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Abstract 

We present the eXtended Ciphertext Block Chaining (XCBC) schemes or modes of encryption 

that can detect encrypted-message forgeries with high probability even when used with typical non-
cryptographic Manipulation Detection Code (MDC) functions (e.g., bitwise exclusive-or and cyclic 

redundancy code (CRC) functions). These modes detect encrypted-message forgeries at low cost in 

performance, power, and implementation, and preserve both message secrecy and integrity in a single 

pass over the message data. Their performance and security scale directly with those of the underlying 

block encryption function. We also present the XECB message authentication modes. These modes 

have all the operational properties of the XOR-MAC modes (e.g., fully parallel and pipelined operation, 

incremental updates, and out-of-order verifcation), and have better performance. They are intended 

for use either stand-alone or with encryption modes that have similar properties (e.g., counter-based 

XOR encryption). However, the XECB-MAC modes have higher upper bounds on the probability o f 

adversary's success in producing a forgery than the XOR-MAC modes. 

Introduction 

No one said this was an easy game ! 

Paul van Oorschot, March 1999. 

A long-standing goal in the design of block encryption modes has been the ability to provide message-
integrity protection with simple Manipulation Detection Code (MDC) functions, such as the exclusive-or, 

cyclic redundancy code (CRC), or even constant functions [9, 34, 12, 15]. Most attempts to achieve this 

goal in the face of chosen-plaintext attacks focused on diferent variations of the Cipher Block Chaining 

(CBC) mode of encryption, which is the most common block-encryption mode in use. To date, most 

attempts, including one of our own, failed [14]. 

*This work was performed in part while this author was on sabbatical leave from the University of Maryland, Department 

of Electrical and Computer Engineering, College Park, Maryland 20742. 
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In this paper, we defne the eXtended Ciphertext Block Chaining (XCBC) modes that can b e used with 

an exclusive-or function to provide the authentication of encrypted messages in a single pass over the data. 

These modes detect integrity violations at a low cost in performance, p o wer, and implementation, and 

can be executed in a parallel or pipelined manner. They provide authentication of encrypted messages in 

real-time, without the need for an additional processing path over the input data, and can be executed in 

a parallel or pipelined manner. The performance and security of these modes scales directly with the per-
formance and security of the underlying block encryption function since separate cryptographic primitives, 

such a s hash functions, are unnecessary. We present some preliminary performance measurements of one 

of these modes via-a-vis CBC-MD5, CBC-HMAC-SHA1, and CBC-UMAC-STD30. 

We also present the XECB modes for message authentication (i.e., XECB-MAC modes) and their salient 

properties. These message authentication modes have all the operational properties of the XOR message 

authentication (XOR-MAC) modes (e.g., they can operate in a fully parallel and pipelined manner, and 

support incremental updates and out-of-order verifcation [3], and have better performance. That is, the 

XECB modes use only about half the numb e r of block encryption required by the XOR-MAC modes. 

However, the XECB-MAC modes have higher bounds on the adversary's success of producing a forgery 

than those of the XOR-MAC modes. The XECB modes are intended for use either stand-alone to protect 

the integrity of plaintext messages, or with encryption modes that have similar properties (e.g., counter-
based XOR encryption) whenever the it is desired that separate keys b e used for secrecy and integrity 

modes. 

2 An Integrity Mode for Encryption 

Preliminaries and Notation. In defning the encryption modes we adopt the approach of Bellare et al. 

(viz., [2, 3, 1]), who show that an encryption mode can be viewed as the triple (E;D;K G ), where E is the 

encryption function, D is the decryption function, and KG is the probabilistic key-generation algorithm. 

(Similarly, a message authentication (MAC) mode can be viewed as the triple (S; V; KG), where S is the 

message signing function, V is the message verifcation function, and KG is the probabilistic key-generation 

algorithm.) Our encryption (and authentication) modes are implemented with block ciphers, which are 

modeled with fnite families of pseudorandom functions (PRFs) or pseudorandom permutations (PRPs). 

In this context, we use the concepts of pseudorandom functions, pseudorandom permutations (PRPs) and 

L Lsuper-pseudorandom permutations (SPRPs) ([2], [21]). Let Rl; the set of all functions f0; 1gl J f 0; 1g . 

We will use F to denote either a family of pseudorandom functions or a family of pseudorandom permuta-
tions, as appropriate (e.g., for the encryption schemes, F will be a family of pseudorandom permutations, 

while for our MAC s c hemes, F can be a family of pseudorandom functions). A fnite family of functions, 

F , consists of a set of functions and a set of strings (i.e., the set of keys), each string identifying a memb e r 

lfunction, f . Each function f maps f0; 1g to f0; 1gL, where lj L denotes the input/output length, and 

hence we say that F has input/output length ljL: The fnite family F is pseudorandom if the input-output 

behavior of a function f = FK , which is identifed by key K drawn uniformly at random from the set 

of keys, "looks random" to someone who does not know K [2]. This means that someone's advantage in 

ldistinguishing F from R, which is the set of all functions that map f0; 1g to f0; 1gL, using q queries of f 

in time t, is a negligible value, E. 

k lA natural way to model a block cipher is using a family of SPRPs. Let F : f0; 1g  f  0; 1gl ! f0; 1g
b e a pseudorandom permutation family and f = FK 

b e a permutation randomly chosen by key K (i.e., 

R
K J f0; 1gk) and f,1 = F 

,1 its inverse. Let P 

l denote all the permutations on f0; 1gl, and A be aK 
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two-oracle adversary. F is a SPRP if the advantage of function F , Advsprp (t; q; p), is F 

Advsprp fAdvsprp (t; q; p) = max (A)g  E;F	 F
A 

where the maximum is taken over all the adversaries A issuing q enciphering or deciphering queries totalling 

p = ql bits and time t, E is a negligible quantity, and where the advantage of an adversary A is 

J F ] ,	 J P 

l]j: 

RR,1 ,1Advsprp (A) = jF 

Pr [A = 1 : f; f Pr [A = 1 : f; f 

Given encryption scheme I = (E;D;K G ) that is implemented with SPRP F , w e denote the use of the key 

J 

y by DFK (y). The most common method used to detect modifcations of encrypted messages applies a 

MDC function g (e.g., a non-keyed hash, cyclic redundancy code (CRC), bitwise exclusive-or function [24]) 

to a plaintext message and concatenates the result with the plaintext before encryption with EFK (x). A 

message thus encrypted can b e decrypted and accepted as valid only after the integrity check is passed; 

i.e., after decryption with DFK (y), the concatenated value of function g is removed from the plaintext, and 

the check passes only if this value matches that obtained by applying the MDC function to the remaining 

plaintext [9, 34, 12, 24]. If the integrity check is not passed, a special failure indicator, denoted by N ull 

herein, is returned. This method1 has been used in commercial systems such as Kerberos V5 [28, 30] and 

DCE [10, 30], among others. The encryption scheme obtained by using this method is denoted by I-g = 

(E-g,D-g,KG), where I is said to b e composed with MDC function g. In this mode, we denote the use 

of the key K in the encryption of a plaintext string x by ( EFK -g)(x), and in the decryption of ciphertext 

string y by ( DFK -g)(y). 

A design goal for I-g = (E-g, D-g, KG) modes is to fnd the simplest encryption mode I = (E,D,KG) (e.g., 

comparable to the CBC modes) such that, when this mode is composed with a simple, non-cryptographic 

MDC function g (e.g., as simple as a bitwise exclusive-or function), message encryption is protected against 

existential forgeries. For any k ey K, a forgery is any ciphertext message that is not the output of EFK -g. 

An existential forgery (EF) is a forgery that passes the integrity c heck o f DFK -g upon decryption; i.e., for 

forgery y0, (DFK -g)(y') =6 N ull , where N ull is a failure indicator. Note that the plaintext outcome of an 

existential forgery need not be known to the forgerer. It is sufcient that the receiver of a forged ciphertext 

decrypt the forgery correctly. 

Forgeries can be created in many w ays, for example (1) by modifying the ciphertexts of legitimate messages 

whose plaintext may be known by the forgerer, (2) by including arbitrary, never-seen-before, strings into 

existing ciphertexts, or (3) by combinations of the two. Ciphertexts of legitimate message encryptions can 

be obtained as a result of diferent attack scenarios, such a s c hosen-plaintext attacks (CPA) or ciphertext-
only attacks (CoA). Hence, message integrity attacks can be defned as a combination of attack goals (e.g., 

R

EF) and attack scenarios (e.g., CPA), as suggested by Naor [25]. 

Message Integrity A ttack: the EF-CPA Combination. The attack is defned by a protocol between 

an adversary A and an oracle O as follows. 

1.	 A and O select encryption mode I-g = (E-g,D-g,KG), and O selects, uniformly at random, a key K 

of KG . 

1 Note that other methods for protecting the integrity of encrypted messages exist; e.g., encrypting the message with a secret 

key and then taking the separately keyed MAC of the ciphertext [24, 4]. These methods require two passes over the message 

data, require more power, are more complex to implement than the modes we e n vision for most common use. Nevertheless 

these methods are useful whenever key separation is desired for secrecy and integrity. 

in the encryption of a plaintext string x by EFK (x), and in the decryption of ciphertext string K
 KG
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p2. A sends encryption queries (i.e., plaintext messages to be encrypted) x , p = 1 ;   ; q  e, to the encryp-
p ption function of O. O responds to A by returning y = ( EFK -g)(xp), p = 1 ;   ; q  e, where x are A's 

chosen plaintext messages. A records both its encryption queries and O's responses to them. 

3. After receiving O's encryption responses, A forges a collection of ciphertexts y0i; 1 i qv 

where 

= e Oy0i 6 yp; 8p = 1;   ; q  , and sends each decryption query y0i to the decryption function of O. 

returns a success or failure indicator to A, depending on whether of (DFK -g)(y0i) 6= N ull . 

Adversary A is successful if at least one (DFK -g)(y0i) 6 N ull for 1 i qv; i.e., y0i is an existential forgery. = 

The mode I-g = (E-g,D-g,KG) is said to be secure against a message-integrity attack if the probability o f 

an existential forgery in a chosen-plaintext attack is negligible. (We use the notion of negligible probability 

in the same sense as that of Naor and Reingold [25].) 

Attack Parameters. A is allowed qe 

encryption queries (i.e., queries to EFK -g), and qv 

decryption 

queries (i.e., queries to DFK -g) totaling pe 

+ pv 

bits, and taking time te 

+ tv. 

Parameters qe; p e; t e 

are bound by the parameters defning the chosen-plaintext security of I = (E,D,KG) 

in a left-or-right sense [1], for instance, and a constant c0 defning the speed of the function g. (Briefy, the 

notion of security in the left-or-right sense allows adversary A to query the encryption function of oracle 

Q with q0 queries of the form (xl; x r), where xl 

and xr 

are equal-length plaintext messages. O fips a coin 

and decides to encrypt the left or right messages of the qe 

queries depending on the outcome of the coin 

fip. The scheme is considered to be secure if, after receiving the q0 encryption queries totaling p0 bits, and 

taking time t0, adversary A cannot obtain a non-negligible advantage (i.e., greater than E0) in distinguishing 

which side of the queries was chosen for encryption by the oracle. Note that this notion of security implies 

the more intuitive one whereby an adversary is allowed q0 chosen-plaintext queries, is given the encryption 

of a secret plaintext, and is supposed to fnd that plaintext.) In proving the security of scheme I in a 

0 0 0left-or-right sense, parameters (q ; p ; t ; E 

0) are expressed in terms of the given parameters (t; q; E) of the 

SPRP family F . 

Parameters qe; p e; t e; q v; p v; t v 

are also bound by the parameters (t; q; p) of the super-pseudorandom per-
mutation F , namely pe 

+ pv 

ql , and te 

+ tv 

t. (The parameters qe; q v 

are determined by pe; p v.) These 

parameters can be set to specifc values determined by the desired probability of adversary's success. Note 

that qv 

> 0 since A must b e allowed verifcation queries. Otherwise, A cannot test whether his forgeries 

are correct, since A does not know k ey K. 

The message-integrity attack defned above is not weaker than an adaptive one in the sense that the 

success probability of adversary A bounds from above the success probability of another adversary A0 that 

intersperses the qe 

encryption and qv 

verifcation queries; i.e., the adversary is allowed to make his choice 

of forgery after seeing the result of legitimate encryptions and other forgeries. (This has been shown for 

chosen-message attacks against MAC functions [3], but the same argument holds here.) To date, this is 

the strongest of the known goal-attack combinations against the integrity (authentication) of encrypted 

messages [4, 16, 17]. 

Defnition of the XCBC and XCBC-XOR Modes 

In the encryption modes presented below, the key generation algorithm, KG , outputs a random, uniformly 

distributed, k-bit string or key K for the underlying SP R P family F, thereby specifying f = FK 

and 
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f,1 F 

,1 = of l-bits to l-bits. If a separate second key is needed in a mode, then a new string or key K 

K 0 is generated by KG identifying f 0 = FK0 and f 0,1 = FK
,
0 

1 . The plaintext message to b e encrypted is 

partitioned into a sequence of l-bit blocks (padding is done frst, if necessary), x = x1 

xn. Throughout 

this paper, E is the exclusive-or operator and + represents modulo 2l addition. 

Stateless XCBC Mode (XCBC$) 

The encryption and decryption functions of the stateless mode, 

E, XCBC $FK (x) and D, XCBC 

function E, XCBC$f (x) 

l 

y
r0 

J f 0; 1g


0 

= f(r0); z0 

= f 0(r0)
 

for i = 1 ; ; n do f
 

zi 

= f(xi 

E zi,1)
 

yi 

= zi 

+ i r0 

g
 

return y = y0jjy1y2 

yn
 

$FK (y), are defned as follows. 

r

function D, XCBC$f (y) 

Parse y as y0jjy1 

yn 

0 

= f,1(y0); z0 

= f 0(r0) 

for i = 1 ; ; n do f 

zi 

= yi 

, i r0 

xi 

= f,1(zi) E zi,1 

g 

return x = x1x2 

xn 

Stateful XCBC Mode (XCBC) 

The encryption and decryption functions of the stateful mode, 

E, XCBC 

FK (x; ctr) and D, XC 

r
function E, XCBCf (x; ctr) 

0 

= f(ctr); z0 

= f 0(r0) 

for i = 1 ; ; n do f 

zi 

= f(xi 

E zi,1) 

yi 

= zi 

+ i r0 

g 

ctr0 J ctr + 1 

y = ctrjjy1y2 

yn 

return y 

BC 

FK (y), are defned as follows. 

r

function D, XCBCf (y) 

Parse y as ctrjjy1 

yn 

0 

= f(ctr); z0 

= f 0(r0) 

for i = 1 ; ; n do f 

zi 

= yi 

, i r0 

xi 

= f,1(zi) E zi,1 

g 

return x = x1x2 

xn 

Note that in the XCBC mode the counter ctr can b e initialized to a known constant such as ,1 by the 

sender. ctr0 represents the updated ctr value. 

The encryption modes defned above use the same block chaining sequence as that used for the traditional 

CBC mode, namely zi 

= f(xi 

E zi,1), where z0 

is the initialization vector, xi 

is the plaintext and zi 

is 

the ciphertext of block i; i = 1 ; ; n . In contrast with the traditional CBC mode, the value of zi 

is not 

revealed outside the encryption modes, and, for this reason, zi 

is called a hidden ciphertext block. The 

actual ciphertext output, yi, of the XCBC mode is defned using extra randomization, namely yi 

= zi+i r0, 

where i r0 

is the modulo 2l addition of the random, uniformly distributed, variable r0, i times to itself; 

def 

i.e., i r0 

= r0 

+ + r0. (In systems where the modular multiplication with a constant is fast, i r0 

can | ,z , 

i times 

b e implemented as a per-block m ultiplication.) It should be noted that other functions, or combinations 

of functions, not just the incremental addition modulo 2l of r0, could b e used to defne the ciphertext 

block sequence yi; e.g., subtraction modulo 2l (viz., also Support for Multiple Encryption Modes in the 

next section). Note that these functions may allow the low-order bits of some zi's to become known. 

Furthermore, it should b e noted that the ciphertext blocks of other block-chaining sequences, such as 
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Campbell's "infnite garble extension mode," [9] can b e modifed by yi 

= zi 

+ i r0, not just the CBC 

ciphertext blocks. 

y

In stateless implementations of the XCBC modes, r0 

J f0; 1gl ; i.e., r0 

is initialized to a random, uni-
formly distributed, l-bit value for every message. The value of r0 

is sent by the sender to the receiver as 

0 

= f(r0). In contrast, in stateful implementations, a counter, ctr, is initialized to a new l-bit constant 

(e.g., -1) for every key, K, and incremented on every message encryption. In both stateless and stateful 

implementations, the initialization vector z0 

is set to f 0(r0), which is independent of r0 

and, just as r0, 

remains secret. Alternate stateful implementations are possible whereby the counter ctr and the secret r0 

are shared by both the sender and receiver. As a consequence, the sender need not compute y0 

and send 

its value to the receiver. We also note that other functions, not just f 0 = FK0 , can be used for generating 

the secret initialization vector z0. For instance, z0 

= f(r0 

+ 1), in which case only a single key, K, is used. 

It is important that the encryption of these functions of r0 

produce a pseudorandom value for z0 

that is 

independent o f r0, and remains secret. 

XCBC-XOR Modes. To illustrate the properties of the XCBC modes in integrity attacks, we choose 

g(x) = z0 

E x1 

E E xn 

for plaintext x = x1 

xn, where z0 

is internally defned by both the XCBC$ and 

XCBC modes. In this example, block g(x) is appended to the end of a n-block message plaintext x, and 

hence block xn+1 

= z0 

E x1 

E E xn. For this choice of g(x), the integrity c heck performed at decryption 

becomes z0 

E x1 

E E xn 

= f,1(zn+1) E zn, where zn+1 

= yn+1 

, (n + 1) r0; and zn 

= yn 

, n r0. 

An adversary is successful if the forged ciphertext produced in the attack defned above passes this check 

for at least one of the qv 

verifcation queries. Hence, an upper bound for the probability of adversary's 

success represents a quantitative measure of the integrity properties of the XCBC modes with respect to 

the choice of function g(x) = z0 

E x1 

E E xn. 

Throughout this paper, the stateless and stateful encryption modes I-g obtained by the use of schemes 

I = XCBC$ or I = XCBC with function g(x) = z0 

E x1 

E E xn 

are denoted by XCBC$-XOR and 

XCBC-XOR , respectively. 

