	admittance	matrix	in	

the	OPF	problem.	The	admittance	matrix	is	sparse,	meaning	it	has	many	zero	

elements;	this	is	because	power	system	networks	are	not	densely	connected.	

Sparsity	techniques	can	be	used	to	reduce	data	storage	and	increase	computation	

speed	(Stott	1974).		

Early	research	on	OPF	used	classical	Lagrangian	techniques	for	the	

optimality	conditions,	but	neglected	bounds	on	variables	(Squires	1961).	In	1962,	

Carpentier	published	the	optimality	conditions	for	an	OPF,	including	variable	

bounds,	based	on	the	Kuhn‐Tucker	conditions;	this	is	generally	considered	the	first	

publication	of	a	fully	formulated	OPF	(Carpentier	1962).	Carpentier	assumes	that	

the	applicable	functions	display	“suitable	convexity”	for	the	Kuhn‐Tucker	(now	
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referred	to	as	the	Karush‐Kuh‐Tucker	or	KKT)	conditions	to	apply	(Carpentier	

1962).	Given	the	structure	of	the	power	flow	equations,	this	may	be	a	big	

assumption	(Hiskens	2001	and	Schecter	2012).	Carpentier	includes	the	full	AC	

power	flow	equations,	generator	real	and	reactive	power	constraints,	bus	voltage	

magnitude	constraints,	and	bus	voltage	angle	difference	constraints	for	buses	

connected	by	transmission	elements.			

Huneault	and	Galliana	provide	an	extensive	survey	of	optimal	power	flow	

literature	up	to	1991,	surveying	over	300	articles	and	citing	163	(Huneault	1991).	

They	conclude,	“The	history	of	optimal	power	flow	(OPF)	research	can	be	

characterized	as	the	application	of	increasingly	powerful	optimization	tools	to	a	

problem	which	basically	has	been	well‐defined	since	the	early	1960’s.”	The	paper	

outlines	the	evolution	of	OPF	literature,	grouped	by	solution	method.	The	solution	

methods	include	various	forms	of	gradient	methods,	linear	programming,	quadratic	

programming,	and	penalty	methods.	The	authors	conclude	that	“commercially	

available	OPF	algorithms	all	satisfy	the	full	nonlinear	load	flow	model	and	a	full	set	

of	bounds	on	variables.”	The	authors	further	conclude	that	the	OPF	remains	a	

difficult	mathematical	problem.	The	present	algorithms	cannot	compute	quickly	

enough,	and	are	prone	to	serious	ill‐conditioning	and	convergence	problems.	

	 Another	area	of	research,	security‐constrained	OPF,	accounts	for	

transmission	contingency	constraints	and	poses	additional	computational	

challenges	(Carpentier	1979,	Stott	1987).	Our	discussion	in	this	paper	focuses	on	

ACOPF.	Future	research	could	extend	the	formulations	to	include	contingency	

constraints	that	are	required	to	maintain	the	system	after	an	outage.	This	

formulation	increases	the	size	of	the	problem	formulation	by	a	factor	equal	to	the	

number	of	contingencies	studied.	

Researchers	have	identified	challenges	to	solving	the	OPF,	including	

modeling	discrete	variables,	local	minima,	lack	of	uniform	problem	definition,	

solution	reliability	and	computing	time.	Some	of	these	have	been	solved:	both	

Tinney	et	al.	and	Momoh	et	al.	discussed	the	challenges	in	modeling	discrete	

variables	in	OPF	solutions	(Tinney	1988),	(Momoh	1997).	Today,	with	advances	in	

mixed	integer	programming	(MIP),	discrete	variables	can	be	modeled	and	included	
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in	ACOPF	solutions.	Other	challenges	persist	today:		Koessler	states	that	the	“lack	of	

uniformity	in	usage	and	definition”	has	been	a	challenge	to	users	and	developers	in	

OPF,	and	specifically	discusses	local	minima,	which	indicate	that	the	problem	is	

nonconvex	(Momoh	1997).	Huneault	and	Galliana	found	that	algorithms	available	in	

1991	could	not	compute	OPF	solutions	quickly	and	reliably	enough,	and	that	the	

OPF,	like	many	nonlinear	problems,	is	prone	to	ill‐conditioning	and	difficult	

convergence	(Huneault	1991).	

3.	Conventions,	Parameters,	Sets	and	Variables	

Notation	and	Nomenclature		

When	n	and	m	are	subscripts,	they	index	buses;	k	indexes	the	transmission	

elements.	When	j	is	not	a	superscript,	j	=	(‐1)1/2;	i	is	the	complex	current.	When	j	is	a	

superscript,	it	is	the	‘imaginary’	part	of	a	complex	number.	Matrices	and	vectors	are	

represented	with	upper	case	letters.	Scalars	and	complex	numbers	are	in	lower	case	

letters.	For	column	vectors	A	and	B	of	length	n,	where	ak	and	bk	are	the	kth	

components	of	A	and	B	respectively,	the	Hadamard	product	‘·’	is	defined	so	that	A·B	

=	C,	where	C	is	a	column	vector	also	of	length	n,	with	kth	component	ck	=	akbk.	

The	complex	conjugate	operator	is	*	(superscript)	and	*	(no	superscript)	is	an	

optimal	solution.	

	 We	assume	balanced,	three‐phase,	steady‐state	conditions.	All	variables	are	

associated	with	a	single‐line	model	of	a	balanced,	three‐phase	system.	A	common	

practice	in	power	system	modeling	is	the	per‐unit	(p.u.)	representation,	where	base	

quantities	for	voltage	magnitude,	current,	power,	and	impedance	(or	admittance)	

are	used	to	normalize	quantities	in	a	network	with	multiple	voltage	levels.	Such	

normalization	is	a	convenience.	We	use	the	convention	that	an	injection	occurs	

when	the	real	part	of	the	complex	number	is	positive	and	a	withdrawal	occurs	when	

the	real	part	of	the	complex	number	is	negative.	

	 The	topology	of	the	network	consists	of	locations	known	as	buses	or	nodes	

and	transmission	elements	connecting	paired	buses.	The	network	is	an	undirected	

planar	graph.		
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Indices	and	Sets		

n,	m	are	bus	(node)	indices;	n,	m	ϵ	{1,	…,	N}	where	N	is	the	number	of	buses.	(m	is	an	

alias	for	n)	

k	is	a	three‐phase	transmission	element	with	terminal	buses	n	and	m.		

k	ϵ	{1,	…,	K}	where	K	is	the	number	of	transmission	elements;	k	counts	from	1	to	the	

total	number	of	transmission	elements,	and	does	not	start	over	for	each	bus	pair	nm.	

K’	is	the	set	of	connected	bus	pairs	nm	(|K’|	≤|	K|).	

Unless	otherwise	stated,	summations	(∑)	are	over	the	full	set	of	indices.		

