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Abstract 
 

To formally and precisely capture the security 
properties that access control should adhere to, access 
control models are usually written to bridge the rather 
wide gap in abstraction between policies and 
mechanisms. In this paper, we propose a new general 
approach for property verification for access control 
models.  The approach defines a standardized 
structure for access control models, providing for both 
property verification and automated generation of test 
cases.  The approach expresses access control models 
in the specification language of a model checker and 
expresses generic access control properties in the 
property language. Then the approach uses the model 
checker to verify these properties for the access control 
models and generates test cases via combinatorial 
covering array for the system implementations of the 
models. 
 

1. Introduction 
 

Access control systems are among the most critical 
of network security components. It is common that a 
system’s privacy and security are compromised due to 
the misconfiguration of access control policies rather 
than the failure of cryptographic primitives or 
protocols. This problem becomes increasingly severe 
as software systems become more and more complex, 
and are deployed to manage a large amount of sensitive 
information and resources that are organized into 
sophisticated structures. Identifying discrepancies 
between policy specifications and their intended 
function is crucial because correct implementation and 
enforcement of policies by applications is based on the 
premise that the policy specifications are correct. As a 
result, policy specifications must undergo rigorous 
verification and validation to ensure that the policy 
specifications truly encapsulate the desires of the policy 
authors.  

To formally and precisely capture the security 
properties that access control should adhere to, access 
control models are usually written, to bridge the rather 
wide gap in abstraction between policies and 
mechanisms. Users see access control models as 
unambiguous and precise expression of requirements; 
vendors and system developers see access control 
models as design and implementation requirements.  

In this paper, we propose a new general approach to 
property verification for access control models by 
combining model checking and combinatorial testing. 
Section 2 presents our approach of model checking and 
combinatorial covering array, section 3 demonstrates 
an example for the approach, section 4 compares our 
work with related work, and section 5 is the conclusion. 
 

2. Approach 
 

Our approach expresses access control models in the 
specification language of a model checker (Section 
2.1), expresses generic access control properties in 
temporal logic formulae, and verifies these properties 
with the model checker (Section 2.2). Test cases, 
consisting of input data and expected results, are 
generated from a combinatorial covering array 
following verification (Section 2.3) as illustrated in 
Figure 1. One goal of the techniques in our approach is 
to reduce overall software assurance costs by 
integrating verification with test generation.  



2.1. Model Specification 
 
     As the test cases for the verification are translated 
from the counterexamples generated by the model 
checker’s property checking to the entries of covering 
array (Figure 1), we specify access control in a Finite 
State Machine (FSM) that describes the transition of 
authorization states. In general, any expression in the 
propositional calculus can be used to define the 
transition relation of authorization states; however, the 
flexibility of the expression is accompanied by the risk 
of a logical contradiction, which makes specifications 
vacuously true or makes the system unimplementable. 
Fundamentally, there are three basic types of FSM 
expressions Synchronous, Asynchronous, and Direct 
specification for specifying access control models in 
terms of the sequence of the state transitions. 

From the separation of duty and safety point of view, 
the state transitions of access control properties can be 
categorized by three types of constraints, namely static, 
dynamic, and historical constraints. These constraints 
can be expressed directly by the three basic types of 
FSM models. 
 
2.2. Property Specification and Verification 
 
In this section, we illustrate how the properties of 
constraints (with their models) can be specified and 
verified by our approach. We use SMV[1]-like pseudo 
code for the specification of access control models, and 
Computational Tree Logic (CTL) for the specification 
of the access control properties for the reason that the 
constraint models/properties can be successfully 
specified, and the combinatorial testing functions can 
be easily integrated with the checking results generated 
by the SMV.  
 
2.2.1. Static Constraints. Static constraints regulate 
the access permission by static system states or 
conditions such as rules, attributes, and system 
environments (times and locations for access). Popular 
access control models with these types of properties 
include Role-Based Access Control (RBAC) [2] and 
Multi-Level Access Control [3]. These types of models 
can be specified by asynchronous or direct 
specification expressions of an FSM. The transition 
relation of authorization states is directly specified as a 
propositional formula in terms of the current and next 
values of the state variables. Any current state/next 
state pair is in the transition relation if and only if it 
satisfies the formula, as demonstrated in the following 
direct specification of an FSM: 
{ VARIABLES 

