
A Closer Look at Revocation and Key Compromise in
Public Key Infrastructures

David A. Cooper
Computer Security Division

National Institute of Standards and Technology
Gaithersburg, MD 20899

Abstract

Over time, in order to improve functionality or efficiency, new features have been
added to the basic framework of public key infrastructures (PKIs). While these new
features are useful, as with any other security critical application, new features can
open the door for new types of attacks. In this paper, we will concentrate on those
attacks against a PKI which allow an attacker to take advantage of a compromised
private key. In particular, we will look at types of attacks that may allow an attacker,
who has compromised someone else’s private key, to either circumvent or exploit the
mechanisms designed to deal with key compromise. The paper includes descriptions of
several such attacks as well as suggestions to either prevent these attacks or to mitigate
the damage that they can cause.

Keywords: public key infrastructure, certification authority, key compromise

1 Introduction

In any large scale public key infrastructure (PKI), there will be users whose private keys will
be compromised. In order to mitigate the damage that a key compromise can cause, any
certificates associated with a compromised key should be revoked. The purpose of revocation
is to inform relying parties1 that certain certificates should no longer be accepted as valid
even though they have not yet expired. In general, the information provided to relying
parties when a certificate is revoked (whether through certificate revocation lists (CRLs) [7],
an on-line certificate status protocol (OCSP) [8], or some other mechanism) can be used in
two ways. In addition to warning relying parties about certificates that should no longer be
accepted as valid, many revocation schemes also provide information about the reasons that
certificates were revoked. This information can be used, to a limited degree, to allow relying

1A relying party is anyone who uses the information in a certificate to make a decision.



parties to determine how to treat transactions that took place shortly before the revocation
information was distributed.

The two ways in which revocation information may be used suggests two ways in which
the revocation process could be manipulated. Once the certificates associated with a compro-
mised key have been revoked, and information about the revocations has been disseminated,
an attacker should no longer be able to impersonate the owner of the compromised key2.
Thus, if an attacker were able to avoid being “locked out” by the revocation process, then
we would say that the attacker had successfully circumvented the key compromise handling
mechanism. Similarly, if an attacker were able to misinform relying parties about the reason
that a certificate was revoked, then we would say that the attacker had successfully exploited
the PKI’s revocation mechanism.

In this paper, we will look at several potential attacks that either lead to the dissemination
of false information about revocations or circumvent the revocation process. In section 3,
we will present three attacks that deal with the reason codes which may be included in
revocation announcements. Section 4 will describe an attack that may allow an attacker
to circumvent the revocation process. In each of these sections, we will also present some
ideas on how to design certification authorities in order to prevent, or at least minimize, the
attacks.

2 An Overview of Public Key Infrastructures

The purpose of a PKI is to securely bind a set of attributes to a name. The name usually
represents a person or a company, but may also represent a service (e.g., data storage or
information retrieval) or even a component of the PKI itself (e.g., a certification authority
(CA) or a registration authority (RA)). The set of attributes always includes the public key
of the entity named in the certificate, but, usually, other information about the entity is
made available as well.

The binding is accomplished through the use of certificates. A certificate is a data
structure that includes an entity’s name along with any information that is to be bound to
that name. The entire certificate is signed by a CA. In order to be effective, the CA’s public
key must be well known (or be available through some secure mechanism) and the CA must
be widely trusted.

The use of certificates is complicated by the possibility that information in the certificate
will change. In order to enhance security, entities periodically change their public keys.
In addition, people may change their names, jobs, or job titles. If a certificate contains
attributes that are no longer valid, then the certificate should no longer be considered as
valid.

As a general rule, entities change their public keys on a regular schedule. In order to
support this in a clean manner, most certificates include expiration dates. The expiration

2In this paper, unless otherwise specified, we will only be considering digital signature certificates. How-
ever, attacks similar to the ones that we will describe may exist for other types of certificates.



date represents the time after which the CA that created the certificate is no longer willing
to claim that the information contained in the certificate is valid.

Unlike the regularly scheduled change of public keys, name and job changes can not
always be predicted far enough in advance to set the expiration dates on certificates correctly
(certificates are frequently valid for a year or longer [6, 9]). Of even more concern, a user’s
private key may be compromised. A private key is considered to be compromised whenever
it is in the possession of someone other than the key’s owner (or someone trusted by the
key’s owner). Once a user’s private key has been compromised, any certificate containing
the corresponding public key should be revoked.

