Property Verification for Generic Access Control Models'

Vincent C. Hd, D. Richard Kuhh Tao Xi¢
'National Institute of Standards and Technology, “North Carolina State University
vhu@nist.gov, kuhn@nist.gov, xie@csc.ncsu.edu

Abstract

To formally and precisely capture the security
properties that access control should adhere to, access
control models are usually written to bridge the rather
wide gap in abstraction between policies and
mechanisms. In this paper, we propose a new general
approach for property verification for access control
models. The approach defines a standardized
structure for access control models, providing for both
property verification and automated generation of test
cases. The approach expresses access control models
in the specification language of a model checker and
expresses generic access control properties in the
property language. Then the approach uses the model
checker to verify these properties for the access control
models and generates test cases via combinatorial
covering array for the system implementations of the
models.

1. Introduction

To formally and precisely capture the security
properties that access control should adhere tmesac
control models are usually written, to bridge thther
wide gap in abstraction between policies and
mechanisms. Users see access control models as
unambiguous and precise expression of requirements;
vendors and system developers see access control
models as design and implementation requirements.

In this paper, we propose a new general approach to
property verification for access control models by
combining model checking and combinatorial testing.
Section 2 presents our approach of model checkidg a
combinatorial covering array, section 3 demonstrate
an example for the approach, section 4 compares our
work with related work, and section 5 is the cosida.

2. Approach

Our approach expresses access control models in the
specification language of a model checker (Section
2.1), expresses generic access control propenties i
temporal logic formulae, and verifies these prdpert

Access control systems are among the most criticalWith the model checker (Section 2.Z)Jest cases,
of network security components. It is common that a consisting ofinput data and expected results, are
system’s privacy and security are compromised due t generated from a combinatorial covering array

the misconfiguration of access control policiesheat
than

the failure of cryptographic primitives or

following verification (Section 2.3) as illustrateid
Figure 1. One goal of the techniques in our apgrasic

protocols. This problem becomes increasingly severeto reduce overall software assurance costs by
as software systems become more and more complexintegrating verification with test generation.

and are deployed to manage a large amount of sensit ——M —M ——— ———
information and resources that are organized into Qgﬁi;s control Covering | _f Covefirig-
sophisticated structures. Identifying discrepancies | impiementatio ggﬁgrator e
between policy specifications and their intended

function is crucial because correct implementatiod e
enforcement of policies by applications is basedhen :j:jégﬁﬁ-so.ls‘;i;i “—> Eﬂh(;(ﬁe
premise that the policy specifications are corrésta “model ")

result, policy specifications must undergo rigorous
verification and validation to ensure that the ppli
specifications truly encapsulate the desires opthley
authors.

Access contrd|
Properties

Figure 1. Property verification

generator

! This work is supported in part by NSF grant CNS&u79.

2.1. Model Specification access_state : boolean; /* 1 as grant, 0 as deny?*/

INITIAL
access_state :=0;
TRANS /* transit to next access state */

As the test cases for the verification aredlaed
from the counterexamples generated by the model

checker’s property checking to the entries of cimger next (access_state) :=

array (Figure 1), we specify access control in @it&i ((constraint_1 & congtraint 2 & constraint_n) |

State Machine (FSM) that describes the transitibn o (constraint_a & constraint b & constraint_m)
authorization states. In general, any expressiothéen —)}

propositional calculus can be used to define thewhere the system state of access authorization is
transition relation of authorization states; howewkee initialized as thedeny state and moved to thgrant

flexibility of the expression is accompanied by tisk state for any access request that complies with the
of a logical contradiction, which makes specifioai ~ constraints of the rule corresponding with each
vacuously true or makes the system unimplementable constraint ~ predicate (i.e., constraint_i....&
Fundamentally, there are three basic types of FSMconstraint_n), and stay in theleny state otherwise.

expressionsSynchronous, Asynchronous, and Dir ect The properties of the static constraints can béieer
specification for specifying access control models in using the properties expressed in the following
terms of the sequence of the state transitions. temporal logic formulae:

From the separation of duty and safety point ofwie AG (constraint_1 & constraint_2 & ... constraint_n) = AX
the state transitions of access control propectigsbe fgcessﬁstgt? = g raint b & Sraint m) o
categorized by three types of constraints, narstelyc, A ((ggge;?nst_;te =°°1r; raint b & ... constraint_m)
dynamic, andhistorical constraintsThese constraints 5 ((constraint_1 &constraint_n) | (constraint aé.

can be expressed directly by the three basic tgbes congraint m)|...) 2 AX (access_state = 0)

FSM models. which simply means that all access requests that
o o comply with specified constraints for the rules wdo
2.2. Property Specification and Verification be granted, and all non-complied ones should be
denied.

In this section, we illustrate how the propertiels o

constraints (with their models) can be specifiedl an 2.2.2. Dynamic Constraints. Dynamic constraints
verified by our approach. We use SMV[1]-like pseudo regulate the access permission by dynamic system
code for the specification of access control mad®isl states or conditions such as specified events sieisy
Computational Tree Logic (CTL) for the specificatio counters. An access control model with these tyges

of the access control properties for the reasohttiea properties specifies that accesses are permittydogn
constraint models/properties can be successfullya certain subject to a certain object with certain

specified, and the combinatorial testing functieas |imitations (e.g., object can be accessed only no more
be easily integrated with the checking results cped than i times simultaneously by user growp. For
by the SMV. example, if a user’s role isashier, he or she cannot

be anaccountant at the same time when handling a
2.2.1. Static Congtraints. Static constraints regulate customer’s checks. This type of model can be sieecif
the access permission by static system states oOfyith asynchronous or direct specification expressions
conditions such as rules, attributes, and systemof an FSM, which uses a variable semaphore to ezpre
environments (times and locations for access). Ropu the dynamic properties of the authorization deaisio
access control models with these types of propertie process. Another example of dynamic constrainestat
include Role-Based Access Control (RBAC) [2] and is enforcing a limited number of concurrent accesse
Multi-Level Access Control [3]. These types of misde an object. The authorization process for a uses tas
can be specified byasynchronous or direct four statesidle, entering, critical, andexiting. A
specification expressions of an FSM. The transition user is normally in thédle state. The user is moved to
relation of authorization states is directly spiecdifas a the entering state when the user wants to access the
propositional formula in terms of the current arekin critical object. If the limited number of accessidis is
values of the state variables. Any current stal¢/ne not reached, the user is moved to¢hieical state, and

state pair is in the transition relation if and yorfl it the number of the current access is increased by 1.
satisfies the formula, as demonstrated in the Jofig When the user finishes accessing the critical abjbe
direct specification of an FSM: user is moved to thexiting state, and the number of

{ VARIABLES the current access is decreased by 1. Then theisuser

moved from theexiting state to theidle state. The

authorization process can be modeled as the failpwi

asynchronous FSM specification:
{ VARIABLES
count, access_limit : INTEGER;
request_1 : process_request (count);
request_2 : process_request (count);
request_n: process_request (count);
/*max number of user requests allowed by the sygtem
access_limit := k; /*max number of concurrent
access*/
count := 0; act {rd, wrt}; object {obj};
process_request (access_limit) {
VARIABLES
permission : {start, grant, deny};
state : {idle, entering, critical, exiting};
INITIAL_STATE (permission) := start;
INITIAL_STATE (state) := idle;
NEXT_STATE (state) := CASE {
state == idle : {idle, entering};
state == entering & ! (count > access_limit):
critical;
state == critical : {critical, exiting};
state == exiting : idle;
OTHERWISE: state};
NEXT_STATE (count) := CASE {
state == entering : count + 1;
state == exiting : count -1;
OTHERWISE: DO_NOTHING };
NEXT_STATE (permission) := CASE {
(state == entering)& (act == rd) & (object ==
obj): grant;
OTHERWISE: deny; } } }

The state variables of the preceding example agd us
as the asynchronous states for the concurrentaoées

the limited number of access request. The spetidita
of the dynamic constraints is verified by verifyitige
following properties expressed in temporal
formula:

AG (state == entering) & (act == rd) & (object ==
obj) = AX (access = grant)