         access_state : boolean;  /* 1 as grant, 0 as deny*/ 
        ………. 
     INITIAL  
        access_state  := 0; 
     TRANS /* transit to next access state */ 
        next (access_state) := 
         ((constraint_1 & constraint_2 & …… constraint_n) | 
         (constraint_a & constraint_b & …… constraint_m) 
……..) } 
where the system state of access authorization is 
initialized as the deny state and moved to the grant 
state for any access request that complies with the 
constraints of the rule corresponding with each 
constraint predicate (i.e., constraint_i….& 
constraint_n), and stay in the deny state otherwise. 
The properties of the static constraints can be verified 
using the properties expressed in the following 
temporal logic formulae: 
AG (constraint_1 & constraint_2 & …. constraint_n) � AX 
(access_state = 1) 
AG (constraint_a & constraint_b & …. constraint_m) � 
AX (access_state = 1) …… 
AG ! ((constraint_1 & ….constraint_n) | (constraint_a & …. 
constraint_m) |… ) �  AX (access_state = 0) 
which simply means that all access requests that 
comply with specified constraints for the rules should 
be granted, and all non-complied ones should be 
denied.  
 
2.2.2. Dynamic Constraints. Dynamic constraints 
regulate the access permission by dynamic system 
states or conditions such as specified events or system 
counters. An access control model with these types of 
properties specifies that accesses are permitted only by 
a certain subject to a certain object with certain 
limitations (e.g., object x can be accessed only no more 
than i times simultaneously by user group y). For 
example, if a user’s role is a cashier, he or she cannot 
be an accountant at the same time when handling a 
customer’s checks. This type of model can be specified 
with asynchronous or direct specification expressions 
of an FSM, which uses a variable semaphore to express 
the dynamic properties of the authorization decision 
process. Another example of dynamic constraint states 
is enforcing a limited number of concurrent accesses to 
an object. The authorization process for a user thus has 
four states: idle, entering, critical, and exiting. A 
user is normally in the idle state. The user is moved to 
the entering state when the user wants to access the 
critical object. If the limited number of access times is 
not reached, the user is moved to the critical state, and 
the number of the current access is increased by 1. 
When the user finishes accessing the critical object, the 
user is moved to the exiting state, and the number of 
the current access is decreased by 1. Then the user is 



moved from the exiting state to the idle state. The 
authorization process can be modeled as the following 
asynchronous FSM specification: 
{ VARIABLES      
        count, access_limit : INTEGER;  
        request_1 : process_request (count);  
        request_2 : process_request (count); 
        ……. 
        request_n: process_request (count);  
        /*max number of user requests allowed by the system*/ 
        access_limit := k;  /*max number of concurrent 
access*/ 
        count := 0; act {rd, wrt}; object {obj}; 
        process_request  (access_limit) { 
            VARIABLES 
                permission : {start, grant, deny}; 
                state : {idle, entering, critical, exiting};        
            INITIAL_STATE (permission) := start; 
            INITIAL_STATE (state) := idle; 
            NEXT_STATE (state) := CASE { 
                 state == idle : {idle, entering}; 
                 state == entering & ! (count > access_limit):   
critical;                                                                          
                 state == critical : {critical, exiting}; 
                 state == exiting : idle; 
                 OTHERWISE: state}; 
           NEXT_STATE (count) := CASE { 
                 state == entering : count + 1; 
                 state == exiting : count -1; 
                 OTHERWISE: DO_NOTHING }; 
           NEXT_STATE (permission) := CASE { 
                (state == entering)& (act == rd) & (object == 
obj): grant;                                        
                OTHERWISE: deny; } } } 
The state variables of the preceding example are used 
as the asynchronous states for the concurrent access of 
the limited number of access request. The specification 
of the dynamic constraints is verified by verifying the 
following properties expressed in temporal logic 
formula: 
AG  (state == entering) & (act == rd) & (object == 
obj)� AX (access = grant) 
AG (state == idle | state == critical | state == exiting) � 
AX (access = deny) 
where temporal logic formula AG (p � AX q) 
indicates that “if condition p is true at time t, 
condition q is true at all times later than t. 
 
