
Practical Application of
Formal Methods in Modeling and Simulation

D. Richard Kuhn

National Institute of Standards and
Technology

kuhn@nist.gov

Dan Craigen, Mark Saaltink
ORA Canada

dan@ora.on.ca
mark@ora.on.ca

Keywords: Formal specifications, formal verification,
lightweight formal methods, network analysis

Abstract
This paper provides an introduction to applying formal
methods to modeling and simulation problems at reasonable
cost. Two approaches are discussed. First, lightweight
formal methods combine simplified specification approaches
with automated analysis, making it possible to analyze
requirements and designs early in the development cycle.
Second, by hiding the complexity of the formal models and
providing the analytical results solely in terms understood by
domain experts, new formal tools provide rapid feedback to
requirements teams and developers.

LIGHTWEIGHT FORMAL METHODS
 What are “lightweight formal methods” and how can they
be useful for the practicing engineer? Traditionally, formal
(i.e., mathematical) software development methods have
been promoted as the only approach that can guarantee the
absence of certain classes of errors. By specifying software
behavior formally, rigorous proofs of its properties can be
developed. But the great expense of these methods has
confined their use to a handful of high-security or safety
critical systems. “Lightweight” methods may involve both
greater automation of formal analysis, and more focused
application of formal techniques. As a result they can be
cost effective for a broad range of problems.

Figure 1. Formal techniques in M&S

To frame the discussion, consider the view of the modeling
process shown in Figure 1 [1; 2] annotated to illustrate the
applicability of formal techniques. Traditionally, formal

techniques have been applied to the software verification
problem. Given a formal definition of requirements, R,
and a formal specification of the software (although
typically only a top level specification), S, theorem
proving tools can be used to assist in proving that the
specification meets the requirements, i.e., that RS ⇒ .

 While the verifications shown in Figure 1 can be
conducted semi -automatically, and proofs checked
mechanically, validation is a different problem. A
succinct distinction between verification and validation is
that verification is “building the system right,” while
validation is “building the right system.” If we have a set
of requirements, we can verify, formally or informally,
that the system implements the requirements. But
validation is necessarily an informal process. Only human
judgment can determine if the system that was specified
and built is the right one for the job.

 Despite the necessity of using human judgment in the
validation process, formal methods do have a place in
validation, particularly in large complex applications such
as M&S. One of the most promising applications of
formal techniques is the “lightweight” application of
formal methods for requirements modeling [3]. By stating
requirements formally, theorem-proving tools can be used
to explore properties, often detecting conflicts between
different requirements or missing assumptions. This
approach does not replace human judgment, but can aid in
determining if the “right system” has been specified by
making it easier to determine if desired properties hold.
A particular advantage to using lightweight formal
methods in requirements engineering is that ambiguities
and inconsistencies in require ments are discovered early,
when they can be corrected with much less expense than
after code has been developed.

 A significant difference between the validation problem
for M&S systems and for software designed for control or
calculation is that M&S systems have two types of
validation requirements. By definition, the M&S system
must model and predict behavior of some real world
entity. This problem has been called “operational
validation.” A second aspect to the validation problem for
M&S systems is “conceptual model validation,” which is
concerned with ensuring that the assumptions underlying

the conceptual model are correct and that the logic and
structure of the model are suitable for the model’s intended
purpose [1]. Where formal methods have been applied to
validation, their use corresponds most closely to the problem
of conceptual model validation. Figure 1 shows a view of the
modeling process [1;2], annotated to illustrate the
applicability of formal techniques.

 Because the conceptual model describes what is to be
represented by the simulation, it must include assumptions
about the system and its environment, equations and
algorithms, data, and relationships between model entities.
Although algorithms and equations are necessarily formal
statements, the assumptions and relationships are most often
described using natural language, which introduces the
potential for ambiguities and misunderstandings between
developers, users, and subject matter experts. An
increasingly popular trend in formal techniques, lightweight
formal methods have shown a potential for detecting major
errors in requirements statements, without the expense of a
formal design verification, by applying formal analysis to
earlier products of the system design process.