Variables	

pn	is	the	real	power	injection	(positive)	or	withdrawal	(negative)	at	bus	n		

qn	is	the	reactive	power	injection	or	withdrawal	at	bus	n		

sn	=	pn	+	jqn	is	the	net	complex	power	injection	or	withdrawal	at	bus	n	

We	distinguish	between	the	real,	reactive,	or	complex	power	injected	at	a	specific	

bus	(pn,	qn,	and	sn)	and	the	real,	reactive,	or	complex	power	flowing	in	a	transmission	

element	between	two	buses:	

pnmk	is	the	real	power	flow	from	bus	n	to	bus	m	on	transmission	element	k	

qnmk	is	the	reactive	power	flow	from	bus	n	to	bus	m	on	transmission	element	k	

snmk	is	the	apparent	complex	power	flow	from	bus	n	on	transmission	element	k.	snmk	

=	srnmk	+	jsjnmk	=	pnmk	+	j	qnmk	

θn	is	the	voltage	angle	at	bus	n		

θnm	=	θn	‐	θm	is	the	voltage	angle	difference	from	bus	n	to	bus	m	

θ	–	δ	is	the	power	angle.	

i	is	the	current	(complex	phasor);	we	distinguish	between	current	injected	at	a	

specific	bus	and	current	flowing	in	a	transmission	element	between	two	buses:	

in	is	the	current	(complex	phasor)	injection	(positive)	or	withdrawal	(negative)	at	

bus	n	where		in	=	irn	+	jijn	

inmk	is	the	current	(complex	phasor)	flow	in	transmission	element	k	at	bus	n	(to	bus	

m).	inmk	=	irnmk	+	jijnmk	

vn	is	the	complex	voltage	at	bus	n.	vn	=	vrn	+	jvjn	
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ynmk	is	the	complex	admittance	on	transmission	element	k	connecting	bus	n	and	bus	

m	(If	buses	n	and	m	are	not	connected	directly,	ynmk=	0.);	yn0	is	the	self‐admittance	

(to	ground)	at	bus	n.		

V	=	(v1,	…,	vN)T	is	the	complex	vector	of	bus	voltages;	V	=	Vr	+	jVj	

I	=	(i1,	…,	iN)T	is	the	complex	vector	of	bus	current	injections;	I	=	Ir	+	jIj	

P	=	(p1,	…,	pN)T	is	the	vector	of	real	power	injections	

Q	=	(q1,	…,	qN)T	is	the	vector	of	reactive	power	injections	

G	is	the	N‐by‐N	conductance	matrix	

B	is	the	N‐by‐N	susceptance	matrix	

Note	that	elements	of	G	and	B	will	be	constant	for	passive	transmission	elements	

such	as	transmission	lines,	but	can	be	variable	when	active	transmission	elements	

such	as	phase	shifting	transformers,	switched	capacitors/reactors,	or	power	

electronic	flexible	AC	transmission	system	(FACTS)	devices	are	included.	

Y	=	G	+	jB	is	the	N‐by‐N	complex	admittance	matrix	

gnm,	bnm,	and	ynm	represent	elements	of	the	G,	B,	and	Y	matrices	respectively.	

Functions	and	Transformations	

Re(	)	is	the	real	part	of	a	complex	number,	for	example,	Re(irn	+	jijn)	=	irn	

Im(	)	is	the	real	part	of	a	complex	number,	for	example,	Im(irn	+	jijn)	=	ijn	

|	|	is	the	magnitude	of	a	complex	number,	for	example,	|vn|	=	[(vrn)2+(vjn)2]1/2		

abs(	)	is	the	absolute	value	function.	

The	transformation	from	rectangular	to	polar	coordinates	for	complex	voltage	is:	

vrn		=	|vn|cos(θn)	 	 	

vjn		=	|vn|sin(θn)	

(vrn)2	+	(vjn)2	=	[|vn|sin(θn)]2	+	[|vn|cos(θn)]2	=	|vn|2[sin(θn)2	+	cos(θn)2]	=	|vn|2		

We	drop	the	bus	index	n	and	let	θ	be	the	voltage	angle	and	δ	be	the	current	angle.	

For	real	power,	

	 p	=	vrir	+	vjij	=	|v|cosθ|i|cosδ	+	|v|sinθ|i|sinδ	=	|v||i|[cosθcosδ	+	sinθsinδ]	

																=	|v||i|(0.5[cos(θ‐δ)+	cos(θ+δ)]	+	0.5[cos(θ‐δ)‐	cos(θ+δ)]	)		

																=	|v||i|cos(θ‐δ)		

For	reactive	power,		

	 q	=	vjir	‐	vrij	=	|v|sinθ|i|cosδ	‐	|v|cosθ|i|sinδ	=	|v||i|[sinθcosδ	‐	cosθsinδ]	
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	 			=	|v||i|.5[sin(θ	+	δ)	+	sin(θ	‐	δ)]	‐	|v||i|.5[sin(θ	+	δ)	‐	sin(θ	‐	δ)]	

	 q	=	|v||i|sin(θ	‐	δ)	

θ	–	δ	is	the	power	angle.	

Parameters	

rnmk	or	rk	is	the	resistance	of	transmission	element	k.		

xnmk	or	xk	is	the	reactance	of	transmission	element	k.		

smaxk	is	the	thermal	limit	on	apparent	power	over	transmission	element	k	at	both	

terminal	buses.		

θminnm,	θmaxnm	are	the	maximum	and	minimum	voltage	angle	differences	between	n	

and	m	

pminn,	pmaxn	are	the	maximum	and	minimum	real	power	for	generator	n		

qminn,	qmaxn	are	the	maximum	and	minimum	reactive	power	for	generator	n		

C1	=	(c11,	…,	c1N)T	and	C2	=	(c21,	…,	c2N)T	are	vectors	of	linear	and	quadratic	objective	

function	cost	coefficients	respectively.	

4.	Admittance	Matrix	and	AC	Power	Flow	Equations	

In	this	section,	we	develop	the	admittance	matrix	and	the	current‐voltage	

flow	equations	(IV	equations),	which	are	a	different	formulation	of	the	commonly	

used	power	flow	equations.		In	the	following	sections,	we	develop	the	additional	

constraints	that	bound	the	solutions.		

We	define	the	conductance	(G),	susceptance	(B)	and	admittance	(Y)	matrices,	

with	elements	gnm,	bnm,	and	ynm	respectively,	and	Y	=	G	+	jB.	We	start	with	a	simple	

admittance	matrix	defined	by	resistance,	r,	and	reactance,	x.	We	assume	shunt	

susceptance	is	negligible.	The	elements	of	G,	B	and	Y	matrices	are	derived	as	follows:		

	 gnmk	=	rnmk/(rnmk2	+	xnmk2)	for	n	≠	m	

	 bnmk	=‐xnmk/(rnmk2	+	xnmk2)	for	n	≠	m		

	 ynmk	=	gnmk	+jbnmk		for	n	≠	m	

	 ynmk	=	0		for	n	=	m	

	 ynm	=	∑k	ynmk	for	n	≠	m	

	 ynn	=	yn0	‐∑n	≠	m	ynm	

Transformers.	The	admittance	matrix	above	does	not	include	transformer	

parameters.		For	an	ideal	in‐phase	transformer	(assuming	zero	resistance	in	
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transformer	windings,	no	leakage	flux,	and	no	hysteresis	loss),	the	ideal	voltage	