Examples of Other Encryption Modes that Preserve Message Integrity. Few modes of encryp-
tion I-g, where g is a simple, non-cryptographic MDC function, are known that are EF-CPA secure. The 

performance characteristics of most of these modes do not satisfy all our goals, however. For example, 

when implemented with the CBC mode and used to encrypt messages consisting of an integer numb e r o f 

l-bit blocks (possibly after padding), the Variable Input Length (VIL) cipher of Bellare and Rogaway [ 5 , 6 ] 

can be shown to be EF-CPA secure when using simple non-cryptographic MDC functions g, 

2 such as those 

for the bitwise exclusive-or, CRCs, addition modulo 2l , 1, the selection of a single constant-flled block 

or just block x1 

of every message, whose output is appended to the end of the message before encryption. 

However, the VIL cipher uses two sequential passes over its input and, thus, its performance is lower than 

those of single-pass schemes using hash functions or separate-key MACs. 

Katz and Yung [16] proposed an interesting single-pass encryption mode, called the Related Plaintext 

Chaining (RPC), that is EF-CPA secure when using a non-cryptographic MDC function g consisting 

only of message start and end tokens. RPC has several important operational advantages, such as full 

parallelization, incremental updates, out-of-order processing, and low upper bound on the probability o f 

adversary's success in producing a forgery.3 However, it wastes a substantial amount of throughput since 

2 This is neither the reason VIL was introduced nor its intended use. 

3 RPC preserves the block ordering in the same way as the XOR-MAC [3]; i.e., it reserves part of every plaintext block for 

the block sequence number. It also shares the same operational advantages and disadvantages as the XOR-MAC. 
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it encrypts the block sequence number and message data in the same block. This may make the selection 

of modern hash functions as the MDC function g for common encryption modes, such as CBC, a superior 

performance alternative, at least for sequential implementations. Similarly the use of modern MACs, such 

as the UMAC, with a separate key may also produce better overall throughput performance than RPC 

when used with common encryption modes. 

More recently, C.S. Jutla [20] proposed an interesting scheme in which the output blocks zi 

of CBC 

encryption are modifed by (i.e., bitwise exclusive-or operations) with a sequence Si 

of pairwise independent 

elements. The complexity of this mode is superior to that of both VIL and RPC; i.e., this mode exceeds the 

complexity of single-pass schemes only by f(log n) block encryptions, where n is the number of plaintext 

blocks of a message. This is shown to be a lower bound for a model where the only operations allowed in 

addition to block encryptions are linear operations over (GF 2)l (i.e., bitwise exclusive-or operations on l-bit 

blocks). Jutla also proposes a slightly diferent model that, just as the XCBC modes, also allows modular 

additions. In this model, Si 

= ( i r0 

+ r1)mod p, where r0; r 1 

are random values and p is prime, and the 

complexity n+ 3 . In contrast with Jutla's scheme, the elements of the XCBC sequence, Si 

= ( i r0)mod 2l , 

are not pairwise independent, and the complexity i s n + 2 . Also, the performance of the required modular 

2l additions is somewhat better than that of mod p additions, where p is prime. However, the pairwise 

independence of Jutla's Si 

sequence should yield a somewhat tighter bound on the probability of successful 

forgery (i.e., tighter by a fraction of a lo g 2 

factor depending on the value of p), illustrating, yet again, a 

fundamental tradeof between performance and security. 

Properties of the XCBC Modes 

The XCBC modes have notable secrecy and integrity properties in several areas. 

1. Support for Message Integrity. The XCBC modes require only a single cryptographic primitive, namely 

the block cipher that is necessary for encryption, to maintain integrity. Further, other functions (i.e., not 

just the g(x) function defned above), such as the CRCs and modular addition checksums, can also b e 

used with the XCBC modes for protection against message integrity attacks (unlike the original CBC and 

PCBC modes). 

2. Support for Real-Time Message Authentication. 

Both the stateless and stateful XCBC modes can b e used with g(x) = z0 

E x1 

E E xn 

for real-time 

message sources in which (1) the message length remains unknown until the message ends, (2) the begin-
ning of message authentication cannot b e deferred until the end of message receipt, and (3) only small, 

fx-sized, bufers for authentication processing are available, as would b e the case with most low-cost, 

low-power, hardware implementations. Also the XCBC modes can produce good Message Authentication 

Codes (MACs). For example, a Double MAC approach [26] can b e used for both the XCBC$ (XCBC) 

modes to obtain good MACs. 

3. Support for Multiple Encryption Modes. The defnition of the ciphertext generation yi 

from the hidden 

ciphertext block zi, (i.e., the output of the internal CBC encryption mode), can be changed to obtain other 

modes of encryption that may be faster or have better security bounds. For example, 

• yi 

= zi 

E (i r0) in which one of the additions mod 2l per block is replaced by an exclusive-or; 
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i•	 yi 

= zi 

+ ri, where ri 

= a r0 

is a linear congruence sequence with multiplier a. The multiplier a 

can b e chosen so that the sequence passes spectral tests to whatever degree of accuracy is deemed 

necessary. Examples of g o o d m ultipliers are readily available in the literature [18]. This mode may 

have a better upper bound for the probability of breaking the integrity condition. 

We also note that the traditional PCBC modes can also b e used to generate an XPCBC mode in the 

same way as the XCBC mode was generated based on the traditional CBC mode above. The conventional 

initialization-vector attacks defned by Voydock and Kent [33] are also countered by the use of z0 

as the 

initialization vector. 

The XCBC modes capture the history of the message encryption only from the previous block, just as the 

CBC modes. However, in contrast to the original CBC modes, the XCBC modes add an extra randomiza-
tion step which is the key ingredient that assures that the integrity c heck can pass only with low probability. 

4. Support for Interleaved-Parallel or Pipelined Encryption. The choice of g(x) = z0 

E x1 

E E xn, allows 

the interleaved-parallel or pipelined implementation of the XCBC modes. Other non-cryptographic MDC 

functions g(x) would also allow such implementation, since they b e executed in a parallel or a pipelined 

manner (by defnition). This mode is useful when the numb e r of processors available for encryption and 

decryption in parallel is a priori known or negotiated. For example, for interleaved-parallel execution using 

(1)g(x), each plaintext message x is partitioned into L segments, x x(L) each of length ns, s = 1 ; ; L , 

after customary block-level padding (n.b., this L should not be confused with the output length of a PRF, 

(s)which i s t ypically denoted by L, also). Each segment, x ; s = 1 ; ; L , consists of one or more l-bit blocks, 

(s) (s) (s) (s)
and if g(x ) = z0 

E x1 

E E xns 

is used, then an additional l-bit block is included in each segment. 

Each segment is encrypted/decrypted in parallel on a separate processor. 

y

In interleaved-parallel or pipelined implementations of the XCBC modes, the initialization and computation 

of the block chaining sequence is performed on a per-segment basis starting with a common value of r0, 

which is a random, uniformly distributed, l-bit value for every message. Also, the per-message value 

0 

is computed as y0 

J f(r0) in stateless implementations. The initialization of the block chaining 

(s) (s) (s)
sequence for message segment s can be r = r0 

+ s; z = f 0(r ), and the encryption sequence can be 0 0 0 

(s) (s) (s) (s) (s) (s)
z = f(x E z ); y = z + i r . In stateful implementations ctr is updated to ctr + L after the i i i,1 i i 

0 

encryption of each message. (Other functions, not just addition modulo 2l, can be used for the computation 

(s) (s)
of the per-segment, block c haining sequence, and initialization sequence can be used for r0 

and z0 

.) 

The encrypted segments of a message are assembled to form the message ciphertext. Segment assembly 

encodes the numb e r of segments L, the length of each segment ns 

and, implicitly, the segment sequence 

in the message (e.g., all can be found in the ASN.1 encoding). If the segments of a message have diferent 

lengths, segment assembly is also synchronized with the end of each segment encryption or decryption 

within a message. 

At decryption, the parsing of the message ciphertext yields the message length, L, segment sequence 

number, s, and the length of each segment, ns. Message integrity is maintained both on a p e r segment 

and per message basis by performing the per-segment integrity c heck; if g(x) = z0 

E x1 

E E xn, the 

(s) (s) (s) (s) (s) (s) (s)	 (s)
per-segment check is z E x E E x = f,1(z where z = y + 1) r0 1 

ns ns+1) E zns ns+1 ns+1 

, (ns 0 

(s) (s) (s)
and zns 

= yns 

, ns 

r0 

. Failure of any per-segment i n tegrity c heck, which also detects out-of-sequence 

segments and message-length modifcations, signals a message integrity violation. 

We illustrate an interleaved- parallel implementation of the XCBC modes below. 
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Stateless Parallel XCBC Mode (ipXCBC$) 

The encryption and decryption functions of the stateless mode,
 

E, ipX CBC $FK (x) and D, ipX CBC $FK (y), are defned as follows.
 

function E, ipXCBC$f (x) 

(s)partition x into L segments x
each of length ns; 

lr0 

J f 0; 1g ; y0 

= f(r0) ; 

for segment s; s = 1 ; ; L; do f 

(s) (s) (s)
r = r0 

+ s; z = f 0(r )0 0 0 

for i = 1 ; ; n s 

do f 

(s) (s) (s)
z = f(x E z )i i i,1
(s) (s) (s)
y = z + i r gi i 

0 

(s) (s)(s)y = y yns 

g1 

(1) (L)assemble y = y0jjy y ; 

return y. 

function D, ipXCBC$f (y) 

(s) 

r

parse y into y0 

and L segments y


each of length ns;
 

0 

= f,1(y0)
 

for segment s; s = 1 ; ; L do f
 

(s) (s)(s)Parse y as y1 

yns 

(s) (s) (s)
r = r0 

+ s; z = f 0(r )0 0 0 

for i = 1 ; ; n s 

do f 

(s) (s) (s)
z = y , i ri i 

0 

(s) (s) (s)
x = f,1(z ) E z gi i i,1 

(s) (s)(s)x = x xns 

g1 

(1) (L)assemble x = x x ; 

return x. 

Stateful Parallel XCBC Mode (ipXCBC) 

The encryption and decryption functions of the stateful mode, 

E, ipX CBC 

FK (x; ctr) and D, ipX CB 

function E, ipXCBC$f (x; ctr) 

(s) 

r

partition x into L segments x


each of length ns;
 

0 

= f(ctr);
 

for segment s; s = 1 ; ; L; do f
 

(s) (s) (s)
r0 

= r0 

+ s; z0 

= f 0(r0 

) 

for i = 1 ; ; n s 

do f 

(s) (s) (s)
z = f(x E z )i i i,1
(s) (s) (s)
y = z + i r gi i 

0 

(s) (s)(s)y = y y gns1 

(1) (L)assemble y = ctrjjy y ;
 

ctr0 J ctr + L;
 

return y.
 

C 

FK (y), are defned as follows. 

function D, ipXCBC$f (y) 

(s) 

r

parse y into ctr and L segments y


each of length ns;
 

0 

= f(ctr)
 

for segment s; s = 1 ; ; L do f
 

(s) (s)(s)Parse y as y1 

yns 

(s) (s) (s)
r = r0 

+ s; z = f 0(r )0 0 0 

for i = 1 ; ; n s 

do f 

(s) (s) (s)
z = y , i ri i 

0 

(s) (s) (s)
x = f,1(z ) E z gi i i,1 

(s) (s)(s)x = x x gns1 

(1) (L)assemble x = x x ;
 

return x.
 

Note that in the XCBC mode the counter ctr can b e initialized to a known constant such as ,1 by the 

sender. ctr0 represents the updated ctr value. 

7. Incremental Updates of Encrypted Data. The segmentation of a message used for parallel and pipelined 

implementation of the XCBC modes can also be used in sequential encryption of data structures (e.g., a 

fle, a message) whenever incremental updates of data structures are anticipated. Such segmentation en-
ables the localization of the decryption, plaintext update, and encryption to single segments saving the 

decryption and encryption of other segments unafected by the updates. Note that message integrity is 

retained after such incremental updates. 
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6. Support for Architecture-Independent Parallel Encryption. In Jutla's recent scheme [20], a parallel 

mode is proposed whereby both the input and output to the pseudo-random function are "whitened" using 

a collection of pairwise independent random numbers. The fully parallel XCBC modes achieves the same 

efect without pairwise independent random numbers. It is sufcient to randomize the input of f using 

the same type of sequence as that used for the randomization of its output to obtain a low probability o f 

input or output collisions, which w ould be necessary to break integrity (as illustrated in the next section, 

for the XECB MAC). More formally, for an arbitrary index i; 1 i n + 1 ; n = jxj, the ciphertext block 

yi 

is obtained through the formula: 

yi 

= f(xi 

+ i z1) + i r0; 

where z1 

is random, uniformly distributed and independent o f r0 

and z0. In this mode, there is no ciphertext 

chaining, and no a priori knowledge of the number of processors is necessary. The same function g(x) can 

be used here as in the sequential XCBC modes. 

7. Resistance to Key Attacks. Resistance to exhaustive key-guessing attacks can b e implemented in a 

similar manner as that of DESX [29], if deemed necessary, in all of the above modes. However, adoption 

of modern block ciphers should reduce the need for this. 

5 Defnition of the XECB Authentication Modes 

In this section, we introduce new Message Authentication Modes (MACs) that counter adaptive chosen-
message attacks [3]. We call these MACs the eXtended Electronic Code Book MACs, or XECB-MACs. The 

XECB-MAC modes have all the properties of the XOR MACs [3] plus they do not waste half of the block 

size for recording the block position. First we defne these MACs, and then we present their properties. 

Several variants of such MACs can b e derived, and here we present a stateless version of XECB-MAC, 

namely the XECB$-MAC, and a stateful version, namely the XECB-MAC. 

lA stateless implementation of the XECB$-MAC uses as initialization sequence r0 

J f0; 1g ; y 0 

= f(r0) 

and z0 

= f 0(r0), where f 0 = FK0 is a PRF selected with the second key K 0 . (Clearly, the generation of z0 

can be performed with the same key, K , b y encrypting a function of r0. Use of K 0 is made here exclusively 

to simplify the proof.) Then, each block of message x, namely xi; 1 i n; n = jxj is randomized as 

xi 

+ i y0, and the result is input to function f ; i.e., yi 

= f(xi 

+ i y0): We also let xn+1 

= z0 

and compute 

yn+1 

= f(z0 

+ ( n + 1) y0). These values, y1; ; y n; y n+1, and z0 

are exclusive-OR-ed to generate the 

authentication tag: 

w = y1 

E E yn 

E yn+1 

The algorithm outputs the pair (r0; w ). For verifcation, the attacker submits a forgery x = x1 

xn 

and a forged pair (r0; w ).4 The algorithm proceeds with computing y0 

= f(r0), then z0 

= f 0(r0), then 

computes yi 

= f(xi 

+ i y0); 8i; 1 i n, yn+1 

= f(z0 

+ ( n + 1) y0), and the authentication tag 

w0 = y1 

E E yn 

E yn+1. The algorithm outputs a bit that is either 1, if the forged authentication tag is 

correct, namely w = w0, or 0, otherwise. 

In the stateful mode, the signer maintains state across consecutive signing requests in the form of a counter 

(ctr). Hence, the initialization phase is defned as r0 

= f(ctr); z 0 

= f 0(r0), where f 0 = FK0 is a PRF selected 

4 The forgery (x; r0; w ) is not a previously signed query. Note also that the length n of the forged message needs not be 

equal to the length of any signed message. 
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with the second key K 0 . Then, for each message block, yi 

= f(xi 

+ i r0); 8i; 1 i n; n = jxj, and 

yn+1 

= f(z0 

+ ( n + 1) y0). The authentication tag is then defned as 

w = y1 

E E yn 

E yn+1: 

The algorithm outputs the pair (ctr; w ). For verifcation, the attacker submits a forgery x = x1 

xn 

and 

a forged pair (ctr; w ). The algorithm proceeds with computing r0 

= f(ctr); z 0 

= f 0(r0), then computes 

yi 

= f(xi 

+ i r0); 8i; 1 i n, yn+1 

= f(z0 

+ ( n + 1) y0), and the tag w0 = y1 

E E yn 

E yn+1. The 

algorithm outputs a bit that is either 1, if the forged authentication tag is correct, namely w = w0, or 0, 

otherwise. 

The concrete implementation for the signing and verifying algorithms for the stateless and stateful XECB-
MAC modes is defned as follows. 

Stateless XECB-MAC Mode (XECB$-MAC) 

function Sign-XECB$-MACf (x) 

lr0 

J f 0; 1g


y0 

= f(r0); z = f 0(r0)
0 

xn+1 

= z0 

for i = 1 ; ; n + 1 do f 

yi 

= f(xi 

+ i y0) g 

w = y1 

E E yn 

E yn+1 

return (r0; w ) 

y
function Verify-XECB$-MACf (x; r0; w ) 

0 

= f(r0); z 0 

= f 0(r0) 

xn+1 

= z0 

for i = 1 ; ; n + 1 do f 

yi 

= f(xi 

+ i y0) g 

w0 = y1 

E E yn 

E yn+1 

if w = w0 then return 1 

else return 0. 

Stateful XECB-MAC Mode (XECB-MAC) 

function Sign-XECB-MACf (ctr; x ) 

r0 

= f(ctr); z = f 0(r0) 

xn+1 

= z0 

for i = 1 ; ; n + 1 do f 

yi 

= f(xi 

+ i r0) g 

w = y1 

E E yn 

E yn+1 

ctr0 J ctr + 1 

return (ctr; w ) 

0 

r
function Verify-XECB-MACf (x; ctr; w ) 

0 

= f(ctr); z 0 

= f 0(r0) 

xn+1 

= z0 

for i = 1 ; ; n + 1 do f 

yi 

= f(xi 

+ i r0) g 

w0 = y1 

E E yn 

E yn+1 

if w = w0 then return 1 

else return 0. 

Note that in the XECB mode the counter ctr can b e initialized to a known constant such as ,1 by the 

sender. ctr0 represents the updated ctr value. The stateless XECB-MAC$ and stateful XECB-MAC modes 

can be implemented using PRFs. 

It should b e noted that the implementation of the XECB-MAC modes can b e performed in software, 

hardware, or software with hardware support. Implementations can b e in general-purpose computers or 

in dedicated hardware devices and software. We now present the properties of the stateless and stateful 

XECB-MAC modes. 

Properties of the XECB Authentication Modes 

1. Security. The XECB authentication modes are intended to be secure against adaptive c hosen-message 
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(qs; q v)-attacks [3]. These attacks are similar to the message integrity attack defned in this paper. The 

only diference is that instead of qe 

(encryption) queries totaling pe 

bits and taking time te, this attack uses 

qs 

(signature) queries, totaling ps 

bits and taking time ts. Theorem 3 below shows the security bounds 

for these modes against adaptive c hosen-message attacks. The XECB modes have higher upper bounds on 

the adversary's success in producing a forgery than those of the XOR-MAC modes. 