2.2.3. Historical Constraints. Historical constraints 
regulate the access permission by historical access 
states or recorded and predefined series of events. The 
representative access control policies for this type of 
access control models are N-person [4], Chinese Wall 
[5], and Workflow [6] access control policies. This 
type of models can be best described by synchronous 
or direct specification expressions of an FSM. For 
example, the following synchronous FSM 
specification specifies a Chinese Wall access control 

model where there are two Conflict of Interest groups 
of objects:  
{ VARIABLES  

     access {grant, deny}; 
     act {rd, wrt}; 
     object {none, COI1, COI2}; 
     state {1, 2, 3} 

      INITIAL_STATE(state) := 1; 
      INITIAL_STATE(object) := none; 
      NEXT_STATE(state) := CASE { 
         state == 1 & act == rd & object == COI1: 2;  
         state == 1 & act == rd & object == COI2: 3; 
         state == 2 & act == rd & object == COI1: 2; 
         state == 2 & act == rd & object == COI2: 2; 
        state == 3 & act == rd & object == COI1: 3; 
         state == 3 & act == rd & object == COI1: 3; 
         OTHERWISE: 1; }; 
     NEXT_STATE(access) := CASE { 
         state == 2 & act == rd & object == COI1: grant; 
         state == 3 & act == rd & object == COI2: grant; 
       OTHERWISE: deny; }; 
       NEXT_STATE (act) := act; 
       NEXT_STATE (object) := object; }  
The properties of the dynamic constraints can be 
verified by verifying the following temporal logic 
formula: 
AG ((state == 2 & act == rd & object == COI1) | (state 
== 3 & act == rd & object == COI2)) � AX (access = 
grant) 
AG ! ((state == 2 & act == rd & object == COI1) | (state 
== 3 & act == rd & object == COI2)) � AX (access = 
deny) 
 
2.3. Test Generation 
 

In addition to supporting property verification, the 
model checking technique was adopted because it fits 
well with a variety of test generation techniques, such 
as fault-based mutation testing [7] and combinatorial 
testing [8].  Mutation testing allows us to test for the 
presence of hypothesized faults, or faults that they 
subsume, and combinatorial testing makes it possible to 
rule out complex interactions that may lead to failures.  
As testing must always be conducted once a policy is 
implemented to assure correct implementation, 
automated generation of test cases can reduce total 
costs, thus making formal specification easier to 
integrate into the development process.  Model 
checking is ideal for this integration because it can 
solve the oracle problem for testing (determining 
expected results for a particular set of test input data), 
in addition to formal verification of properties.  A case 
study of this technique for software is given in [9]. 

Even with highly automated tools such as model 
checkers, real-world development budgets rarely allow 
the development and exploration of formal models, 
because the cost must be balanced against the cost of 



releasing code with errors that would not be caught in 
testing.  But testing typically consumes 50% or more of 
a development budget.  Generating test cases from 
formal specifications makes it cost-effective to allocate 
a portion of the testing budget to produce a formal 
specification, which can then be used to confirm 
desired properties and generate test cases.  

To produce test cases that guarantee combinatorial 
coverage to an interaction level t, we produce a t-way 
covering array [10] for input parameters used in the 
policy.  Informally, a covering array can be viewed as a 
table of input data where each column is an input 
parameter and values in each column are parameter 
values, so that each row represents a test.  All possible 
t-way combinations of parameter values are guaranteed 
to be covered at least once. If t = 2, this procedure 
results in the familiar “pairwise” testing, but using new 
algorithms, we are able to produce covering arrays up 
to strength t = 6.   

Two specification claims are generated for each 
covering array row, one for result grant and one for 
result deny.   Values vij are taken from row i, column j 
of the covering array, for all rows.    
AG (p1 = v11 & ... & pn = vn1) � AX !(access_state = 
grant) …… 
AG (p1 = v12 & ... & pn = vn2) � AX !(access_state = 
grant) …… 
AG (p1 = v11 & ... & pn = vn1) � AX !(access_state = 
deny)…… 

For a covering array with n rows, a total of 2n 
specification claims will thus be produced, one grant 
and one deny for each row of the covering array. In the 
claims, possible results grant or deny are negated. For 
each claim, if this set of values cannot in fact lead to 
the particular result, the model checker indicates that 
this is true.  If the claim is false, the model checker 
indicates so and provides a counterexample with a 
trace of parameter input values and states that will 
prove it to be false. The model checker thus filters the 
claims that we have produced so that a total of n test 
inputs is generated.  In effect, each one is a test case, 
i.e., a set of input parameter values and expected result.  
It is then simple to map these values into test cases in 
the syntax needed for the system under test.  When 
interaction testing is done today, t is nearly always 2 
(i.e., pairwise testing) because higher strength 
interactions require exponentially more test cases.  
Thus, higher strength interaction testing requires fully 
automated generation of test input data and expected 
results, which is made possible through model 
checking. 

