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Abstract—Quantifying security risk is an important and yet
difficult task in enterprise network risk management, criti cal
for proactive mission assurance. Even though metrics exist
for individual vulnerabilities, there is currently no stan dard
way of aggregating such metrics. We developed a quantitative
model that can be used to aggregate vulnerability metrics
in an enterprise network, with a sound computation model.
Our model produces quantitative metrics that measure the
likelihood that breaches can occur within a given network
configuration, taking into consideration the effects of allpos-
sible interplays between vulnerabilities. In order to validate
the effectiveness (scalability and accuracy) of this approach to
realistic networks, we present the empirical study resultsof
the approach on a number of system configurations. We use a
real network as the test bed to demonstrate the utility of the
approach, show that the sound computation model is crucial
for interpreting the metric result.

Keywords-enterprise network security; attack graph; vulner-
ability metrics, quantitative risk assessment

I. I NTRODUCTION

Proactive security is an important part of mission assur-
ance and critical-infrastructure protection. Metrics indicating
inherent risk in a network system can help in prioritiz-
ing precious resources to improve security and reduce the
possibility of mission interruption from successful cyber
attacks. Quantifying a security level for large-scale networks
has been a challenging work for a long time. System
administrators currently have to act based on their expe-
rience rather than objective metrics and models. Much work
has been done along the line of attack graph construction
from network configuration in order to analyze network
security [1], [2], [6], [7], [10], [11], [14], [16], [17], [18],
[21], [22]. Attack graphs can show the cumulative effect
of vulnerabilities throughout the network by visualizing the
logical dependency between the attacker’s initial position
and the attacker’s goal. However, attack graphs alone cannot
tell how severe or dangerous these attack paths may be.
CVSS metrics [12] have been developed to indicate certain
security levels for each single vulnerability. Moreover, a
number of works [2], [14], [24], [25] have attempted to
compute the cumulative effect of vulnerabilities in a network
quantitatively. In our prior work we proposed a sound
approach [5] to aggregating vulnerability metrics in an enter-
prise network with a clear semantics on what the calculated

metrics mean: the likelihood a “dedicated attacker” can suc-
cessfully penetrate the system and achieve certain privileges.
Compared to previous works, this approach is based on
a dependency attack graph which can be computed more
efficiently [13], [16], and it correctly handles a number of
important graphical structures such as shared dependencies
and cycles to ensure the correctness of the result. In order
to rigorously evaluate the effectiveness of this algorithm, we
performed a series of empirical studies of this vulnerability
metric aggregation method.

This empirical study is important because it can reveal
both the effectiveness and limitations of a risk assessment
method. Earlier work on security metrics has also performed
substantial empirical evaluation [14] on production systems.
Our method is based on a modern attack graph that has
efficient computation, and it calculates the metric directly on
a dependency attack graph without expanding it to a state
attack graph which may incur an exponential blow up [10],
[14]. To evaluate the benefit of such a method requires
empirical evaluation on both its metric results and its running
time on realistic systems. The empirical evaluation can also
identify incorrect model assumptions or input parameters
that make the result unrealistic and unusable, providing a
feedback loop to calibrate the metric model.

There are a number of challenges of the empirical study.
The configuration information of network is hard to obtain
due to privacy or commercial reasons. It is also difficult to
determine a set of proper parameters for the risk assessment
approach. Implementation requires much work as well.

In order to address the aforementioned difficulties, we
firstly talked with the system administrator and requested
daily scanning results of certain machines in the Comput-
ing and Information Sciences Department at Kansas State
University, We built a database to store related vulnerability
information in NVD, where we retrieve the relevant infor-
mation for each host’s vulnerabilities. A parser is developed
to construct input for MulVAL [16], [17], the attack graph
tool used in our research, to generate attack graphs which
were then used to calculate the security metrics based on
the algorithms from our prior work [5].



II. VULNERABILITY METRIC AGGREGATION METHOD

The MulVAL attack graph [16] is used as a structural
basis for security metrics calculation, although our approach
should be easily adapted to other attack graphs generators
with similar semantics [6], [7].