magnitude	(turns	ratio)	is	anmk	=|vm|/|vn|	and	θn	=	θm,	where	n	is	the	primary	side	

and	m	is	the	secondary	side	of	the	transformer.	Since	θn	=	θm,		

	 anmk	=|vm|/|vn|	=	vm/vn	=	‐inm/imn	

The	current‐voltage	(IV)	equations	for	ideal	transformer	k	between	buses	n	and	m	

are:		

	 inmk	=	anmk2ynmkvn	‐	anmkynmkvm	

	 imnk	=	‐anmkynmkvn	+	ynmkvm	 	

For	the	phase	shifting	transformer	(PAR)	with	a	phase	angle	shift	of	φ,	

	 vm/vn	=	tnmk	=	anmkejφ	

	 inm/imn	=	tnmk*	=	‐anmke‐jφ	

The	current‐voltage	(IV)	equations	for	the	phase	shifting	transformer	k	between	

buses	n	and	m	are:		

	 inmk	=	anmk2ynmkvn	‐	tnmk*ynmkvm	

	 imnk	=	‐tnmkynmkvn	+	ynmkvm	

Admittance	Matrix.	If	there	are	no	transformers	or	FACTS	devices,	G	is	positive	

semidefinite	and	B	is	negative	semidefinite.	A	matrix	where	ynn	≥	abs(∑m	ynm)	is	

called	diagonally	dominant	and	strictly	diagonally	dominant	if	ynn	>	abs(∑m	ynm).		

	 If	there	are	no	transformers	and	yn0	=	0,	G	and	B	are	weighted	Laplacian	

matrices	of	the	undirected	weighted	graph	that	describes	the	transmission	network.	

Much	is	known	about	the	weighted	Laplacian	matrices.	Y	is	a	complex	weighted	

Laplacian	matrix.	The	admittance	matrix	is	Y	=	G+jB,	where	G	and	B	are	real	

symmetric	diagonally	dominant	matrices.	A	symmetric	diagonally	dominant	matrix	

has	a	symmetric	factorization,	for	example,	B	=	UUT	where	each	column	of	U	has	at	

most	two	non‐zeros	and	the	non‐zeroes	have	the	same	absolute	value.		

For	large	problems,	the	admittance	matrix,	Y=	G+jB,	is	usually	sparse.		The	

density	of	both	G	and	B	is	(N+2K’)/N2	where	K’	is	the	number	of	off‐diagonal	non‐

zero	entries	(the	aggregate	of	multiple	transmission	elements	between	adjacent	

buses)	and	N	is	the	number	of	buses.	For	example,	in	a	topology	with	1000	buses	

and	1500	transmission	elements,	G	and	B	would	have	a	density	of	

(1000+3000)/10002	=	.004.	The	lowest	density	for	a	connected	network	is	the	
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spanning	tree.	It	has	N‐1	transmission	elements	and	the	density	is	(N+2(N‐1))/N2.	

For	large	sparse	systems,	(N+2(N‐1))/N2	≈	3/N.		

	 Transformers	and	FACTS	devices	change	the	structure	of	the	Y	matrix.	If	

there	are	transformers	and	FACTS	devices,	let		

	 	 ynmk	 if	no	transformer	
ynmk	=	 {	 anmk2ynmk	 if	an	ideal	transformer	
	 tnmk*ynmk,	or	‐tnmkynmkvn	 if	a	phase	shifting	transformer	
	

as	appropriate	off‐diagonal	element,	then	ynn	=	yn0	+	∑k,m	ynmk,	ynm	=	∑k	ynmk,	and	Y	is	

the	matrix	[ynm].	If	there	are	only	ideal	in‐phase	transformers,	the	Y	matrix	is	

symmetric.	If	there	are	phase	shifting	transformers,	the	symmetry	of	the	Y	matrix	is	

lost.			

AC	Power	Flow	Equations	

Kirchhoff’s	Current	Law.	Kirchhoff’s	current	law	requires	that	the	sum	of	the	

currents	injected	and	withdrawn	at	bus	n	equal	zero:			

	 in	=	∑k	inmk	 	 	 	 	 	 	 (1)	

If	we	define	current	to	ground	to	be	yn0(vn	–	v0)	and	v0	=	0,	we	have:		

	 in	=	∑k	ynmk(vn	‐	vm)	+	yn0vn		 	 	 	 	 (2)	

	 inmk	=	ynmk(vn	‐	vm)	=	gnmk(vrn	‐	vrm)‐bnmk(vjn	‐	vjm)	+	j(bnmk(vrn	‐	vrm)+gnmk(vjn	‐	vjm))	

	 irnmk	=	gnmk(vrn	‐	vrm)	‐	bnmk(vjn	‐	vjm)		

	 ijnmk	=	bnmk(vrn	‐	vrm)	+	gnmk(vjn	‐	vjm)	

Current	is	a	linear	function	of	voltage.	Rearranging,	

	 in	=	vn(yn0	+	∑k	ynmk)	‐	∑k	ynmkvm	 	 	 	 (3)	

In	matrix	notation,	the	IV	flow	equations	in	terms	of	current	(I)	and	voltage	(V)	in	

(3)	are	

	 I	=	YV	=	(G	+	jB)(Vr	+	jVj)	=	GVr	‐	BVj	+	j(BVr	+	GVj)			 (4)	

	 where	Ir	=	GVr	‐	BVj	and	Ij	=	BVr	+	GVj	

In	another	matrix	format,	(4)	is	

	 I	=	(Ir,	Ij	)	=	Y(Vr,	Vj)T	or	

I	=	(Ir,	Ij	)	=	 	 G	 ‐B	 	 	 	 Vr 			where	Y	=	 G	 ‐B
	 B	 G	 	 	 	 Vj B G
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If	a	and	φ	are	constant,	the	I	=YV	equations	are	linear.	If	not,	the	linearity	is	lost	

since	some	elements	of	the	Y	matrix	will	be	functions	of	V.	

Power	Flow	Equations.	The	traditional	power‐voltage	power	flow	equations	defined	

in	terms	of	real	power	(P),	reactive	power	(Q)	and	voltage	(V)	are	

	 S	=	P	+	jQ	=	diag(V)I*	=	diag(V)[YV]*	=	diag(V)Y*V*		 	 (5)	

The	power	injections	are		

	 S	=	V•I*	=	(Vr	+	jVj	)•(Ir	‐	jIj	)	=	(Vr•Ir	+	Vj•Ij	)	+	j(Vj•Ir	‐	Vr•Ij)	 (6)	

	 where		

	 P	=	Vr•Ir	+	Vj•Ij	 	 	 	 	 	 	 (7)	

	 Q	=	Vj•Ir	‐	Vr•Ij		 	 	 	 	 	 	 (8)	

The	power‐voltage	power	flow	equations	(5)	and	(6)	are	quadratic.	The	IV	flow	

equations	(4)	are	linear.	

Constraints.	First,	we	introduce	the	physical	constraints	of	generators,	load,	and	

transmission.		