 The basic premise of this approach is to use formal
techniques in analyzing the assumptions, relationships, and
properties of requirements stated in a requirements statement
or conceptual model. An advantage of the approach is that it
can be applied to partial specifications, or to a limited
segment of a complete specification. The analysis is done in
three phases [4]:

1. Restate the requirements and conceptual model in a
formal (or semi-formal) notation, typically a state table
description.
2. Identify and correct ambiguities, conflicts, and
inconsistencies.
3. Use a model checker or theorem prover to study system
behavior, demonstrate properties, and produce traces of
system behavior.

Developers, users, and subject matter experts can then use
these results to improve the conceptual model.

 The representational abstraction phase of conceptual
model design uses a variety of modeling methods to
represent simulation elements and their relationships [5;6].
Notations such as those provided in the Unified Modeling
Language are often effective. While standard UML does not
contain sufficient formality to map directly to formal
representations used by model checkers, some more recent
additions to UML may make this possible. The Object
Constraint Language [7] includes elements of first order
logic that, when combined with some of the state machine
representations of UML, can provide a rigorous system
specification. Because popular model checkers use state
machine representations as input, a conceptual model

defined with OCL would appear to have the potential for
efficient translation into the input notations of either
theorem proving tools or model checkers such as the
popular SMV and SPIN tools. However, we must admit to
some uncertainty that a rigorous foundation for
UML/OCL can be developed; reverse engineering a
rigorous foundation into an existing language is generally
exceedingly difficult. Jackson's Alloy [8] uses a well-
founded UML/OCL-like notation to perform formal
modeling and analysis.

 A more rigorous notation, the Z formal specification
language [9] has primarily been used to model system
requirements. ORA Canada's Z/EVES system [10], which
has been used in 62 countries, uses state-of-the-art formal
methods techniques,, integrating the Z specification
notation with a leading automated deduction capability.
The resulting system supports the analysis of Z
specifications in several ways:

• Syntax and type checking.
• Schema expansion.
• Precondition calculation.
• Domain checking.
• General theorem proving.

 From a lightweight formal methods perspective and
technology transfer perspective, it is important to note
that users can be introduced to Z/EVES capabilities in
steps. For example, little knowledge of the theorem
prover is required for syntax and type checking, schema
expansion, and precondition calculation. Even with
domain checking, many of the proof obligations are easily
proven. In more difficult cases, generating the proof
obligation is often a substantial aid in determining
whether a specification is meaningful. The use of
engineering judgement in what analyses to perform and to
what detail is crucial to the beneficial use of Z/EVES, in
particular, and formal methods, in general. Example
applications of Z/EVES include security and safety
systems [11, 12,13].

Example Applications
 A particularly interesting aspect of the lightweight
approach to formal methods is that it has been used to
model and analyze the behavior of software, hardware,
and humans acting together in systems. Agerholm and
Larsen [14] describe the application of formal modeling
to a NASA extravehicular activity system. Using the PVS
theorem-proving tool, the authors were able to model the
EVA system and study its properties using a model that is
essentially executable. Lutz [15] describes requirements
validation of onboard fault monitors for a spacecraft. An

interesting aspect of this project is that developers were able
to reuse the requirements model for a second project that
evolved from the first in a series of builds.

 Janssen et al. [16] describe the application of model
checking to the analysis of automated business processes,
such as insurance claim processing. The formal model is
used to ensure that processes maintain desired properties,
such as ensuring that the proper sequence of processing is
maintained, that two mutually exclusive outcomes are
prevented by the system, or that particular events always
lead to the correct outcome. The formal analysis helps to
prevent unexpected failures that can occur in large
distributed systems where processes occur with partial
human intervention. By modeling processes at the
requirements stage, developers can identify problems that
might require major rework if not detected until the system
is built and tested.