2. Parallel and Pipelined Operation. Function f (e.g., DES, RC6) computations on diferent blocks can 

be made in a fully parallel or pipelined manner; i.e., it can exploit any degree of parallelism or pipelining 

available at the sender or receiver. This property is important for high speed networks and in both hardware 

and software implementations. 

3. Incremental Updates. The XECB-MAC modes are incremental with respect to block replacement, e.g., 

0a block xi 

of a long message is replaced with a new value xi. For instance, let us consider the stateless 

mode. Let the two messages have the same random block r0; hence, the authentication tag of the new 

message, w0, is obtained from the authentication tag of the previous message, w, b y the following formula: 

0 0w = w E f(xi 

+ i r0) E f(xi 

+ i r0). The replacement property can be easily extended to insertion and 

deletion of blocks. 

4. Out-of-order Verifcation. The verifcation of the authentication tag can proceed even if the blocks of 

the message arrive out of order as long as each block is accompanied by its index and the frst block has 

been retrieved. 

5. Block Encryption Computations. In contrast to the XOR-MAC modes, where the number of block en-
cryption computations is twice the number of block encryption computations for CBC-MAC [3], the numb e r 

of block encryption computations in the XECB-MAC modes is the same as the number of block encryption 

computations for the CBC-MAC. While in sequential implementations the performance of XECB-MACs 

is expected to b e just slightly lower than the performance of the CBC-MAC (because of the two mod-
ular additions p e r block vs. one exclusive-OR for CBC-MAC), the XECB mode can take advantage of 

parallelism or pipelining in an architecture-independent manner; i.e., the numb e r of processors available 

need not be known apriori  a signifcant feature available only in few modes such as the XOR-MAC. This 

property, the out-of-order and incremental computation are especially important in hardware implementa-
tions, particularly in high-speed networks and for the internet. For this reason, the use of the XECB-MAC 

modes appears to b e more appropriate than that of the XOR-MAC for the integrity protection of mes-
sages encrypted under fully parallel or pipelined encryption schemes such as the XORrC [13], which i s a 

random-counter variant of the counter-based XOR encryption mode [1]. 

7 Security Considerations 

In this section, we provide evidence for the security of the XCBC modes against both adaptive chosen-
plaintext and message-integrity attacks. We also present the security of the XECB modes in adaptive 

chosen-message attacks. 

We frst address the security (i.e., secrecy) of the XCBC$ mode against adaptive c hosen-plaintext attacks. 

The theorems and proofs that demonstrate that the stateful mode (XCBC) and the two-key variations are 

secure in a left-or-right sense [1] are similar to that for the XCBC$ mode and, therefore, will be omitted. 

The Lemma and Theorem below, which establish the security (i.e., secrecy) of the XCBC$ mode are 

restatements of Lemma 16 and Theorem 17 respectively, which are presented for the CBC mode in the full 
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version of the Bellare et al. paper ([1]). The proof of the Lemma and Theorem are similar to those for the 

CBC mode and hence are omitted. 

Lemma 1 [Upper bound on the security of the XCBC$ mode in random function model] 

Let XCBC $R b e the implementation of the XCBC$ mode with the family of random functions R(l; l ). 

Let A b e a n y adversary attacking XCBC $R in the left-or-right sense, making at most q0 queries, totaling 

at most p0 bits. Then, the adversary's advantage is  ! 

p02 p0 1def 

Advlr  8 = , :A 

XCBC $ l2 l 2l 

The following theorem defnes the security of the XCBC$ mode against an adaptive chosen-plaintext 

attack when the XCBC$ mode is implemented with a (q; t; E)-pseudorandom function family F . F is 

(q; t; E)-pseudorandom, or (q; t; E)-secure, if an adversary (1) spends time t to evaluate f = FK 

at q input 

points via adaptively chosen queries, and (2) has a negligible advantage bounded by E over simple guessing 

in distinguishing the output of f from that of a function chosen at random from R. 

Theorem 1 [Security of XCBC$ against Adaptive Chosen-Plaintext Attacks] 

Suppose F is a (t; q; E)-secure PRF family with block length l. There is a constant c > 0 such that for any 

0 0number of queries qe 

totaling p0 bits of memory and taking time t0, the XCBC $(F ) is ( t0; q ; p ; E 

0)-secure   
def J02 J00 

1in the left-or-right sense, for p = q0l, t0 = t , cp0, and E0 = 2 E + 8XCBC $ 

where 8XCBC $ 

=
l2 

, 

l 2l 

. 

The XCBC$ and XCBC modes should really be analyzed assuming F is a SPRP family (not a PRF family), 

and hence one needs to apply the results of Proposition 8 of Bellare et al. [1] to the results of Theorem 

1 (and also of Theorems 2-3 below). A similar lemma and theorem hold for chosen-plaintext attacks in a 

real-or-random sense, as defned by Bellare et al. [1]. 

In establishing the security o f the XCBC$ mode against the message-integrity attack, let the parameters 

used in the attack be bound as follows: qe 

q0, since the XCBC$ scheme is also chosen-plaintext secure, 

te 

+ tv 

t, and p00 = pe 

+ pv 

ql . Let the forgery verifcation parameters qv; p v; t v 

b e c hosen within the 

constraints of these bounds and to obtain the desired P [Succ]. utr R 

f+F 

Theorem 2 [Security of XCBC$-XOR against a Message-Integrity Attack] 

Suppose F is a (t; q; E)-secure SPRP family with block length l. The mode XCBC$-XOR is secure against 

a message-integrity attack consisting of qe 

+ qv 

queries, totaling pe 

+ pv 

ql bits, and taking at most 

te 

+ tv 

t time; i.e., the probability of adversary's success is   
pv(pv 

, l) qe(qe 

, 1) (qe 

+ 2) pv 

qv 

pe 

pe 

3pe
Pr [Succ] E + + + + log2 

+ ;R

l22l+1 2l+1 l2l 2l l l lf+F 

and, if m = max(np 

+ 1), where np; 1 p qe, is the numb e r of blocks encrypted in the message p-th 

R

message,   
pv(pv 

, l) qe(qe 

, 1) (qe 

+ 2) pv 

qv 

pe 

3pe 

+F 

P
 [Succ] E + log2 

m ++
 +
 +
 :
r 

l22l+1 2l+1 l2l 2l l lf 

(The proof of Theorem 2 can be found in Appendix A.) Note that parameters qe; p e; t e 

can be easily stated 

0 0in terms of parameters (t0; q ; p ; E 

0) of Theorem 1 above b y i n troducing a constant c0 defning the speed of 

the XOR function. 

Theorem 2 above allows us to estimate the complexity of a message-integrity attack. In a successful attack, 

R
J P 

lP
 r R [Succ] 2 (negligible; 1]. To estimate complexity, we set the probability o f success when f to 

f+F 
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Jthe customary 1j2, and assume that the attack parameters used in the above bound, namely 

Je ; 

v , are of 

l l 

the same order or magnitude, namely 20l, where 0  a  1. Also, since the shortest message has at least 

three blocks, qe; q v  b 

2
3 

ul 

c. 

In this case, by setting 

qe(qe , 1) pv(pv , l) (qe + 2) pv 

qv 

pe 

pe 

3pe 

+ + + log2 

+ = 1 j2;
2l+1 +1 2ll22l l2l l l l 

+34 0l 8we obtain the equation 220lb 

60l
9 

c + 2 3 

= 2l, which allows us to estimate a for diferent values of l. 

(In this estimate, we can ignore the term in 20l since it is insignifcant compared to the other term of the 

� 

29 61 � 

124sum.). For example, for l = 64 ; a , for l = 128; a � , and for l = 256; a Hence, this attack i s64 128 256 

. 

very close to a square-root attack (i.e., a ! 

1
2 

as l increases). If the maximum length m of the encrypted 

messages is known, the attack is even closer to a square-root attack. 

A variant of Theorem 2 can b e proved for the stateful mode. In this case, it can b e shown that the 

probability of successful forgery when qv 

verifcation queries are allowed, totaling at most pv 

bits and using 

at most time tv 

after qe 

encryption queries totaling pe 

bits and taking time te, is 

pv(pv , l) (qe + 2) pv 

qv 

pe 

pe 

3pe
Pr R 

[Succ] E + + + log2 

+ : 

f+F l22l+1 l2l 2l l l l 

Furthermore, similar theorems hold for other stateless modes where z0 

= f(r0 

+ 1). The statement and 

proof for such theorems are similar to the statement and proof for the integrity theorem for the stateless 

mode, and hence, are omitted. 

The XECB-MAC m o d e i s i n tended to be secure against an adaptive c hosen-message attack [3] consisting 

of up to qs 

signature queries totaling at most ps 

bits and using time up to ts, and qv 

verifcation queries 

totaling at most pv 

bits and using time at most tv. The security o f t h e XECB-MAC mode is established 

by the following theorem. 

Theorem 3 [Security of XEBC-MAC in an Adaptive Chosen-Message Attack] 

Suppose F is a (t; q; E)-secure PRF family with block length l. The message authentication mode (Sign-
XECBf , V erify-XECBf , K G) is secure against adaptive c hosen-message (qs; q v) attacks consisting of qs+qv 

queries totaling ps + pv 

ql bits and taking at most ts + tv 

t time; i.e., the probability o f adversary's 

success is 

(qs + 2) pv 

qvps 

ps 

3ps
Pr [Succ] E + + log2 

+ 3 + :R +1f+F l2l l2l l l2l 

The proof of this theorem is similar to that of Theorem 2 and is presented in Appendix B. A similar theorem 

can b e provided for the stateless message authentication mode. The complexity of an attack against the 

XECB MAC can be derived in a similar manner to that of the attack against the XCBC$-XOR mode. 

8 Performance Considerations for the XCBC Modes 

The performance of the XCBC modes in software implementations is (1) minimally degraded in comparison 

to that of the original CBC mode [11, 1], and (2) superior to that of the original CBC modes, and most 

other similar modes, when message integrity is desired. 

The XCBC$ modes add the overhead of two block encryption p e r message (i.e., for generating z0 

and 

y0), and two mod 2l additions per message block to the traditional CBC mode with random initialization 
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vectors (or, equivalently, with initialization vectors set to zero and a random number in the frst plaintext 

block [28])5 . However, the execution of both modulo 2l additions for the current ciphertext block can 

always be overlapped with the block encryption of the next block and, hence, at peak speeds there is little 

perceptible overhead over that of the traditional CBC mode. This compares favorably with the overhead 

added at peak speeds by an original CBC mode that uses any of the hash functions known to date to 

provide message integrity. In any case, the dominant performance factor is the throughput achieved by 

block encryption. An important advantage of the new modes is that their performance scales up nearly 

identically with that of block encryption; furthermore, hardware implementations of the new modes can 

make the added overhead imperceptible. 

To illustrate the performance characteristics of the XCBC$ scheme in software, we used the SSLeay library 

[31], and conducted some preliminary measurements on a Sun SPARC Ultra 10 IIi processor running the 

SunOS 5.6 operating system. The processor has a 333 MHz clock, 2 MB of external (of-chip) cache, and 

16/16 KB of internal (on-chip) instruction/data cache. We used the version 4.2 of the native C compiler 

with the -xO2 optimization option. We used a lightly loaded machine for our measurements, and the 

throughput for each of the eight message sizes was generated by a veraging the results of ffty runs. 

Our implementation of the addition mod 2l operations was also infuenced by the SSLeay implementation 

of the CBC scheme on 32-bit processors. However, we were able to use 64-bit additions for the XCBC$ 

def 

scheme. The addition uses the unsigned long long type (64 bits) for i r0 

= r0 

+ + r0 

and y = z +i r0 | ,z ,
i times 

operations. The hidden ciphertext blocks zi 

that result from the DES encryption (which operates on two 

32-bit unsigned longs) are packed into the unsigned long long zi 

for the subsequent modular 64-bit additions. 

Each packing operation, which w ould be avoided in a 64-bit implementation, requires a bitwise or and a 

shift. 

The throughput of the CBC, XCBC$, CBC-MD5, CBC-UMAC-STD30, 

CBC-HMAC-SHA1, and XCBC$-XOR modes implemented with DES is shown in Figure 1 for samples of 

both large and small messages.6 The percentage gain in the throughput performance of the XCBC$-XOR 

mode over that of the CBC-MD5, CBC-UMAC-STD30, and CBC-HMAC-SHA1 modes for these message 

samples is shown in Figure 2. 

The results shown in these fgures indicate that, in unoptimized software implementations, 

•	 a substantial overall throughput improvement can be expected. For small messages (i.e., b e t ween 1 

Byte and 1 KB length), we can expect about 15 , 65% improvement for XCBC-XOR vs. CBC-MD5, 

about 78 , 113% for XCBC-XOR vs. CBC-UMAC-STD30, and about 44 , 99% for XCBC-XOR vs. 

CBC-HMAC-SHA1. For large messages (i.e., between 10 KB and 1MB length), we can expect about 

15 , 20% improvement for XCBC-XOR vs. CBC-MD5, about 15 , 25% for XCBC-XOR vs. CBC-
UMAC-STD30, and about 23 , 29% for XCBC-XOR vs. CBC-HMAC-SHA1. In general, we expect 

higher performance improvement for small messages than for large ones because, for small messages, 

the performance of the MD5 hash function (and that of most hash functions), of UMAC-STD30 

5 Note that traditional CBC modes require the use of secret initialization vectors that are protected from arbitrary modi-
fcation, and the most common way of satisfying both requirements is to use (pseudo) random initialization vectors. For this 

reason, the generation of the initial per-message random numb e r i s considered to be a common overhead to both the new 

and the traditional CBC modes. As shown above, the stateful XCBC mode, however, requires only that a separate random 

number be generated per key, not per message, thereby eliminating much of this common overhead of stateless modes. The 

alternative of generating and cacheing values of r0 

as the system runs and ahead of their actual use may also help decrease 

the overhead of the stateless XCBC mode. 

6 Note that the UMAC-STD30 is the 1999 version. The latest version, not used here, is reported to perform much better 

for small message sizes. 
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Figure 1: Throughput of the CBC, XCBC$, CBC-MD5, CBC-UMAC-STD30, CBC-HMAC-SHA1, and 

XCBC$-XOR encryption modes implemented with DES for message sizes of 1 B 1 M B . 

and HMAC-SHA1 is closer to that of DES than for large messages. Hence, our use of the function 

g(x) = z0 

E x1 

E E xn 

improves a much larger fraction of the overall throughput of encrypted 

messages. 

•	 throughput measurements for small-size messages shown in Figure 1 are susceptible to a signifcant 

margin of error caused by the inability to ofset operating system efects over a fairly short run-
time for each test for such messages. For example, for 1 KB messages, the throughput of XCBC$ 

appears to b e higher than that of CBC by about 8%. Nevertheless, the performance illustrated 

in Figure 1 appears to b e consistent with individual MD5 and UMAC-STD30 measurements. For 

example, measurements reported for UMAC-STD30 [8] show that it reaches peak speeds for messages 

b e t ween 80 KB and 128 KB, whereas Figure 1 indicates that the UMAC-STD30 reaches close-to-peak 

performance at 100 KB. Also, Figure 1 shows that, for 10 KB messages, UMAC-STD30 is within 

22.2% of the speed measured at 100 KB, which appears to b e consistent with the measurements 

reported for UMAC-STD30. 

•	 the clear performance bottleneck is that of the DES-CBC and underlying DES block encryption. 

Figure 1 shows that the performance diferences b e t ween the DES-CBC, DES-XCBC$, and DES-
XCBC$-XOR are almost imperceptible for mid-size and large messages. Given the advantage of 

using the function g(x) = z0 

E x1 

E E xn 

over that of using g(x) = MD5 or any other hash function 

or MAC i n X CBC encryption, we expect that the gain in the performance of the XCBC$-XOR over 

that of CBC-MD5 (or any other CBC-hash-function mode), CBC-UMAC-STD30, or CBC-HMAC-
SHA1 to be even more pronounced for fast block encryption functions where the UMAC and MD5 (or 

any other hash function) would represent a higher fraction of the CBC-HMAC-SHA1, CBC-UMAC-
STD30, and CBC-MD5 (or CBC-any-hash-function) cost. 

We also expect that further improvements can be derived from an assembly language implementation where 
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Figure 2: Percentage gains of the DES-XCBC$-XOR mode over the CBC-MD5, CBC-UMAC-STD30, and 

CBC-HMAC-SHA1 modes for message sizes of 1 B 1 MB. 

optimal register allocation can be performed for both the block encryption functions and the XCBC modes. 

It should b e noted that the implementation of the XCBC modes can b e performed in software, hard-
ware, or software with hardware support. Implementations can b e in general-purpose computers or in 

dedicated hardware devices and software. The simplicity of the XCBC modes suggests that substantial 

cost-performance improvement can b e expected when they are implemented in hardware. For example, 

DES hardware implementation reached 1.6 Gbp whereas HMAC-SHA-1 hardware implementation has 

reached only about half that speed. (This seems to confrm early predictions that the speed of hash 

functions and MACs based on them does not scale in hardware implementations as well as that of block 

encryption functions [32, 7]). Thus, we can expect performance speedups of about 100 , 200% over current 

hardware implementation modes for message encryption and authentication. Of particular interest in this 

area are implementations of the XCBC modes on low-power and/or low-cost devices. 
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Appendix A - Proof [Security of the XCBC$-XOR in a Message-Integrity Attack] 

pp p pNotation: Throughout this proof, the superscripts of variables x ; z ; y , and r0 

denote the plaintext, 

hidden ciphertext, ciphertext, and initial random value of a queried message p; 1 p qe, whereas the 

0i 0i 0i(primed) variables x , z , y0i, and r0 

denote the plaintext, hidden ciphertext, ciphertext, and the initial 

random value of the i-th forged (i.e., unqueried) message, 1 i qv. The length of the plaintext of 

0i 0imessage p is denoted by np 

= jxpj and that of forgery y by n = jx0ij blocks. (These lengths do not 

include the last plaintext block that holds the value of the XOR function.) 

To fnd an upper bound on the probability of an adversary's success we (1) defne four types of events 

on which we condition the adversary's success, (2) express the upper bound in terms of the conditional 

probabilities obtained, and (3) compute upper bounds on these probabilities. Our choice and numb e r of 

conditioning events is motivated exclusively by the need to obtain a (good) upper bound for the probability 

of the adversary's success. Undoubtedly, other events could be used for deriving alternate upper bounds. 