This technique makes it possible to produce two 
complementary types of test cases. In addition to 
combinatorial test cases, fault-based testing can be 

automated. By inserting particular faults in the 
specification, then generating counterexamples using 
the model checker, we can produce test cases that will 
detect these faults or faults that are subsumed by them.   
 

3. Demonstration 
 

This section provides a step-by-step demonstration 
for the approach described in section 2. The result is a 
set of complete test cases, i.e., input values with the 
expected output for each set of inputs. We used a non-
commercial research tool called Fireeye [11] developed 
by NIST and the University of Texas at Arlington 
(available on http://csrc/nist/gov/acts) as covering array 
generator and NuSMV [1] as model checker for the 
demonstration. From Fireeye, the covering array 
specifies test data, where each row of the array can be 
regarded as a set of parameter values for an individual 
test.   Collectively, the rows of the covering array cover 
all t-way combinations of parameter values for 
incorporating into SMV specifications that can be 
processed by the NuSMV model checker. 

 
3.1. Sample access control policy 
 

The rules of the demonstrated access control policy 
are a simplified multi-level security system [12], in 
which each subject (user) has a clearance level u_l, and 
each file has a classification level f_l. Levels are given 
as 0, 1, or 2, which could represent levels such as 
Confidential, Secret, and Top Secret.  A user u can 
read a file f if u_l  ≥  f_l (the “no read up” rule), or 
write to a file if  f_l  ≥  u_l (the “no write down” rule). 
Thus a pseudo code representation of the access control 
rules is: 

if u_l >= f_l & act = rd then GRANT; 
          else if f_l >= u_l & act = wr then GRANT; 
          else DENY; 

The Static Constraints property of this policy is 
easily modeled in SMV as a simple two-state finite 
state machine by Direct Specification.  The START_ 
state merely initializes the system (line 8, Figure 2), 
with the rule above used to evaluate access as either 
GRANT or DENY (lines 9-13).   For example, line 9 
represents the first line of the pseudo code above:  in 
the current state, if u_l  ≥  f_l then the next state is 
GRANT.  Each line of the case statement is examined 
sequentially, as in a conventional programming 
language.   Line 12 implements the “else DENY” 
rule, since the predicate “1” is always true.   SPEC 
clauses given at the end of the model are simple 
“reflections” that duplicate the access control rules as 
temporal logic statements.   



1. MODULE main  
2. VAR   
--Input parameters 
3. u_l:   0..2;  -- user level 
4. f_l:   0..2;  -- file level 
5. act:  {rd,wr};  -- action 
--output parameter 
6. access: {START_, GRANT,DENY}; 
7. ASSIGN  
8. init(access) := START_; 
--if access is allowed under rules, then next state is 
GRANT 
--else next state is DENY 
9. next(access) := case 

   10. u_l >= f_l & act = rd : GRANT; 
11. f_l >= u_l & act = wr : GRANT; 
12. 1 : DENY; 
13. esac; 
14. next(u_l) := u_l; 
15. next(f_l) := f_l; 
16. next(act) := act;  

 
-- reflection of the assigns for access 
-- if user level is at or above file level then read is OK 
SPEC AG ((u_l >= f_l & act = rd ) -> AX (access = 

GRANT)); 
-- if user level is at or below file level, then write is OK 
SPEC AG ((f_l >= u_l & act = wr ) -> AX (access = 

GRANT)); 
-- if neither condition above is true, then DENY any 

action 
SPEC AG (!( (u_l >= f_l & act = rd ) | (f_l >= u_l & act = 

wr ))  -> AX (access = DENY)); 
 

Figure 2. SMV model of access control rules 
 
Specifications of the form “AG ((predicate 1) -

> AX (predicate 2))”   indicate essentially that for all 
paths (the “A” in “AG”) for all states globally (the 
“G”), if predicate 1 holds then ( “->”) for all paths, in 
the next state (the “X” in “AX”) predicate 2 will hold. 
If the statement is false, the model checker not only 
reports this, but also provides a “counterexample”. We 
simply use the model checker to determine whether a 
particular input data set makes a SPEC claim true or 
false.  That is, we will enter claims that particular 
results can be reached for a given set of input data 
values, and the model checker will tell us if the claim is 
true or false.  This gives us the ability to match every 
set of input test data with the result that the system 
should produce for that input data. 
 
