
Model
checker

Test case
generator

Access
control
model

Test
cases Access control

Properties

Access control
Policy
Implementation

Covering
array

Counter
examples

Covering
array
generator

Figure 1. Property verification
processes

Property Verification for Generic Access Control Models1

Vincent C. Hu1, D. Richard Kuhn1, Tao Xie2
1National Institute of Standards and Technology, 2North Carolina State University

vhu@nist.gov, kuhn@nist.gov, xie@csc.ncsu.edu

1 This work is supported in part by NSF grant CNS-0716579.

Abstract

To formally and precisely capture the security
properties that access control should adhere to, access
control models are usually written to bridge the rather
wide gap in abstraction between policies and
mechanisms. In this paper, we propose a new general
approach for property verification for access control
models. The approach defines a standardized
structure for access control models, providing for both
property verification and automated generation of test
cases. The approach expresses access control models
in the specification language of a model checker and
expresses generic access control properties in the
property language. Then the approach uses the model
checker to verify these properties for the access control
models and generates test cases via combinatorial
covering array for the system implementations of the
models.

1. Introduction

Access control systems are among the most critical
of network security components. It is common that a
system’s privacy and security are compromised due to
the misconfiguration of access control policies rather
than the failure of cryptographic primitives or
protocols. This problem becomes increasingly severe
as software systems become more and more complex,
and are deployed to manage a large amount of sensitive
information and resources that are organized into
sophisticated structures. Identifying discrepancies
between policy specifications and their intended
function is crucial because correct implementation and
enforcement of policies by applications is based on the
premise that the policy specifications are correct. As a
result, policy specifications must undergo rigorous
verification and validation to ensure that the policy
specifications truly encapsulate the desires of the policy
authors.

To formally and precisely capture the security
properties that access control should adhere to, access
control models are usually written, to bridge the rather
wide gap in abstraction between policies and
mechanisms. Users see access control models as
unambiguous and precise expression of requirements;
vendors and system developers see access control
models as design and implementation requirements.

In this paper, we propose a new general approach to
property verification for access control models by
combining model checking and combinatorial testing.
Section 2 presents our approach of model checking and
combinatorial covering array, section 3 demonstrates
an example for the approach, section 4 compares our
work with related work, and section 5 is the conclusion.

2. Approach

Our approach expresses access control models in the
specification language of a model checker (Section
2.1), expresses generic access control properties in
temporal logic formulae, and verifies these properties
with the model checker (Section 2.2). Test cases,
consisting of input data and expected results, are
generated from a combinatorial covering array
following verification (Section 2.3) as illustrated in
Figure 1. One goal of the techniques in our approach is
to reduce overall software assurance costs by
integrating verification with test generation.

2.1. Model Specification

 As the test cases for the verification are translated
from the counterexamples generated by the model
checker’s property checking to the entries of covering
array (Figure 1), we specify access control in a Finite
State Machine (FSM) that describes the transition of
authorization states. In general, any expression in the
propositional calculus can be used to define the
transition relation of authorization states; however, the
flexibility of the expression is accompanied by the risk
of a logical contradiction, which makes specifications
vacuously true or makes the system unimplementable.
Fundamentally, there are three basic types of FSM
expressions Synchronous, Asynchronous, and Direct
specification for specifying access control models in
terms of the sequence of the state transitions.

From the separation of duty and safety point of view,
the state transitions of access control properties can be
categorized by three types of constraints, namely static,
dynamic, and historical constraints. These constraints
can be expressed directly by the three basic types of
FSM models.

2.2. Property Specification and Verification

In this section, we illustrate how the properties of
constraints (with their models) can be specified and
verified by our approach. We use SMV[1]-like pseudo
code for the specification of access control models, and
Computational Tree Logic (CTL) for the specification
of the access control properties for the reason that the
constraint models/properties can be successfully
specified, and the combinatorial testing functions can
be easily integrated with the checking results generated
by the SMV.