Generator	and	Load	Constraints.	The	lower	and	upper	bound	constraints	for	

generation	(injection)	and	load	(withdrawal)	are:	

	 Pmin	≤	P	≤	Pmax		 	 	 (9)	

	 Qmin	≤	Q	≤	Qmax	 	 	 (10)	

In	terms	of	V	and	I,	the	injection	constraints	are:	

	 Vr•Ir	+	Vj•Ij	≤	Pmax		 	 	 (11)	 	 	 	

	 Pmin	≤	Vr•Ir	+	Vj•Ij			 		 	 (12)	 	 	 	

	 Vj•Ir	‐	Vr•Ij	≤	Qmax	 	 	 (13)	

	 Qmin	≤	Vj•Ir	‐	Vr•Ij	 	 	 (14)	

Inequalities	(11)‐(14)	along	with	other	thermal	constraints	on	equipment	

enforced	at	each	generator	bus	constitute	a	four‐dimensional	reactive	capability	

curve,	also	known	as	a	“D‐curve’	since	it	is	shaped	like	the	capital	letter	D,	in	the	PQ	

space.	Additional	D‐curves	defining	the	tradeoff	between	real	and	reactive	power	

constitute	a	convex	set	and	can	be	easily	linearized	(FERC	2005).	Equations	(11)‐

(14)	are	nonconvex	quadratic	constraints.	Since	here	we	model	a	single	period,	

ramp	rates	are	unnecessary.	
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Voltage	Magnitude	Constraints.	The	two	constraints	that	limit	the	voltage	

magnitude	in	rectangular	coordinates	at	each	bus	m	are		

	 (vrm)2	+(vjm)2	≤	(vmaxm)2		 	 	 	 	 (15)	

	 (vminm)2	≤	(vrm)2	+(vjm)2			 	 	 	 	 (16)		

Again,	each	nonlinear	inequality	involves	only	the	voltage	magnitudes	at	bus	m.	In	

matrix	terms,	the	voltage	magnitude	constraints	are:		

	 Vr•Vr	+	Vj•Vj	≤	(Vmax)2		 	 	 	 	 (17)	

	 (Vmin)2	≤	Vr	•Vr		+	Vj•Vj			 	 	 	 	 (18)		

Vmin	and	Vmax	are	determined	by	system	studies.	The	voltage	magnitude	bounds	are	

generally	in	the	range,	[.95,	1.05]	per	unit.	High	voltages	are	often	constrained	by	

the	capabilities	of	the	circuit	breakers.	Low	voltage	magnitude	constraints	can	be	

due	to	operating	requirements	of	motors	or	generators.		

Line	Flow	Thermal	Constraints.	Smaxk	is	a	thermal	transmission	limit	on	k	based	on	

the	temperature	sensitivity	of	the	conductor	and	supporting	material	in	the	

transmission	line	and	transmission	elements.	Transmission	assets	generally	have	

three	thermal	ratings:	steady‐state,	4‐hour	and	30‐minute.	These	ratings	vary	with	

ambient	weather.	The	apparent	power	at	bus	n	on	transmission	element	k	to	bus	m	

is:	

	 	snmk	=	vninmk*	=	vny*nmk(vn	‐	vm)*.	=	vny*nmkv*n	‐	vny*nmkv*m)	

The	thermal	limit	on	snmk	is	

	 (srnmk)2+	(sjnmk)2	=	|snmk|2	≤	(smaxk)2	 	 	 	 (19)	

These	constraints	are	quadratic	in	srnmk	and	sjnmk	and	quartic	in	vrn,	vjn,	vrm,	vjm.	Since		

	 vn	=	vrn	+	jvjn		and	ynmk	=	gnmk	+	jbnmk,	

	 vny*nmkv*n	=	(vrn	+	jvjn	)(gnmk	+	jbnmk	)(vrn	+	jvjn	)		

Expanding,	we	obtain		

	 vny*nmkv*n	=	[gnmkvrn	‐	bnmkvjn	+	j(gnmkvjn	+	bnmkvrn	)](vrn	+	jvjn	)			

Expanding	again,	we	obtain		

vny*nmkv*n	=	gnmk(vrnvrn‐vjnvjn)‐bnmk(vrnvjn+vrnvjn)	

				+j[gnmk(vjnvrn+vjnvrn)	+	bnmk(vrnvrn‐vjnvjn)]		

vny*nmkv*n	=	gnmk(vrnvrn‐vjnvjn)‐2bnmk(vrnvjn)	

					+j[2gnmk(vjnvrn)	+	bnmk(vrnvrn‐vjnvjn)]		 	 (20)	
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In	matrix	notation,	

Re(vny*nmkv*n	)	=	[vrn,	vjn]	 	 gnmk ‐bnmk vrn
	 ‐bnmk ‐gnmk vjn

	

Im(vny*nmkv*n	)	=	[vrn,	vjn]	 	 bnmk gnmk vrn
	 gnmk ‐bnmk vjn

	

Similarly,	vny*nmkv*m	=	(vrn	+	jvjn	)(gnmk	+	jbnmk	)(vrm	+	jvjm	)		

Expanding,	we	obtain	

	 =	[gnmkvrn	‐	bnmkvjn	+	j(gnmkvjn	+	bnmkvrn	)](vrm	+	jvjm	)			

Expanding	and	collecting	terms,	

=	gnmk(vrnvrm+vjnvjm)+bnmk(vjnvrm‐vrnvrm)+j[gnmk(vjnvrm‐vjn	vjm)+bnmk(vrnvrm‐vjnvjm)]	

(21)	

In	matrix	notation,	

Re(vny*nmkv*m)	=	[vrm,	vjm]		 gnmk ‐bnmk vrn
bnmk gnmk	 vjn

	

Im(vny*nmkv*m)	=	[vrm,	vjm]		 bnmk ‐gnmk vrn
	gnmk ‐bnmk vjn

Inequality	(19)	becomes	a	quadratic	constraint.	

Line	Flow	Constraints	as	Current	Limitations.	As	current	increases,	lines	sag	and	

equipment	may	be	damaged	by	overheating.		The	constraints	that	limit	the	current	

magnitude	in	rectangular	coordinates	at	each	bus	n	on	k	are		

	 (irnmk)2	+(ijnmk)2	≤	(imaxnmk)2		 	 	 	 	 (23)	

Again,	the	nonlinearities	are	convex	quadratic	and	isolated	to	the	complex	current	at	

the	bus.	Generally,	the	maximum	currents,	imaxnmk,	are	determined	by	material	

science	properties	of	conductors	and	transmission	equipment,	or	as	a	result	of	

system	stability	studies.	

Line	Flow	Constraints	as	Voltage	Angle	Constraints.	The	power	flowing	over	an	

AC	line	is	approximately	proportional	to	the	sine	of	the	voltage	phase	angle	

difference	at	the	receiving	and	transmitting	ends.		For	stability	reasons,	the	voltage	

angle	difference	for	terminal	buses	n	and	m	connected	by	transmission	element	k	

can	be	constrained	as	follows:		
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	 θminnm	≤	θn	‐	θm	≤	θmaxnm	 	 (24)	

In	the	rectangular	formulation,	the	arctan	function	appears	in	some	constraints.		