AG (state == idle | state == critical | state == exiting) 2>
AX (access = deny)

where temporal logic formulaG (p 2 AX Q)
indicates that “if conditiop is true at timet,
conditionq is true at all times later thah

2.2.3. Historical Constraints. Historical constraints

logic

model where there are two Conflict of Interest grou
of objects:
{ VARIABLES
access {grant, deny};
act {rd, wrt};
object {none, COI1, COI2};
state {1, 2, 3}
INITIAL_STATE(state) := 1;
INITIAL_STATE(object) := none;
NEXT_STATE(state) := CASE {
state == 1 & act == rd & object == COI1:
state == 1 & act == rd & object == COI2:
state == 2 & act == rd & object == COI1:
state == 2 & act == rd & object == COI2:
state == 3 & act == rd & object == COI1.:
state == 3 & act == rd & object == COI1:
OTHERWISE: 1; };
NEXT_STATE(access) := CASE {
state == 2 & act == rd & object == COI1: grant;
state == 3 & act == rd & object == COI2: grant;
OTHERWISE: deny; };
NEXT_STATE (act) := act;
NEXT_STATE (object) := object; }
The properties of the dynamic constraints can be
verified by verifying the following temporal logic
formula:
AG ((state == 2 & act == rd & object == COI1) | (state
== 3 & act == rd & object == COI2)) = AX (access =
grant)
AG ! ((state == 2 & act == rd & object == COI1) | (state
== 3 & act == rd & object == COI2)) = AX (access =
deny)

2.3. Test Generation

In addition to supporting property verification,eth
model checking technique was adopted becausesit fit
well with a variety of test generation techniqussch
as fault-based mutation testing [7] and combinatori
testing [8]. Mutation testing allows us to test fbe
presence of hypothesized faults, or faults that the
subsume, and combinatorial testing makes it passibl
rule out complex interactions that may lead toufais.

As testing must always be conducted once a po$icy i
implemented to assure correct implementation,
automated generation of test cases can reduce total
costs, thus making formal specification easier to
integrate into the development process. Model

regulate the access permission by historical accesshecking is ideal for this integration because ahc

states or recorded and predefined series of evEhés.
representative access control policies for thise tgb

solve the oracle problem for testing (determining
expected results for a particular set of test irgatt),

access control models are N-person [4], Chinesd Wal in addition to formal verification of propertiesA case
[5], and Workflow [6] access control policies. This study of this technique for software is given ih [9

type of models can be best describedsyychronous

or direct specification expressions of an FSM. For

example, the following synchronous FSM

specification specifies &€hinese Wall access control

Even with highly automated tools such as model
checkers, real-world development budgets raretynall
the development and exploration of formal models,
because the cost must be balanced against theofcost

releasing code with errors that would not be caught automated. By inserting particular faults in the
testing. But testing typically consumes 50% or enof specification, then generating counterexamplesgusin
a development budget. Generating test cases fronthe model checker, we can produce test cases that w
formal specifications makes it cost-effective tmedte detect these faults or faults that are subsumetéy.

a portion of the testing budget to produce a formal

specification, which can then be used to confirm 3, Demonstration

desired properties and generate test cases.

To produce test cases that guarantee combinatorial This section provides a step-by-step demonstration
coverage to an interaction levelwe produce &way for the approach described in section 2. The résuit
covering array [10] for input parameters used ia th set of complete test cases, i.e., input values tith
policy. Informally, a covering array can be viewasla expected output for each set of inputs. We usedna n
table of input data where each column is an input commercial research tool called Fireeye [11] dewetb
parameter and/alues in each column are parameter by NIST and the University of Texas at Arlington
values, so that each row represents a testpasbible (available on http://csrc/nist/gov/apes coveringarray
t-way combinations of parameter values are guardntee generator and NuSMV [1] as model checker for the
to be covered at least once.tlE 2, this procedure demonstration. From Fireeye, the Covering array
results in the familiar “pairwise” testing, but nginew specifies test data, where each row of the arraybea
algorithms, we are able to produce covering artgys regarded as a set of parameter values for an theivi
to strengttt = 6. test. Collectively, the rows of the covering grcaver