In order for CAs to invalidate (i.e., revoke) certificates before they expire, CAs must have
some mechanism for distributing certificate status information. The two most common mech-
anisms for disseminating this information to relying parties are certificate revocation lists
(CRLs) and on-line certificate status protocols (OCSP). A CRL is a signed data structure3

that contains a list of unexpired certificates that have been revoked. In a CRL based system,
updated CRLs are issued on a regular basis in order to allow relying parties to determine the
current validity status of certificates. In an OCSP based system, relying parties send status
requests to a trusted entity that responds with the current validity status of the certificate.
It is expected that relying parties will send such requests to the OCSP server shortly before
making use of the information in a certificate.

Certificate status protocols usually provide more information about certificates than just
their current status (valid or revoked). For certificates that have been revoked, it is common
to include some information about the reason for the certificate being revoked. For example,
the reasonCode extension in X.509 version 2 CRLs [7] can be filled in with one of seven
possible revocation reasons ranging from keyCompromise, representing the compromise or
suspected compromise of the key, to cessationOfOperation, which simply means that the
certificate is no longer needed for the purpose for which it was issued.

3 Reason Codes

In this section, we will look at three types of attacks that are based on the manipulation of
certificate revocation reason codes. The first two cases involve attackers confusing relying
parties by tricking certification authorities into providing the wrong reason code when re-
voking a certificate. In the final case, the attacker’s manipulation of the reason codes leads
to a delay in the dissemination of revocation information.

While some standards, such as X.509, specify a set of reason codes to be used when
revoking certificates, we will not assume the use of any particular set of reason codes in this
paper. Instead, we will group reason codes as necessary to describe the attacks.

A certificate can be revoked either for a benign reason (e.g., it is no longer needed) or
because there is concern that the corresponding private key will be misused (e.g., key com-
promise). In this paper, we will use Benign to refer to any code that implies a benign reason

3It is usually, but not always, the CA that signs the CRLs.



for revoking a certificate and Malicious to refer to any code that could imply concern that
the certificate will be misused. It should be noted, however, that, in practice, partitioning
revocation reasons into those that are Benign and those that are Malicious might not be
a simple matter. Looking at the X.509 reason codes, it is clear that keyCompromise and
cACompromise should be classified as Malicious. However, if the reason for revoking
a certificate is affiliationChanged, the situation may not be as clear. If a subscriber’s
affiliation change is a result of being fired, then there is the chance that the subscriber will
attempt to use his/her private key (until the revocation information is distributed) to cause
damage to his/her former employer. On the other hand, most of the time when an em-
ployee changes jobs (whether within a company or by moving to another company) there is
no cause for concern. From a security point of view, however, it may be prudent to treat
affiliationChanged revocations as Malicious. Similarly, prudence may require treating
unspecified and certificateHold as Malicious given the lack of information about the
reason for the revocation.

The Malicious reason codes can be separated into those that allow for repudiation
of past actions and those that do not. Revocation reasons such as keyCompromise and
cACompromise suggest that the subscriber may not be responsible for some of the messages
signed in his/her name, particularly those signed shortly before the certificate was revoked.
Other reason codes that could be classified as Malicious, such as affiliationChanged, are
classified as Malicious to imply that the subscriber may attempt to request services that
he/she is no longer authorized to request. This would not, however, suggest that someone
other than the subscriber was signing the messages. In this paper, we will use Repudiable to
refer to reason codes which suggest that someone other than the subscriber may have signed
messages using the private key associated with the revoked certificate, and NonRepudiable
to refer to all other reason codes (whether Benign or Malicious).

3.1 Repudiating Malicious Actions

Whenever there is concern that a private key may be used to perform inappropriate actions
(such as when key compromise is suspected), it is important to revoke the corresponding
certificate as quickly as possible. Consequently, many certification authorities allow for
on-line certificate revocation requests. If these requests are signed using the private key
corresponding to the public key in the certificate to be revoked, then the CA can be set up
to automatically accept such requests without opening the door to denial-of-service attacks.