Benefits, Costs, and Success Characteristics
 The true test of any method, of course, is whether its
benefits outweigh its expense in time and materials. Three
case studies reviewed by Easterbrook et al. [4] describe the
use of lightweight formal methods in modeling systems for
the International Space Station, detailing the effort involved:

• High level Fault Detection, Isolation, and Recovery
requirements – This effort formalized 18 pages of text
requirements, then used the PVS theorem proving tool to
analyze FDIR properties. A total of 15 ambiguities and
inconsistencies were discovered, at a cost of two staff-
months.
• Bus controller FDIR requirements – This study
analyzed requirements for the controller for the main
communications bus on the space station. A 15-page
detailed requirements document was formalized using the
SCR methodology. A large number of ambiguities in the
original English language requirements document were
discovered, using approximately 1.5 staff-months effort.
• Cassini deep space probe fault protection – A total of 85
pages of English language requirements were formalized
using state tables followed by PVS specifications. The
analysis detected 37 problems with the requirements,
including 10 cases of inadequate handling of off-
nominal/failure conditions. Approximately 12 staff-months
were required for this effort.

 Like other successful applications of lightweight formal
methods, these projects shared characteristics that appear to
be important for success from a cost/benefit standpoint:

• Formal methods were only used where existing,
informal requirements review techniques had been
inadequate. Experience had shown that extensive review of

requirements by experts still resulted in flaws carried
forward to implementations.
• Selective use of formal methods: only the most
critical or complex aspects of requirements were formally
analyzed.

HIDING COMPLEXITY – CASE STUDY
 Hiding complex technologies is one well-recognized
means of successful technology transfer. ([17] and [18]
discuss in-depth formal methods technology transfer
issues and approaches.) For example, we do not need to
fully understand the technologies underlying our DVD
players and Digital Cameras to enjoy the benefits of such
products. In a similar manner, the benefits of formal
methods modeling and analysis can be brought to various
domains where clear value is added, yet the complexity of
the technology is hidden from the domain experts. This
approach provides one means of introducing logic-based
models into the M&S world and, while providing M&S
capabilities, supports the formal analysis of such models
to determine properties of interest. We concretize the
discussion by using a formal logic-based model to capture
various aspects of IP networks.

 The Cayenne Network Analyzer (CNA) works on
models of networks; this data can correspond to a
deployed network, a planned network, or a prior version
of an existing network. The analyses provided,
particularly change impact analysis, can help the network
manager assess the functionality or security of a network
and the impact of changes.

 The CNA can model network devices such as hosts,
gateways, and routers; physical networks such as LANs
or dialup lines; routing tables; access control and filtering
rules; and services offered by hosts. The CNA offers
several analyses:

• Reachability of one host from another.
• Differences in reachability between two
configurations of a network.
• Accessibility of services; and changes to accessibility
of services in two networks.

 The CNA analysis is exhaustive. Every possible packet
is accounted for in the results, so there is no need to make
guesses about suitable test cases or to measure the
coverage of tests. The exhaustive analysis can be
constrained by, for example, specifying a source or
destination host or by specifying some other aspect of the
packet.

 The following example shows how a network manager
might use the CNA to assess the impact of a change to
access rules. Figure 2 shows the network involved. A

backbone connects smaller LANs for three divisions of a
business, each protected by a gateway/firewall. Hosts Sales
WS and Admin WS have symbolic addresses, and are used
to represent any of the workstations on their LANs. The only
constraint is that their addresses lie within the block of
network addresses assigned to the LAN, and are not the
same as the gateway or server address.

Figure 2: The Network Topology

One simple analysis is to show the services available to a
host. Figure 3 shows the resulting table of available services.

Source
Host

Prot. Source
IP

Dest. IP Dest.
Port

Dest
Host

Service

Sales
WS

tcp sales-ws-
address

10.1.1.2 smtp Services mail

Sales
WS

tcp sales-ws-
address

10.1.1.2 www Services web

Sales
WS

udp, tcp sales-ws-
address

10.1.1.2 domain Services DNS

Figure 3: Query Result: Services Available to Sales WS

 In our example, we suppose that a user in the sales
department wants to be able to log in to the administration
server using telnet, but is unable to do so in the existing
configuration as all telnet traffic is blocked leaving the Sales
gateway (as shown in Figure 4). In order to allow the
requested traffic, a new entry is made, allowing outgoing
telnet connections. Figure 5 shows the revised rules.