A. An example scenario

Figure 1 shows an example enterprise network, which
will be used to illustrate a number of our security metrics
algorithms.
Reachability and Host: There are three subnets and two
firewalls (one internal and one external). The web server
resides in DMZ which could be reached from Internet
through the external firewall. The database server is in the
internal subnet which contains sensitive information. It can
only be reached through web server and the User subnet.
The user workstations (used by normal employees) are all
in the User subnet. All outbound connections from the User
subnet are allowed by the external firewall.

Vulnerabilities: The web server has the vulnerability CVE-
2006-3747 in the Apache HTTP service, which could be
utilized by remote attackers to gain certain level of privi-
lege to execute arbitrary code on the server. The database
server has the vulnerability CVE-2009-2446 in the MySQL
database service, by which attacker could gain administra-
tor’s privilege. The workstations contain the vulnerability
CVE-2009-1918 in Internet Explorer; if an innocent user
accessed malicious data through IE, the machine he is using
will possibly be hacked. Usually, the system administrator
would have limited time or energy to address all security
issues. He would like to know which vulnerability is more
dangerous or more urgent than others and deal with that
first. Our approach could assist system administrators in this
prioritization by offering quantitative metrics.

Attack-graph semantics: The lower part of Figure 1 is
the MulVAL attack graph of the aforementioned network.
Information about each node of the attack graph is found
at the right side of the figure. A MulVAL attack graph
has three types of nodes: (1) attack-step nodes, represented
within the graph as circular-shaped AND-nodes. Each AND-
node indicates a step of attack which could happen when all
preconditions (either configuration nodes or privilege nodes)
are held; (2) privilege nodes, represented within the graph
as diamond-shaped OR-nodes. Each privilege node stands
for a certain level of privilege which could be derived from
any one of its predecessors (AND-nodes); (3) configuration
nodes, which are not shown in this graph. Each configuration
node represents a configuration condition of the network. For
example, the network connections or vulnerability properties
are all included in configuration nodes. As one example
attack path, the attack graph shows that an attacker could
first compromise the web server and then use it as an

intermediate stop for his next step of attack on the database
server (0-28-8-7-6-4-3-2-1).

Component metrics: The input of our metric model are
component metrics, used as an indicator of each attack-
step’s likelihood of success. A number of these metrics
are constructed based on CVSS metrics like Access Com-
plexity (AC). The metrics can be regarded as conditional
probabilities while all the preconditions for exploiting the
vulnerability are satisfied. For example, if the vulnerability
is hard to access (with a high value on AC), then even if all
the preconditions are met, it will still have a small chance
of being successfully utilized by attackers.

Assumptions in the metric model: We assume that an
attacker knows the complete picture of the network, includ-
ing network reachability, services running, and vulnerability
information in applications. In other words, the adversary
possesses the complete information in the attack graph.
Further, we assume that the attacker will try all possible
ways in the attack graph to compromise the system. In other
words, the prior probability that an attack will be attempted
is assumed to be one.

The output of our metric model is the likelihood of being
hacked for individual machines. The major challenge in
calculating the metrics with the above semantics is shared
dependency and cycles in attack graphs. We developed
techniques [5] to overcome these difficulties in our past
work.

III. E XPERIMENT STRATEGY

To prepare the experiments, we performed a number of
preliminary tasks.

• Data Collection/Scanning
We scan seven windows servers running Windows
Server 2003 at the CIS department of Kansas State Uni-
versity, by using the reference interpreter1 of OVAL2.
We have implemented a cron job to perform the scan
daily and send the reports (XML files generated by
OVAL) to a central repository.

• Database Setup
In order to speed up the processing of data, we first
extract all useful information from the NVD3 data feeds
(XML files including information of all vulnerabilities)
into a separate mysql database, and build a tuple
for each vulnerability in the database. The key of
the tuple is the CVE ID, and other elements include
CVSS metrics, attack range of the vulnerability (either
remote service, local or remote client), consequences
(compromising confidentiality, integrity or availability),
and so on.