Two specification claims are generated for each g|| tway combinations of parameter values for
covering array row, one for resujtant and one for incorporating into SMV specifications that can be

resultdeny. Valuesy; are taken from row column; processed by the NuSMV model checker.
of the covering array, for all rows.
AG (pr=Vi1 & ... & Py, = Vy) = AX l(access_state =

3.1. Sample access contral policy

grant)
Qgrfglj ._/%2& & Pn = Vo) > AX l(access_state = The rules of the demonstrated access control policy
AG (p1= Vi1 & ... & Pn = V) = AX !(access_state = are a simplified multi-level security system [12dh,
deny)...... which each subject (user) has a clearance levebnd

For a covering array witm rows, a total of @ each file has a classification levfel. Levels are given
specification claims will thus be produced, ogrant as 0, 1, or 2, which could represent levels such as

and onedeny for each row of the covering array. In the Confidential, Secret, and Top Secret. A usecan
claims, possible resulgrant or deny are negated. For read a file f ifu_|l > f_| (the “no read up” rule), or

each claim, if this set of values cannot in faetdl¢o write to a file if f 1 > u_| (the “no write down” rule).
the particular result, the model checker indicates Thus a pseudo code representation of the acces®icon

this is true. If the claim is false, the model cker rules is:
indicates so and provides @unterexample with a ifu_I>=f | & act =rd then GRANT;
trace of parameter input values and states thdt wil else if f_| >= u_| & act = wr then GRANT;

else DENY;
The Static Constraints property of this policy is
easily modeled in SMV as a simple two-state finite

prove it to be false. The model checker thus Sltiére
claims that we have produced so that a totah tdst

inputs is generated. In effect, each one is adase, . . R
i.e., a set of input parameter values and expeetadt. state machine bpirect Specification. The START_

It is then simple to map these values into tesesas state merely initializes the system (line 8, Fig@je

the syntax needed for the system under test Wherith the rule above used to evaluate access asreith
interaction testing is done todayjs nearly always 2 GRANT or DENY_ ("”?S 9-13). For example, I|r_1e 9
(ie., pairwise testing) because higher strength represents the flrst_ line of the pseudo code ab(me_:
interactions require exponentially more test cases.iN€ current state, i@ | > f_I then the next state is
Thus, higher strength interaction testing requitdly GRANT. Each line of the case statement is examined

automated generation of test input data and expecte Sequentially, as in a conventional‘ program'ming
results, which is made possible through model l2nguage. Line 12 implements thel'se DENY'
checking. rule, since the predicatel™ is always true. SPEC

This technique makes it possible to produce two clauses given at the end of the model are simple
combinatorial test cases, fault-based testing can b temporal logic statements.

1. MODULE main

2. VAR

--Input parameters

3.u_l: 0..2; -- user level
4.f 1. 0.2 -- file level
5. act: {rd,wr}; -- action

--output parameter

6. access: {START_, GRANT,DENY};

7. ASSIGN

8. init(access) := START_;

--if access is allowed under rules, then next state is
GRANT

--else next state is DENY

9. next(access) := case

10. u_I>=f | & act =rd : GRANT;
11.f I >=u_| & act = wr : GRANT,;
12. 1: DENY;

13. esac;

14. next(u_l) ;== u_l;
15. next(f_I) :=f_I;
16. next(act) := act;

-- reflection of the assigns for access

-- if user level is at or above file level then read is OK

SPEC AG ((u_l >=f | & act = rd) -> AX (access =
GRANT));

-- if user level is at or below file level, then write is OK

SPEC AG ((f_I >= u_l & act = wr) -> AX (access =
GRANT));

-- if neither condition above is true, then DENY any
action

SPECAG ({((u_I>=f l&act=rd) | (fI>=u_l&act=

wr)) -> AX (access = DENY));

Figure 2. SMV model of access control rules

Specifications of the formAG ((predicate1l) -
> AX (predicate 2))" indicate essentially that for all
paths (the “A” in “AG") for all states globally (&h
“G"), if predicate 1 holds then (+>") for all paths, in
the next state (the “X” in “AX")predicate 2 will hold.
If the statement is false, the model checker ndy on
reports this, but also provides a “counterexampleé

machine in theSPEC clauses can be proven. This step
is used to check that tI®PEC claims are valid for the
model defined previously. If NuSMV is unable to
prove one of theSPECs, then either the spec or the
model is incorrect. This problem must be resolved
before continuing with the test generation process.
Once the model is correct aSPEC claims have been
shown valid for the model, counterexamples can be
produced that will be turned into test cases.