Interface Protocol Dst port Action
eth0 tcp smtp ACCEPT
eth0 tcp www ACCEPT
eth0 domain ACCEPT
eth0 DENY

Figure 4: Initial Output Filter of Sales GW

Interface Protocol Dst port Action
eth0 tcp telnet ACCEPT
eth0 tcp smtp ACCEPT
eth0 tcp www ACCEPT
eth0 domain ACCEPT
eth0 DENY

Figure 5: Revised Output Filter/Sales GW

We can use the CNA to discover what services are now
accessible that were not previously. Figure 6 shows the
results of this query.

Source
Host

Prot. Source
IP

Dest. IP Dest.
Port

Dest
Host

Service

Sales
GW

tcp 10.1.1.10 10.1.3.2 telnet Admin
Server

Remote
login

Sales
GW

tcp 10.1.1.10 10.1.4.2 telnet Finance
Server

Remote
login

Sales
WS

tcp sales-ws-
address

10.1.3.2 telnet Admin
Server

Remote
login

Sales
WS

tcp sales-ws-
address

10.1.4.2 telnet Finance
Server

Remote
login

Figure 6: Query Result: Services Newly Available After
Final Filter Revisions

As can be seen, the change has had some unintended
effects: now any workstation in the sales network can not
only login to the administration server, but also the
finance server.

 This analysis might prompt a more elaborate revision,
where the input filters for the administration and finance
networks are strengthened. When these changes are
made, and we again query what services are newly
available, the result, shown in Figure 7, is exactly what
we want: one user (at address 10.1.2.5 in the Sales
network) has access to the administration server.

Source
Host

Prot. Source
IP

Dest. IP Dest.
Port

Dest
Host

Service

Sales
WS

tcp 10.1.2.5 10.1.3.2 telnet Admin
Server

Remote
login

Figure 7: Query Result: Services No Longer Available
After Final Filter Revisions

 We can also see which services are no longer available
(by querying what is newly available when changing from
the new to the old configuration). Figure 8 shows that we
have removed access to remote login from a few servers
and a gateway.

Source
Host

Prot. Source
IP

Dest. IP Dest.
Port

Dest
Host

Service

Services tcp 10.1.1.2 10.1.4.2 telnet Finance
Server

Remote
login

Admin
GW

tcp 10.1.1.11 10.1.4.2 telnet Finance
Server

Remote
login

Admin
Server

tcp 10.1.3.2 10.1.4.2 telnet Finance
Server

Remote
login

Services tcp 10.1.1.2 10.1.3.2 telnet Admin
Server

Remote
login

Figure 8: Query Result: Services Newly Available After
First Filter Revision

Change of Topology
 The next example is derived from an actual situation,
where we restructured our network to include a DMZ and
restricted access to our LAN. In the initial configuration
a router with some simple firewall rules connected the
LAN directly to the Internet. The LAN had several
workstations, a printer, and a main server with dial-up
PPP access. We have a class C address block
206.191.58.0/24 and do not use any address translations.

 In this model, there are three symbolic addresses used: the
external host has any address outside our address block; the
workstation has any address in the range 206.191.58.5 to
206.191.58.39, and the dialup has any address in the range
206.191.58.40 to 206.191.58.49. The actual network has a
number of workstations and dialup hosts.

 The new configuration inserted a new bastion host
between the router and LAN. Web pages and an ftp server
were moved from the internal server to the bastion, and the
bastion also functioned as a firewall for access to and from
the LAN. In order to minimize disruption to external users of
the services, the new bastion host used the IP number
(206.191.58.2) that had originally been assigned to the
server. The internal server received a new, previously
unused, address.

