

Encryption Modes with Almost Free Message Integrity

Charanjit S. Jutla
IBM T.J. Watson Research Center

In this document we propose two new modes of operation for
symmetric key block cipher algorithms. The main feature
distinguishing the two proposed modes from existing modes is that
along with providing confidentiality of the message, they also
provide message integrity. In other words, the new modes are not
just modes of operation for encryption, but modes of operation for
authenticated encryption. As the title of the document suggests, the
new modes achieve the additional property with little extra overhead,
as will be explained below.

One of the new modes is highly parallelizable. In fact, the
parallelizable mode has critical paths of only two block cipher
invocations. By one estimate, a hardware implementation of this
mode on a single board (housing 1000 block cipher units) achieves
terabits/sec (1012 bits/sec) of authenticated encryption. Moreover,
there is no penalty for doing a serial implementation of this mode.

The new modes also come with proofs of security, assuming that
the underlying block ciphers are secure. For confidentiality, the
modes achieve the same provable security bounds as CBC. For
authentication, the modes achieve the same provable security bounds
as CBC-MAC.

The non-parallelizable mode is similar to the CBC mode. It differs
from the CBC mode in that the output is “whitened” (XORed) with a
pairwise independent random sequence. The pairwise independent
sequence can be generated with little overhead as detailed below. It
is this whitening with the pairwise independent sequence that assures
message integrity.

The parallelizable mode removes the chaining from the above
mode, and instead does an input whitening (in addition to the output
whitening) with a pairwise independent sequence. Thus, it becomes
similar to the ECB mode. However, with the input whitening with
the pairwise independent sequence the new mode has provable
security similar to CBC (Note: ECB does not have security
guarantees like CBC).

Both the parallelizable mode and the non-parallelizable mode come
in two flavors. These flavors refer to how the pairwise independent
sequence is generated. In one mode, the pairwise independent
sequence is generated by a subset construction. In another mode, the
pairwise independent sequence is generated by (ai+b) modulo a fixed
prime number. There will be one standard prime number for each
bit-size block cipher. Thus, for 64 bit block ciphers the prime could
be 264 –257. For 128 bit block ciphers, the prime could be 2128 –159.

The modes are described below in more detail. For proofs of security
see http://eprint.iacr.org/2000/039.ps .

We first describe the non-parallelizable mode.

1. Integrity Aware Cipher Block Chaining Mode (IACBC)

Let n be the block size of the underlying block cipher. If the block
cipher requires keys of length k, then this mode requires two
independent keys of length k. Let these keys be called K0 and K1.
From now on, we will use fK to denote the encryption function under
key K.

The message to be encrypted P, is divided into blocks of length n
each. Let these blocks be P1,P2,…Pm-1. As in CBC, a random initial
vector r of length n bits is chosen. This random vector is expanded
into t = Ølog (m+1)ø new random vectors using the block cipher and
key K0 as follows:

for i= 0 to t-1 do
 Wi = fK0 (r+i+1)

end for

 The t random and independent vector are used to prepare m (£ 2t –1)
new pairwise independent random vectors S0,S1,…,Sm-1. This can be
done by taking all subsets of W1,W2,…,Wt, and for each subset
taking their xor-sum. There is a well-known fast way to generate
these subsets, and xor-sums (also known as Gray Code:
http://hissa.nist.gov/dads/HTML/graycode.html). The following
pseudocode is the proposed sequence of generating these subsets.
This code also incorporates the generation of Wi above.

http://hissa.nist.gov/dads/HTML/graycode.html
http://eprint.iacr.org/2000/039.ps

procedure pairwise _ independent _ sequence(in r, m, K0; out S){

S-1 = 0;

for i = 0 to m -1 do

j = i +1;

k = 0;

/* find the index of the least significant ON bit in (i +1) * /

while ((j &1) == 0) do

k = k +1; j = j >> 1; /*increment k and right shift j * /

end while

if ((j ¯1) == 0) /* if (i +1) is a power of 2 * /

W = f (r + k +1);k K 0

S S ¯ i = i-1 Wk ;

end for}
Note that, Si is obtained from Si-1 with just one XOR. The inner while loop
condition is checked two times on average.