1http://oval.mitre.org/language/interpreter.html
2http://oval.mitre.org/
3National Vulnerability Database, http://nvd.nist.gov/
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Figure 1. Example scenario and attack graph

• Data Parsing/Input Construction
We then construct input data for the MulVAL attack-
graph generator. For each machine, we parse its scan-
ning report and obtain the CVE IDs of the vulnerabili-
ties on this machine. By using these CVE IDs, we ex-
tract other information about the vulnerabilities through
the database we built in the previous step. Meanwhile,
we construct input for attack-graph generator based on
the extracted information.

After we finish constructing the input data for risk
assessment, we run our attack-graph generator and risk-
assessment algorithms. Figure 2 illustrates the data flow
for the empirical study.

We conducted two lines of experiments:

• Empirical study on each single host.
We did experiments on each single host without con-
sidering the multi-host attack by assuming there is a
direct connection between the attacker and each host.
We then compare the security level of different hosts
and present the result to the system administrator for
verification.

• The previous experiment repeated over time.
To observe the security metrics change trend over time,
we did a number of experiments for each host at
different points of time. We then analyze the detailed
information returned from the vulnerability scan to
confirm whether the risk trend indicated by metrics
makes sense.

Figure 2. MulVAL attack-graph tool-chain

IV. EXPERIMENTATION RESULT

When we saw the first batch of risk assessment results
from the production systems, it quickly became clear that
the original graphical model is insufficient to capture some
hidden correlations important in gauging the risk levels.
Thus we introduced additional modeling artifacts to capture
them for the subsequent experiments.

Modeling artifacts for capturing hidden correlations:
Figure 3 indicates two attack graphs with security metrics
of two servers. From the two attack graphs we can tell that
server (a) has many more vulnerabilities than server (b).
This could be easily observed from the difference of the
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Figure 3. Attack graphs from two production servers

density of the two attack graphs (one of them is so dense
that it appears almost like a line in the limited paper space).
However, the difference of the cumulative security metricsof
the two servers are not that obvious: server (a) is 0.99 while
server (b) is 0.89. As we noticed, all the other servers in
our department have more vulnerabilities than (b), meaning
the security metrics are always close to 1. Intuitively, a
question needs to be asked: is this the true reflection of
these machines security situation? We consulted our system
administrator and he thought that intrinsic differences among
the vulnerabilities is an important factor while gauging the
risk. If a host has one application with ten vulnerabilities,
it will have lower security risk than one with ten different
applications with one vulnerability in each. If an attacker
is not familiar with a specific application, then even if
this application has ten vulnerabilities, he still has a very
low chance of utilizing these security holes. However, if
there are ten applications each with one vulnerability, and
if the attacker happens to know one of these applications
well, he would have a much higher chance of compro-
mising the machine successfully. The attack graph did not
sufficiently capture the dependency between vulnerabilities
and applications. Server (a) has 67 vulnerabilities in four
applications while server (b) has only four vulnerabilities in
two applications. Therefore, the metric calculated for server
(a) should be much higher than server (b), which is not the
case for the results from the original model.

Another hidden correlation arises in multi-stage attacks.
Suppose an attacker just compromised one machine through
a vulnerability from application A. If his subsequent targets

have the same or similar vulnerability also from application
A, he would have a very high chance of success since he
should have known the underlying structure of application
A very well. Suppose that exploiting a vulnerability has a
0.6 success likelihood. Based on our current attack-graph,a
two-step attack utilizing the same vulnerability would give
the attacker 0.36 (multiplied by two 0.6) chance of success.
However, the experience of hacking the first target would
lead to a much higher success possibility of the second step
(almost 1). Therefore, the metrics would be close to 0.6
rather than 0.36, if we account for such hidden correlations.