Source Host Source IP Dest. IP Fate 1 Fate 2
Workstation,
gw, dailup
Outside

 206.191.58.4 LOST DELVD

Workstation,
gw, dialup

~206.191.58.* 206.191.58.4 LOST DELVD

Outside ~206.191.58.* 206.191.58.19 LOST DELVD
Gw 206.191.58.19 LOST DELVD
Outside ~206.191.58.* 206.191.58.2 DELVD DELVD
Gw, dialup 206.191.58.2 DELVD DELVD
Outside ~206.191.58.* 206.191.58.19 DELVD DELVD
Workstation,
dialup

 206.191.58.19 DELVD DELVD

Workstation,
dialup

 206.191.58.2 DELVD LOST

Workstation,
dialup

 206.191.58.1 DELVD LOST

Figure 9: Different Fates in the Old and New
Configurations

 Rather than renumber all our internal hosts, we decided to
divide our class C address space into two blocks, the first,
206.191.58.0-206.191.58.3 for the DMZ (giving us exactly
two usable host addresses), and the remainder, 206.191.58.4-
206.191.58.255, for the internal LAN. We used the CNA to
determine whether we had correctly revised our routing rules
and the results appear in Figure 9. This shows all packets,
including possibly spoofed ones, sent by any host in the
model, having a different fate in the two configurations.
There are four kinds of difference:
• Packets with a destination of 206.191.58.4 used to be
lost; they are now delivered to the bastion host. This is
expected, as that address was unused in the original
configuration.
• Packets with a destination of 206.191.58.19 used to be
lost; they are now delivered to the internal server host. This
is also expected, as that address was unused in the original
configuration. (In some rows, these packets are shown as
being delivered to the workstation. A side condition, not
visible in the figure, shows that this covers the case where
the workstation address variable has this .19 address as its
value.)
• Packets with a destination of 206.191.58.2 are delivered
to the bastion rather than the original server.

• Packets from a workstation or dialup with a
destination of 206.191.58.1 are lost, but used to be
delivered to the gateway.

All but the last difference was expected. The last
difference shows we did not quite restore connectivity.

Discussion
 The above analysis was presented entirely in terms
understandable to a network manager. Yet, the
underpinning for the analysis is that of formal mo deling
and analysis. The benefits, especially that of
comprehensive analysis of a network model, are clear, yet
the complexity hidden. Cayenne's ability to make use of
"symbolic simulation" is of particular note as it provides a
basis for the comprehensive analysis and the ability to
prove that networks are compliant with policy.

 In an abstract for a presentation that J Moore (U. T.
Austin) recently gave at the University of Pennsylvania,
Dr. Moore succinctly described some of the benefits of
formal mo deling and analysis:

"Computer hardware and software can be modeled
precisely in mathematical logic. If expressed
appropriately, these models can be executable. This
allows them to be used as simulation engines or rapid
prototypes. But because they are formal they can be
manipulated by symbolic means: theorems can be proved
about them, directly, with mechanical theorem provers.
But how practical is this vision of machines reasoning
about machines? In turns out that researchers in
academia and industry are using mechanical theorem
provers to prove important theorems about commercial
microprocessor designs, including processors by AMD,
Motorola, IBM, Rockwell-Collins and others. Some of
these microprocessor models execute at 90% the speed of
C and have had important functional properties verified.
In addition, we are modeling the Java Virtual Machine
and are proving theorems about JVM methods."

What is of particular note to the M&S community is that
it is possible to have the benefits of formal models and yet
still have these models nearly as efficient as simulations
written in C or the like.

CONCLUSION
 This brief paper has introduced two means through
which formal methods could be successfully introduced
into the M&S field: lightweight formal methods and
hiding complexity. Both approaches can provide
significant benefits, yet reduce impediments to
technology adoption.