*** This is NuSW 2.4.3 (conpiled on Tue
May 22 14:08:54 UTC 2007)
For nore informati on on NuSW/ see
<http://nusnv.irst.itc.it>
or email to <nusnv-
users@rst.itc.it>.
Pl ease report bugs to
<nusnv@rst.itc.it>.
This version of NuSMW is linked to
the M ni Sat SAT sol ver.
***See
http://ww. cs. chal ners. se/ Cs/ Resea
r ch/ For mal Met hods/ M ni Sat
*** Copyright (c) 2003-2005, N klas Een,
Ni kl as Sorensson

* ok k

* Kk k

* Kk k

* Kk ok

-- specification AG ((u_l >=f_| & act =
rd) -> AX access = GRANT) is true

-- specification AG ((f_I >= u_l & act =
w) -> AX access = GRANT) is true

-- specification AG (! ((u_l >= f_| & act
=rd) | (f_l >= u_l &act = w)) -
> AX access = DENY) is true

Figure 3. NuSMV output

3.3. Combinatorial testing of policy

Combinatorial testing is a methodology that tests
all t-way combinations of input parameter values. The
most common form is pairwise testing, in which all
pairs of input values are covered in at least @ t
Higher strength versions of this method cover 3;way
4-way, or more interactions at least once. The
advantage of combinatorial testing for verifyingass
control policies is that access control often selm a
small number of discrete values for most parameters

simply use the model checker to determine whether aFor example, a multi-level security policy (i.e.,
particular input data set makes a SPEC claim true o standard military classification policy) may haeséls

false. That is, we will enter claims that partaul
results can be reached for a given set of inpua dat
values, and the model checker will tell us if thedra is
true or false. This gives us the ability to magskery
set of input test data with the result that thetesys
should produce for that input data.

3.2. NuSMV output

As shown in Figure 3, checking the properties in

unclassified, confidential, secret, top-secret,spl
small number of categories, all applied to a coitec
of resources such as files and programs.

While real-world access control is likely to have
far too many variables for exhaustive testing, il w
probably be possible to test, for example, all %wa
combinations of variable values. Thus a failuratth
results from the interaction of five or fewer vélies is
likely to be caught. The number of tests required
provide 5-way coverage may be large, but if congplet

the SPEC statements shows that they match the accessests are fully automated, then this form of tegtis

control rules as implemented in the FSM, as expecte

In other words, the claims we made about the state

practical even for large systems. The remainéiénis

section gives a worked example of automated
combinatorial test construction.

The first step in combinatorial testing of the pyli
is to find a set of tests that will cover ahway
combinations of parameter values, for the desired
combinatorial interaction strength This collection of
tests is known as@vering array. The covering array
specifies test data, where each row of the arraybea
regarded as a set of parameter values for an thdivi
test. Collectively, the rows of the array cover alvay
combinations of parameter values. Axample is
given in Figure 4, which shows a 3-way coveringagrr
for 10 variables with two values each. The inttings
property of this array is that any three columnstaim
all eight possible values for three binary variabl&or
example, taking columns F, G, and H, we can see tha
all eight possible 3-way combinations

(000,001,010,011,100,101,110,111) occur somewherg

in the rows of the three columns. In fact, thigrige for
any three columns. Collectively, therefore, thas of
tests will exercise all 3-way combinations of input
values in only 13 tests, as compared with 1,024 for
exhaustive coverage. Similar arrays can be gestbrat
to cover up to all 6-way combinations. Fireeye amak
this possible with much greater efficiency tharnvpras
tools. For example, a commercial tool required)8,4
seconds to produce a less optimal test set thaeyer
generated in 4.2 seconds.