We created additional modeling artifacts in our graphical
model used in calculating the metrics, in order to capture
these hidden correlations. The vulnerabilities belongingto
the same application are grouped into one node representing
a successfully exploitation on any of them. The access
complexity metrics of the grouped vulnerability is equal
to the lowest value from the vulnerabilities in the group.
This schema not only applies to single machine (Figure 4.a)
but also to multiple hosts (Figure 4.b) to capture the hid-
den correlations among multiple hosts. The likelihood of
successfully exploiting at least one of the vulnerabilities
within the same group is associated with the virtual node
AV , which is the parent of the original exploit nodes. This
way the hidden correlation is correctly captured. In (a), an
attacker success (failure) in exploitingAV is equivalent to
success (failure) in hackingA1, ...A4. The schema rectified
the previous distorted metrics (which is extremely close to
1) by grouping similar vulnerabilities (i.e. A1, ...A4). In (b),
if an attacker managed the expertise of hacking throughA2,
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Figure 4. Modeling artifacts for capturing hidden correlations

it will succeed inA4 as well since the two involve the same
vulnerability.

Returning to the servers modeled in Figure 3, when
running the algorithms on the extended graphical model,
the difference in the calculated metrics for the two hosts
widened: 0.98 vs 0.73. This difference conforms to our
intuitive assessment based on system administrator’s feed-
back. Also, the number of vulnerable applications (same as
number of grouped vulnerabilities ) becomes the number of
exploits instead of number of vulnerabilities, reducing the
attack-graph size as well (see Figure 5).

The calculated metrics of the two hosts are still very high
which means there are vulnerabilities existing on the two
hosts need to be patched. After we reviewed the attack graph,
we realized that most of the vulnerabilities are client sideand
would need to be triggered through user actions. However,
most of these applications have a low probability of being
invoked by users, due to the functionalities of these servers,
whereas we assigned a likelihood of 0.8 for all of them. This
indicates that assigning such component metrics based on
context is necessary in order to make the measured metrics
reflect the true security situation of the network.

A. Experiment on individual machines

For this experiment, we run our risk-assessment algo-
rithms against several different machines of CIS department
at Kansas State University. The evaluating results indicate
the security levels for these different machines. The de-
partmental network has a fairly simple network topology.
We assume all machines are directly connected to the
Internet (where attacker located) and without considering
multi-host attacks. For this configuration, the functions of
servers and their cumulative metrics results are shown in
Table I. In the table, the numbers indicate the likelihood
various machines can be successfully compromised by an

attacker. In order to justify the differences between the
metrics, we reviewed their scanning reports. For example,
on the report of November 4th 2010, machine1 is safer than
machine4 in terms of the metrics (0.52 vs 0.816) with normal
user privilege. After reviewing the scanning reports of the
two machines, we are assured that our calculated metrics
conform to the security level of the machines. For example,
machine1 has two groups of service vulnerabilities (both
under services with normal user privilege from the Windows
system). Attackers could have two different major paths to
exploit it. One representative is CVE-2010-3139 (exists ina
number of Windows systems) and the other is CVE-2010-
0820 (in Windows 7 only). Therefore the attacker could
launch attacks either through certain libraries insecurely
loaded by Windows Progman Group Converter (CVE-2010-
3139) if he knew the user is using a generic Windows
operating system. Or the attacker could utilize malformed
LDAP messages (CVE-2010-0820) if he knew the victim
machine is running Windows 7. Both vulnerabilities are
fairly easy (with low Access Complexity metrics). Therefore,
for machine1, the attacker has two easily accessible and
independent paths to compromise it. As for machine4, not
only it has the aforementioned two vulnerabilities in ma-
chine1, but also has two other user-privilege service security
holes that could be utilized by attackers. One is CVE-2009-
3959, Acrobat 9.x (before 9.3) allowing attackers remotely
execute arbitrary code via a malformed PDF document
easily (AC is low). The other is CVE-2009-4764, where
an attacker could execute the EXE files embedded at the
pdf files through Adobe reader remotely with reasonable
amount of cost/effort (AC is medium). Therefore by having
two additional independent attack paths, machine4 has a
higher risk metric than machine1 with normal user privilege.
Besides, machine4 has one local vulnerability CVE-2010-
3959 (while machine1 does not) which could be used by
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Figure 5. Attack graphs with modeling artifacts for capturing hidden correlations

attackers to further escalate their privilege from normal user
to root through a crafted CMAP table in an OpenType font.
Thus an attacker could not compromise machine1 with a
root privilege but can gain the administrative privilege on
machine4 with a likelihood of 0.539.