2.2.1. Static Constraints. Static constraints regulate
the access permission by static system states or
conditions such as rules, attributes, and system
environments (times and locations for access). Popular
access control models with these types of properties
include Role-Based Access Control (RBAC) [2] and
Multi-Level Access Control [3]. These types of models
can be specified by asynchronous or direct
specification expressions of an FSM. The transition
relation of authorization states is directly specified as a
propositional formula in terms of the current and next
values of the state variables. Any current state/next
state pair is in the transition relation if and only if it
satisfies the formula, as demonstrated in the following
direct specification of an FSM:
{ VARIABLES

 access_state : boolean; /* 1 as grant, 0 as deny*/
 ……….
 INITIAL
 access_state := 0;
 TRANS /* transit to next access state */
 next (access_state) :=
 ((constraint_1 & constraint_2 & …… constraint_n) |
 (constraint_a & constraint_b & …… constraint_m)
……..) }
where the system state of access authorization is
initialized as the deny state and moved to the grant
state for any access request that complies with the
constraints of the rule corresponding with each
constraint predicate (i.e., constraint_i….&
constraint_n), and stay in the deny state otherwise.
The properties of the static constraints can be verified
using the properties expressed in the following
temporal logic formulae:
AG (constraint_1 & constraint_2 & …. constraint_n) � AX
(access_state = 1)
AG (constraint_a & constraint_b & …. constraint_m) �
AX (access_state = 1) ……
AG ! ((constraint_1 & ….constraint_n) | (constraint_a & ….
constraint_m) |…) � AX (access_state = 0)
which simply means that all access requests that
comply with specified constraints for the rules should
be granted, and all non-complied ones should be
denied.

2.2.2. Dynamic Constraints. Dynamic constraints
regulate the access permission by dynamic system
states or conditions such as specified events or system
counters. An access control model with these types of
properties specifies that accesses are permitted only by
a certain subject to a certain object with certain
limitations (e.g., object x can be accessed only no more
than i times simultaneously by user group y). For
example, if a user’s role is a cashier, he or she cannot
be an accountant at the same time when handling a
customer’s checks. This type of model can be specified
with asynchronous or direct specification expressions
of an FSM, which uses a variable semaphore to express
the dynamic properties of the authorization decision
process. Another example of dynamic constraint states
is enforcing a limited number of concurrent accesses to
an object. The authorization process for a user thus has
four states: idle, entering, critical, and exiting. A
user is normally in the idle state. The user is moved to
the entering state when the user wants to access the
critical object. If the limited number of access times is
not reached, the user is moved to the critical state, and
the number of the current access is increased by 1.
When the user finishes accessing the critical object, the
user is moved to the exiting state, and the number of
the current access is decreased by 1. Then the user is

moved from the exiting state to the idle state. The
authorization process can be modeled as the following
asynchronous FSM specification:
{ VARIABLES
 count, access_limit : INTEGER;
 request_1 : process_request (count);
 request_2 : process_request (count);
 …….
 request_n: process_request (count);
 /*max number of user requests allowed by the system*/
 access_limit := k; /*max number of concurrent
access*/
 count := 0; act {rd, wrt}; object {obj};
 process_request (access_limit) {
 VARIABLES
 permission : {start, grant, deny};
 state : {idle, entering, critical, exiting};
 INITIAL_STATE (permission) := start;
 INITIAL_STATE (state) := idle;
 NEXT_STATE (state) := CASE {
 state == idle : {idle, entering};
 state == entering & ! (count > access_limit):
critical;
 state == critical : {critical, exiting};
 state == exiting : idle;
 OTHERWISE: state};
 NEXT_STATE (count) := CASE {
 state == entering : count + 1;
 state == exiting : count -1;
 OTHERWISE: DO_NOTHING };
 NEXT_STATE (permission) := CASE {
 (state == entering)& (act == rd) & (object ==
obj): grant;
 OTHERWISE: deny; } } }
The state variables of the preceding example are used
as the asynchronous states for the concurrent access of
the limited number of access request. The specification
of the dynamic constraints is verified by verifying the
following properties expressed in temporal logic
formula:
AG (state == entering) & (act == rd) & (object ==
obj)� AX (access = grant)
AG (state == idle | state == critical | state == exiting) �
AX (access = deny)
where temporal logic formula AG (p � AX q)
indicates that “if condition p is true at time t,
condition q is true at all times later than t.