3.2. NuSMV output 
 

As shown in Figure 3, checking the properties in 
the SPEC statements shows that they match the access 
control rules as implemented in the FSM, as expected.   
In other words, the claims we made about the state 

machine in the SPEC clauses can be proven.  This step 
is used to check that the SPEC claims are valid for the 
model defined previously.  If NuSMV is unable to 
prove one of the SPECs, then either the spec or the 
model is incorrect.  This problem must be resolved 
before continuing with the test generation process. 
Once the model is correct and SPEC claims have been 
shown valid for the model, counterexamples can be 
produced that will be turned into test cases. 

Figure 3.  NuSMV output 
 
3.3. Combinatorial testing of policy 

Combinatorial testing is a methodology that tests 
all t-way combinations of input parameter values.  The 
most common form is pairwise testing, in which all 
pairs of input values are covered in at least one test.  
Higher strength versions of this method cover 3-way, 
4-way, or more interactions at least once.  The 
advantage of combinatorial testing for verifying access 
control policies is that access control often relies on a 
small number of discrete values for most parameters.  
For example, a multi-level security policy (i.e., 
standard military classification policy) may have levels 
unclassified, confidential, secret, top-secret, plus a 
small number of categories, all applied to a collection 
of resources such as files and programs.   

While real-world access control is likely to have 
far too many variables for exhaustive testing, it will 
probably be possible to test, for example, all 5-way 
combinations of variable values.  Thus a failure that 
results from the interaction of five or fewer variables is 
likely to be caught.  The number of tests required to 
provide 5-way coverage may be large, but if complete 
tests are fully automated, then this form of testing is 
practical even for large systems.   The remainder of this 

*** This is NuSMV 2.4.3 (compiled on Tue 
May 22 14:08:54 UTC 2007) 

*** For more information on NuSMV see 
<http://nusmv.irst.itc.it> 

*** or email to <nusmv-
users@irst.itc.it>. 

*** Please report bugs to 
<nusmv@irst.itc.it>. 

*** This version of NuSMV is linked to 
the MiniSat SAT solver.  

***See 
http://www.cs.chalmers.se/Cs/Resea
rch/FormalMethods/MiniSat 

*** Copyright (c) 2003-2005, Niklas Een, 
Niklas Sorensson  

 
-- specification AG ((u_l >= f_l & act = 

rd) -> AX access = GRANT)  is true 
-- specification AG ((f_l >= u_l & act = 

wr) -> AX access = GRANT)  is true 
-- specification AG (!((u_l >= f_l & act 

= rd) | (f_l >= u_l & act = wr)) -
> AX access = DENY)  is true 



Number of parameters: 3 
Maximum number of values per 
parameter: 3 
Number of configurations: 9 
------------------------------------- 
Configuration #1: 
1 = u_l=0 
2 = f_l=0 
3 = act=rd 
------------------------------------- 
Configuration #2: 
1 = u_l=0 
2 = f_l=1 
3 = act=wr 
------------------------------------- 
Configuration #3: 
1 = u_l=0 
2 = f_l=2 
3 = act=rd 
------------------------------------- 
Configuration #4: 
1 = u_l=1 
2 = f_l=0 
3 = act=wr 
------------------------------------- 
Configuration #5: 
1 = u_l=1 
2 = f_l=1 
3 = act=rd 
------------------------------------- 
Configuration #6: 
1 = u_l=1 
2 = f_l=2 
3 = act=wr 
------------------------------------- 
Configuration #7: 
1 = u_l=2 
2 = f_l=0 
3 = act=rd 
------------------------------------- 
Configuration #8: 
1 = u_l=2 
2 = f_l=1 
3 = act=wr 
------------------------------------- 
Configuration #9: 
1 = u_l=2 
2 = f_l=2 
3 = act=wr 

section gives a worked example of automated 
combinatorial test construction.  