	 θminnm	≤	arctan(vjn/vrn)	‐	arctan(vjm/vrm)	≤	θmaxnm		 	 (25)	

The	theoretical	steady‐state	stability	limit	for	power	transfer	between	two	

buses	across	a	lossless	line	is	90	degrees.	If	this	limit	were	exceeded,	synchronous	

machines	at	one	end	of	the	line	would	lose	synchronism	with	the	other	end	of	the	

line.	In	addition,	transient	stability	and	relay	limits	on	reclosing	lines	constrain	

voltage	angle	differences.	The	angle	constraints	used	in	the	ACOPF	should	be	the	

smallest	of	these	angle	constraints,	which	depend	on	the	equipment	installed	and	

configuration.	However,	many	test	cases	do	not	include	any	voltage	angle	or	line	

flow	constraints.	In	general,	system	engineers	design	and	operate	the	system	

comfortably	below	the	voltage	angle	limit	to	allow	time	to	respond	if	the	voltage	

angle	difference	across	any	line	approaches	its	limit.		 		 	

5.	ACOPF	Formulations	

	 We	begin	with	a	discussion	of	objective	functions,	then	a	note	on	bus	types,	

and	finally	discuss	different	formulations	of	the	ACOPF.	The	formulations	of	the	

ACOPF	presented	here	include	all	the	constraints,	but	may	take	different	approaches	

to	modeling	the	constraints.	As	discussed	above,	current,	voltage	magnitude,	and	

voltage	angle	constraints	can	be	calculated	that	are	surrogates	for	each	other.	We	

discuss	constraints	further	in	(O’Neill	2012).		

Objective	Function.	Various	authors	formulate	the	ACOPF	with	different	objective	

functions.	They	include	minimizing	generation	costs,	maximizing	market	surplus,	

minimizing	losses,	minimizing	generation	(equivalent	to	minimizing	losses),	and	

maximizing	transfers.	Without	demand	functions,	minimizing	generation	costs	and	

maximizing	market	surplus	are	equivalent.		

A	full	ACOPF	that	accurately	models	all	constraints	and	controls	with	an	

objective	function	of	minimizing	cost	would	inherently	meet	the	objectives	of	

minimizing	generator	fuel	costs,	minimizing	generation	output,	minimizing	losses,	

minimizing	load	shedding,	and	minimizing	control	actions.			

When	it	is	not	feasible	to	run	a	full	ACOPF	due	to	time	constraints,	computing	

power,	or	lack	of	a	robust	solution	algorithm,	a	common	substitute	is	to	decouple	
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the	problem	and	iterate	between	a	DCOPF	that	minimizes	costs	by	varying	real	

power,	then	fix	the	generator	outputs	from	the	DCOPF	and	run	an	ACOPF	that	

minimizes	losses	by	varying	reactive	power	of	generators,	capacitors,	etc.	For	

economically	dispatching	resources	in	an	ACOPF	that	fully	models	voltage	and	

stability	constraints,	minimizing	cost	is	the	correct	objective	function;	objective	

functions	of	minimizing	losses,	minimizing	generation,	and	maximizing	transfers	for	

an	ACOPF	are	inconsistent	with	economic	principles,	and	result	in	sub‐optimal	

dispatch.	We	do	not	discuss	the	details	of	decoupled	OPF	here,	but	save	it	for	a	

future	review	of	solution	algorithms.	

Stott	et	al.	discuss	badly‐posed	problems	when	an	OPF	formulation	does	not	

adhere	to	the	normal	engineering	principles	of	power	system	operation	(Stott	

1987).	They	mention	a	few	examples	in	decoupled	formulations:	minimizing	losses	

with	generator	real	power	output	as	variables	would	move	away	from	a	minimum‐

cost	solution;	imposing	limits	on	MW	reserves	with	only	generator	voltage	controls	

and	transformer	voltage	tap	controls,	but	no	real	power	control	to	meet	the	reserve	

limit.	They	state	that	it	is	helpful	to	associate	each	control,	constraint,	and	objective	

in	a	decoupled	OPF	with	either	or	both	the	active	and	reactive	power	subproblems.	

They	further	note	that	some	objective	functions	and	constraints	are	not	algebraic	or	

differentiable,	and	that	multiple	solutions	are	likely	to	exist,	in	particular	when	

there	are	many	reactive	power	controls	(such	as	switched	capacitors,	FACTS	

devices,	or	generators)	in	network	loops.			

	 It	is	possible	to	formulate	an	objective	function	that	includes	the	cost	of	

reactive	power.	For	a	generator	the	cost	of	generation	is	a	function	of	the	apparent	

power	generated,	c(S)	=	cP(P)	+	cQ(Q),	where	S	=	(P2	+	Q2)1/2.	If	we	assume	that	the	

cost	of	reactive	power	is	small	compared	to	the	cost	of	real	power	and	if	the	cost	

function,	c(S),	is	linear	in	S,	an	approximation	of	c(S)	is		

	 c(S)	≈	cP(P)	+	cQ(|Q|).	

Bus‐type.	In	P,	Q,	|V|,	θ	space,	there	are	four	quantities	at	each	bus:	voltage	

magnitude	(V),	voltage	angle	(θ),	real	power	(P),	and	reactive	power	(Q).	In	a	power	

flow	solution	without	optimization,	buses	are	classified	into	three	bus	types:	PQ,	PV	

and	slack.		PQ	buses	generally	correspond	to	loads	and	PV	buses	to	generators.	
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Generator	buses	are	called	PV	buses	because	power	and	voltage	magnitude	are	

fixed;	load	buses	are	known	as	PQ	buses	because	real	and	reactive	power	are	fixed,	

that	is,	Pmin	=	Pmax	and	Qmin	=	Qmax;	slack	or	reference	buses	have	a	fixed	voltage	

magnitude	and	voltage	angle.		For	a	power	flow	to	solve,	the	slack	bus	needs	to	have	

sufficient	real	and	reactive	power	to	make	up	for	system	losses	and	hold	the	slack	

bus	voltage	magnitude	at	1;	for	this	reason,	a	bus	with	a	large	generator	is	

commonly	chosen	as	a	slack	bus.	Table	3	compares	the	different	types	of	buses.	

Table	3:	Bus	classification	used	in	power	flow	problems	

Bus	Type	 Fixed	quantities Variable	quantities Physical	

interpretation	

PV	 real	power,	voltage	

magnitude	

reactive	power,	voltage	

angle	

generator	

PQ	 real	power,	reactive	

power	

voltage	magnitude,	

voltage	angle	

load,	or	generator	with	

fixed	output	

Slack	 voltage	magnitude,	

voltage	angle	

real	power,	reactive	

power	

an	arbitrarily	chosen	

generator	

	

In	a	power	flow,	the	slack	bus	serves	partly	to	ensure	an	equal	number	of	

variables	and	constraints;	without	a	designated	slack	bus,	the	system	would	be	

over‐determined,	with	more	equations	than	unknowns.	Stott	states	that	the	need	for	

a	slack	bus	also	arises	because	the	system	I2R	losses	are	not	precisely	known	in	

advance	of	the	load‐flow	calculation	for	linear	DC	models	and	therefore	cannot	be	

assigned	to	a	particular	generator	dispatch	(Stott	1974).	Some	models	use	a	

distributed	slack	bus	where	generators	at	several	different	buses	provide	system	

slack.			