2.2.3. Historical Constraints. Historical constraints
regulate the access permission by historical access
states or recorded and predefined series of events. The
representative access control policies for this type of
access control models are N-person [4], Chinese Wall
[5], and Workflow [6] access control policies. This
type of models can be best described by synchronous
or direct specification expressions of an FSM. For
example, the following synchronous FSM
specification specifies a Chinese Wall access control

model where there are two Conflict of Interest groups
of objects:
{ VARIABLES

 access {grant, deny};
 act {rd, wrt};
 object {none, COI1, COI2};
 state {1, 2, 3}

 INITIAL_STATE(state) := 1;
 INITIAL_STATE(object) := none;
 NEXT_STATE(state) := CASE {
 state == 1 & act == rd & object == COI1: 2;
 state == 1 & act == rd & object == COI2: 3;
 state == 2 & act == rd & object == COI1: 2;
 state == 2 & act == rd & object == COI2: 2;
 state == 3 & act == rd & object == COI1: 3;
 state == 3 & act == rd & object == COI1: 3;
 OTHERWISE: 1; };
 NEXT_STATE(access) := CASE {
 state == 2 & act == rd & object == COI1: grant;
 state == 3 & act == rd & object == COI2: grant;
 OTHERWISE: deny; };
 NEXT_STATE (act) := act;
 NEXT_STATE (object) := object; }
The properties of the dynamic constraints can be
verified by verifying the following temporal logic
formula:
AG ((state == 2 & act == rd & object == COI1) | (state
== 3 & act == rd & object == COI2)) � AX (access =
grant)
AG ! ((state == 2 & act == rd & object == COI1) | (state
== 3 & act == rd & object == COI2)) � AX (access =
deny)

2.3. Test Generation

In addition to supporting property verification, the
model checking technique was adopted because it fits
well with a variety of test generation techniques, such
as fault-based mutation testing [7] and combinatorial
testing [8]. Mutation testing allows us to test for the
presence of hypothesized faults, or faults that they
subsume, and combinatorial testing makes it possible to
rule out complex interactions that may lead to failures.
As testing must always be conducted once a policy is
implemented to assure correct implementation,
automated generation of test cases can reduce total
costs, thus making formal specification easier to
integrate into the development process. Model
checking is ideal for this integration because it can
solve the oracle problem for testing (determining
expected results for a particular set of test input data),
in addition to formal verification of properties. A case
study of this technique for software is given in [9].

Even with highly automated tools such as model
checkers, real-world development budgets rarely allow
the development and exploration of formal models,
because the cost must be balanced against the cost of

releasing code with errors that would not be caught in
testing. But testing typically consumes 50% or more of
a development budget. Generating test cases from
formal specifications makes it cost-effective to allocate
a portion of the testing budget to produce a formal
specification, which can then be used to confirm
desired properties and generate test cases.

To produce test cases that guarantee combinatorial
coverage to an interaction level t, we produce a t-way
covering array [10] for input parameters used in the
policy. Informally, a covering array can be viewed as a
table of input data where each column is an input
parameter and values in each column are parameter
values, so that each row represents a test. All possible
t-way combinations of parameter values are guaranteed
to be covered at least once. If t = 2, this procedure
results in the familiar “pairwise” testing, but using new
algorithms, we are able to produce covering arrays up
to strength t = 6.

Two specification claims are generated for each
covering array row, one for result grant and one for
result deny. Values vij are taken from row i, column j
of the covering array, for all rows.
AG (p1 = v11 & ... & pn = vn1) � AX !(access_state =
grant) ……
AG (p1 = v12 & ... & pn = vn2) � AX !(access_state =
grant) ……
AG (p1 = v11 & ... & pn = vn1) � AX !(access_state =
deny)……

For a covering array with n rows, a total of 2n
specification claims will thus be produced, one grant
and one deny for each row of the covering array. In the
claims, possible results grant or deny are negated. For
each claim, if this set of values cannot in fact lead to
the particular result, the model checker indicates that
this is true. If the claim is false, the model checker
indicates so and provides a counterexample with a
trace of parameter input values and states that will
prove it to be false. The model checker thus filters the
claims that we have produced so that a total of n test
inputs is generated. In effect, each one is a test case,
i.e., a set of input parameter values and expected result.
It is then simple to map these values into test cases in
the syntax needed for the system under test. When
interaction testing is done today, t is nearly always 2
(i.e., pairwise testing) because higher strength
interactions require exponentially more test cases.
Thus, higher strength interaction testing requires fully
automated generation of test input data and expected
results, which is made possible through model
checking.

This technique makes it possible to produce two
complementary types of test cases. In addition to
combinatorial test cases, fault-based testing can be

automated. By inserting particular faults in the
specification, then generating counterexamples using
the model checker, we can produce test cases that will
detect these faults or faults that are subsumed by them.