The first step in combinatorial testing of the policy 
is to find a set of tests that will cover all t-way 
combinations of parameter values, for the desired 
combinatorial interaction strength t.  This collection of 
tests is known as a covering array.   The covering array 
specifies test data, where each row of the array can be 
regarded as a set of parameter values for an individual 
test.   Collectively, the rows of the array cover all t-way 
combinations of parameter values.  An example is 
given in Figure 4, which shows a 3-way covering array 
for 10 variables with two values each.  The interesting 
property of this array is that any three columns contain 
all eight possible values for three binary variables.  For 
example, taking columns F, G, and H, we can see that 
all eight possible 3-way combinations 
(000,001,010,011,100,101,110,111) occur somewhere 
in the rows of the three columns.  In fact, this is true for 
any three columns.  Collectively, therefore, this set of 
tests will exercise all 3-way combinations of input 
values in only 13 tests, as compared with 1,024 for 
exhaustive coverage.  Similar arrays can be generated 
to cover up to all 6-way combinations.  Fireeye makes 
this possible with much greater efficiency than previous 
tools.  For example, a commercial tool required 5,400 
seconds to produce a less optimal test set than Fireeye 
generated in 4.2 seconds. 

 
Figure 4.  3-way covering array for 10 parameters 

with 2 values each. 
We compute covering arrays that give all t-way 

combinations, with degree of interaction coverage = 2 
(2-way, or pairwise) for this example. The first step is 
to define the parameters and their values in a system 
definition file that will be used as input to Fireeye.  
Call this file “in.txt”, with the following format: 

[System] 
[Parameter] 
u_l: 0,1,2 
f_l: 0,1,2 
act: rd,wr 
[Relation] 
[Constraint] 
[Misc] 

Fireeye produces the output shown in Figure 5. 

Figure 5.  Fireeye output 
 
Each test configuration defines a set of values for 

the input parameters u_l, f_l, and act.  The complete 
test set ensures that all 2-way combinations of 
parameter values have been covered.  If we had a larger 
number of parameters, we could produce test 
configurations that cover all 3-way, 4-way, etc. 
combinations.  (With only three parameters, 3-way 
interaction would be equivalent to exhaustive testing.)  
Fireeye may output “don’t care” for some parameter 
values.  This means that any legitimate value for that 
parameter can be used and the full set of configurations 
will still cover all t-way combinations.  Since “don’t 
care” is not normally an acceptable input for programs 
being tested, a random value for that parameter is 



substituted before using the covering array to produce 
tests. 
 
3.4. SPEC claims with combinatorial test 
values inserted 
 

The next step is to assign values from the covering 
array to parameters used in the model. For each test, we 
claim that the expected result will not occur.  The 
model checker determines combinations that would 
disprove these claims, outputting these as 
counterexamples. Each counterexample can then be 
converted to a test with known expected result. As can 
be seen below, for each of the 9 configurations in the 
covering array of Figure 5, we create a SPEC claim of 
the form:  
SPEC AG(( <covering array values> ) -> AX !(access = 
<result>));  
This process is repeated for each possible result, in this 
case either “GRANT” or “DENY”, so we have 9 claims 
for each of the two results as in Figure 6. 
Excerpt: 
... 
-- reflection of the assign for access 
--SPEC AG ((u_l >= f_l & act = rd ) -> AX (access = GRANT)); 
--SPEC AG ((f_l >= u_l & act = wr ) -> AX (access = GRANT)); 
--SPEC AG (!( (u_l >= f_l & act = rd ) | (f_l >= u_l & act = wr ) )  
            -> AX (access = DENY)); 
 
* SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(access = GRANT)); 
* SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(access = GRANT)); 
  SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(access = GRANT)); 
  SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(access = GRANT)); 
* SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(access = GRANT)); 
* SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(access = GRANT)); 
* SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(access = GRANT)); 
  SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(access = GRANT)); 
* SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(access = GRANT)); 
  SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(access = DENY)); 
  SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(access = DENY)); 
* SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(access = DENY)); 
* SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(access = DENY)); 
  SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(access = DENY)); 
  SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(access = DENY)); 
  SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(access = DENY)); 
* SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(access = DENY)); 
  SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(access = DENY)); 

 
Figure 6.  SPEC Claims  

 

3.5. Counterexamples 
 

NuSMV produces counterexamples where the 
input values would disprove the claims specified in 
Figure 2.  Each of these counterexamples is thus a set 
of test data that would have the expected result of 
GRANT or DENY. 