When the private key corresponding to the public key in a certificate has been lost or
stolen, the subscriber should request that the certificate be revoked with a reason code of
keyCompromise (or some equivalent Repudiable reason code). The Repudiable reason
code should suggest to relying parties that an attacker may have used the subscriber’s private
key to sign messages.

Unfortunately, in many cases, subscribers may have an incentive to lie about their keys
being compromised since doing so might allow them to repudiate their own messages. For
example, the owner of a certificate related to on-line credit card transactions may wish to



claim key compromise in an attempt to avoid paying for some recent purchases. As a result,
requests for revocations with Repudiable reason codes should not be taken at face value.
So, in order for the Repudiable reason codes to be meaningful, requests for revocation with
Repudiable reason codes should be investigated before they are accepted.

3.2 Masking Malicious Actions

Just as legitimate users may attempt to manipulate the use of reason codes in certificate re-
vocation systems, so may attackers. While a subscriber may attempt to repudiate messages
that he/she actually signed, an attacker may attempt to prevent a subscriber from repudiat-
ing messages that the attacker signed in the subscriber’s name. One way an attacker could
do this would be to request that the certificate be revoked with a NonRepudiable reason
code attached shortly after signing some bad messages. If the reason code used was also
Benign then relying parties would have no reason to suspect the messages that were signed
by the attacker.

3.3 Manipulating Segmented CRLs

It has frequently been suggested that CRLs should be segmented by reason code with those
CRLs representing Malicious reason codes being updated more frequently than those repre-
senting Benign reason codes [6, 7]. For example, the CRLs representing Malicious reason
codes could be updated daily (or several times a day) while the CRLs representing Benign
reason codes could be updated weekly or even monthly [1, 9]. Ideally, such an arrangement
would reduce communication costs and increase the utility of CRL caches without affecting
security.

Unfortunately, the disparity in update frequencies between CRLs for Benign and Mali-
cious reason codes could open the door for an attacker. Suppose that an attacker compro-
mises a subscriber’s private key and then submits a revocation request with a Benign reason
code. While this might seem counterproductive, if the CRL corresponding to the reason code
used is only updated monthly, then the attacker could be free to use the compromised key
for up to a month. Furthermore, if the certification authority was not carefully designed, the
Benign revocation request from the attacker could prevent the subscriber from getting the
certificate revoked for a Malicious reason. In other words, the attacker’s revocation request
could block future attempts to get the certificate placed on a frequently updated CRL.

A similar outcome could occur if the attacker were to compromise a private key, or began
to use a compromised private key, after the corresponding certificate had been revoked for
a Benign reason. Even though the certificate had already been revoked before the attacker
first used the private key, signatures created using the key would still be accepted as valid
until the revocation information had been distributed.



3.4 A Proposed Solution

As described in sections 3.1 and 3.2, revocation reason codes provided by subscribers, espe-
cially those provided through on-line transactions, can not always be accepted at face value.
Therefore, in order for the reason codes attached to certificate revocation announcements to
be meaningful, CA administrators should not publish revocations with reason codes other
than unspecified unless the reason for the revocation has been substantiated. Of course, the
amount of effort expended to substantiate the reason code information should be based on
the amount of damage that could be caused as a result of incorrect reason code information
being distributed.

Whenever there is concern about malicious behavior, it is important to revoke certificates
as quickly as possible. So, whenever a subscriber (or other authorized party) requests that
a certificate be revoked with a Malicious reason code, the certificate should be revoked
immediately. If a substantial amount of time is needed to substantiate the claimed revo-
cation reason, then the certificate should be revoked with a reason code of unspecified.
Since revocation reason codes may be useful to relying parties, the CA software should be
designed to allow the CA administrator to change revocation reasons. The ability to change
reason codes for a revoked certificate should also be available for when malicious behavior
is discovered after a certificate has been revoked for a Benign reason. After a reason code
is changed, the certificate’s revocation announcement should be redistributed in a manner
that is appropriate for the new reason code.