The ciphertext message C=<C0,C1,…,Cm> is generated as follows (see fig 1):
M 0 = r

f ()N 0 = K 1 M 0

C 0 = N 0

for i = 1 to m - 1 do

M = P ¯ Ni i i -1

N i = f K 1 (M i)

C i = N i ¯ S i

end for

checksum = � m -1
Pii = 1

M = checksum ¯ Nm m -1

N = f (M)m K 1 m

C = N ¯ Sm m 0

Again, the summation is an xor-sum. Note that S0 is used in the last step.
The above scheme is invertible. The inversion process yields blocks P1,P2,…,Pm. The
decrypted plaintext is <P1,P2,…Pm-1>. Message integrity is verified by checking

�i

m

=

-1
Pm = Pi . 1

Decryption pseudocode :

= CN0 0

M 0 = f -1
K1 (N 0)

r = M 0

invoke pairwise _ independent _ sequence(r, m, K0, S);

for i = 1 to m -1 do

N = C ¯ S
i i i

M i = f -1
K1 (Ni)

P = M ¯ Ni i i-1

end for

checksum = �m

=

-1
Pii 1

Nm = Cm ¯ S0

M = f (M)m K1 m

P = M ¯ Nm m m-1

Integrity ” (Pm == checksum)

Alternative Method for Generating Pairwise Independent Sequence

The pairwise independent sequence can be generated by a simple algebraic method as

well. This could be an alternate standard.

Let p=2128-159. The number p is known to be a prime. For a 128-bit block cipher, instead

of generating log m new random numbers, just two new random numbers are generated.

a = f K 0 (r +1)

b = f K 0 (r + 2)
128 128if b > (2 -159) then b = (b +159) mod 2

Having generated a,b, the sequence S0,S1,…Sm-1 is generated as follows:
S0 = a

for i = 1 to m -1 do

S = (S + b) mod 2128
i i-1

if (b > S) S = S +159i i i

end for

For 64-bit ciphers p=264-257 is recommended.

2. Integrity Aware Parallelizable Mode (IAPM)

The pairwise independent sequence is generated as in the non-parallelizable mode
IACBC, by invoking pairwise_independent_sequence(r,m+1,K0,S). The ciphertext
C=<C0,C1,…,Cm> however is generated differently (see fig 2) as follows:
M 0 = r

N = f (M)0 K1 0

= NC0 0

for i = 1 to m -1 do

M i = Pi ¯ Si

N = f (M)i K1 i

C = N ¯ Si i i

end for

checksum = �m-1
Pii=1

M m = checksum ̄ Sm

N = f (M)m K1 m

C = N ¯ Sm m 0

Note that the same pairwise independent sequence is used for both the input whitening
and the output whitening.
Again, the decryption process is straightforward. The inversion process yields blocks
P1,P2,…,Pm. The decrypted plaintext is <P1,P2,…Pm-1>. Message integrity is verified by
checking

Pm =
m-1

Pi .�i=1

3. Performance

The IACBC scheme was implemented for DES on IBM PowerPC (200MHz). For
messages of size 1024 64-bit blocks the IACBC scheme(with the subset construction)
yielded throughput of 31.5 Mbits/sec. In comparison, the CBC scheme (i.e. just
encryption) ran at 33.78 Mbits/sec. We expect similar performance results for serial
implementations of IAPM.

4. Patents

IBM has filed a U.S. patent on all these schemes.

S0

Figure 1 (IACBC)

r+1 r+2 r+t r P1 Pm-1 S P

S1 S0Sm-1

f

K0

f

K0

f

K0

f

K1

f

K1

f

K1

f

K1

W0 W1 Wt-1 C0 C1 Cm-1 Cm

S0,S1,…Sm-1

Figure 2 (IAPM)

r+1 r+2 r+t r P1 Pm-1 S P

Sm-1

f

K1

Sm

f

K1

S1

f

K1

f

K1

f

K0

f

K0

f

K0

S1 Sm-1 S0

W0 W1 Wt-1 C0 C1 Cm-1 Cm

S0,S1,…Sm-1