For each SPEC claim, if this set of values cannot 
in fact lead to the particular result Rj, the model 
checker indicates that this is true.  For example, for the 
configuration below, the claim that access will not be 

granted is true, because the user’s clearance level (u_l 
= 0) is below the file’s level (f_l = 2): 

-- specification AG (((u_l = 0 & f_l = 2) & act = rd) -
> AX !(access = GRANT))  is true 

If the claim is false, the model checker indicates this 
and provides a trace of parameter input values and 
states that will prove it is false, as shown below:  
Excerpt from NuSMV output: 

-- specification AG (((u_l = 0 & f_l = 0) & act = rd) -
> AX !(access = GRANT))  is false 
-- as demonstrated by the following execution 
sequence 
Trace Description: CTL Counterexample  
Trace Type: Counterexample  
-> State: 1.1 <- 
  u_l = 0 
  f_l = 0 
  act = rd 
  access = START_ 
-> Input: 1.2 <- 
-> State: 1.2 <- 
  access = GRANT 

It is then simple to map these values into complete test 
cases in the syntax needed for the system under test.   
The model checker finds that 6 of the input parameter 
configurations produce a result of GRANT and 3 
produce a DENY result as SPEC Claims marked with a 
* in Figure 5, so at the completion of this step we have 
successfully matched each input parameter 
configuration with the result that should be produced 
by the SUT.  
 
3.6. Test cases 
 

We now strip out the parameter names and values, 
giving tests that can be applied to the system under test. 
The tests produced are shown below: 
u_l = 0 & f_l = 0 & act = rd -> access = GRANT   
u_l = 0 & f_l = 1 & act = wr -> access = GRANT   
u_l = 1 & f_l = 1 & act = rd -> access = GRANT   
u_l = 1 & f_l = 2 & act = wr -> access = GRANT   
u_l = 2 & f_l = 0 & act = rd -> access = GRANT   
u_l = 2 & f_l = 2 & act = rd -> access = GRANT   
u_l = 0 & f_l = 2 & act = rd -> access = DENY   
u_l = 1 & f_l = 0 & act = wr -> access = DENY   
u_l = 2 & f_l = 1 & act = wr -> access = DENY   
These test definitions can now be post-processed using 
simple scripts to produce a test harness that will 
execute the SUT with each input and check the results.   
 

4. Related Work 
 

There exist several verification techniques for 
applying model checking on access control policies but 
few general verification techniques for applying model 
checking on access control models and generating test 
cases as our proposed approach. Zhang et al. [13] 



present a model-checking algorithm that evaluates if an 
access control policy can satisfy a user’s access request 
as well as prevent intruders from reaching their 
malicious goals. Instead of generic model language, 
policies of the access control system and goals of 
agents must be described in the access control 
description and specification language introduced as 
RW in their earlier work. The language does not 
provide the flexibility for the specification of dynamic 
or historical types of access control model nor for the 
descriptions of the general properties of access 
constraints. Kikuchi et al. [14] proposed the policy 
verification and validation framework based on model 
checking that exhaustively verifies a policy’s validity 
by considering the relations between system 
characteristics and policies. Their approach defines the 
validity of policies and the information needed to 
verify them from the viewpoint of model checking as 
well as constructs the policy verification framework 
based on the definition. Besides rule based system 
policies, there is no demonstration that shows the 
proposed framework is proper for generic access 
control policies. Schaad et al. [15] presented a model-
checking approach to analyze the delegation and 
revocation functionalities of workflow-based enterprise 
resource management (ERP) systems. Their approach 
is done in the context of a real-world banking workflow 
requiring static and dynamic separation of duty 
properties. The approach derived information about the 
workflow from BPEL specifications and ERP business 
object repositories. This was captured in an SMV 
specification together with a definition of possible 
delegation and revocation scenarios. Their focus was 
on how to capture the workflow in an SMV model 
amended by an LTL-based specification of the 
Separation of Duty properties without much 
consideration of generic access control models.  

Different from these existing approaches, our 
proposed approach is targeted at access control models 
and their generic properties, and is more general and 
applicable in a larger scope of models and properties. 
In addition to property verification, our approach 
provides efficient test generation, which generates test 
cases that guarantee combinatorial coverage for the 
input parameters used in the policy, thus a thorough 
verification of access control implementation.  

 

5. Conclusion 
 

To verify properties for access control models, we 
propose a new general approach that expresses access 
control models in the specification language of a model 
checker and generic access control properties in its 

property language as temporal logic formula. Then the 
approach exploits the verification process of the model 
checker to verify the specified models against the 
specified properties. Our approach is able to support 
the verification of three common types of generic 
access control properties: static, dynamic, and 
historical constraints. In addition, the approach also 
supports automated generation of test cases to check 
the conformance of the models and their 
implementations.  
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