We	note	that	an	ACOPF	that	iterates	between	a	simplified	OPF	and	an	AC	

power	flow	may	need	a	slack	bus	for	the	power	flow	iterations,	but	even	then	the	

voltage	magnitude	at	the	slack	bus	does	not	have	to	be	fixed.	

When	using	an	iterative	method	such	as	Newton	or	Gauss‐Seidel	to	solve	the	

power	flow	equations,	the	convergence	tolerance	is	generally	set	based	on	the	

“mismatch”	terms.	Mismatch	refers	to	the	difference	between	known	values	at	each	
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bus,	such	as	P	and	Q	at	load	buses,	and	the	values	P(x)	and	Q(x)	computed	with	the	

power	flow	equations	at	each	iteration.		

Since	the	ACOPF	is	an	optimization	problem,	where	the	number	of	variables	

does	not	have	to	equal	the	number	of	constraints,	specifying	a	slack	or	reference	bus	

is	unnecessary.	In	fact,	Carpentier	noted	this	as	early	as	1962	(Carpentier	1962).1	In	

all	optimization	formulations	herein,	we	forgo	the	bus	type	designation.	In	an	

optimization	context,	these	categorizations	seem	overly	prescriptive,	and	could	

unnecessarily	over‐constrain	the	problem.	For	example,	fixing	the	reference	voltage	

magnitude	at	1.0	per	unit	when	in	normal	operations	generators	vary	voltage	

magnitude	between	0.95	and	1.05	per	unit	could	result	in	a	sub‐optimal	solution.	

Most	modern	solvers	pre‐process	the	problem,	removing	variables	that	have	equal	

lower	and	upper	bounds	and	replacing	them	with	a	constant.		

ACOPF	Power‐Voltage	(PQV)	Formulation.		Most	of	the	ACOPF	literature	uses	the	

polar	power‐voltage	formulations	based	on	the	early	work	of	Carpentier	during	the	

1960’s	(Carpentier	1962).		

Polar	Power‐Voltage	Formulation.	The	polar	power‐voltage	(polar	PQV)	ACOPF	

(polar	ACOPF‐PQV)	replaces	quadratic	equality	constraints	in	(32)	with	the	polar	

formulation	of	(27)‐(28):	

					Network‐wide	objective	function:	Min	c(S)	 	 	 (26)	

					Network‐wide	constraints:		

Pn	=	∑mk	VnVm(Gnmkcosθnm	+	Bnmksinθnm)		 	 (27)	

		 Qn	=	∑mk	VnVm(Gnmksinθnm	‐	Bnmkcosθnm)	 	 (28)	

Vmin	≤	V	≤	Vmax		 	 	 	 (29)	

																																																													

	

	

1	Rough	translation	of	(Carpentier	1962):		If	voltage	and	angle	are	taken	as	variables	in	place	of	P	and	Q,	the	restriction	of	

fixing	the	reference	voltage	can	be	lifted;	voltage	and	angle	are	in	effect	independent	variables	that	fix	the	state	of	the	network,	

and	it	suffices	to	write	an	objective	function	that	is	minimized	with	respect	to	these	variables.		The	arbitrarily	chosen	reference	

bus	disappears	and	the	problem	is	the	most	general	that	one	can	pose.	
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													θminnm	≤	θn	‐	θm	≤	θmaxnm.		 	 	 (30)	

In	this	formulation,	(27)	and	(28)	represent	2N	nonlinear	equality	constraints	with	

quadratic	terms	and	sine	and	cosine	functions	that	apply	throughout	the	network.	

In	this	formulation,	voltage	angle	difference	constraints	are	linear.	In	the	

rectangular	formulation	discussed	below,	arctan	functions	appear	in	the	angle	

difference	constraints.	

Rectangular	Power	Voltage	Formulation.	The	rectangular	power‐voltage	

formulation,	shown	below,	is	less	common	in	the	literature.		The	rectangular	power‐

voltage	(rectangular	PQV)	ACOPF	(rectangular	ACOPF‐PQV)	formulation	is	shown	

below.	

Network‐wide	objective	function:	Min	c(S)	 	 	 (31)	

	 Network‐wide	constraint:	P	+	jQ	=	S	=	V•I*	=	V•Y*V*	 	 (32)	

	 Bus‐specific	constraints	

	 Pmin	≤	P≤	Pmax	 	 	 	 	 	 	 	 (33)	

	 Qmin	≤	Q	≤	Qmax	 	 	 	 	 	 	 (34)	

	 (|snmk|)2	≤	(smaxk)2	 	for	all	k	 	 	 	 	 (35)	

	(29)	is	replaced	by:	

Vr•Vr		+	Vj•Vj	≤	(Vmax)2		 	 	 	 	 	 (36)	

	 (Vmin)2	≤	Vr	•Vr		+	Vj•Vj	 	 	 	 	 	 (37)	

	(30)	is	replaced	by:	

	 θminnm	≤	arctan(vjn/vrn)	‐	arctan(vjm/vrm)	≤	θmaxnm	 	 	 (38)	

In	this	formulation,	(32)	represents	2N	quadratic	equalities	that	apply	throughout	

the	network;	(33)‐(34)	are	simple	variable	bounds	at	each	bus;	(35)	and	(37)	

represents	convex	quadratic	inequalities	at	each	bus;	(37)	represents	a	nonconvex	

quadratic	inequalitiy	at	each	bus;	and	(37)	and	(38)	represents	nonconvex	

inequalities	between	each	set	of	connected	buses.		

ACOPF	Current	Injection	(IV)	Formulation.	Current	injection	formulations	use	

power	flow	equations	based	on	current	and	voltage	rather	than	power	flow	

equations	based	on	power	and	voltage	discussed	above.	We	only	consider	the	

rectangular	current‐voltage	(rectangular	IV)	ACOPF	(rectangular	ACOPF‐IV)	

formulation	due	to	the	advantages	in	expressing	the	current	injections	as	linear	
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equality	constraints;	however,	the	polar	current‐voltage	formulation	could	be	easily	

derived.	

The	IV	formulation	has	6N	variables	(P,	Q,	Vr,	Vj,	Ir,	Ij)	and	the	VΘ	has	4N	variables				

(P,	Q,	|V|,	Θ).	

Rectangular	ACOPF‐IV	formulation.	The	rectangular	ACOPF‐IV	formulation	is	

shown	below.	