To provide some intuition for the choice of conditioning events defned, we give examples of events that 

cause an adversary's success. (The reader can skip these examples without loss of continuity.) 

Examples of Adversary's Success. A way for the adversary to fnd a forgery y0 that passes the 

0integrity check g(x0) = xn+1, is to look for collisions in the input of f,1 , namely collisions of the (1) 

hidden ciphertext blocks generated during the decryption of a forgery, z0 ; 1 s n + 1 , and (2) ini-s

tialization block y0 (i.e., block 0 of the forged ciphertext). These blocks could collide either with blocks 0 

p py ; z ; 1 p qe; 1 k ni 

+1 obtained at encryption or among themselves. The following four examples 0 k

illustrate why such collisions cause an adversary's success. Other such examples, and other ways to fnd 

forgeries, exist. 

pExample 1  Collisions between blocks z0 and zs k 

Suppose that all hidden ciphertext blocks z0 obtained during the decryption of forgery y0 collide with s 

psome hidden ciphertext blocks z obtained at encryption. If this event occurs during forgery decryption, k 

we declare pessimistically that the adversary is successful. Why is the adversary successful? Among the 

forgeries that make this event true, some will decrypt correctly with probability one. For example, if any 

two of the hidden ciphertext blocks b e t ween position 1 and np 

of a queried message p are swapped, the 

decryption of the resulting hidden ciphertext will pass the integrity check g(x0) = x0 with probability n+1 

one (viz., [24], Example 9.89, pp. 367-368, for a similar example). Thus, any forgery that generates such 

hidden ciphertext at decryption will pass this integrity c heck with probability one. 

Why is our criterion for adversary's success based on such a collision event pessimistic? Among the forg-
eries that make this event true, some will decrypt correctly with negligible probability. These forgeries 

include truncations of the ciphertext of already queried messages.7 For truncations, the integrity check 

cannot pass with probability greater than 1j2l (and for this reason we can focus on other types of forgeries 

for the rest of this proof). 

7 0 p 0 p 0 0Let the forged ciphertext y be a truncation of ciphertext y obtained at encryption; i.e., y = y ; 8s; 0 : s : n +1 ; jy j =s s 

0 0 0 0 n + 1 and n  n  p, i.e., n + 1 : np. The condition n + 1 : np 

(due to truncation) implies that all the plaintext blocks 

p p 0 p 0 0 p 0 x1 

;   ; x  

n0 +1 

are constants. In this case, zs 

= zs 

; 8s; 0 : s : n + 1 and thus xs 

= xs 

; 8s; 0 : s : n + 1 . The integrity c heck, 

p p p p 0 0 

p p
z f x f   f  x f x = 0 ; is the exclusive-or of a random and uniformly distributed variable z0 

= f 

0(r ) = f 

0(r ) = z0 

,0 1 n0 n0 +1 

0 0 

R

J Rl;l p p p p p p 1where f 

0 , and constant plaintexts x ;   ; x  . Hence, Pr [z f x f   f  x f x = 0] =1 n0 +1 0 1 n0 n0 +1 2l 

: 
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Example 2 Collisions among the z0 

s blocks 

0 

s and z0 

t obtained during forgery decryption do not collide with Suppose that two hidden ciphertext blocks z
any hidden ciphertext blocks obtained during encryption, but collide with each other. If this event occurs 

during forgery decryption, we declare pessimistically that the adversary is successful. Why is the adversary 

successful? Among the forgeries that make e v ent true, some will decrypt correctly with probability one. For 

example, if any t wo identical blocks never seen among the hidden ciphertext blocks obtained at encryption 

are inserted into two adjacent positions b e t ween 1 and np 

of the hidden ciphertext of message p (i.e., 

0 

s s+1; 1 

= x

0 s n p 

, 1), the decryption of the resulting hidden ciphertext will pass the integrity c heck z = z
g(x0) 0 with probability one (viz., [24], Example 9.89, pp. 367-368, for a similar example). Thus, n+1 

any forgery that generates such hidden ciphertext blocks at decryption will pass this integrity c heck with 

probability one. 

Why is our criterion for adversary's success based such a collision event pessimistic? Among the forgeries 

i 

that make this event true, some will decrypt correctly with negligible probability. For example, consider 

forgeries that cause an odd number of identical hidden ciphertext blocks to be generated during decryption. 

Suppose these blocks have the following properties: (1) they do not collide with any hidden blocks obtained 

0; 1at encryption, (2) they do not collide with any initialization blocks y i qe, obtained at encryption, 

(3) they do not collide with the initialization block y0 

of the forgery, and (4) they appear between positions 

1 and np 

+ 1 of the hidden ciphertext of queried message p obtained at encryption. Forgeries that produce 

0 

such blocks during decryption cannot pass the integrity c heck with probability greater than 1j2l . This is 

the case because the decryption of these identical hidden blocks produces random, uniformly distributed 

plaintext blocks that are independent o f any other plaintext blocks in g(x0) 0 and can only cancel = xn+1 

each other out in pairs under the exclusive-or operation. 

0 

0.The next two examples refer to collision events of the initialization block y These can lead to forgeries 

that satisfy the conditions of the events defned in Examples 1 and 2 above, and hence such collisions 

contribute to an adversary's success. 

0 p
k+1 

Suppose that, during the decryption of forgery y0, block y

Example 3 Collisions between blocks y and z0 

0 

0 

collides with some hidden ciphertext block 

0 p
k+1

b e predicted (at least) to the same extent as those of z
obtained during encryption. Let y ; 1 p qe; 1 k np. This means that the lower order bits = z0 

0)
0 

chosen. In (pessimistic) case the entire r

0 f,1(y p
k

p
k

p
k, since xpk+1 

isE zof r =
 = x can0 +1 

0 

0 

is predicted, the adversary's forgeries can satisfy the collision 

events of Examples 1 and 2 above. 

i 

0 

p 

0Example 4 Collisions between blocks y and y

Suppose that an adversary fnds a collision b e t ween the initialization blocks of two ciphertext messages 

i and p obtained at encryption, namely yi 

0 

and yp, and chooses the initialization block of the forgery y0 

0 ib If the adversary can fnd such a collision event at encryption, the adversary can also fnd to e y = y0.0 

forgeries that satisfy the collision events of Example 1 at decryption. For example, the adversary can 

create a ciphertext message that has not been seen before (i.e., a forgery) by mixing the blocks of two 

ciphertext messages obtained at encryption whose initial ciphertext blocks collide; e.g., ciphertext block 

0yik of messages i replaces ciphertext ypk 6= yik of message p, where y i p;
 i 6= p; ni 

np; 1 i; p qe,= y = y0 0 0 

1 k ni. 
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Conditioning Events. To compute an upper bound on the probability of successful forgery, w e c hoose 

four conditioning events based on collisions in the input of f,1 . Intuition for the choice of events is provided 

that refer to the hidden ciphertext blocks z obtained during forgery decryption. 

by Examples 1 4 above. 

For each verifcation query (or forgery) y0i , 1 i qv, w e defne two t ypes of collision events, Ci 

and Di, 

0i 

s 

0iEvent Ci 

includes all the instances when the hidden blocks z of forgery y0i collide either with initialization s 

p pblocks y or with some hidden ciphertext blocks z generated during encryption, where 1 p qe; 10 k 

p 

0k np 

+ 1 . To defne event Ci 

formally, let S b e the the union of all the y blocks and all the hidden 

pciphertext blocks z produced at encryption: k 

p pS = fy ; 1 p qeg  f  ; 1 p qe; 1 k np 

+ 1 g:z0 k

Also let Zi 

be the collection of hidden ciphertext blocks z0i generated during the decryption of the arbitrary 

forgery y0i; 1 i qv, that do not collide with blocks of S: 

0i 0 0iZi 

= fz ; 1 s n + 1 ; z 2j Sg:s i s 

Hence, event Ci 

(Collision) is defned by: 

Ci 

: Zi 

= ;; 

i.e., Zi 

is empty; or, equivalently, Ci 

: Zi 

� S. 

The second type of collision event defned for the arbitrary forgery y0i; 1 i qv, refers to collisions 

0i 0i 0 0iamong blocks y ; z ; 1 + 1 where z 2 Zi, and is denoted by Di 

(not distinct) below. This event s n0 is s 

is defned in terms of its complementary event Di 

(distinct), which states that there is at least a hidden 

0i 0i 0i 82 Zi 

that does not collide with any other hidden block z 2 Zi 

or with yblock z It is clear that this .
0ts 

defnition makes sense only when Zi 

6 Formally i Zi 

6= ;. , f = ;, 

0i 0 0i 0i 0i 0 0i 0i = z = s; 1 = yDi 

: 9z 2 Zi; 1 6
 ; 8z 2 Zi; t 6 6
1
 1 and z+
 :
 t +
 :
s n z n 0i it ts s s 

The third type of collision event for the arbitrary forgery y0i; 1 i qv, which is denoted by Ii 

below, 

0iincludes all the instances when the initialization block y collides with some hidden ciphertext blocks 0
pgenerated during encryption (i.e., z ; 1 p qe; 1 k ni 

+ 1). Formally, e v ent Ii 

is defned by: k

0i p2 S , fIi 

: y ; 1 p qeg;y0 0

or, equivalently, 

0i p2 fIi 

: y ; 1 p qe; 1 k np 

+ 1 g;z0 k

The fourth type of collision event, denoted by E below, defnes collisions among the initialization blocks 

(i.e., block 0 of the ciphertext) generated at encryption. (Hence, this collision event is independent of the 

forgery y0i.) Formally, this event is defned as 

i pE : y ;
= y0 0

where i 6 i; p qe.= p; 1 

Note 1: Other events than the four defned above could cause an adversary's forgery y0i to pass the integrity 

check g(x0i) = x0n
i 

i+1. However, Claim 1 below makes it clear that the success of such a forgery could only 

8 0i 0i 

p pRecall that hidden ciphertext blocks z ; z 2 Zi 

do not collide with any z or with any y obtained during encryption, s t k 

0 

where 1 : p : qe; 1 : k : np 

+ 1. 
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occur with probability no greater than 1j2l . 

R 

p0iNote 2: Another collision event in the input of f,1 , y0 

= y0 

; 1 i qv; 1 p qe, can b e caused 

simply b e the adversary's choice of the initial forgery block. Unlike the four events defned above (and 

illustrated by Examples 1 4), the occurrence of this collision event cannot cause an adversary's success 

in the absence of other collision events. Nevertheless, the occurrence of this event is accounted for in the 

proof; viz., Proof of Claim 3 below. 

Upper bound on the Probability of Successful Forgery. Let F b e a SPRP family, P 

l be the set 

Rl, and f J P 

l denote the random selection of f and f,1 from P 

l 

+P l
of all permutations on f0; 1g . Let S 

f 

represent all the ciphertext blocks produced at the encryption of the qe 

queries (viz., the defnition of S 

R
used for collision events above) when the XCBC$-XOR scheme is implemented with f J P 

l; i.e., 

p p p
 

+P l 

0 

); 1
R 

= ff(r f E zS
 f(x ); 1 p qe; 1 k np + 1 g:p qeg ,1k kf 

R
J P 

l and S 

k l le defne the fnite family of random functions GS 

: f0; 1g  f 0; 1g ! f 0; 1gFor any f , w 

+P l 

whose members are f; f , with f defned as: 

R 

f 

8 { f,1(t); t 2 S 

: 

R 

+P l 

v(t); t 2 f 0; 1g
f

f =
 ;
Rl J Rl;l  , S
 ; vR 

f+P l 

Rl l lwhere Rl; is the set of all functions from f0; 1g to f0; 1g J GS 

the random selection of 

f and f from GS. 

The family of functions GS 

behaves exactly like P 

l when the plaintext blocks input to f and ciphertext 

blocks input to f,1 are those generated during the encryption of any adversary's qe 

chosen-plaintext 

. We denote by f 

lqueries, and behaves exactly like Rl; during the decryption of any ciphertext block not in S .
R 

+P l 

Note that the family GS 

is well-defned for any message-integrity attack because, by defnition of such a n 

f 

attack (viz., Section 2), all qe encryption queries preceed all qv 

forgery verifcation queries. Thus S andR 

+P l 

f are completely determined before any o f t h e qv 

forgery verifcation queries are possible, whose processing 

f 

would require block decryption with f . (Also note that we allow qe 

= 0 and, in this case, S = ; andR 

R 

+P l 

f = v.)
 

For the balance of this proof, we use the result of Fact 1 below (whose proof can be found at the end of
 

R R
this appendix) that provides the reduction from f J F to f J GS. 

Fact 1 

(a) 

+P l 

f 

P
 [Succ] E + P [Succ]:r rR 

f+F f 

R 

(b) 

pv(pv , l) 

+P l 

P
 r [Succ] P r [Succ] + :
R 

f f+GS 

4 

l22l+1 



 

 

  

 

 

 

 

Fact 1 reduces the problem to fnding an upper bound for P [Succ]. Unless we state otherwise, as-r 

f 

R 

+GS 

R
sume that f J GS 

(and drop this subscript from P r 

f 

[Succ].)R 

+GS 

To compute an upper bound for the probability o f successful forgery, Pr [Succ], we condition on event E 

frst, since this event does not depend on the forgery y0i . Using standard conditioning, we obtain 

Pr [Succ] Pr [E] + Pr [Succ j E]: 

Since event E is equivalent to the event that at least a collision happens when qe 

balls are thrown at 

random in 2l buckets [3], 

P r [E] 

qe(qe 

, 1) 

2l+1 

: 

To fnd an upper bound for P r [Succ j E], we use the defnition of adversary's success (viz., the attack 

defnition), which states that at least one forgery (and verifcation query) y0i succeeds; i.e., there exists an 

0i) 

0i Hence, by union bound, index i; 1 i qv 

such that g(x = x +1.0n
i

qv X 

[Succ j E] Pr [g(x 

0i) = x 

0i 

+1 

j E]:P
 r 0n
i

i=1 

To fnd an upper bound for the probability o f decrypting a single, arbitrary (non-truncation) forgery y0i 

0i) 

0i= x +1 

j E], we condition on event (Cicorrectly given E, namely for Pr [g(x or Di). Using the total 0n
i

probability formula we obtain: 

0i 0i	 0i 0ij E] +1 

j E and (Ci 

or Di)]Pr [Ci 

or Di 

j EPr [g(x )
 Pr [g(x )
 ] +
= x =
 = x0 0+1n n
i i

Pr [g(x 

0i) = x 

0i j E and (Ci 

and Di)]Pr [Ci 

and Di 

j E]: n0i+1 

Hence,9 

0i 0i	 0i 0ij E] Pr [Ci 

or Di 

j E j E and Ci 

and Di]:P r [g(x )
 ] + Pr [g(x )
= x = x n0i+10+1n
i

However, both event Ci 

and event Di 

depend on the event Ii 

(viz., Example 3 above). Hence, to compute 

Pr [Ci 

or Di 

j E] w e condition on event Ii 

and, using the total probability formula, we obtain: 

Pr [Ci 

or Di 

j E] =	 Pr [Ci 

or Di 

j E and Ii]Pr [Ii 

j E] + Pr [Ci 

or Di 

j E and Ii]Pr [Ii 

j E] 

Pr [Ii 

j E] + Pr [Ci 

or Di 

j E and Ii]: 

Furthermore, 

Pr [Ci 

or Di 

j E and Ii] =	 Pr [Ci 

or Di 

j Ci 

and E and Ii]Pr [Ci 

j E and Ii] 

+Pr [Ci 

or Di 

j Ci 

and E and Ii]Pr [Ci 

j E and Ii] 

Pr [Ci 

or Di 

j Ci 

and E and Ii] + Pr [Ci 

j E and Ii] 

= Pr [Ci 

j E and Ii] + Pr [Di 

j Ci 

and E and Ii]; 

since event [ Ci 

or Di 

j Ci 

and E and Ii] is equivalent t o e v ent [ Di 

j Ci 

and E and Ii]. 

9 This also follows from our pessimistic assumption that if event ( Ci 

or Di) is true, then the adversary has broken integrity. 
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Combining the results of the last three inequalities, we obtain: 

0i 0i 0i 0ij E] j E and Ci 

and DiPr [g(x )
 Pr [g(x )
 ] +
= x n0 

i
+1 

= x n0 

i
+1 

Pr [Ii 

j E] + Pr [CijE and Ii]: + Pr [Di 

j Ci 

and E and Ii] 

The probabilities that appear at the right side of this inequality are bounded as shown in the following 

four claims whose proofs are included below. (Note again that forgeries based on truncations of ciphertext 

messages obtained at encryption are not included in any of the claims below. All these claims refer to a 

0isingle, arbitrary (non-truncation) forgery y ; 1 i qv.) 

Claim 1 

0i 0i 

1 

Pr [g(x )
 j E and Ci 

and Di] :
= x n0 

i
+1 2l 

Claim 2 

1 pe 

pe
Pr [Ii 

j E] log2 

+ 3 : 

2l 2l l 

Claim 3 

(n0 + 1) qe 

1 pe 

peiPr [CijE and Ii] + log2 

+ 3 : 

2l 2l 2l l 

Claim 4 

02n + 1iPr [Di 

j Ci 

and E and Ii] : 

2l 

Note that if the maximum length m of the encrypted messages is known, the log2 

Je term of Claims 2 and 

l 

3 can be replaced with log2 

m. 

By Claims 1 4, the probability of success given E for a single, arbitrary (non-truncation) forgery is 

1 (n0 + 1) qe 

1 pe 

pe 

3pe 

2n0 + 10i 0i i i) = x j E] + + log2 

+ +Pr [g(x 0 

i
+1n 2l 2l 2l 2ll l l 

(n0 + 1)(qe 

+ 2) 1 pe 

pe 

3pei = + log2 

+ : 

2l 2l l l l 

Hence, the probability of adversary's success when he has up to qv 

verifcation queries totaling at most pv 

bits and using up to tv 

time is bounded by 

qv X 

0i 0iPr [Succ] Pr [E] + Pr [g(x )
 j E]= x n0 

i
+1 

i=1 

qv X 

0qe(qe 

, 1) (n + 1)(qe 

+ 2) 1 pe 

pe 

3pei+ + log2 

+ 

2l+1 2l 2l l l l 

i=1 

qe(qe 

, 1) pv(qe 

+ 2) qv 

pe 

pe 

3pe 

+ + log2 

+ 

2l+1 l2l 2l l l l Pqv 0 

Jvbecause (n + 1) .i=1 i l 

R
Furthermore, by using Fact 1, the probability of adversary's success when f J F is bounded by: 

pv(pv 

, l) qe(qe 

, 1) pv(qe 

+ 2) qv 

pe 

pe 

3pe
Pr [Succ] E + + + + log2 

+ :R 

f+F l22l+1 2l+1 l2l 2l l l l 

6
 



 

  
 

  

  

 

  

   

 

 

   

  

Also, if the maximum length m of the encrypted messages is known, the last term of the above bounds 

v 

Je 

3Jecan be replaced with 

q

2l 

log2 

m + 

l 

.
l 

The parameters of the attack are bounded as follows: qe 

q0, since the scheme is also supposed to b e 

chosen-plaintext secure, te + tv 

t, and p00 = pe + pv 

ql . The forgery verifcation parameters qv; p v; t v 

can be chosen within the constraints of these bounds and the desired Pr [Succ]. tuR 

f+F

Proofs of Claims 1-4 

Notation: Recall that Claims 1 4 a b o ve refer to a single, arbitrary (non-truncation) forgery y0i; 1 i qv. 