(o] (o] (0] o (0] o (o] (0] O (0]
1 1 1 1 1 1 1 1 1 1
1 1 1 o 1 o (o] (o] o 1
1 O 1 1 o 1 (o] 1 o (0]
1 [e] (o] o 1 1 1 (o] o (o]
(o] 1 1 o o 1 (o] o 1 o
(o] (o] 1 o 1 o 1 1 1 (0]
1 1 (0] 1 (0] o 1 (0] 1 (0]
(o] O (0] 1 1 1 (o] (0] 1 1
o (@) 1 1 (o] o a1 (o] o 1
(o] 1 (0] 1 1 o (o] 1 o (0]
1 o (o] o (o] o (o] 1 a1 1
(o] 1 o o o 1 1 1 o 1
Figure 4. 3-way covering array for 10 parameters

with 2 values each.

We compute covering arrays that give alvay
combinations, with degree of interaction coverage =
(2-way, or pairwise) for this example. The firs¢ptis
to define the parameters and their values in aesyst
definition file that will be used as input to Figee
Call this file “in.txt”, with the following format:

[System]
[Parameter]
u_l:0,1,2
f1.01,.2
act: rd,wr
[Relation]
[Constraint]
[Misc]

Fireeye produces the output shown in Figure 5.

3
of

Number of paraneters:
Maxi mum nunber
paraneter: 3

Nunmber of configurations:
Configuration #1:

1 u_l =0

f_I=0

act=rd

val ues per

wnN
=

Initns
=

=

Initns
=

=

EI\JI—‘

It ns
=

=

iguration
u_l =2

wI\JHQ

Figure 5. Fireeye output

Each test configuration defines a set of values for
the input parameters |, f |, andact. The complete
test set ensures that all 2-way combinations of
parameter values have been covered. If we hagjerla
number of parameters, we could produce test
configurations that cover all 3-way, 4-way, etc.
combinations. (With only three parameters, 3-way
interaction would be equivalent to exhaustive tegji
Fireeye may output “don’t care” for some parameter
values. This means that any legitimate value lait t
parameter can be used and the full set of configunrs
will still cover all t-way combinations. Since “don’t
care” is not normally an acceptable input for pergs
being tested, a random value for that parameter is

substituted before using the covering array to pced
tests.

34. SPEC claims with combinatorial test
valuesinserted

The next step is to assign values from the covering
array to parameters used in the model. For eathnes
claim that the expected result will not occur. The
model checker determines combinations that would
disprove these claims, outputting these as

counterexamples. Each counterexample can then be

converted to a test with known expected resultcés
be seen below, for each of the 9 configurationthan
covering array of Figure 5, we creat&REC claim of
the form:

SPEC AG((<covering array values>) -> AX !(access =
<result>));

This process is repeated for each possible résuhis
case eitherGRANT” or “DENY”, so we have 9 claims
for each of the two results as in Figure 6.

Excerpt:

-- reflection of the assign for access

--SPEC AG ((u_Il >=f_l & act =rd) -> AX (access = GRANT));

--SPEC AG ((f_I >=u_l & act = wr) -> AX (access = GRANT));

--SPEC AG (I((u_l >=fl &act=rd) | (fl > ul &act=wr))
-> AX (access = DENY));