While the basic idea behind CRLs segmented by reason code is useful, maintaining such
CRLs may be difficult in an environment in which the reason codes for revocations may be
changed even after the original revocation information has been distributed. Instead, we
suggest using a slight variant on the idea of ∆-CRLs. Suppose that one wishes to distribute
revocations with Malicious reason codes daily while only distributing those with Benign
reason codes once a month. Then, once a month, a full CRL should be issued containing all
unexpired certificates that have been revoked for any reason. Once each day, a ∆-CRL should
be issued which contains all unexpired certificates that have been revoked for a Malicious
reason that do not appear on the most recently issued full CRL. Thus, a relying party only
needs to look at two CRLs, one full CRL and one ∆-CRL, in order to determine the status
of a certificate. As long as CA administrators can change the reason code for a revoked
certificate, the attack described in section 3.3 will not be possible.

This scheme has two main advantages over CRLs segmented by reason code. First,
since ∆-CRLs only contain the most recently revoked certificates, they are kept relatively
small. Thus, communication overhead is reduced. This technique also avoids the problems
that could occur from allowing revocation reason codes to change. In a system with CRLs
segmented by reason code, CRLs should be scanned in the order in which they were issued
(most recent first) in order to ensure that the most up-to-date revocation reason is obtained.
In the ∆-CRL approach, any revocation information in the most recently issued ∆-CRL
should be considered more recent than revocation information in the most recently issued



full CRL4.

4 Circumventing Revocation through On-line Renewal

When an entity suspects that an attacker has compromised its private key, it will request
the revocation of any certificate containing the corresponding public key. Ideally, once in-
formation about the revocation of these certificates has been distributed, no future attacks
based on the key compromise should be possible. The expiration of a certificate should
have a similar effect. Even if a key’s compromise is never detected, no attacks based on the
key compromise should be possible once all of the certificates containing the corresponding
public key have expired. As we will show in this section, achieving this goal may not be a
trivial matter.

The problem that we will describe in this section can occur in CAs that allow subscribers
to use proof-of-possession of the private key corresponding to the public key in one certificate
as proof of identity for the purposes of obtaining another certificate. The most well known
example of this is on-line renewal. In on-line renewal, a subscriber uses the private key
corresponding to the public key in a certificate that is about to expire in order to obtain
a new certificate of the same type with a later expiration date (and usually a new public
key). In principle, however, a subscriber should be allowed to use one certificate to request
a new certificate of a different type. For example, a subscriber could use the private key
associated with a signature-only certificate to sign a request for a key management certificate.
Allowing such a self-signed certificate request would save both the CA and the subscriber
from repeating the identification process involved in an initial registration.

In this section, we will consider both on-line renewals and general self-signed certificate
requests. As we will demonstrate, allowing general self-signed requests makes the handling
of key compromise and other Malicious revocations much more difficult, particularly when
the CA issuing the new certificate is different from the CA issuing the original certificate.
So, we will first cover the limited case of on-line renewals and then discuss the general case.

4.1 On-line Renewals

Let CA be a certification authority that has issued a certificate which binds user A to A’s
public key, KA, and let B be an attacker which has learned the private key that corresponds
to KA, K−1

A . Using K−1
A , B can send a certificate renewal request to CA containing a new

public key, KB, corresponding to a private key, K−1
B , that only B knows.

B’s ability to perform an on-line renewal leads to several complications. First, since A will
be the subject of the new certificate, A will need to get this certificate revoked in addition to
the original certificate in order to prevent B from impersonating A once the key compromise

4If the reason for revoking a certificate is changed from a Malicious reason code to a Benign reason
code then the certificate’s serial number, which at one point appeared on a ∆-CRL, may temporarily not
appear on any CRL. It will reappear on the next full CRL to be issued. During the period in which the
serial number does not appear on any CRL, some relying parties may accept the certificate as valid.



has been discovered. Furthermore, since the new certificate will have an expiration date later
than the old certificate (and since B may be able to perform an on-line renewal using the new
certificate), B’s ability to impersonate A will far outlive A’s original certificate. Therefore,
if A does not discover the key compromise, B will be able to impersonate A long after A’s
original certificate expires.

There are several things that can be done to help minimize the problems associated with
on-line renewal. First, a CA may allow each certificate to be used for on-line renewal at most
once. Since an on-line renewal request is only used to request a certificate of the same type
as the certificate used to make the request, this restriction should not pose any problems
for legitimate users. This restriction has two main advantages. First, if a legitimate user
attempts to perform an on-line renewal then it will either be successful or it will fail. If it
is successful, an attacker that has compromised the private key will be unable to perform
an on-line renewal. So, even if the compromise is not detected, the attacker’s ability to
impersonate the user will end once the original certificate expires. If, on the other hand, the
legitimate user is unsuccessful in performing the on-line renewal as a result of the attacker
having previously performed an on-line renewal, then the legitimate user will discover the
key compromise and can begin the revocation process.