3. Demonstration

This section provides a step-by-step demonstration
for the approach described in section 2. The result is a
set of complete test cases, i.e., input values with the
expected output for each set of inputs. We used a non-
commercial research tool called Fireeye [11] developed
by NIST and the University of Texas at Arlington
(available on http://csrc/nist/gov/acts) as covering array
generator and NuSMV [1] as model checker for the
demonstration. From Fireeye, the covering array
specifies test data, where each row of the array can be
regarded as a set of parameter values for an individual
test. Collectively, the rows of the covering array cover
all t-way combinations of parameter values for
incorporating into SMV specifications that can be
processed by the NuSMV model checker.

3.1. Sample access control policy

The rules of the demonstrated access control policy
are a simplified multi-level security system [12], in
which each subject (user) has a clearance level u_l, and
each file has a classification level f_l. Levels are given
as 0, 1, or 2, which could represent levels such as
Confidential, Secret, and Top Secret. A user u can
read a file f if u_l ≥ f_l (the “no read up” rule), or
write to a file if f_l ≥ u_l (the “no write down” rule).
Thus a pseudo code representation of the access control
rules is:

if u_l >= f_l & act = rd then GRANT;
 else if f_l >= u_l & act = wr then GRANT;
 else DENY;

The Static Constraints property of this policy is
easily modeled in SMV as a simple two-state finite
state machine by Direct Specification. The START_
state merely initializes the system (line 8, Figure 2),
with the rule above used to evaluate access as either
GRANT or DENY (lines 9-13). For example, line 9
represents the first line of the pseudo code above: in
the current state, if u_l ≥ f_l then the next state is
GRANT. Each line of the case statement is examined
sequentially, as in a conventional programming
language. Line 12 implements the “else DENY”
rule, since the predicate “1” is always true. SPEC
clauses given at the end of the model are simple
“reflections” that duplicate the access control rules as
temporal logic statements.

1. MODULE main
2. VAR
--Input parameters
3. u_l: 0..2; -- user level
4. f_l: 0..2; -- file level
5. act: {rd,wr}; -- action
--output parameter
6. access: {START_, GRANT,DENY};
7. ASSIGN
8. init(access) := START_;
--if access is allowed under rules, then next state is
GRANT
--else next state is DENY
9. next(access) := case

 10. u_l >= f_l & act = rd : GRANT;
11. f_l >= u_l & act = wr : GRANT;
12. 1 : DENY;
13. esac;
14. next(u_l) := u_l;
15. next(f_l) := f_l;
16. next(act) := act;

-- reflection of the assigns for access
-- if user level is at or above file level then read is OK
SPEC AG ((u_l >= f_l & act = rd) -> AX (access =

GRANT));
-- if user level is at or below file level, then write is OK
SPEC AG ((f_l >= u_l & act = wr) -> AX (access =

GRANT));
-- if neither condition above is true, then DENY any

action
SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act =

wr)) -> AX (access = DENY));

Figure 2. SMV model of access control rules

Specifications of the form “AG ((predicate 1) -

> AX (predicate 2))” indicate essentially that for all
paths (the “A” in “AG”) for all states globally (the
“G”), if predicate 1 holds then (“->”) for all paths, in
the next state (the “X” in “AX”) predicate 2 will hold.
If the statement is false, the model checker not only
reports this, but also provides a “counterexample”. We
simply use the model checker to determine whether a
particular input data set makes a SPEC claim true or
false. That is, we will enter claims that particular
results can be reached for a given set of input data
values, and the model checker will tell us if the claim is
true or false. This gives us the ability to match every
set of input test data with the result that the system
should produce for that input data.

3.2. NuSMV output

As shown in Figure 3, checking the properties in
the SPEC statements shows that they match the access
control rules as implemented in the FSM, as expected.
In other words, the claims we made about the state

machine in the SPEC clauses can be proven. This step
is used to check that the SPEC claims are valid for the
model defined previously. If NuSMV is unable to
prove one of the SPECs, then either the spec or the
model is incorrect. This problem must be resolved
before continuing with the test generation process.
Once the model is correct and SPEC claims have been
shown valid for the model, counterexamples can be
produced that will be turned into test cases.