* SPEC AG((u_l =0 &f |1 =0 & act = rd) -> AX I(access = GRANT));
* SPEC AG((u_l =0 &f I =1 & act =wr) -> AX !(access = GRANT));
SPEC AG((u_l =0 &f_I =2 & act =rd) -> AX I(access = GRANT));
SPEC AG((u_l =1 &f_|=0 & act = wr) -> AX I(access = GRANT));
*SPEC AG((u_l=1&f |1=1&act=rd) -> AX I(access = GRANT));
*SPEC AG((u_l =1 &f | =2 & act =wr) -> AX !(access = GRANT));
* SPEC AG((u_l =2 &f |1 =0 & act = rd) -> AX I(access = GRANT));
SPEC AG((u_l =2 &f_I =1 & act = wr) -> AX I(access = GRANT));
*SPEC AG((u_l =2 &f | =2 & act = rd) -> AX I(access = GRANT));
SPEC AG((u_l =0 &f_I =0 & act = rd) -> AX !(access = DENY));
SPEC AG((u_l =0 &f_I =1 & act = wr) -> AX I(access = DENY));
* SPEC AG((u_l =0 &f_ |1 =2 & act =rd) -> AX I(access = DENY));
*SPEC AG((u_l =1 &f | =0 & act = wr) -> AX !(access = DENY));
SPEC AG((u_l =1&f I=1 & act =rd) -> AX !(access = DENY));
SPEC AG((u_l =1 &f_|=2 & act = wr) -> AX I(access = DENY));
SPEC AG((u_l =2 &f_I =0 & act = rd) -> AX !(access = DENY));
*SPEC AG((u_l =2 &f | =1 & act = wr) -> AX !(access = DENY));
SPEC AG((u_l =2 & f_I =2 & act = rd) -> AX !(access = DENY));

Figure 6. SPEC Claims
3.5. Counter examples
NuSMV produces counterexamples where the

input values would disprove the claims specified in
Figure 2. Each of these counterexamples is theet a

of test data that would have the expected result of

GRANT or DENY.

For eachSPEC claim, if this set of values cannot
in fact lead to the particular resuR, the model
checker indicates that this is true. For exanmfplethe
configuration below, the claim that access will heat

granted is true, because theer’'s clearance levél_|
= 0) is below the file’s leve{ f_| = 2):
-- specification AG ((u_l=0&f 1=2)&act=rd) -
> AX !(access = GRANT)) is true
If the claim is false, the model checker indicatieis
and provides a trace of parameter input values and
states that will prove it is false, as shown below:
Excerpt from NuSMV output:
-- specification AG (((u_l=0&f 1=0)&act=rd) -
> AX !(access = GRANT)) is false
-- as demonstrated by the following execution
sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample

-> State: 1.1 <-
ul=0
f1=0
act=rd
access = START _
-> Input: 1.2 <-
-> State: 1.2 <-

access = GRANT
It is then simple to map these values into compiese
cases in the syntax needed for the system under tes
The model checker finds that 6 of the input paramet
configurations produce a result of GRANT and 3
produce a DENY result as SPEC Claims marked with a
* in Figure 5, so at the completion of this step lvexe
successfully matched each input parameter
configuration with the result that should be prostlic
by the SUT.

3.6. Test cases

We now strip out the parameter names and values,
giving tests that can be applied to the system ured.

The tests produced are shown below:

u_l=0&f I=0&act=rd->access = GRANT

ul=0&f I=1&act=wr->access = GRANT
ul=1&fI=1&act=rd->access = GRANT

ul=1&f 1=2&act=wr->access = GRANT

2&f 1=0&act=rd->access = GRANT

2&f 1=2&act=rd->access = GRANT

0&f |=2&act=rd->access = DENY

1&f =0 & act =wr ->access = DENY

u_l=2&f I=1&act=wr->access = DENY

These test definitions can now be post-processied us
simple scripts to produce a test harness that will

execute the SUT with each input and check the tesul

u_l
u_l
u_l
u_l

4. Related Work

There exist several verification techniques for
applying model checking on access conpalicies but
few general verification techniques for applying model
checking on access contnwbdels and generating test
cases as our proposed approach. Zhang et al. [13]

present a model-checking algorithm that evaludtes i property language as temporal logic formula. Then t
accesgontrol policy can satisfy a user’s accesguest approach exploits the verification process of iedel

as well as prevent intruders from reaching their checker to verify the specified models against the
malicious goals. Instead of generic model language,specified properties. Our approach is able to stppo
policies of the access control system and goals ofthe verification of three common types of generic
agents must be described in the access controlaccess control properties: static, dynamic, and
description and specification language introduced a historical constraints. In addition, the approadsoa
RW in their earlier work. The language does not supports automated generation of test cases tdk chec
provide the flexibility for the specification afynamic the conformance of the models and their
or historical types of access control model nor for the implementations.