REFERENCES

1 R.G. Sargent, “Validation and Verification of Simulation
Models”, Proceedings, 1999 Winter Simulation Conf.

2 D.E. Stevenson, "A Critical Look at Design,
Verification, and Validation of Large Scale Simulations ",
IEEE Computational Science and Engineering (to appear).
3 D. Jackson, “Lightweight Formal Methods”,
International Symposium of Formal Methods Europe,
Berlin, Germany, March 12-16, 2001, Proceedings.

4 S. M. Easterbrook and J. R. Callahan, "Formal Methods
for Verification and Validation of partial specifications: A
Case Study," J. of Systems and Software, vol. 40, (3), 1998.

5 D.K. Pace, “Conceptual Model Development for C4ISR
Simulations”, 5th International International Command and
Control Research and Technology Symposium, Dept. of
Defense, 2001.
http://www.dodccrp.org/2000ICCRTS/cd/papers/Track2/05
9.pdf

6 Defense Modeling and Simulation Office, “Conceptual
Model Development and Validation”,
www.msiac.dmso.mil/vva/Special_Topics/
Conceptual/conceptual-pr.PDF, Nov. 30, 2000.

7 J.B. Warmer, A.G. Kleppe, The Object Constraint
Language: Precise Modeling With UML, Addison-Wesley,
1998.

8 Daniel Jackson. Alloy: A Lightweight Object Modelling
Notation. ACM Transactions on Software Engineering and
Methodology (TOSEM), Volume 11, Issue 2 (April 2002),
pp. 256-290

9 J. M. Spivey. The Z Notation: a reference manual.
http://spivey.oriel.ox.ac.uk/~mike/zrm/

10 Dan Craigen, Irwin Meisels, and Mark Saaltink.
Analysing Z Specifications with Z/EVES. In Industrial-
Strength Formal Methods in Practice, J.P. Bowen and M.G.
Hinchey (Editors), September 1999. Available through
Springer-Verlag FACIT series.

11 Simon N. Foley. A Kernelized Architecture for
Multilevel Secure Application Policies. In Computer
Security - ESORICS 98, 5th European Symposium on
Research in Computer Security, Louvain-la-Neuve,
Belgium, September 16-18, 1998. Jean-Jacques Quisquater,
Yves Deswarte, Catherine Meadows and Dieter Gollmann
(Editors). Lec. Notes in Computer Science, Volume 1485,

Springer, 1998.

12 F. Fung and D. Jamsek. Formal Specification of a
Flight Guidance System., NASA/CR-1998-206915,
January 1998.

13 Irfan Zakiuddin, Jim Woodcock, Michael Goldsmith
and Jason Hulance. Formal Verification for Survivable
Key Management Systems. Position Paper for the Third
Information Survivability Workshop -- ISW-2000
October 24-26, 2000. Available through
http://www.cert.org/research/isw/isw2000/index.html

14 S. Agerholm and P.G. Larsen, “Modeling and
Validating SAFER in VDM -SL”, Proc., Fourth NASA
Langley Formal Methods Workshop, Sept. 1997.

15 R.R. Lutz, “Reuse of a Formal Model for
Requirements Validation”, Proceedings, Fourth NASA
Langley Formal Methods Workshop, Sept. 1997.

16 W. Janssen, R. Mateescu, S. Mauw, P. Fennema, P.
v.d. Stappen, “Model Checking for Managers”, 6th Int.l
SPIN Workshop on Practical Aspects of Model
Checking , Toulouse, France, 21-24 September 1999.
17 Formal Methods Diffusion: Past Lessons and Future
Prospects. R. Bloomfield, D. Craigen, F. Koob, M.
Ullmann, and S. Wittmann. Proc. SAFECOM P 2000, the
19th International Conference on Computer Safety,
Reliability and Security, Rotterdam, October 2000.

18 Formal Methods Technology Transfer:
Impediments and Innovation. Dan Craigen, Susan
Gerhart and Ted Ralston. In Applications of Formal
Methods. M. G. Hinchey and J. P. Bowen (editors).
Prentice-Hall International Series in Computer Science,
September 1995.