Figure 3. NuSMV output

3.3. Combinatorial testing of policy

Combinatorial testing is a methodology that tests
all t-way combinations of input parameter values. The
most common form is pairwise testing, in which all
pairs of input values are covered in at least one test.
Higher strength versions of this method cover 3-way,
4-way, or more interactions at least once. The
advantage of combinatorial testing for verifying access
control policies is that access control often relies on a
small number of discrete values for most parameters.
For example, a multi-level security policy (i.e.,
standard military classification policy) may have levels
unclassified, confidential, secret, top-secret, plus a
small number of categories, all applied to a collection
of resources such as files and programs.

While real-world access control is likely to have
far too many variables for exhaustive testing, it will
probably be possible to test, for example, all 5-way
combinations of variable values. Thus a failure that
results from the interaction of five or fewer variables is
likely to be caught. The number of tests required to
provide 5-way coverage may be large, but if complete
tests are fully automated, then this form of testing is
practical even for large systems. The remainder of this

*** This is NuSMV 2.4.3 (compiled on Tue
May 22 14:08:54 UTC 2007)

*** For more information on NuSMV see
<http://nusmv.irst.itc.it>

*** or email to <nusmv-
users@irst.itc.it>.

*** Please report bugs to
<nusmv@irst.itc.it>.

*** This version of NuSMV is linked to
the MiniSat SAT solver.

***See
http://www.cs.chalmers.se/Cs/Resea
rch/FormalMethods/MiniSat

*** Copyright (c) 2003-2005, Niklas Een,
Niklas Sorensson

-- specification AG ((u_l >= f_l & act =

rd) -> AX access = GRANT) is true
-- specification AG ((f_l >= u_l & act =

wr) -> AX access = GRANT) is true
-- specification AG (!((u_l >= f_l & act

= rd) | (f_l >= u_l & act = wr)) -
> AX access = DENY) is true

Number of parameters: 3
Maximum number of values per
parameter: 3
Number of configurations: 9

Configuration #1:
1 = u_l=0
2 = f_l=0
3 = act=rd

Configuration #2:
1 = u_l=0
2 = f_l=1
3 = act=wr

Configuration #3:
1 = u_l=0
2 = f_l=2
3 = act=rd

Configuration #4:
1 = u_l=1
2 = f_l=0
3 = act=wr

Configuration #5:
1 = u_l=1
2 = f_l=1
3 = act=rd

Configuration #6:
1 = u_l=1
2 = f_l=2
3 = act=wr

Configuration #7:
1 = u_l=2
2 = f_l=0
3 = act=rd

Configuration #8:
1 = u_l=2
2 = f_l=1
3 = act=wr

Configuration #9:
1 = u_l=2
2 = f_l=2
3 = act=wr

section gives a worked example of automated
combinatorial test construction.

The first step in combinatorial testing of the policy
is to find a set of tests that will cover all t-way
combinations of parameter values, for the desired
combinatorial interaction strength t. This collection of
tests is known as a covering array. The covering array
specifies test data, where each row of the array can be
regarded as a set of parameter values for an individual
test. Collectively, the rows of the array cover all t-way
combinations of parameter values. An example is
given in Figure 4, which shows a 3-way covering array
for 10 variables with two values each. The interesting
property of this array is that any three columns contain
all eight possible values for three binary variables. For
example, taking columns F, G, and H, we can see that
all eight possible 3-way combinations
(000,001,010,011,100,101,110,111) occur somewhere
in the rows of the three columns. In fact, this is true for
any three columns. Collectively, therefore, this set of
tests will exercise all 3-way combinations of input
values in only 13 tests, as compared with 1,024 for
exhaustive coverage. Similar arrays can be generated
to cover up to all 6-way combinations. Fireeye makes
this possible with much greater efficiency than previous
tools. For example, a commercial tool required 5,400
seconds to produce a less optimal test set than Fireeye
generated in 4.2 seconds.

Figure 4. 3-way covering array for 10 parameters

with 2 values each.
We compute covering arrays that give all t-way

combinations, with degree of interaction coverage = 2
(2-way, or pairwise) for this example. The first step is
to define the parameters and their values in a system
definition file that will be used as input to Fireeye.
Call this file “in.txt”, with the following format:

[System]
[Parameter]
u_l: 0,1,2
f_l: 0,1,2
act: rd,wr
[Relation]
[Constraint]
[Misc]

Fireeye produces the output shown in Figure 5.