Hence, to simplify notation in the proof of these claims, we drop the forgery index i from the events 

Di; C i; I i, and simply use D ; C ; I for these events. We also drop the forgery index i from the collection Zi 

and use Z instead. Furthermore, we drop the prime and forgery index i from the ciphertext y0i, hidden 

0ciphertext, z0i, plaintext x , r0 

, and the length n . 

0i 0i Hence, when we refer to the (single) forgery, we use i

the variables y, for forgery ciphertext, x for forgery plaintext, z for the hidden blocks of forgery y, y0 

for 

the initialization block of forgery y (and r0 

for the decryption of the initialization block y0), and n for the 

length of x. Superscripts continue to identify encryption queries. In the proof of Claims 1 4, we use the 

notation Pr A[ : ] = Pr [ : jA], where A is an arbitrary event. 

Proof of Claim 1 

If C is true, then Z is not empty. For any zs 

2 Z, 

xs 

= f(zs) E zs,1 

Since zs 

does not collide with any hidden blocks obtained at encryption, and event ( C and D) is true (i.e., 

there is at least one hidden block zs 2 Z by event C that does not collide with another hidden ciphertext 

block zt 

2 Z; s  6= t or with y0 

by event D), then f(zs) = v(zs) is uniformly distributed and independent o f 

anything else (since v 

R
); i.e., independen o f a n y other f(zk); z 6 t of anyJ Rl;l t k 

2 Z, k = s, and independen
zk; 0 k n + 1 . Hence, the corresponding plaintext block xs 

is uniformly distributed and independent 

of anything else. Thus, 

g(x) E xn+1 

= z0 

E x1 

E E xn E xn+1 

is random and uniformly distributed, and hence: 

1 

Pr [g(x) E xn+1 

= 0 j E and C and D] = Pr [g(x) = xn+1 

j E and C and D] : 

2l 

ut 

In the proofs of Claims 2 4, we use the following three facts, whose proofs can b e found at the end of 

this appendix. 

Fact 2 

For any 1 i 2l , 1, let m b e defned by i = d 2m, where d is odd. If r0 

is random and uniformly 

distributed, then for any constant a, 

1 

Pr [i r0 

= a] : 

2l,m 
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Fact 3 

For any N > 1, let m be defned by a = d 2m, where 1 a N , 1 and d is odd. Then 

N,1 X N , 1 

2m (log2(N , 1) + 3): 

2 

a=1 

Fact 4 

If for any p; 1 p qe; n p 

> 0, and if 

Pq
p
e 

=1(np 

+ 1) 

J
l 

e , then, 

qe X pe 

pe
(np 

+ 1) log2(np 

+ 1) log2 

;
l l 

p=1 

and, further, if m = max(np 

+ 1), then 

qe X pe
(np 

+ 1) log2(np 

+ 1) log2 

m: 

l 

p=1 

Proof of Claim 2 

p pEvent I : y0 

2 S , f y0 

; 1 p qeg = fz ; 1 p qe; 1 k np 

+ 1 g is equivalent to the union of all k
ppossible events y0 

= z ; 1 p qe; 1 k np 

+ 1 . Hence, by union bound, k

qe 

np+1 X X 

pPr [I j E] Pr [y0 

= z j E]:k 

p=1 k=1 

pWe determine an upper bound for Pr [y0 

= z j E] based on k 

p p p p py0 

= z , y0 

= y r , k r = yk k 

, k 0 0 k 

, y0: 

pIn this expression, r0 

is random and uniformly distributed, and from the defnition of event E, if E is true, 

p pthen r0 

is random and uniformly distributed. Hence, since yk 

, y0 

is a known constant, by F act 2, 

1p p pPr [y0 

= z j E] = Pr [k r = y j E] ;k 

0 k 

, y0 

2l,m 

where the exponent m is defned by k = d 2m and d is odd. Hence, for each p; 1 p qe, from this and 

Fact 3 with N , 1 = np 

+ 1 and a = k, 

np+1 np+1 X 

p 

1 

X 1 np 

+ 1 

Pr [y0 

= z j E] 2m (log2(np 

+ 1) + 3) :k 2l 2l 2 

k=1 k=1 Pqe 

JeSince p=1(np 

+ 1 ) by the defnition of n + p and of the attack, we obtain 

l 

qe 

np+1 qe X X 

p 

1 

X np 

+ 1 1 pe 

pe
Pr [I j E] Pr [y0 

= z j E] (log2(np 

+ 1) + 3) log2 

+ 3k 

;
2l 2 2l 2l l 

p=1 k=1 

p=1 

by F act 4. Further, if m = max(np 

+ 1), then Pr [I j E] 

2
1 

l 

J
2
e 

l 

(log2 

m + 3), also by F act 4. tu
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Proof of Claim 3 

Below w e use the notation that Pr A[ : ] = Pr [ : jA], where A is an arbitrary event. 

C is equivalent to the event that every hidden ciphertext block obtained during decryption is found among 

pthe hidden ciphertext blocks obtained during encryption or among the y0 

blocks obtained at encryption. 

This implies that for any s; 1 s n + 1 : Pr [C] Pr [zs 

2 S] by union bound. Since,I and E I and E
p pS = fy0 

; 1 p qeg f z ; 1 p qe; 1 k np 

+ 1 g, it follows that, by union bound, k

pPr [zs 

2 S] Pr [zs 

2 f y0 

; 1 p qeg]I and E I and E
p+ Pr [zs 

2 f z ; 1 p qe; 1 k np 

+ 1 g]:
I and E k

pFor the frst term, for any s; 1 s n + 1 , the event zs 

2 fy0 

; 1 p qeg is the union of all collision 

pevents zs 

= y0 

; 1 p qe. Hence, 

qe X 

p pPr [zs 

2 f y0 

; 1 p qeg] Pr [zs 

= y0 

]:I and E I and E
p=1 

pBut zs 

= ys 

, s r0 

by the scheme defnition, and hence s r0 

= ys 

, y0 

. To compute Pr [s r0 

= 

I and E
pys 

, y0 

], we use the following claim, whose proof can be found at the end of this appendix: 

Claim 3.1 

p p pLet y y b e a queried message, and y = b e a forged ciphertext. If event I is true, 0 

y1 np+1 

y0y1 

yn+1 

p pthen r0 

is random and uniformly distributed. Furthermore, if y0 

6= y0 

, then r0 

is also independent o f r0 

. 

Since event I is true, it follows that r0 

is random and uniformly distributed (by Claim 3.1 above). Also, 

event I and E implies that r0 

is random and uniformly distributed by the defnition of event E. Hence, by 

Fact 2, 

1pPr [s r0 

= ys 

, y0 

] ;
I and E 2l,m 

where m is defned by s = d 2m and d is odd. Furthermore, m log2 

s log2(n + 1), since s n + 1. 

Hence, 2m n + 1, and 

p 

n + 1 

Pr [s r0 

= ys 

, y :
I and E 0 

]
2l 

Hence, for any s; 1 s n + 1: 

qe 

p 

X n + 1 (n + 1) qe
Pr [zs 

2 f y0 

; 1 p qeg] = :I and E 2l 2l 

p=1 

pTo compute an upper bound for the second term, namely on Pr 2 fz p ; 1 k
I and E

[zs k; 1 qe
np 

+ 1 g], we are free to choose a hidden ciphertext block a t index j of forgery y, namely zj , and then we 

ponly need to show that Pr [zj 

2 fz ; 1 p qe; 1 k np 

+ 1 g], is bounded. (This is the case 

I and E k

because the bound must be true for any s; 1 s n + 1.) 

Thus, the balance of the proof of Claim 3 consists of two parts. In the frst part, we partition the space 

of forgeries that are not truncations into three complementary types and choose a zj 

(and hence, index 

pj) for each type. In the second part, we fnd an upper bound for the probability Pr [zj 

2 f z ; 1
I and E k

p qe; 1 k np 

+ 1 g] for each of the chosen zj's. Hence, the maximum of these three upper bounds 

9
 



    

   

    

  

    

  

  

  
      

    

     

  
   

     

 

  

prepresents the upper bound for Pr [zj 

2 f z ; 1 p qe; 1 k np 

+ 1 g] for all forgeries that are I and E k

not truncations. 

Part 1. Finding index j depends on the type of forgery. A forgery can be such that a ciphertext obtained 

at encryption is the prefx of the forgery; we call this the prefx case. The complementary case for the 

prefx case, which w e call non-prefx, includes two separate subcases, namely when y0 

is diferent from any 

i iy0 

of any ciphertext obtained at encryption, or when there is an index i such that y0 

= y0. Hence, in the 

latter case, there must be at least a block in the forged ciphertext y that is diferent from the corresponding 

iblock o f the ciphertext of a queried message i, namely y . Further, the length of the forged ciphertext y, 

denoted by n, m a y be diferent from the length of the message plaintext defned by ni. 

This partition of forgery types shows that a forged ciphertext y = y0y1 

yn+1, which is not a truncation, 

can be in one of the following three complementary types: 

i(a) 9i; 1 i qe 

: n > n i; 8k; 0 k ni 

+ 1 : yk 

= y ; i.e., the forged ciphertext is an extension of the k

ciphertext yi (the prefx case). The non-prefx case consists of the following two forgery types: 

i(b1) y0 

6 0; 8i; 1 qe; i.e., the forged ciphertext and all queried-message ciphertexts difer in the frst = y i 

block. 

i i(b2) 9i; 1 i : y0 

= y k; 1 k min(ni 

+ 1 ; n + 1) : yk 

=6 y ; i.e., the forged ciphertext is qe 0; 9 k

obtained by modifying a queried message ciphertext starting with some block b e t ween the second and last 

iblock of that queried-message ciphertext. In this case, let j be the smallest index such that yj 

6 j 

(i.e.,= y
i8k; 0 k j , 1 : yk 

= y ).k

Let us choose index j (and hence zj) as follows. For forgeries of type (a), j = ni 

+ 2 (or j > ni 

+ 1); 

for forgeries of type (b1), j = 1; and for forgeries of type (b2), j is the smallest index such that 

iyj 

6 y j minfni 

+ 1 ; n + 1 g. In all cases j 2 1, and hence, the chosen ciphertext block zj 

is= j; 1 

well defned. 

pPart 2. For the index j chosen in Part 1, we fnd an upper bound for Pr [zj 

2 fz ; 1 pI and E k
pqe; 1 k np 

+ 1 g]. Event zj 

2 fz ; 1 p qe; 1 k np 

+ 1 g is the union of all possible events k
pzj 

= z ; 1 p qe; 1 k np 

+ 1 . Hence, union bound leads to: k

Xqe 

np+1 X 

p pPr [zj 

2 f z ; 1 p qe; 1 k np 

+ 1 g] Pr [zj 

= z ]:
I and E k I and E k

p=1 k=1 

pNow we fnd an upper bound for Pr [zj 

= z ] for each of the three forgery types. In determining 

I and E k

this upper bound, we use the following claim, whose proof can be found at the end of this appendix: 

Claim 3.2 

pLet z ; 1 p qe, b e the hidden ciphertext blocks generated at the encryption of a queried message k
p p py0 

y y +1, and zj 

b e the chosen hidden ciphertext block generated during the decryption of forgery 1 np

y = y0; y 1; yn+1. Then 8k; 1 k np 

+ 1, 

1pPr [zj 

= z ] ;
I and E k 2l,m 

where 

p(a) if y0 

6 0 

, then m = min(m1;m 2), with m1 

and m2 

being defned by j = d1 

2m1 , k = d2 

2m2 , where = y
d1; d 2 

are odd; and 

10
 



  

  
 

 

 

 

 
   

   

 

 

 

p(b) if y0 

= y0 

, where m is defned by k , j = d 2m if k > j , or by j , k = d 2m if j k , and d is odd. 

pClaim 3.2 provides upper bounds for Pr [zj 

= z ], where p; k are arbitrary values that satisfy the 

I and E k

hypotheses of parts (a) or (b) and zj 

is the chosen hidden ciphertext block defned in Part 1. These hy-
potheses are verifed for the chosen j of each forgery type as shown below. 

Upper bound for forgeries of type {a}. 

Let the ciphertext of queried message i b e the prefx of forgery y. To fnd the upper bound in this case, 

qewe partition the sum 

P Pnp+1 

Pr [zj 

= zp] i n to two sums, for p 6= i and p = i, respectively. For p=1 k=1 I and E k
pp 6 , w e use Claim 3.2(a), and for p = i we use Claim 3.2(b), to fnd an upper bound for Pr= i [zj 

= z ].
I and E k

Then we fnd individual upper bounds for each of these two sums, and add these upper bounds. 

qe 

np+1 qe 

np+1 ni+1 X X X X X 

p p iPr [zj 

= z ] = Pr [zj 

= z ] + Pr [zj 

= zk]:I and E k I and E k I and E


p=1 k=1 p=1;p 6 k=1
=i k=1 

iFor the frst sum, note that p 6 i, and recall that for forgeries of type (a) y0 

= y Since E is true, = 0. 

i p p 1 y0 

= y0 

6= y0 

. Hence, by Claim 3.2(a), Pr 

I and E
[zj 

= z ] 

2l,m 

, where m m2 

with m2 

being defned k


2m2
by k = d2 

and d2 

is odd. Thus, 

qe 

np+1 qe 

np+1 X X 1 

X X 

pPr [zj 

= z ] 2m2 :I and E k 2l 

p=1;p 6 k=1 p=1;p 6 k=1=i =i 

But, by F act 3 with N , 1 = np 

+ 1 and a = k, 

np+1 X np 

+ 1 

2m2 (log2(np 

+ 1) + 3) : 

2 

k=1 

Hence, 

qe 

np+1 qe X X 

p 

1 

X np 

+ 1 

Pr [zj 

= z ] (log2(np 

+ 1) + 3) :
I and E k 2l 2 

p=1;p 6 k=1 6=i p=1;p=i 

piFor the second sum, we note that p = i, which means that y0 

= y0 

= y0 

, and that j = ni 

+ 2 > k; 8k; 1 

k ni 

+ 1 . Hence, by Claim 3.2(b) Pr [zj 

= zp] 

1 , where j , k = d 2m and d is odd. Since 

I and E k 2l,m 

j = ni 

+ 2, in follows that j , k = ni 

+ 1 ; ; 1, and thus, 

ni+1 ni+1 ni+1 X X 1 

X 

i i 2mPr [zj 

= zk] Pr [zj 

= zk] :
I and E I and E 2l 

k=1 j,k=1 j,k=1 

But, by F act 3 with N , 1 = ni 

+ 1 and a = j , k, 

ni+1 X ni 

+ 1 

2m (log2(ni 

+ 1) + 3) ;
2 

j,k=1 

and hence, 

ni+1 X 1 ni 

+ 1iPr [zj 

= zk] (log2(ni 

+ 1) + 3) :I and E 2l 2 

k=1 
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Adding the two upper bounds, we obtain 

qe 

np+1 qe X X 

p 

1 ni 

+ 1 1 

X np 

+ 1 

Pr [zj 

= z ] (log2(ni 

+ 1) + 3) + (log2(np 

+ 1) + 3)
I and E k 2l 2 2l 2 

p=1 k=1 6p=1;p=i 

qe1 

X np 

+ 1 

= (log2(np 

+ 1) + 3) : 

2l 2 

p=1 Pqe 

JeSince p=1(np 

+ 1) 

l 

, b y F act 4, it follows that 

pPr [zj 

2 f z ; 1 p qe; 1 k np 

+ 1 g]
I and E k


qe 

np+1
 X X 

p 

1 pe 

pe
Pr [zj 

= z ] log2 

+ 3 :
I and E k 2l 2l l 

p=1 k=1 

p 1 

JeFurther, if m = max(np 

+ 1), then Pr 2 f z ; 1 p ; 1 k np 

+ 1 g] 2l 

(log2 

m + 3),[zj k qe 2l 

also by F act 4. 

I and E

Upper bound for forgeries of type {b1}. 

p p 1 = yFor this type of forgery, y0 

6 0 

; 8p; 1 p qe. Hence, by Claim 3.2(a), Pr [zj 

= z ] 

2l,m 

, where 

I and E k

2m2m m2 

with m2 

being defned by k = d2 

and d2 

is odd. By following the same derivation as that 

for forgeries of type (a), we obtain: 

qe 

np+1 X X 

p pPr [zj 

2 f z ; 1 p qe; 1 k np 

+ 1 g] Pr [zj 

= z ]
I and E k I and E k

p=1 k=1 

qe 

np+1 qe1 

X X 1 

X np 

+ 1 1 pe 

pe
2m2 (log2(np 

+ 1) + 3) log2 

+ 3 : 

2l 2l 2 2l 2l l 

p=1 k=1 

p=1 

p 1 

JeAlso, if m = max(np 

+ 1), then Pr 

I and E
[zj 

2 f zk ; 1 p qe; 1 k np 

+ 1 g] 

2l 2l 

(log2 

m + 3). 

Upper bound for forgeries of type {b2}. 