Network‐wide	objective	function:	Min	c(S)		 		 	 (40)	

Network‐wide	constraint:	I	=	YV	 	 	 	 	 (41)	

Bus‐specific	constraints:	

	 P	=	Vr•Ir	+	Vj•Ij	≤	Pmax			 	 	 	 	 (42)	

	 Pmin≤	P	=	Vr•Ir	+	Vj•Ij	 	 	 	 	 	 (43)	

	 Q	=	Vj•Ir	‐		Vr•Ij	≤	Qmax		 	 	 	 	 (44)	

	 Qmin	≤	Q	=	Vj•Ir	‐	Vr•Ij	 	 	 	 	 	 (45)	

	 Vr•Vr		+	Vj•Vj	≤	(Vmax)2		 	 	 	 	 (46)	

	 (Vmin)2	≤	Vr	•Vr		+	Vj•Vj	 	 	 	 	 (47)	

	 (inmk)2	≤	(imaxk)2	 	for	all	k	 	 	 	 (48)	

	 θminnm	≤	arctan(vjn/vrn)	‐	arctan(vjm/vrm)	≤	θmaxnm	 	 (49)	

In	this	formulation,	(41)	represents	2N	linear	equality	constraints	that	apply	

throughout	the	network.	This	is	in	contrast	to	the	PQV	formulations	where	

quadratic	and	trigonometric	constraints	apply	throughout	the	network	and	linear	

constraints	are	isolated	at	each	bus.	Equations	(42)	to	(45)	are	local	quadratic	

nonconvex	constraints.	Equations	(46)	and	(48)	are	local	convex	quadratic	

inequality	constraints,	but	(47)	are	non‐convex	local	quadratic	inequality	

constraints.	Overall,	the	constraint	set	is	still	nonconvex,	but	we	hypothesize	that	

this	formulation	may	be	easier	to	solve	than	the	power‐voltage	formulations,	since	

the	nonlinearities	are	isolated	to	each	bus	and	each	transmission	element,	while	the	

constraints	that	apply	throughout	the	network	are	linear.	In	general,	linear	solvers	

solve	problems	faster	than	nonlinear	solvers.	As	discussed	previously,	the	voltage	

angle	limit	(49)	could	be	replaced	with	an	analogous	current	limit	and	the	problem	

becomes	locally	quadratic	with	linear	network	equations,	and	(48)	and	(49)	are	

essentially	redundant	constraints.			
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	 Polar	PQV Rectangular	PQV Rectangular	IV

Network	
constraints	

2N	nonlinear	equality	
constraints	with	
quadratic	terms	and	
sine	and	cosine	
functions	

2N	quadratic	equalities 2N	linear	equality	
constraints	

Voltage	angle	
difference	
constraints	

Linear	 Nonconvex	(arctan) Linear	if	replaced	
with	current	or	
apparent	power	
constraint	

Bus	constraints	 Linear	 Noncovex	quadratic	
inequalities	

Locally	quadratic,	
some	nonconvex,	
some	convex	

	

6.	Literature	Review	of	Formulations	

Most	literature	uses	the	polar	power‐voltage	formulation,	while	a	smaller	

group	of	papers	use	the	rectangular	power‐voltage	formulation.	Some	have	also	

proposed	hybrid	and	alternative	formulations.	So,	rather	than	attempt	to	review	the	

vast	literature	on	the	traditional	formulation	based	on	power	and	reactive	power	

equations,	we	focus	on	alternative	formulations	in	this	section.	

	 Stott	et	al.	criticize	that	much	OPF	research	since	the	classical	formulations	of	

Carpentier,	Dommel	and	Tinney	have	addressed	similar	formulations	without	

considering	the	additional	requirements	needed	for	practical	real‐time	applications,	

partly	because	OPF	problems	are	still	stretching	the	limits	of	applied	optimization	

technology,	and	also	that	utilities	have	been	slow	to	adopt	software	to	calculate	OPF	

“on‐line,”	or	in	near‐real‐time	(Stott	1987).	They	further	note	that	it	is	a	mistake	to	

analytically	formulate	OPF	problems	by	regarding	them	as	simple	extensions	of	

conventional	power	flow;	once	the	power	flow	problem	is	formulated	as	an	

optimization	problem	with	degrees	of	freedom,	problems	that	appear	easy	to	solve	

can	turn	out	to	be	badly	posed,	for	example	with	conflicting	objective	function,	

controls,	and	constraints.	For	OPF,	they	note	that	researchers	have	not	agreed	on	

“rules	of	solvability,”	which	are	the	engineering	criteria	needed	for	an	OPF	solution	
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to	be	physically	valid,	especially	for	voltage	and	reactive	power,	and	that	these	

“rules	of	solvability”	have	hardly	if	ever	been	mentioned	in	the	vast	literature	on	

OPF.	They	also	identify	several	common	problems	with	the	OPF	formulation.	Most	of	

these	relate	to	modeling	voltage	characteristics	of	generation,	load,	and	

transformers,	but	also	include	problems	with	incompatibility	of	objective,	controls,	

and	constraints.	For	example,	one	incompatibility	problem	uses	an	objective	of	

minimizing	losses	with	generator	real	power	outputs	as	variables,	rather	than	fixing	

generator	real	power	outputs	at	the	minimum	cost	dispatch	and	adjusting	reactive	

power	settings	to	minimize	losses	(Stott	1987).			

	 A	few	researchers	have	developed	a	current	injection	formulation	for	the	

power	flow	or	optimal	power	flow	equations.	Current	injection	and	reactive	current	

are	terms	used	in	the	literature	for	a	formulation	similar	to	the	IV	formulation	

discussed	earlier	in	this	paper.	Additionally,	some	literature	uses	the	term	“in	

phase”	for	the	real	component	of	current	(Ir)	and	“quadrature”	for	the	imaginary	

component	of	current	(Ij);	in	this	context,	quadrature	refers	to	being	90	degrees	out	

of	phase.	Most	of	these	papers	identify	challenges	modeling	generator,	or	PV	buses,	

where	the	real	power	injection	and	voltage	magnitude	are	known	but	the	reactive	

power	injection	is	not.	Several	authors	have	identified	ways	to	model	PV	buses.	We	

discuss	these	formulations	here.	

	 Dommel	et	al.	present	a	power	flow	formulation	using	current	injections	and	

a	mix	of	polar	and	rectangular	coordinates,	where	each	PQ	bus	is	represented	by	

two	equations	for	the	real	and	imaginary	components	of	current	mismatches	in	

terms	of	complex	voltage	in	rectangular	coordinates,	while	PV	buses	are	

represented	by	a	single	active	power	mismatch	equation	and	associated	voltage	

angle	deviation	(Dommel	1970).	Tinney	later	mentions	that	a	current	injection	

algorithm	with	a	constant	nodal	admittance	matrix	could	not	be	used	for	general	

power	flow	applications	because	a	satisfactory	method	of	modeling	PV	buses	had	

not	been	developed	(Tinney	1991).	Other	authors	allude	to	difficulties	modeling	PV	

buses	using	current	injections,	and	much	of	literature	using	current	injection	

formulations	applies	to	radial	distribution	networks	where	PV	buses	are	less	

common.	For	some	solution	techniques,	modeling	PV	buses	with	current	injection	
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equations	introduces	singularities	into	some	matrices	in	the	solution	technique.	

Substitutions	introduce	dependencies	in	the	Jacobian,	meaning	that	the	entire	

Jacobian	would	have	to	be	recalculated	at	each	step	(Gómez	Romero	2002).	Various	

authors	have	proposed	substitutions	and	approximations	to	model	PV	buses	in	a	

current	injection	formulation.	