Figure 5. Fireeye output

Each test configuration defines a set of values for

the input parameters u_l, f_l, and act. The complete
test set ensures that all 2-way combinations of
parameter values have been covered. If we had a larger
number of parameters, we could produce test
configurations that cover all 3-way, 4-way, etc.
combinations. (With only three parameters, 3-way
interaction would be equivalent to exhaustive testing.)
Fireeye may output “don’t care” for some parameter
values. This means that any legitimate value for that
parameter can be used and the full set of configurations
will still cover all t-way combinations. Since “don’t
care” is not normally an acceptable input for programs
being tested, a random value for that parameter is

substituted before using the covering array to produce
tests.

3.4. SPEC claims with combinatorial test
values inserted

The next step is to assign values from the covering
array to parameters used in the model. For each test, we
claim that the expected result will not occur. The
model checker determines combinations that would
disprove these claims, outputting these as
counterexamples. Each counterexample can then be
converted to a test with known expected result. As can
be seen below, for each of the 9 configurations in the
covering array of Figure 5, we create a SPEC claim of
the form:
SPEC AG((<covering array values>) -> AX !(access =
<result>));
This process is repeated for each possible result, in this
case either “GRANT” or “DENY”, so we have 9 claims
for each of the two results as in Figure 6.
Excerpt:
...
-- reflection of the assign for access
--SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));
--SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));
--SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))
 -> AX (access = DENY));

* SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(access = GRANT));
* SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(access = GRANT));
 SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(access = GRANT));
 SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(access = GRANT));
* SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(access = GRANT));
* SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(access = GRANT));
* SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(access = GRANT));
 SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(access = GRANT));
* SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(access = GRANT));
 SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(access = DENY));
 SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(access = DENY));
* SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(access = DENY));
* SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(access = DENY));
 SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(access = DENY));
 SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(access = DENY));
 SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(access = DENY));
* SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(access = DENY));
 SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(access = DENY));

Figure 6. SPEC Claims

3.5. Counterexamples

NuSMV produces counterexamples where the
input values would disprove the claims specified in
Figure 2. Each of these counterexamples is thus a set
of test data that would have the expected result of
GRANT or DENY.

For each SPEC claim, if this set of values cannot
in fact lead to the particular result Rj, the model
checker indicates that this is true. For example, for the
configuration below, the claim that access will not be

granted is true, because the user’s clearance level (u_l
= 0) is below the file’s level (f_l = 2):

-- specification AG (((u_l = 0 & f_l = 2) & act = rd) -
> AX !(access = GRANT)) is true

If the claim is false, the model checker indicates this
and provides a trace of parameter input values and
states that will prove it is false, as shown below:
Excerpt from NuSMV output:

-- specification AG (((u_l = 0 & f_l = 0) & act = rd) -
> AX !(access = GRANT)) is false
-- as demonstrated by the following execution
sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
 u_l = 0
 f_l = 0
 act = rd
 access = START_
-> Input: 1.2 <-
-> State: 1.2 <-
 access = GRANT

It is then simple to map these values into complete test
cases in the syntax needed for the system under test.
The model checker finds that 6 of the input parameter
configurations produce a result of GRANT and 3
produce a DENY result as SPEC Claims marked with a
* in Figure 5, so at the completion of this step we have
successfully matched each input parameter
configuration with the result that should be produced
by the SUT.

3.6. Test cases

We now strip out the parameter names and values,
giving tests that can be applied to the system under test.
The tests produced are shown below:
u_l = 0 & f_l = 0 & act = rd -> access = GRANT
u_l = 0 & f_l = 1 & act = wr -> access = GRANT
u_l = 1 & f_l = 1 & act = rd -> access = GRANT
u_l = 1 & f_l = 2 & act = wr -> access = GRANT
u_l = 2 & f_l = 0 & act = rd -> access = GRANT
u_l = 2 & f_l = 2 & act = rd -> access = GRANT
u_l = 0 & f_l = 2 & act = rd -> access = DENY
u_l = 1 & f_l = 0 & act = wr -> access = DENY
u_l = 2 & f_l = 1 & act = wr -> access = DENY
These test definitions can now be post-processed using
simple scripts to produce a test harness that will
execute the SUT with each input and check the results.