B. Experiments over time series

In order to observe the trend of security levels over
time through our approach, we did the same experiment
on the individual machines at different points of varying,
created MulVAL input files representing network of each
time spot, and evaluated them with the current implemen-
tation of our algorithm. We carefully reviewed vulnerability
scanning reports for all the hosts we used in our experi-
ments. The trend of the machines’ security levels conform
to our metrics. The change could be either an increase
or decrease of vulnerability number or change of CVSS
vectors. For example, machine6 has three grouped service
vulnerabilities. One is on the general Windows framework.
Among the vulnerabilities grouped into this one, the lowest
Access Complexity (AC) level is medium. Another group
of vulnerabilities fall into Windows 7, the lowest AC of

which is low. The rest of the service vulnerabilities belongs
to IIS, the easiest accessible level of these vulnerabilities
is medium. While taking CVSS Access Complexity metrics
into consideration, and based on our attack graph rules, we
can derive the facts that attacker could execute arbitrary
code as a normal user with probability 0.616. We did our
experiments over three time spots: November 4th 2010,
December 19th 2010 and February 17th 2011. We found
that most of the metrics for attacker executing arbitrary
code as a normal user did not change because the number
and the Access Complexity of the vulnerabilities (service
vulnerabilities running with user privilege) did not change.
On the other hand, the metric for attacker running arbitrary
code on machine6 as an administrator rose from 0 (in
November and December) to 0.32 (in February). This change
is attributable to a local exploitable vulnerability detected in
February. Since the attacker has a certain chance (0.616)
of executing arbitrary code as a normal user, along with the
local exploitable vulnerability, he could escalate his privilege
to root with probability 0.32. The Access Complexity of this
group of vulnerabilities is low. Similarly, for machine1, there



Host Function
Individual metric over time

11/04/2010 12/19/2010 02/17/2011
user root user root user root

machine1 Printing 0.52 0.0 0.52 0.0 0.52 0.27
machine3 Scanning 0.853 0.054 0.853 0.054 0.853 0.054
machine2 Camera video collection 0.988 0.028 0.988 0.028 0.988 0.028
machine4 DeepFreeze 0.816 0.539 0.816 0.539 0.816 0.280
machine5 Active Directory Mirror 0.958 0.141 0.958 0.141 0.958 0.141
machine6 Camtasia Relay 0.616 0 0.616 0 0.616 0.32
machine7 DNS/Active Directory 0.992 0.028 0.994 0.028 0.994 0.028

Table I
PROBABILITY OF COMPROMISE FOR INDIVIDUAL MACHINES OVER TIME

are two grouped vulnerabilities from November to February
and all of the services are running under normal user
privilege. Therefore the attacker has the same set of attack
paths to compromise the host with normal user’s privilege.
There is only the one local exploitable vulnerability, first
detected in February. The attacker could have one more
attack path to compromise the machine with root privilege;
thus the risk metrics for machine1 root privilege is raised
from 0 to 0.27. See table I for all the results.

V. CONCLUSION

We have presented an empirical study of a vulnerability
metrics aggregation approach. The approach is sound in that,
given component metrics which characterize the likelihood
that individual vulnerabilities can be successfully exploited,
the model computes a numeric value representing the cu-
mulative likelihood for an attacker to succeed in gaining a
specific privilege or carrying out an attack in the network.
We confirmed the metric model’s effectiveness by evaluating
it on a number of servers in a departmental network. By
analyzing the security level trend over time, we conclude
that the metrics computed by our approach conformed to
the real security situation change (i.e. increase or decrease
of vulnerabilities or a change of a vulnerability’s severity)
of the scanned machines.
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