In addition to limiting the number of on-line renewals that can be performed, a CA can
also limit the times in which on-line renewals will be accepted. Since on-line renewals are
generally used to replace certificates that are about to expire, it should be reasonable for
a CA to only accept on-line renewals during the period of time shortly before the original
certificate expires. The main advantage to this is that it will prevent the attacker from
performing a sequence of renewals which could result in a long, and perhaps difficult to
follow, chain of certificates.

Whenever a CA allows for on-line renewal, the possibility of an attacker possessing im-
properly obtained certificates must be taken into account when revoking a certificate (par-
ticularly when the reason for the revocation is Malicious). As a general rule, whenever
a certificate has been revoked for a Malicious reason, any certificates created through an
on-line renewal based on that certificate should also be revoked. If the revocation reason is
Benign then it may not be considered necessary to revoke the new certificates. However, it
should be remembered that the revocation request could have come from an attacker. So, if
the new certificates are not revoked, the CA should be set up in such a way that the new
certificates can be found and revoked if it is later determined to be necessary.

The situation becomes more complicated when the owner of a certificate does not attempt
to renew or revoke the certificate. In many systems, some subscribers who no longer wish
to have a certificate will choose to just let their current certificates expire. In this case, it
would be very easy for an attacker that has compromised a private key to perform an on-line
renewal without ever being detected. While there is no perfect solution to this problem,
many things can be done to at least give the subscriber a reasonable chance of discovering
that someone else has used its certificate to perform an on-line renewal.

The simplest technique available to the CA is to publish all certificates in a repository.
While there is no guarantee that the subscriber will take the precaution of checking the



repository for any new certificates with itself as the subject, the CA has at least made
the information available. Similarly, the CA could revoke all certificates that have been
used in an on-line renewal with a reason code of superseded (or equivalent). Either of
these techniques may be considered acceptable as long as certificates and/or CRLs are easily
accessible to former subscribers.

While the above techniques may be acceptable in many systems, they generally involve
the active participation of users who are no longer subscribers. Given this, one may be more
successful by sending renewal notifications directly to the subscribers using either electronic
or paper mail. While such notifications could be ignored, or even intercepted by an attacker,
they may be more successful than the repository technique since less effort is involved on
the part of the former subscriber. Of course, if the notification is in the form of a charge
on a credit card statement, then the subscriber has an even greater incentive to deal with
inappropriate renewals.

4.2 General Self-Signed Certificate Requests

Unfortunately, many of the suggestions for handling problems with on-line renewal do not
apply to the more general case of self-signed certificate requests. In the general case, it is
unreasonable (and perhaps impossible) to limit the number of certificates that a subscriber
can request using a certificate. Similarly, limiting the times during which a certificate can
be used for certificate requests (except to require that the certificate be valid at the time of
the request) would not make sense.

While the lack of restrictions on the use of self-signed certificate requests limits the
chances that an attacker’s actions will lead to its discovery, the CA should still be set up to
properly handle revocations for the cases in which the key compromise is discovered (or for
whenever a certificate is revoked for a Malicious reason). As such, for each certificate, a
CA should maintain a list of all certificates that it issued that were created as a result of a
self-signed certificate request based on the certificate. Then, whenever a certificate is revoked
for a Malicious reason, all of the certificates created based on that certificate should also
be revoked.

As we mentioned in section 4.1, a CA should also be designed to prevent an attacker from
taking advantage of a compromised key once the corresponding certificate has expired. There
are two ways that this property can be carried over to the general case. The straightforward
technique would be to always give the new certificates expiration dates that are no later
than the expiration dates on the certificates used in the requests. This solution particularly
makes sense in a system that does not allow for on-line renewal. The alternative is to use
one of the techniques described in section 4.1 in order to attempt to notify the subscriber
that a new certificate has been created.