4. Related Work

There exist several verification techniques for
applying model checking on access control policies but
few general verification techniques for applying model
checking on access control models and generating test
cases as our proposed approach. Zhang et al. [13]

present a model-checking algorithm that evaluates if an
access control policy can satisfy a user’s access request
as well as prevent intruders from reaching their
malicious goals. Instead of generic model language,
policies of the access control system and goals of
agents must be described in the access control
description and specification language introduced as
RW in their earlier work. The language does not
provide the flexibility for the specification of dynamic
or historical types of access control model nor for the
descriptions of the general properties of access
constraints. Kikuchi et al. [14] proposed the policy
verification and validation framework based on model
checking that exhaustively verifies a policy’s validity
by considering the relations between system
characteristics and policies. Their approach defines the
validity of policies and the information needed to
verify them from the viewpoint of model checking as
well as constructs the policy verification framework
based on the definition. Besides rule based system
policies, there is no demonstration that shows the
proposed framework is proper for generic access
control policies. Schaad et al. [15] presented a model-
checking approach to analyze the delegation and
revocation functionalities of workflow-based enterprise
resource management (ERP) systems. Their approach
is done in the context of a real-world banking workflow
requiring static and dynamic separation of duty
properties. The approach derived information about the
workflow from BPEL specifications and ERP business
object repositories. This was captured in an SMV
specification together with a definition of possible
delegation and revocation scenarios. Their focus was
on how to capture the workflow in an SMV model
amended by an LTL-based specification of the
Separation of Duty properties without much
consideration of generic access control models.

Different from these existing approaches, our
proposed approach is targeted at access control models
and their generic properties, and is more general and
applicable in a larger scope of models and properties.
In addition to property verification, our approach
provides efficient test generation, which generates test
cases that guarantee combinatorial coverage for the
input parameters used in the policy, thus a thorough
verification of access control implementation.

5. Conclusion

To verify properties for access control models, we
propose a new general approach that expresses access
control models in the specification language of a model
checker and generic access control properties in its

property language as temporal logic formula. Then the
approach exploits the verification process of the model
checker to verify the specified models against the
specified properties. Our approach is able to support
the verification of three common types of generic
access control properties: static, dynamic, and
historical constraints. In addition, the approach also
supports automated generation of test cases to check
the conformance of the models and their
implementations.

6. References

[1] NuSMV: http://nusmv.irst.itc.it/
[2] D. Ferraiolo and R. Kuhn. Role based access control. In
Proc. 15th NIST-NCSC National Computer Security
Conference, pp. 554–563, 1992.
[3] D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations, 1973. MITRE Corporation.
[4] National Computer Security Center. Integrity in
Automated information System. Technical Report 79-91,
Library No. S237,254, Sept. 1991.
[5] D. F. C. Brewer and M. J. Nash. The Chinese wall
security policy. In Proc. IEEE Symposium on Security and
Privacy, pp. 206–214, 1989.
[6] Workflow Management Coalition. Workflow
Management Coalition Terminology & Glossary.
http://www.wfmc.org/ Documentation number WFMC-TC-
1011, February 1999.
[7] P. Ammann and P.E. Black. Abstracting Formal
Specifications to Generate Software Tests via Model
Checking. In Proc. Digital Avionics Systems Conference, pp.
10.A.6-1 - 10.A.6-10, 1999.
[8] D.R. Kuhn, D.R. Wallace, and A.J. Gallo, Jr. Software
Fault Interactions and Implications for Software Testing.
IEEE Trans. on Software Engineering, Vol. 30, , June 2004.
[9] D. R. Kuhn and V. Okun. Pseudo-exhaustive Testing For
Software, In Proc. 30th NASA/IEEE Software Engineering
Workshop, April 25-27, 2006.
[10] Y. Lei, R. et al. Efficient Test Generation for Multi-Way
Combinatorial Testing, Software Testing, Verification, and
Reliability. Wiley InterScience, , October 2007.
[11] http://csrc.nist.gov/groups/SNS/acts/index.html
[12] Pfleeger C. P. Security In Computing Second Edition,
by Prentice-Hall PTR, 1997.
[13] N. Zhang, M. D. Ryan, and D. Guelev. Evaluating
Access Control Policies Through Model Checking. In Proc.
Information Security Conference, pp. 446-460, 2005.
[14] S. Kikuchi, S. Tsuchiya, M. Adachi, and T. Katsuyama.
Policy Verification and Validation Framework Based on
Model Checking Approach. In Proc. International
Conference on Autonomic Computing, pp. 1-9, 2007.
[15] A. Schaad, V. Lotz, and K. Sohr. A model-checking
approach to analysing organisational controls in a loan
origination process. In Proc ACM Symposium on Access
Control Models and Technologies, pp. 139-149, 2006.