Let the frst j , 1 ciphertext blocks of queried message i provide the frst j , 1 ciphertext blocks of forgery Pqe 

Pnp+1 py. To fnd the upper bound in this case, we partition the sum p=1 k=1 

Pr [zj 

= zk] into four 

I and E

terms, fnd individual upper bounds for each term, and then add these upper bounds. The frst term is a 

psum taken for p 6 P= i and in this case we use Claim 3.2(a) to fnd an upper bound for r [zj 

= z ].
I and E k

The last three terms are for the case p = i, and two of these terms are sums taken for k  j and k > j , 

prespectively. For these sums, we apply Claim 3.2(b) to fnd an upper bound for Pr [zj 

= z ]. For 

I and E k
pthe remaining term corresponding to i = p and k = j, w e show that the event zj 

= z is impossible. k 

qe 

np+1 qe 

np+1 j,1 X X X X X 

p p i iPr [zj 

= z ] = Pr [zj 

= z ] + Pr [zj 

= z ] + Pr [zj 

= z ] +I and E k I and E k I and E k I and E j

p=1 k=1 p=1;p 6 k=1=i k=1 

ni+1 X 

iPr [zj 

= z ]:
I and E k

k=j+1 

For the frst of the four terms above, we have the same bound as that of the frst of the two sums in the 

case of forgeries of type (a) above, namely, 

qe 

np+1 qe X X 

p 

1 

X np 

+ 1 

Pr [zj 

= z ] (log2(np 

+ 1) + 3) :
I and E k 2l 2 

p=1;p 6 k=1 6=i p=1;p=i 
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Pj,1 i i pFor the second term, namely k=1 

Pr I and E [zj 

= zk], we note that i = p, which means that y0 

= y0 

= y0 

, 

and k j . Hence, by Claim 3.2(b), Pr 

i 

1[zj 

= z ] , where j , k = d 2m and d is odd. Since 

I and E k 2l,m 

k = 1 ; ; j , 1, it follows that j , k = j , 1; ; 1, and by F act 3 with N , 1 = j , 1 and a = j , k, 

j,1 j,1 j,1 X X 1 

X 1 j , 1i i 2m[zj 

= z ] = Pr [zj 

= z ] (log2(j , 1) + 3):P r 

I and E k I and E k 2l2l 2 

k=1 j,k=1 j,k=1 

iFor the third term, Pr [zj 

= zi ] = 0 . This is the case because zj 

= zi , yj 

, j r0 

= yi r
I and E j j j 

, j 0 

i i i iand, since y0 

= y , r0 

= r0, it follows that zj 

= z , yj 

= y , which is impossible by the defnition of 0 j j
ij. (Recall that for forgeries of type (b2), j is the smallest index such that yj 

6= yj; 1 j minfni+1  ; n +1  g.) 

Pni+1 i i pFor the fourth term, namely Pr [zj 

= z ], we note that i = p, which means that y0 

= y = y0 

,k=j+1 I and E k 0 

i 

1and j k . Hence, by Claim 3.2(b), Pr [zj 

= z ] , where k , j = d 2m and d is odd. Since 

I and E k 2l,m 

k = j + 1 ; ; n i 

+ 1, it follows that k , j = 1 ; ; n i 

, j + 1, and by F act 3 with N , 1 = ni 

+ 1 , j and 

a = k , j, 

ni+1 

ni,j+1 ni,j+1 X X 1 

X 

i i 2mPr [zj 

= zk] = Pr [zj 

= zk]I and E I and E 2l 

k=j+1 k,j=1 k,j=1 

1 ni 

, j + 1 

(log2(ni 

, j + 1) + 3) : 

2l 2 

Now, we add the bounds of the last three of the individual upper bounds, and then we add the frst upper 

bound to obtain the total upper bound for forgeries of type (b2). 

j,1 ni+1 X X 

i i iPr [zj 

= zk] + Pr [zj 

= zj] + Pr [zj 

= zk]I and E I and E I and E
k=1 k=j+1 

1 j , 1 1 ni 

, j + 1 

(log2(j , 1) + 3) + (log2(ni 

, j + 1) + 3) : 

2l 2 2l 2 

Since for this type of forgeries 1 j ni 

+ 1, the terms under log2 

are j , 1 ni; n i 

, j + 1 ni. Thus, 

the sum of the last three terms is bounded as follows: 

j,1 ni,j+1 X X 

i i i[zj 

= z ] + Pr = z ] + Pr = zPr I and E k I and E [zj j I and E [zj k] 

k=1 k=j+1 

1 j , 1 1 ni 

, j + 1 1 ni
(log2 

ni 

+ 3) + (log2 

ni 

+ 3) = (log2 

ni 

+ 3)
2l 2 2l 2 2l 2 

1 ni 

+ 1 

(log2(ni 

+ 1) + 3) : 

2l 2 

Hence, by adding the frst of the individual upper bounds to this above sum, we obtain: 

qe 

np+1 X X 

p 

1 ni 

+ 1 

Pr [zj 

= z ] (log2(ni 

+ 1) + 3) + 

I and E k 2l 2 

p=1 k=1 

qe1 

X np 

+ 1 

(log2(np 

+ 1) + 3)
2l 2 

p=1;p 6=i 

qe1 

X np 

+ 1 

= (log2(np 

+ 1) + 3) : 

2l 2 

p=1 

13
 



 

 

     

 

  

     

    

     

  

     

 

  

  

 

 

  

 

 
  

 

Pqe 

JeSince p=1(np 

+ 1) 

l 

, b y F act 4, it follows that 

pPr
I and E

[zj 

2 f zk; 1 p qe; 1 k np 

+ 1 g] 

qe 

np+1 X X 

p 

1 pe 

pe
Pr [zj 

= z ] log2 

+ 3 :
I and E k 2l 2l l 

p=1 k=1 

p 1 

JeFurther, if m = max(np 

+ 1), then Pr [zj 

2 f zk ; 1 p q ; 1 k np 

+ 1 g] 

2l 2l 

(log2 

m+ 3).
I and E e

pFinally, for any forgery that is not a truncation, Pr [zj 

2 fz ; 1 p qe; 1 k np 

+ 1 g] is I and E k

bounded by the maximum of the bounds for the types (a), (b1) and (b2), namely 

p 

1 pe 

pe
Pr [zj 

2 f z ; 1 p qe; 1 k np 

+ 1 g] log2 

+ 3 ;
I and E k 2l 2l l 

p 1 

Jeor, if m = max(np 

+ 1), then PrI and E [zj 

2 f zk ; 1 p qe; 1 k np 

+ 1 g] 

2l 2l 

(log2 

m+ 3 ) . Hence, 

returning to the probability o f e v ent C conditioned by ( I and E), 

(n+ 1) qe 

1 pe 

pe
Pr [C] = Pr[C j I and E] + log2 

+ 3 :I and E 2l 2l 2l l 

Also, if the maximum length m of the encrypted messages is known, the last term of the above bound can 

be replaced with 

2
1 

l 

J
2
e 

l 

(log2 

m+ 3). ut 

Proof of Claim 4 

Event C is true implies that there is at least one element zs 

2 Z. Event D states that any hidden 

ciphertext block zs 

2 Z collides with another hidden block zt 

2 Z; t 6= s, or zs 

collides with y0. Hence, 

D : (zs 

= zt; for some s; t; 1 s; t n+ 1 ; zs; zt 

2 Z; s 6 or zs 

= y0). This implies that = t

P r[D j C and E and I] Pr[(zs 

= zt; zs; zt 

2 Z; t 6 ) or zs 

= y0 

j C and E and I= s ] 

Union bound leads to: 

Pr[D j C and E and I ] Pr[zs 

= zt; zs; zt 

2 Z; t 6= s j C and E and I] 

+Pr[zs 

= y0 

j C and E and I] 

To compute the upper bound of the frst probability of the sum, Pr[zs 

= zt; zs; zt 

2 Z; t 6= s j C and E and I], 

recall that Z must have at least one element (since C is true). If Z has only one element, then this prob-
ability is zero. If Z has at least two elements, zs; zt, w e use the following claim, whose proof can be found 

at the end of this Appendix: 

Claim 4.1 

(a) For any zs; zt 

2 Z; 1 s t n+ 1: 

1 

[z = z ;Pr
C and E and I s t]

2l,m 

where the exponent m is defned by t, s = d 2m and d is odd. 

(b) For any zs 

2 Z; 1 s n+ 1, and for any y0: 

1 

Pr [zs 

= y0] ;C and E and I 2l,m 

14
 



 

 

 

   
 

 

 

   
 

 

 

     

 

where the exponent m is defned by s = d 2m and d is odd. 

Then, by Claim 4.1(a) 

2m 

Pr = zt; z s; z tinZ; t 6[zs 

= s j C and E and I] 

2l 

where m log2(t , s) if t > s , or m log2(s , t) if t s . But, jt , sj n; hence m log2 

n, and then 

2m n. Thus, 

n 

Pr [zs 

= zt; z s; z t 

2 Z; t  6 := s j C and E and I] 

2l 

To compute an upper bound for the second probability of the above sum, namely on Pr [zs 

= y0 

j C and E and I], 

we use Claim 4.1(b) and obtain: 

1 

Pr [zs 

= y0 

j C and E and I] ;
2l,m 

R 

where m is defned by s = d 2m and d is odd. By defnition, m log2 

s log2(n + 1), and hence 

2m n + 1 . Thus, 

n + 1 

Pr [zs 

= y0 

j C and E and I] : 

2l 

By adding the two upper bounds, it follows that 

n n + 1 2n + 1 

Pr [D j C and E and I] + = : 

2l 2l 2l 

ut 

Proof of Fact 1 

(a) Let A be an adversary attacking the XCBC $ , XOR mode using qe 

+ qv 

queries, pe 

+ pv 

total memory 

for these queries, and time te 

+ tv. The probability of success is related directly to the security of the 

underlying encryption mode XCBC$ and F . To fnd an upper bound for this probability, we introduce 

a distinguisher D for F , which is given two oracles f and f,1, where f is a permutation used by the 

XCBC $ , XOR mode. D runs A, simulates an oracle for XCBC $ , XOR via queries for its own 

oracles f and f,1, responds to A's qe 

encryption queries, and verifes A's choices of ciphertext forgeries 

0i 0i 0i 0i 0iy = y0 

y1 

yn ; y n+1; 1 i qv. D returns the result of each y0i's verifcation to A; i.e., D returns either 

Success or Failure to A. D outputs 1 if A's forgery decrypts successfully, and 0, otherwise. 

Distinguisher D's advantage, AdvD(F ; P 

l) E, is defned as: 

l [Df [Df 1] : 

+P 

l 

Advsprp (F ; PD 

) = P
 1] , P
r =
 r =
 R 

f+F f 

R
where f J F denotes the selection of function f from the SPRP family F by the random key K, and 

R
f J P 

l denotes the random selection of f from the set of all permutations P 

l . 

By the defnition of the distinguisher algorithm: 

[DfP
 r 1] = P
 [
D , XCBC $ , XOR (y) 6= N ull ] = P [Succ]=
 r rR R R 

R 

f+F 

+P 

l
R 

f+F 

+P 

l
R 

f+F 

+P 

l 

and 

P
 r [Df =
 1] = P
 r [
D , XCBC $ , XOR (y) 6= N ull ] = P r [Succ]: 

f f f 

15
 



 

     

R R
The above probabilities are over the random choice of r0, f J F , f J P 

l, and D's guesses. Hence, 

+P 

l 

+P 

l +P 

l 

R 

RR 

P
 [Succ] = P [Succ] , P [Succ] + P [Succ]r r r rR R 

+P 

l 

[Succ] E + P 

R 

f+F f+F f f 

[Succ]:r r= Advsprp l(F ; P ) + PD f f 

R
(b) This proof is based on constructing a polynomial-time algorithm D that distinguishes between f,1 J P 

l 

R
and f J GS 

using an adversary A for the XCBC $ , XOR mode. 

In a similar manner to the one used in part (a) (repeated here for completeness), let A b e an adversary 

attacking the XCBC $ , XOR mode using qe 

+ qv 

queries, pe 

+ pv 

total memory for these queries, and 

[Succ], we introduce a distinguisher D for P 

ltime te 

+ tv. To fnd an upper bound for P which is r 

+P 

l 

given two oracles O, O,1 . These oracles simulate the block encryption and decryption operations needed 

R
by D to simulate the XCBC $ , XOR mode for adversary A. Oracle O simply uses f J P 

l to respond 

to D's block encryption requests. In contrast, oracle O,1 fips a coin b 2 f 0; 1g and responds to D's block 

R R
decryption requests by using either f,1 J P 

l or f J GS. D runs A, responds to A's qe 

encryption queries, 

0i 0i 0i 0i 0iand then verifes A's choices of ciphertext forgeries y = y0 

y y ; y i qv. [As a consequence, 1 
n n+1; 1 

D issues all its requests for block encryption to O, if any, before all the requests for block decryption to 

O,1.] D returns the result of each y0i's decryption to A; i.e., D returns either Success or Failure to A. D 

outputs 1 if A's forgery decrypts successfully, and 0, otherwise. 

R 

Distinguisher D's advantage, AdvD(P 

l; G S), is defned as: 

f 

AdvD(P 

l [Df [DfG S) = P 1] , P
 1]
;
 :
r =
 r =
 R 

By the defnition of the distinguisher algorithm: 

+P 

l 

R
where f J P 

l denotes the selection of function f , and its inverse f,1, from the set of all permutations 

R
P 

l by the random key K, and f J GS 

denotes the random selection of f from P 

l to encrypt and the 

R
associated function f J GS 

to decrypt. 

R 

f f+GS 

[Df D , XCBC $ , XOR (y) 6=P
 r 1] = P
 [
 N ull ] = P [Succ]=
 r rR 

+P 

l 

f+GS 

R 

+P 

l 

f+GS 

R 

+P 

l 

f+GS 

f f f 

and 

[Df D , XCBC $ , XOR (y) 6=P
 r 1] = P
 [
 N ull ] = P [Succ]:=
 r rR R R 

R R
The above probabilities are over the random choice of r0, f J P 

l , f J GS, and D's guesses. Hence, 

P
 [Succ] = P [Succ] , P [Succ] + P [Succ]r r r rRR 

+P 

l +P 

l 

Now w e fnd an upper bound for D's advantage in distinguishing between P 

l and GS, namely AdvD(P 

l; G S). 

By the defnition of the two oracles O and O,1, only oracle O,1 can be used by D to distinguish between 

P 

l and GS. Furthermore, whenever a block decryption request to oracle O,1 is a ciphertext block that 

was generated during the encryption of A's qe 

queries, the output of oracle O,1 is the same for both 

R R
f J P 

l and f J GS 

(by the defnition of f), and a distinction between P 

l and GS 

cannot b e made. D 

can make a distinction b e t ween P 

l and GS 

only when the ciphertext blocks of the decryption requests 

R R 

f f f+GS 

f+GS 

= AdvD(P 

l; G S) + P [Succ]:r R 

f+GS 

16
 



  
 

  

 

    
     

    

   

          

               

   

   

 

      
    

        

to oracle O,1 (i.e., the inputs to f,1 or f) have never been generated during the encryption of A's qe 

queries; i.e., the ciphertext blocks are not in S . To make this distinction, D needs to send only the 

to oracle O,1, since D already has the plaintext 

+P 

l 

ciphertext blocks of A's forgeries that are not in S 

R 

f 

f+P 

l 

blocks corresponding to all the ciphertext blocks in S 

+P 

l
R 

R 

.
 In this case, f = v, where v 

R
J Rl;l  , and the 

f 

advantage of distinguisher D cannot b e higher than the advantage of any polynomial-time algorithm D' 

that distinguishes a random permutation from a random function using the same block decryption requests 

lto oracle O,1 as those made by distinguisher D; i.e., ciphertext blocks from from f0; 1g , S . Hence,R 

f+P 

l 

l;l  

q(q,1)l;lAdvD(P 

l; G S) AdvD0 (P 

l; R ). However, by the bound of the birthday attack, AdvD0 (P 

l;
 R
 )
 

2l+1 

Jvwhere q is the number of the block decryption requests to oracle O,1; i.e., q Hence,
l 

l;l  

pv(pv 

, l)
AdvD(P 

l; G S) AdvD0 (P 

l; R ) : 

l22l+1 

Hence, 

pv(pv 

, l)
P
 [Succ] P [Succ] + :
r r 

+P 

l 

ut 

Proof of Fact 2 

If i = d 2m, then i r0 

= d	 2m r0 

has (at least) the frst (i.e., least signifcant) m bits zero. Also, 

2l,msince i 2l, it follows that d . Let r0m 

= r0[1 l , m] b e the least signifcant l , m bits of r0. 

(These bits will be shifted in the most signifcant l , m bit positions of a block b y m ultiplication with 2m.) 

First, we note that 

i r0 

= ( dr0m)jj 0 0 

R 

| ,z ,
m 

where dr0m 

= r0m 

+ + r0m 

mod 2l,m and jj is the concatenation operator. To see this: | ,z ,
d times 

i r0 

= (d 2m) r0 

= d (r0 

2m) = ( r0 

2m) + + ( r0 

2m) | ,z ,
d times 

= (r0mjj 0 0) + + ( r0mjj 0 0) = ( r0m 

+ + r0m)jj 0 0 | ,z ,	 | ,z , | ,z , 

| ,z ,
m m	 m | ,z , 

d times 

d times 

= (dr0m)jj 0 0 | ,z ,
m 

where dr0m 

= r0m 

+ + r0m 

mod 2l,m . | ,z ,
d times 

Second, we divide all values of an arbitrary constant a into two complementary classes based on whether 

the frst (i.e., least signifcant) m bits of a are all zero, compute Pr [i r0 

= a] for each class separately, 

and then take the maximum of the two probabilities as the overall bound. 

Let a[1 m] = 0 denote the values of a for which the frst m bits are zero, and a[1 m] 6= 0 those for 

which at least one of the the frst m bits is not zero. Since i r0 

= (dr0m)jj 0 0, it follows that, if | ,z ,
m 

a[1 m] =6 0, Pr [ i r0 

= a ] = 0 . However, if a[1 m] = 0, then [ i r0 

= a ] , [ dr0m 

= b ], where 

R

l22l+1f f+GS 
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b = a[m + 1 l] represents bits m + 1 ; l of a, i.e., the l , m most signifcant bits of a. Hence, in this 

case, 

Pr [ i r0 

= a ] = Pr [ dr0m 

= b ]; 

where d; r0m; b 2 f0; 1gl,m . However, d and 2l,m are relatively prime because d is odd. Hence, d has 

a left inverse,10 e, and dr0m 

= b , edr0m 

= eb , r0m 

= eb (mod 2l,m), which happens with 

j2l,m l,mprobability 1 because r0m 

= r[1 l , m] is random and uniformly distributed in f0; 1g . Thus, if 

a[1 m] = 0, 

1 

Pr [i r0 

= a] = : 

2l,m 

1Hence, for any v alue of constant a, Pr [i r0 

= a] 

2l,m 

. ut 

Proof of Fact 3 

Since any a can be expressed as a = d 2m, where d is odd, there are multiple values of a that have the 

same exponent m. (For example, for all odd values of a, m = 0 , and for all even values of a that are not PN,1 a m ultiple of 4, m = 1.) Hence, when computing the sum a=1 

2m , w e can group together the terms 2m 

that have the same exponent m (i.e., we group the terms 2m that are equal). 