It is not unreasonable to expect that some CAs will allow subscribers to use certificates
issued by other CAs in order to prove identity when requesting a certificate. For example, a
certified private signature key could be used by a subscriber to sign requests for identification
and key management certificates. In many cases, the CA issuing the identification and key



management certificates will be different from the CA that issued the signature certificate.
While there may be sound business reasons for allowing this type of on-line certificate

request, it does significantly complicate the handling of key compromise. Consider the case
in which a subscriber, A, has a certificate, CERTA, issued by CAA. Suppose that an attacker
has compromised A’s private key and has used it, in conjunction with CERTA, to obtain
a certificate, CERTB, from CAB. Even if A discovers that its key has been compromised,
it may not know that B has obtained a new certificate, with A as the subject, from CAB.
Some of the techniques described in section 4.1 for informing A about the certificate request
may still be viable in this environment. However, CAB can not expect A or CAA to look
in its repository since A and CAA may not even know that CAB exists, let alone that it
accepts certificates issued by CAA for proof of identity. So, unless CAB obtained A’s address
(either electronic or physical) from CAA, CAB must take responsibility for keeping track of
the status of CERTA.

When CAB accepts a certificate request based on CERTA, CAB is, in effect, acting as
a relying party with respect to CERTA. Viewed this way, the key compromise handling
problem can be dealt with if CAB follows two rules. First, the expiration date on CERTB

should be no later than the expiration date on CERTA. This will prevent B from exploiting
the key compromise beyond the expiration of CERTA. Second, CAB should periodically
check the revocation status of CERTA (through CRLs, OCSP, or some other means). If
CAB discovers that CERTA has been revoked, then it should revoke CERTB (probably using
the same reason code).

5 Conclusion

As we have shown in this paper, dealing with revocation and key compromise in a secure
manner can be very complicated. We have presented some of the potential problems that
may arise along with suggestions for handling these problems. However, in any particular
system, there may be yet other problems and the optimal solutions to these problems may
differ from those suggested in this paper.

One major area that still needs to be addressed is the interpretation of reason codes.
As we said earlier, determining whether a reason code should be classified as Benign or
Malicious is not a trivial matter. To whatever degree is possible, groups working to define
sets of reason codes should clarify the reason codes’ meanings in order to enable the proper
handling of revocation requests.

Acknowledgements

We would like to thank Bill Burr, Donna Dodson, Nelson Hastings, Noel Nazario, and Tim
Polk who provided many helpful discussions on this research.



References

[1] Shimshon Berkovits, Santosh Chokhani, Judith A. Furlong, Jisoo A. Geiter, and
Jonathan C. Guild. Public Key Infrastructure Study: Final Report. Produced by the
MITRE Corporation for NIST, April 1994.

[2] Marc Branchaud. A survey of public-key infrastructures. Master’s thesis, McGill Uni-
versity, March 1997.

[3] Santosh Chokhani. Toward a national public key infrastructure. IEEE Communications
Magazine, 32(9):70–74, September 1994.

[4] Warwick Ford. Advances in public-key certificate standards. ACM SIGSAC Security
Audit & Control Review, 13(3), July 1995.

[5] Warwick Ford. A Public Key Infrastructure for U.S. Government Unclassified but Sen-
sitive Applications. Produced by Nortel and BNR for NIST, September 1995.

[6] Warwick Ford and Michael Baum. Secure Electronic Commerce: Building the Infrastruc-
ture for Digital Signatures and Encryption. Prentice Hall, 1997.

[7] Russell Housley, Warwick Ford, William Polk, and David Solo. Internet X.509 Public Key
Infrastructure Certificate and CRL Profile. IETF X.509 PKI (PKIX) Working Group,
June 1998. (draft).

[8] Michael Myers, Rich Ankney, Ambarish Malpani, Slava Galperin, and Carlisle Adams.
X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP.
IETF X.509 PKI (PKIX) Working Group, June 1998. (draft).

[9] VeriSign. VeriSign certification practice statement (CPS), May 1997. Version 1.2.


	A Closer Look at Revocation and Key Compromise in Public Key Infrastructures
	1 Introduction
	2 An Overview of Public Key Infrastructures
	3 Reason Codes
	4 Circumventing Revocation through On-line Renewal
	5 Conclusion
	Acknowledgements
	References

	Table of Contents