descriptions of the general properties of access

constraints. Kikuchi et al. [14] proposed the pplic 6. References

verification and validation framework based on rmode

checking that exhaustively verifies a policy's dély [1] NuSMV: http:/nusmv.irst.itc.it/

by considering the relations between system [2] D. Ferraiolo and R. Kuhn. Role based accessrabrin
characteristics and policieEheir approach defines the Proc. 15th NIST-NCSC National Computer Security
validity of policies and the information needed to Conference, pp. 554-563, 1992.

verify them from the viewpoint of model checking as [3] D- E. Bell and L. J. LaPadula. Secure compsfetems:
well as constructs the policy verification framewor Mathematical foundations, 1973. MITRE Corporation.
based on the definition. Besides rule based systenﬁ] National Computer Security Center. Integrity in

g - . Automated information System. Technical Report 79-9
policies, there is no demonstration that shows theLibrary No. S237,254, Sept. 1991.

proposed framework is proper for generic access[s) p. F. C. Brewer and M. J. Nash. The Chinesel wal
control policies. Schaad et al. [15] presented @eho security policy. InProc. IEEE Symposium on Security and
checking approach to analyze the delegation andPrivacy, pp. 206—214, 1989.

revocation functionalities of workflow-based entisp [6] Workflow Management Coalition. Workflow
resource management (ERP) systems. Their approacflanagement Coalition ~ Terminology & Glossary.
is done in the context of a real-world banking vitank Tgﬂ/wmg?ci%rgé Documentation number WFMC-TC-
reqUIrln_g static and dynamlc §eparat|(_)n of duty [7] P Ammgnn and P.E. Black. Abstracting Formal
properties. The approach _d_erlv_ed information alblwt Specifications to Generate Software Tests via Model
workflow from BPEL specifications and ERP business Checking. InProc. Digital Avionics Systems Conference, pp.
object repositories. This was captured in an SMV 10 A.6-1 - 10.A.6-10, 1999.

specification together with a definition of possibl [8] D.R. Kuhn, D.R. Wallace, and A.J. Gallo, Jr.fi8are
delegation and revocation scenarios. Their focus wa Fault Interactions and Implications for Softwarestiiey.
on how to capture the workflow in an SMV model |EEE Trans. on Software Engineering, Vol. 30, , June 2004.
amended by an LTL-based specification of the [9] D. R. Kuhn and V. Okun. Pseudo-exhaustive Tigstor
Separation of Duty properties without much Software, InProc. 30th NASA/IEEE Software Engineering

. . . Workshop, April 25-27, 2006.
conSI(_jeratlon of generic acces_s f:ontrol models. [10] VY. Lei, R. et al. Efficient Test Generatiorr fdulti-Way
Different from these existing approaches, our

h Combinatorial TestingSoftware Testing, Verification, and
proposed approach is targeted at access contra¢lmod Reliability. Wiley InterScience, , October 2007.

and their generic properties, and is more generdl a [11] http:/csrc.nist.gov/groups/SNS/acts/index.htm
applicable in a larger scope of models and progerti [12] Pfleeger C. P. Security In Computing Secondti&id,
In addition to property verification, our approach by Prentice-Hall PTR, 1997.

provides efficient test generation, which genera¢ss ~ [13] N. Zhang, M. D. Ryan, and D. Guelev. Evalugtin
cases that guarantee combinatorial coverage for thefccess Control Policies Through Model CheckingPhoc.

; ; ; Information Security Conference, pp. 446-460, 2005.

input parameters used in the policy, thus a thorough X . : .

veprificgtion of access control implem};}ntation ’ [14] S. Kikuchi, S. Tsuchiya, M. Adachi, and T. kayama.
P) Policy Verification and Validation Framework Bas&oh

. Model Checking Approach. InProc. International
5. Conclusion Conference on Autonomic Computing, pp. 1-9, 2007.
[15] A. Schaad, V. Lotz, and K. Sohr. A model-chiagk
To verify properties for access control models, we approach to analysing organisational controls ifoan
propose a new general approach that expressessacce8rigination process. IrProc ACM Symposium on Access
control models in the specification language ofalet Control Models and Technologies, pp. 139-149, 2006.
checker and generic access control propertiessin it