For a given exponent m, w e fnd the number of distinct values of a that have the same exponent m when 

b 

N,1represented as d 2m . To fnd this number, we note that 1 a N , 1 and, hence, 1 d 2m 

c. 

b 

N,1Hence, the numb e r o f distinct values of a that yield the same exponent m is b 

1
2 2m 

c + 1 c, since this 

number is bounded by the number of distinct values of d odd. 

mlFrom the defnition of exponent m, 2 N , 1 (i.e., 0 m log2(N , 1)). Hence, 

N,1 

blog2 

(N,1)c blog2(N,1)c X X X 2m1 N , 1 N , 1 

2m c2m = b b c + 1 + 

2 2m 2 2 

a=1 m=0 m=0 

2blog2(N,1)c+1N , 1 , 1 

= (blog2(N , 1)c + 1) + 

2 2 PMbecause, for any M > 0, m=0 

2m = 2 

M+1 , 1. Hence, 

N,1 X N , 1 N , 1 

2m (log2(N , 1) + 1) + (N , 1) = (log2(N , 1) + 3): 

2 2 

a=1 

ut 

Proof of Fact 4 

Pqe 

Je 

JeSince, by h ypothesis, + 1 ) , the term under the log2 

is np 

+ 1 . Hence, we obtain: p=1(np l l 

qe 

qe X Xpe
(np 

+ 1) log2(np 

+ 1) log2 

(np 

+ 1) ;
l 

p=1 p=1 

10 A w ay to see that d has a left inverse, e, is to label 2l,m = f , and to note that, if d and f are relatively prime, then, by 

Euclid's gcd algorithm, there exists e and h such that ed + hf = 1; i.e., ed = 1 , hf or ed = 1(modf ). 
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and thus, 

qe X pe 

pe
(np + 1) log2(np +	 1) log2 

: 

l l 

p=1 

Further, if m = max(np + 1), then log2(np + 1) log2 

m. Hence, 

qe X pe
(np + 1) log2(np + 1) log2 

m: 

l 

p=1 

ut 

Proof of Claim 3.1 

There are three possible complementary cases to consider: 

i	 i i(1) y0 

= y0, for some queried message i; 1 i qe. Then r0 

= f = f,1(y0) = r0 

is random and uniformly 

i 6 p i = 

p 6 is also distributed, by defnition. Furthermore, if r0 

= r0 

= r0 

(i.e., y0 

= y0 

6 y0 

), then i = p and r0 

pindependent o f r0 

, b y defnition. 

i(2)	 y0 

= zj , for some queried message i; 1 i qe; 1 j ni + 1 ; i.e., y0 

collides with some hidden 

iciphertext block, zj , generated during the encryption of message i. But this is exactly the event prohibited 

by I. 

i i	 i(3) y0 

6 0 

and y0 

= z , for all queried messages i; 1 i ; k 2 1. Then r0 

) = v(y0) = r0; 8i; 1= y 6	 qe = f(y0 6k

J Rl;li qe is random, uniformly distributed and independent o f a n ything else because v 

R
and f has never 

pbeen invoked with argument y0. Hence, r0 

is random, uniformly distributed and independent o f r0 

. tu

Proof of Claim 3.2 

p	 p p p p p pThe event zj 

= z is equivalent t o yj,j r0 

= yk,k r , j r0 

= k r0 

,y +yj 

, k r = j r0,yj+y .k	

0 k 0 k
p(a) If y0 

6 0 

, and since event I is true, it follows that r0 

is random, uniformly distributed, and independent = y
pof r0 

, by Claim 3.1 above. Also, event I and E implies that r0 

is random, uniformly distributed, and 

p	 p p pindependent o f r0 

by the defnition of event E. Thus, j r0 

is independent o f k r0 

, y + yj 

and k r0k
p	 pis independent o f j r0 

, yj + y , since j; k > 0, and yj; y ; j; k are known constants. Furthermore, event k	 k
p	 p p p p[zj 

= z ] = [j	 = k r0 

, y r = j r0 

, yj + y ]. Hence, k r0 k + yj] = [k 0	 k

p	 p pPr [zj 

= z ] = Pr [j r0 

= k r0 

, y + yj]I and E k I and E	

k
p	 p= Pr r = j

I and E
[k 0 

r0 

, yj + yk]: 

However, Pr [j r0 

= k r0 

p , yp+ yj] 

1 , where j = d1 

2m1 and d1 

is odd, by F act 2. Also, 

I and E	

k 2l,m1 

p	 p 1Pr [k r = j r0 

, yj + y ] , where k = d2 

2m2 and d2 

is odd. Hence, 

I and E 0	 k 2l,m2 

1 1 1pPr [zj 

= z ] min ; = ;
I and E k 2l,m1 2l,m2 2l,m

where m = min(m1;m 2). 

p p(b) If y0 

= y0 

, then r0 

= r0 

. Hence, 

p p p	 pzj 

= z , yj , j r0 

= yk , k r , (k , j) r0 

= yk , yj:k	 

0 

19
 



 

  

  

 

 

  

  

 

 

  

  

 

Thus, 

p p[zj 

= z ] = Pr [(k , j) r0 

= yk 

, yj]:P r I and E k I and E

However, since event I is true, it follows that r0 

is random and uniformly distributed, by Claim 3.1 above.
 

Also, event I and E implies that r0 

is random and uniformly distributed, by the defnition of event E.
 

pSince j; k > 0; j 6 ; y ; j; k are known constants, and k = j, F act 2 implies that = k, and yj 6k

1pPr [(k , j) r0 

= yk 

, yj]I and E 2l,m 

where m is defned by k , j = d 2m; k > j or j , k = d 2m; j > k , and d is odd. ut 

Proof of Claim 4.1 

(a) One can write the event zt 

= zs 

, (t , s) r0 

= yt 

, ys. Hence, 

Pr [zs 

= zt] = Pr [(t , s) r0 

= yt 

, ys]:C and E and I C and E and I 

Since event I is true, r0 

is random and uniformly distributed, by Claim 3.1. Furthermore, by the defnition 

of events E and C, event C and I and E implies that r0 

is random and uniformly distributed. Using the 

defnition of m and the facts that (1) r0 

is random and uniformly distributed, (2) yt; y s 

are constants, and 

(3) 1 t , s 2l , 1, we obtain (by F act 2) that 

1 

Pr [(t , s) r0 

= yt 

, ys]C and E and I 2l,m 

where m is defned by t , s = d 2m and d is odd. Hence, 

1 

Pr [zs 

= zt] :
C and E and I 2l,m 

(b) The proof of this part is similar to that of part (a) and is included here for completeness. 

Note that, since zs 

= ys 

, s r0, event zs 

= y0 

, s r0 

= ys 

, y0, where ys 

and y0 

are constants. 

However, since event I is true, r0 

is random and uniformly distributed, by Claim 3.1. Furthermore, event 

C and I and E implies that r0 

is random and uniformly distributed. Hence, by F act 2, 

1 

[zs 

= y0] = Pr [s r0 

= ys 

, y0]Pr 

C and E and I C and E and I 2l,m 

where m is defned by s = d 2m and d is odd. tu
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Appendix B - Proof [Security of XEBC-MAC in an Adaptive Chosen-Message Attack] 

Throughout this proof, we use the same notation as in the Proof for Security of the XCBC$-XOR in a 

Message-Integrity A ttack, Appendix A, and the same facts (i.e., Facts 1 4). Unless mentioned otherwise, 

J Rl;lwe focus on the probability for adversary's success when f 

R
, and, for simplicity, we will drop the 

J Rl;lf 

R
subscript from the probability equations. 

To fnd an upper bound on the probability o f an adversary's success we use the same proof technique as 

for the XCBC$-XOR scheme. That is, we (1) defne several types of events on which we condition the 

adversary's success, (2) express the upper bound in terms of the conditional probabilities obtained, and 

(3) compute upper bounds on these probabilities. As before, our choice and number of conditioning events 

is motivated exclusively by the need to obtain a (good) upper bound for the probability of the adversary's 

success. Undoubtedly, other events could be used for deriving alternate upper bounds. 

We provide some intuition for the choice of conditioning events defned, by giving the following examples of 

events that cause an adversary's success. (The reader can skip these examples without loss of continuity.) 

Examples of Adversary's Success. A way for the adversary to fnd a forgery x0 that passes the 

integrity check w0 = w, is to look for collisions in the input of f , at forgery verifcation. The following 

three examples illustrate why such collisions cause an adversary's success. Other such examples, and other 

ways to fnd forgeries, exist. 

Example 1 Collisions between inputs of f at forgery verifcation with those at message signing 

Suppose that all inputs to f at forgery verifcation collide with inputs to f at signing. We pessimistically 

declare the adversary to b e successful. For example, suppose that two of the block inputs to f at the 

0verifcation of forgery (x ; ctr0; w 

0) represent two swapped inputs to f at the signing of message x using 

counter ctr and obtaining the authentication tag w. Also suppose that all other inputs to f at forgery 

verifcation are the same as those of message x at signing. Hence, x0 6 In this case, the authentication = x. 

0 0check for forgery (x ; ctr0 = ctr; w = w) will pass the integrity c heck. 

It should b e noted that this criterion for adversary's success is pessimistic because, among the forgeries 

that make this event true some will decrypt correctly with negligible probability. For instance, if a forgery 

0 0 0 0 0x is a truncation of a signed message, the collision of the last forgery block x = z + ( n + 1) rn0+1 0 0 

with any of the inputs to f or f 0 at message signing is a negligible-probability e v ent and hence truncation 

would have a negligible chance of success (viz., Claim 1 below provides some intuition for this statement). 

Example 2 Collisions among inputs of f at forgery verifcation 

Suppose that two inputs of f obtained during forgery verifcation, x0 and x0 

+2, do not collide with n+1 n

any of the inputs to f obtained during message signing, but collide with each other; x0 = x0 Alson+1 n+2. 

suppose that the adversary's forgery (x0; ctr0; w 

0) is obtained as follows: x0 = xjjx0 0 

+2, ctr0 = ctr, and n+1jjxn
0 0 0w = w. Clearly, x 6 ; ctr0; w= x and the forgery (x 0) passes verifcation under the pessimistic assumption 

that f(z0 

+ ( n + 3) r0) = f(z0 

+ ( n + 1) r0). 

Example 3 Collisions among the inputs of f that cause discovery of r0 

p pSuppose that the forgery counter ctr0i collides with an input to f , x + k r0 

; 1 p qs; 1 k np,k 

0i 0i 0obtained during message signing, or with xj 

+ j r0 

; 1 i qv; 1 j ni, during the verifcation of 
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0

forgery (x0; ctr0; w 

0). Suppose that the adversary fnds that x = ctr0i, for some message p, known 

p p+ k r0k 

plaintext block xp and known counter ctr0i, 1 k 

i qv. Hence, the adversary can determine rp and thus 

the adversary's forgeries can satisfy collisions of Examples 1 and 2 above. A similar collision event b e t ween 

ctr0i and an input to f during forgery verifcation has a similar efect. 

Conditioning Events. To compute an upper bound on the probability of successful forgery, w e c hoose 

three conditioning events based on collisions in the inputs of f . Intuition for the choice of events is provided 

by Examples 1 3 above. To defne the conditioning events, we use the following notation for the last 

block that is enciphered 

p px = z+1 0np

0i 0i:
x 0 

= z n +1
i

Next, we i n troduce the sets: 

0

1Is qs: fctr ; ; ctr g 

p pS : fx + k ; 1 p qs; 1 k np 

+ 1 g;r0k 

0i 0s 0i 0s 02j (IsVi 

: fx S); 1
 +
 1
 g;+ s ;
 + sr x r s ni0 0s s 

where Is is the set of all the counters used at signing, S is the set of all the inputs to function f (aside 

from the counters) at signing, and Vi 

is the set of all the inputs to function f (aside from the counters) at 

verifcation of query i. Based on sets Is; S ; V i, w e i n troduce the following collision events that arise at the 

0iverifcation of forgery (x ; ctr0i; w 

0i): 

Ci : Vi 

= ; 

Event Ci includes all instances when inputs of f at forgery verifcation (aside from counters) collide with 

either counters or inputs to function f at message signing. Next we defne event Di as follows: 

0 0i 0iDi : 9s; 1 2 Vi1
+
 :
 + ss n x r0i s 

0i 0i 0i 0i 0i 0i 0 = x = s; 16
 ; 8x 2 Vi; t 6and x +
 1
+ s + t + t tr r r ni0 0 0t ts 

0i 0i 0i = ctr6
and x + s r0s 

Event Di states that there is at least one input block of forgery i that does not collide with any other block 

and counter of forgery i. It is clear that the defnition for Di makes sense only when event Ci is false. 

r

The rationale for introducing events Ci (or, actually, Ci) and Di is similar to the one used in the proof of 

Theorem 2. That is, we w ant to fnd a desirable event which states that there exists a forgery block that 

does not collide with any other input to f at either message signing or verifcation of forgery i (as suggested 

by Examples 1 and 2). Clearly, if this event is true, then the probability o f v erifcation passing is 1j2l . To 

fnd this event, however, we must ensure that all other collisions that that may lead to the discovery of 

0 

are also ruled out for this block (as suggested by Example 3). For this reason, we must introduce two 

events beside Ci and Di, namely events Rv and Rs defned below. (Note that these events need not cover i 

the last block or a signed message or of forgery i since such a collision cannot be used to solve for either r
0 

0 

since random variables z and z0 

remain unknown to the adversary.) After we fnd the desired event or r0 0

for forgery i, we show that the complement o f this event has a negligible probability (viz., the section on 

Non-truncation Forgeries below). 

0i 0i 0i 0 = xj 

+ jRv 

i 

: ctr 6
 r0 ; 8j; 1 j ni 
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Event Rv states that all inputs to f during the verifcation of forgery i (aside from counters and last block) i 

do not collide with forgery counters. 

Rs : P 

s and P 

v and Qs; 

where 

P 

s 

p pctra = x6
 ; 8a; p; k; 1+ k ; 1 k:
 a; p r qs np0k
0a p p= xP 

v 6
 ; 8a; p; k; 1+ k ; 1 p qs; 1 k: ctr r a qv np0k
p p p p= xQs 6
 ; 8p; j; k; 1 p qs; 1 j; k np; j =6 k+ j + k:
 x r r0 0j k

0iand j is the index of a block in forgery i; i.e., xj . Event Rs states that all inputs to f at message signing 

(aside from counters and last block) do not collide with any other such inputs and with any of the counters 

used at message signing and forgery verifcation. Note that event Rs is independent o f a n y forgery i. 

Upper bound on the Probability of Successful Forgery. By standard conditioning, 

Pr [Succ] Pr [Succ j Rs] + Pr [Rs] Pr [Succ j Rs] + Pr [P 

s] + Pr [P 

v] + Pr [Qs]; 

since Rs = P 

s or P 

v or Qs . The second, third and fourth terms in the sum are bounded as in the following 

Claim: 

Claim 1 

(a) 

ps
Pr [P 

s] : 

l2l 

(b) 

ps
Pr [P 

v] : 

l2l 

(c) 

ps
Pr [Qs] : 

l2l 

To compute an upper bound for the probability of successful forgery, when event Rs is true, we note 

that the adversary is successful if one of his qv 

forgeries is successful. Let the i-th adversary's forgery be: 

0i 0i(ctr0i; x ; w 

0i), where x = x0i 0i .
 Hence, by union bound, the probability of adversary's success for all x 01 n
i 

J Rl;lqv 

verifcation queries (when f 

R
) is: 

qv X 

0i 0i 0i[Succ j Rs +1 

j Rs]:
E E
P
 ] Pr [wr = y1 y 0n
i

i=1 

Hence, we frst compute the probability of adversary's success when a single forgery verifcation is allowed; 

0i 0i 0i j RsE E
i.e., we compute Pr [w ]. For this computation, we partition the space of all possible = y y 01 +1n
i

forgeries into (1) truncation and (2) non-truncation forgeries.
 

Truncation Forgeries. For truncation forgeries, we i n troduce the events:
 

0i 0 0i 2 IsZIs 0 +
 (
 ni 1)
 r0:
 +
z 

0i 0 0iZS 

(
 1)
 2 S:
:
 +
 +
z n r0 0i

23
 



   
   

 

   

       

  

 

 

     

   

       

    

   

    

   

Using these events, we show that the probability of adversary's success in creating a successful forgery i is 

p0inegligible. If forgery i is a truncation, then there exists p; 1 p qs 

: ctr0i = ctrp and x = x ; 8k; 1k k
p0 0i 0 0i 0 0ik n np, hence z = z0 

. If the input to f at block n + 1 , namely z + ( n + 1) r0 

, does not i 
0 i 

0 i 

collide with any counter (i.e., event ZIs is true) and any input to function f (aside from the counters) 

0i 0i 0 0iat signing (i.e., event ZS 

is true), then y = f(z + ( + 1) 0 

) is random, uniformly distributed n r0 

i
0 i+1n

and independent of any other block y0 in the formula for w0i . Hence, in this case, the probability o f the 

0i 0i 0i during the verifcation of forgery i is 1j2lE E
event that y Summarizing, by standard y = w .
 

n0 

i
+11 

conditioning and union bound, 

0i 0i 0i 0i 0i 0ij Rs] or ZS) and Rs] + Pr [ZIs or ZS 

j Rs]E E
 E E
 +1 

j (ZIsPr [w Pr [w= y1 

yn0 

i
+1 

= y1 

y 0 

i
n

1 1 

+ Pr [ZIs or ZS ] + Pr [ZIs j Rs] + Pr [ZS 

j Rs]: 

2l 2l 

Upper bounds for the probabilities of events ZIs j Rs and ZS 

j Rs are given by the following Claim: 

Claim 2 

(a) 

P r [ZIs j Rs] 

qs 

2l 

: 

(b) 

P r [ZS 

j Rs] 

ps 

l2l 

+ 

np 

2l 

: 

Hence, for any truncation forgery, 

0iP r [w = y 

0i 

1 

E E y 

0i 

+1n j Rs] 

1 

+ 

qs 

+ 

ps 

+ 

np 

ps 

+ 

qs 

+ ( np 

+ 1 ) 

:0 

i 2l 2l l2l 2l l2l 2l 

0i 0i 0i 

+1 

j Rs] for non-E E
Non-truncation Forgeries. Now, we fnd an upper bound for Pr [w = y y 0 

i
1 n

truncation forgeries. To compute this upper bound, we defne an event such that (1) the probability of 

successful forgery is 1j2l when this event occurs, and (2) the probability o f the complement o f this event 

has a negligible upper bound. 