	 Stadlin	and	Fletcher	discuss	a	“voltage	versus	reactive	current”	model	for	

voltage	and	reactive	control	that	is	well	suited	for	use	with	a	linear	programming	

algorithm	(Stadlin	1982).	This	paper	does	not	directly	discuss	an	OPF,	but	provides	

a	model	that	could	be	used	in	a	linear	programming	optimization	for	reactive	

dispatch	and	voltage	control.	The	model	would	be	used	after	a	real	power	dispatch	

model,	such	as	a	decoupled	power	flow,	was	run,	and	would	assume	fixed	real	

power	generation,	except	at	the	swing	bus.	This	model	uses	real	and	reactive	

current	(computed	as	P/V	and	Q/V,	respectively).	The	authors	use	an	incremental	

current	model	rather	than	an	incremental	power	model	because	the	Jacobian	

matrices	of	a	current	model	are	less	sensitive	to	bus	voltage	variations.	In	addition,	

the	sensitivity	coefficient	of	voltage	to	reactive	current	is	much	less	sensitive	than	

the	sensitivity	coefficient	of	voltage	to	reactive	power.	The	authors	fix	the	swing	bus	

voltage	angle	at	zero,	but	allow	the	voltage	magnitude	to	float.	The	authors	note	

their	assumptions	result	in	a	more	accurate	“decoupled”	relationship	between	

incremental	reactive	current	and	voltage	than	is	given	by	the	B	matrix	used	in	B‐θ	

decoupled	OPF,	and	that	this	more	accurate	and	more	linear	model	reduces	the	

iterations	in	an	optimization	algorithm.	The	sensitivity	coefficients	in	the	B	matrix	

are	accurate	only	in	a	small	range	of	voltage,	requiring	recalculation	of	the	B	matrix	

for	large	changes	in	voltage;	Stadlin	and	Fletcher’s	model	is	accurate	and	linear	over	

a	larger	voltage	operating	range	than	a	B‐θ	model.	Stadlin	and	Fletcher	wanted	to	

define	a	model	which	remains	nearly	linear	for	changes	in	voltage	and	reactive	

variables	so	that	efficient	linear	programming	techniques	could	be	applied.		

Da	Costa	and	Rosa	note	that	for	the	rectangular	formulation,	generation	or	

PV	buses	have	different	equations	than	load	or	PQ	buses.	At	load	buses,	active	and	

reactive	power	mismatches	are	known.	At	generation	buses,	reactive	power	

mismatches	are	not	known	but	voltage	magnitude	constraints	are	known,	because	
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in	a	traditionally	formulated	power	flow,	generator	reactive	power	output	is	

variable	(Da	Costa	2008).	Therefore,	a	voltage	magnitude	constraint	is	added	to	

each	load	bus,	resulting	in	a	different	Jacobian	matrix.			

Da	Costa	et	al.	present	a	rectangular	formulation	of	a	Newton‐Raphson	

power	flow	based	on	current	injections,	for	both	PQ	and	PV	buses	(Da	Costa	1999,	

Lin	2008).	In	this	formulation,	the	Jacobian	matrix	has	the	same	structure	as	the	

nodal	admittance	matrix,	except	for	PV	buses.		For	PV	buses,	the	authors	introduce	a	

new	dependent	variable,	ΔQ,	and	an	additional	constraint	on	voltage	magnitude	

deviation.		The	voltage	magnitude	constraint	is	linearized:	

ΔVn	=	0	≈	(Vrn/Vn)ΔVrn	+	(Vjn/Vn)ΔVjn,	where	Vn	is	the	voltage	magnitude	at	bus	

n,	Vrn	is	the	real	component	of	voltage	at	bus	n,	and	Vjn	is	the	imaginary	component	

of	voltage	at	bus	n.		

Da	Costa	and	Rosa	note	that	the	current	injection	equations	are	linear	for	

electrical	networks	with	only	PQ	buses	and	a	constant	impedance	load	model	(Da	

Costa	2008).		

	 Jiang	et	al.	published	a	power‐current	hybrid	rectangular	OPF	formulation.	

They	divide	buses	into	two	types,	those	with	non‐zero	injections,	and	those	with	

zero	injections	(Jiang	2009).	For	buses	with	non‐zero	injections,	the	power	

mismatch	formulation	is	used,	while	the	current	mismatch	formulation	is	used	for	

buses	with	zero	injections.	The	authors	note	that	in	the	current	mismatch	

formulation,	which	is	similar	to	the	IV	formulation	presented	above,	the	first‐order	

derivatives	of	the	equations	are	constants	and	the	second‐order	derivatives	are	

zeros.	By	dividing	the	buses	into	two	groups,	the	hybrid	method	saves	computation	

time	for	the	Jacobian	and	Hessian	matrices.			

	 Meliopoulos	and	Tao	use	a	formulation	referred	to	as	“Quadratic	Power	

Flow,”	with	current	conservation	equations	from	Kirchhoff’s	current	law	in	

rectangular	coordinates	instead	of	power	flow	equations,	and	add	operational	

constraints	to	the	model	only	when	they	are	violated	in	the	previous	iteration	

(Meliopoulos	2011).	The	equations	modeling	generators,	constant	power	loads,	and	

transformers	are	quadratic	equations	separated	into	real	and	imaginary	parts.	The	

objective	function	is	to	minimize	the	sum	of	a	penalty	factor	times	the	sum	of	
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current	mismatches	and	the	total	generator	costs.	The	model	includes	a	slack	bus	as	

the	“mismatch	current	source”	where	the	voltage	magnitude	is	a	state	variable	and	

the	real	and	imaginary	components	of	complex	voltage	are	control	variables,	while	a	

PV	bus	has	the	voltage	magnitude	as	a	control	variable	and	real	and	imaginary	

components	of	complex	voltage	as	state	variables.	The	authors	linearize	to	eliminate	

integer	state	variables.	The	quadratic	constraints	are	linearized	when	they	are	

added	to	the	model.		

7.	Conclusions	

	 This	paper	has	presented	a	literature	review	of	different	formulations	of	the	

ACOPF	and	discussed	areas	for	future	research	where	the	ACOPF	could	be	

improved.	The	ACOPF	problem	is	inherently	difficult	due	to	nonconvexities,	

multipart	nonlinear	pricing,	and	alternating	current.	We	do	not	yet	have	practical	

approaches	to	solving	nonconvex	problems.	The	ACOPF	is	a	well‐structured	

problem,	and	has	developed	during	50	years	of	research.	Academia	and	industry	

have	developed	various	approaches	to	solving	the	ACOPF,	with	different	

formulations,	algorithms,	and	assumptions.	The	traditional	approach	has	been	to	

linearize	the	full	ACOPF	problem	and	decompose	it	into	subproblems.	The	ACOPF	is	

not	a	hypothetical	problem	–	it	is	solved	every	5	minutes	through	approximations	

and	judgment.	After	50	years,	there	is	not	yet	a	commercially	viable	full	ACOPF.	

Many	possibilities	and	ways	to	examine	the	ACOPF	remain.	Today’s	solvers	do	not	

return	the	gap	between	the	given	and	globally	optimal	solution;	if	we	make	a	rough	

estimate	that	today’s	solvers	are	on	average	off	by	10%,	and	world	energy	costs	are	

$400	billion,	closing	the	gap	by	10%	is	a	huge	financial	impact.
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