Using the events defned above and by standard conditioning, we obtain: 

0i 0i 0i 0i 0i 0i j Ci and Di and Rv 

ij Rs] and RsE E
 E E
Pr [w Pr [w ] +
= y1 

yn0 

i
+1 

= y1 

yn0 

i
+1 

Pr [Ci or Di or Rv j Rs]i 

0i 0i 0i j Ci and Di and Rv and RsiE E
Pr [w ] +
= y1 

yn0 

i
+1 

Pr [Ci or Di or Rv j Rv and Rs] + Pr [Rv j Rs]i i i
 

0i 0i 0i
 j Ci and Di and Rv and Rs]iE E
= Pr [w = y1 

yn0 

i
+1 

+Pr [Ci or Di j Rv and Rs] + Pr [Rv j Rs]i i
 

0i 0i 0i
 j Ci and Di and Rv and RsiE E
Pr [w ] +
= y1 

yn0 

i
+1 

Pr [Ci or Di j Ci and Rv and Rs] + Pr [Ci j Rv and Rs] + Pr [Rv j Rs]i i 

0i 0i 0i =
 Pr [w = y1 

E E
 yn0 

i
+1 

j Ci and Di and Rv and Rsi 

] +
 

Pr [Di j Ci and Rv and Rs] + Pr [Ci j Rv and Rs] + Pr [Rv j Rs];i i i 
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since the following events are equivalent: 

(Ci or Di or Rv j Rv and Rs) = (Ci or Di j Rv and Rs)i i i 

(Ci or Di j Ci and Rv and Rs) = (Di j Ci and Rv and Rs):i i 

Event (Ci and Di and Rv and Rs) is the desired event mentioned earlier in this proof. If this event i 

0 0i 0ihappens, then there must exist an index j; 1 j n + 1 such that x + j r does not collide with i j 
0 

0i 0i 0iany other input to f , at either message signing or verifcation of forgery i, and hence y = f(x + j rj j 
0 

) 

0i 0iE Eis random, uniformly distributed and independent o f any other terms in the expression y y +1.0 

i
1 n

0i 0iE E
Hence, y is random and uniformly distributed and hence, y 0 

i
1 +1n

10i 0i 0i j Ci and Di and Rv and Rs]iE E
Pr [w :
= y1 

yn0 

i
+1 2l 

0i 0i 0i j Rs]E E
The other probabilities that appear in the expression for the total probability Pr [w = y y 0 

i
1 +1n

are bounded as in Claim 3, whose proof can be found below: 

Claim 3 

(a) 

P r [Rv 

i 

j Rs] 

n0 

i 

2l 

: 

(b) 

P r [Ci j Rv 

i 

and Rs] 

qsn
0 

i 

2l 

+ 

ps 

l2l+1 

log2 

ps 

l 

+ 3 : 

(c) 

P r [Di j Ci and Rv 

i 

and Rs] 

n0 

i 

2l 

: 

Based on this claim, for an arbitrary forgery i that is not a truncation, we obtain: 

01 n0i 0i 0i i = y E E y j Rs] + +Pr [w 0 

i
1 +1 2l 2ln

0 0qsn ps 

ps 

ni i+ log2 

+ 3 + 

2l l2l+1 2ll 

2(n0 + 1) qsn
0 ps 

psi i+ + log2 

+ 3 : 

l2l+12l 2l l 

For any forgery, the upper bound is the maximum from the upper bounds for truncation and non-truncation 

forgeries, hence, 

2(n0 + 1) qsn
0 ps 

ps0i 0i 0i i i = y E E y j Rs] + + log2 

+ 3 :P r [w 0 

i
1 +1 l2l+12l 2ln l 

Hence, for all qv 

verifcation queries, we obtain by union bound, 

qv X 

0i 0i 0i[Succ j Rs] j Rs]E E
P
 Pr [wr = y1 

y 0 

i
+1n

i=1 

qv X 

i=1 

2(n0 

i 

+ 

2l 

1 ) 

+ 

qsn
0 

i 

2l 

+ 

ps 

l2l+1 

log2 

ps 

l 

+ 3 

2pv 

qspv 

qvps 

ps 

= + + log2 

+ 3 

l2l+1l2l l2l l 

(qs 

+ 2) pv 

qvps 

ps 

= + log2 

+ 3 : 

l2l+1l2l l 

25
 



 

  

 

  

     
      

 

  

 

  

    

   

       

 

          
  

   

   

    

 

Hence, by Claim 1, 

(qs 

+ 2) pv 

qvps 

ps 

3ps
Pr [Succ] + log2 

+ 3 + : 

l2l+1l2l l l2l 

R
Finally, when f J F , the probability for adversary's success is bounded as follows: 

(qs 

+ 2) pv 

qvps 

ps 

3ps
Pr [Succ] E + + log2 

+ 3 + :R 

l2l+1f+F l2l l l2l 

ut 

Proofs of Claims 1 - 3 

Proof of Claim 1 

p p(a) Event P 

s deals with collisions between inputs to f at signing, namely x +k r ; 1 p qs; 1 k np0k 

and constant counters at signing, namely ctra; 1 a qs. Since P 

s : 9 a; p; k; 1 a; p qs; 1 k np 

: 

p pctra + k , it follows that = x r0k 

p pPr [P 

s] Pr [ctra + k ]
= x r0k 

p pIn this event, ctra and x Since r is random and uniformly distributed, and the event of are constants. 0k 

p p= ctrainterest can be written as k , then, by F act 2 (Appendix A), r , x0 k

2m 

p pPr [ctra + k ] ;
= x r0k 2l 

where k = d 2m and d is odd. Here 2m k np
Js , hence 

l 

p p 

ps
Pr [P 

s] Pr [ctra + k ]
 :
= x r0k l2l 

(b) Event P 

v is very similar with event P 

s, i.e., it deals with collisions b e t ween inputs to f at signing, 

; 1 p qs; 1 k np 

and constant counters at verifcation, namely ctr0a; 1
 a qv. 

p pnamely x + k r0k 

In a manner similar to the one used in the proof of (a), since ctr0a are also constants, 

ps
Pr [P 

v] : 

l2l 

(c) Event Qs , deals with collisions b e t ween inputs to f at signing within the same message, namely 

p p p p= x6
 6 Since Qs 9= k. :+ j + k where 1 p qs; 1 j; k np; j p; j; k; 1 p qs; 1 j; k x r r0 0j k 

p p p p= k : x = x6
 6
j + j + k then,np; r r0 0j k 

p p p pPr [Qs] Pr [x + j + k ]:
r = x r0 0j k 

p p p p p p p 

j 

, xWithout loss of generality, let k > j . Event x + j + k is equivalent t o ( k , j)r = x r r = x k.0 0 0j k 

Since rp 

0 is random and uniformly distributed, by F act 2 (Appendix A), this event happens with probability 

2m Js 

2l 

where k , j = d 2m and d is odd. Here 2m k , j np l 

, hence, 

ps
Pr [Qs] : 

l2l 

Proof of Claim 2 
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0
0i 0 

i 

+(a) Event ZIs refers to collisions between the last input to f at verifcation of forgery i, namely z + (
 n
1)
 r0i, and any counter at signing, namely ctra; 1 a qs. By union bound, 

qs X 

0i 0 0iPr [ZIs j Rs] = ctra j Rs]:P r [z (
 1)
+
 +
n r0 0i 

a=1 

0i f 0(rp p i) is random, uniformly distributed and independent of r and of the counter since it is z = z =
 0 00 0

obtained by enciphering with a diferent k ey. Hence, since ctra is a constant, 

10i 0 0i a j RsPr [z (
 1)
 ]
+
 +
 = ctrn r =
 0 0i 2l 

and 

qs
Pr [ZIs j Rs] : 

2l 

ut 

0i 0(b) Event ZIs refers to collisions between the last input to f at verifcation of forgery i, namely z + (
 +
n0 i 

0i a a1)
 r , and any input to f at signing (other than counters), i.e., x + b ; 1 a qs; 1 b na 

+ 1r .
0 0b 

By union bound, 

qs 

na+1 X X 

0i 0 0ij Rs] 

a a j Rs]:P r [ZS 

Pr [z (
 1)
 = xb 

+ b r+
 +
n r0 0 0i 

a=1 b=1 

pa 0i 0 0i a a 0iIf b na, then x is a constant in the equation z (
 1)
 + b Then, since z is+
 +
n r = x r = z0 .
0 0 0 0ib b 

p0i 0i aobtained using a diferent k is random, uniformly distributed and independent o f and of ;
ey, z r = r r0 0 00
athe constant xb 

. Hence, 

10 0i a a0i +0 j RsPr [z (
 1)
 = xb 

+ b r ]
+
 :
n r =
 0 0i 2l 

a a 0i a= a, then z p6
If b = na 

+ 1, then x In this case, if p and z are random, uniformly distributed = z = z.
0 0 00b 

p0i aand independent; they are also independent o f and r Hence,r = r .
0 00

10i 0 0i a a j RsPr [z (
 1)
 = xb 

+ b r ]
+
 +
 :
n r =
 0 0 0i 2l 

p p0i a a 0i aIn the complementary case, namely when b = na 

+ 1 ; p = a, then z and r= z = z = x = r = r .
0 0 0 00 0b 

Since, in this case, b = na 

+ 1 = np 

+ 1, it follows that 

0i 0 0i a a 0 

p(
 1)
 = xb 

+ b r (np 

, n )
 =
 0
+
 +
 ;
z n r r0 ,
0 0 0i i

p0 Event Rswhere, np 

> n (since the forgery is a truncation of message p). is true, hence r is unknown, 0i 

2m 

random and uniformly distributed. Hence, by Fact 2 (Appendix A), the probability of this event is 

2l 

0 0where np 

, n = d 2m and d is odd. Hence, 2m np 

, n np. Hence,i i 

2m np0i 0 0i a a 0 

p 

i)j Rs j Rs]Pr [z (
 1)
 = xb 

+ b r ] = Pr [(np 

, n 0
+
 +
 :
n r r =
 0 0 0i 0 2l 2l 

Hence, 

qs 

na+1 X X 

0i 0 0iPr [ZS 

j Rs] 

a a j Rs]Pr [z0 +
 (
 ni 

+
 1)
 = xb 

+ b rr0 0
a=1 b=1 
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qs 

naXX 

0i 0 0i a a = Pr [z + ( n + 1) r = xb 

+ b r j Rs] +0 i 0 0 

a=1 b=1 

qs X 

0i 0 0i a aPr [z + ( n + 1) r = z + ( na 

+ 1) r j Rs] +0 i 0 0 0 

a=1;a 6=p 

0i 0 0i p aPr [z + ( n + 1) r = z + ( np 

+ 1) r j Rs]0 i 0 0 

0 

qs 

na qs 

qs 

na+1 XX 1 

X 1 np 

X X 1 np 

ps 

np
+ + + + : 

2l 2l 2l 2l 2l l2l 2l 

a=1 b=1 6 a=1 b=1a=1;a=p 

ut 

Proof of Claim 3 

(a) Event Rv deals with collisions between inputs to f at verifcation of forgery i and the counter corre-i 

sponding to forgery i. Hence, in a manner similar to the one used in the Proof of Claim 1(a) 

0niPr [Rv j Rs] :i 2l 

ut 

(b) The proof of this Claim is very similar to the proof of Claim 3 in the Proof of Theorem 2. First, 

we choose an index j such that for any type of possible non-truncation forgery i, the input to f at the 

0i 0iverifcation of forgery i, namely xj 

+ j r0 

, does collide with any input to f during message signing with 

low probability. Next, we compute an upper bound for these collisions. 

All non-truncation forgeries can b e partitioned in a similar manner as that used in the proof of Claim 3 

of Theorem 2. That is, we defne extensions of the plaintext of a signed message, which w e call the prefx 

case, and the complementary case, which w e call non-prefx case. The non-prefx case includes two separate 

subcases, namely when ctr0i is diferent from any ctrp of any message p obtained at signing (i.e., message 

p(x ; ctrp; w 

p)), or when there is a signed message p such that ctr0i = ctrp. Hence, in the latter subcase, 

there must be at least a block position j in the forged message x0i that is diferent from the corresponding 

block of the signed message p. This partition of all possible forgery types shows that a forged message 

0i 0i 0ix = x x 0 

which is not a truncation, can be in one of the following three complementary types: 1 n
i 

p0 0i(a) 9p; 1 p qs 

: n > np; ctr0i = ctrp and 8k; 1 k np 

: x = x ; i.e., the forged message is an i k k

extension of message xp (the prefx case). The non-prefx case consists of the following two forgery types: 

(b1) ctr0i 6 ; 8p; 1 p qs= ctrp ; and
 

0 0i
 

p(b2) 9p; 1 p qs 

: ctr0i = ctrp; 9k; 1 k min(n ; n p) : x 6= x ; i.e., the forged message is obtained by i k k

modifying a queried message starting with some block b e t ween the second and last block. 

Now w e c hoose index j mentioned above for each t ype of possible non-truncation forgeries, as follows: for 

forgeries of type (a), j = np 

+ 1 ; for forgeries of type (b1), j = 1 ; and for forgeries of type (b2), j is the 

0i 0 0smallest index such that x 6 x ; 1 j minfnp; n ig. In all cases 1 j n= 

p , and hence, the chosen j j 

i


0i
block x is well defned. j 

0i 0i 0i 0iEvent Ci implies that xj 

+ j r 2 Is or xj 

+ j r 2 S. Hence, by union bound 0 0 

0i 0i 0i 0iPr [Ci j Rv and Rs] Pr [xj 

+ j r 2 Is j Rv and Rs] + Pr [xj 

+ j r 2 S j Rv and Rs]:i 0 i 0 i 

Let us defne the following events: 

0i 0iEIs : xj 

+ j r 2 Is 

0 

0i 0iES 

: xj 

+ j r 2 S:0 
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Hence, 

Pr [Ci j Rv and Rs] Pr [EIs j Rv and Rs] + Pr [ES 

j Rv and Rs]:i i i 

We determine upper bounds for events EIs j Rv; E S 

j Rv using the following Claim, whose proof is found i i 

at the end of this appendix: 

Claim 3.1 

(a) 

0qsniPr [EIs j Rv and Rs] :i 2l 

(b) 

ps 

ps
Pr [ES 

j Rv and Rs] log2 

+ 3 :i l2l+1 l 

Based on Claim 3.1, 

0qsn ps 

psiPr [Ci j Ri
v and Rs] Pr [EIs j Ri

v and Rs] + Pr [ES 

j Ri
v and Rs] + 

l2l+1 

log2 

+ 3 : 

2l l 

ut 

(c) We fnd an upper bound for Pr [Di j Ci and Rv and Rs] in a manner very similar to the one used in i 

0Claim 4 of the Proof of Theorem 2. Event Di is true if and only if there exists an index s; 1 s n + 1i 

0i 0i 0i 0i 0such that the block x + s 2 Vi 

collides with another block x + t t + 1 ; 62 Vi; 1 = t orr r n s0 0 its 

0iwith ctr0i . But the latter collisions, namely x 0i 

0 

= ctr0i where x0i 0i 

0 2 Vi, is already precluded + s r + s rs s 

by event Ri
v . Hence, 

Pr [Di j Ci and Rv and Rs]i 

0i 0i 0i 0i 0i 0i 0i 0i ; s 6= t j Ci and Rv and Rs]:2 Vi iPr [x ; where x+ s + t + s ;
 + tr = x r r x r0 0 0 0t ts s 

0i 0iWhen event Ci is true, there exists at least one block x 2 Vi. If Vi 

has only one element, then + s r0s 

0i 0i 0i 0i 0i 0i 0i 0i ; s 6= t j Ci and Rv and Rs2 Vi iPr [x ; where x ] = 0
 :
+ s + t + s ;
 + tr = x r r x r0 0 0 0t ts s 

If Vi 

has at least two elements, then one can choose wlog s t and then 

0i 0i 0i 0i 0i 0i 0i(t , s)+ s + t :
x r = x r r0 

= x , xs t0 ,
0 ts 

In this expression, r0i 

0 is unknown, random and uniformly distributed since events Rv and Rs 

i 

are true. 

0i 0i 0i 0i 0i 0i 0iFurthermore, x is a constant and x , since t > s; if x , then it is ;
 are constants, or xx = z = z0 0t t ts s 

0i 0iindependent o f because z was obtained by enciphering with a diferent k ey. Hence, by F act 2 (Appendix r0 0

A), the probability is at most 

2m 

, where t , s = d 2m and d is odd. lFrom the defnition of exponent m,
2l 

it follows that 2m t , s n0 since 1 s t n0 + 1 . Hence,i i 

02m n0i 0i 0i 0i 0i 0i 0i 0i i+ s r = x + t r ; where x + s r ; x + t r :; s 6= t j Ci and Rv and Rs]2 Vi iPr [x 0 0 0 0t ts s 2l 2l 

Hence, 

0niPr [Di j Ci and Rv and Rs] :i 2l 

ut 

Proof of Claim 3.1 
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0i 0i(a) Event EIs refers to collisions b e t ween the chosen block x + j r and counters at signing, namely j 
0 

ctrp; 1 p qs. Hence, by union bound, and Fact 2 (Appendix A) 

qs 

qs X X 2m 2m 

0i 0iPr [EIs j Rv and Rs] Pr [xj 

+ j r = ctrp j Rv and Rs] = 

qs
;i 0 i 2l 2l 

p=1 p=1 

0iwhere j = d 2m and d is odd, since, by events Rv and Rs r is unknown, random and uniformly i 
0 

0i 0distributed, xj 

is a constant, and ctrp is a constant. Furthermore, since 2m j ni, it follows that 

qsj qsn
0 

iPr [EIs j Rv and Rs] :i 2l 2l 

ut 

0i 0i(b) Event EIs refers to collisions between the chosen block x + j r and inputs to f at signing other j 
0 

p pthan counters, namely blocks x + k r0 

; 1 p qs; 1 k np 

+ 1 . Hence, by union bound, k 

qs 

npXX 

0i 0i p pPr [ES 

j Rv and Rs] Pr [xj 

+ j r = x + k r j Rv and Rs]i 0 k 

0 

i 

p=1 k=1 

In a manner similar to the one used for Claim 3 (Part 2) in the proof of Theorem 2, we can show that 

ps 

ps
Pr [ES 

j Rv and Rs] log2 

+ 3 :i l2l+1 l 

ut 
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