PMAC: A Parallelizable Message Authentication Code

John Black
Department of Computer Science
University of Nevada, Reno
jrb@cs.unr.edu
http://www.cs.unr.edu/~jrb

Phillip Rogaway
Department of Computer Science
UC Davis + CMU
rogaway@cs.ucdavis.edu
http://www.cs.ucdavis.edu/~rogaway
+66 15307620 +15307530987

NIST Modes of Operation Workshop 2 - Aug 24, 2001 - Santa Barbara, California

What is a MAC

A^{K}

K
 B

MAC ${ }^{\text {G }}$: generate authentication tag
$\sigma=\mathrm{MAC}_{\mathrm{K}}^{\mathrm{G}}([\mathrm{IV}], \mathrm{M})$

$\mathbf{M A C}^{\mathbf{v}}$: verify authentication tag: $\mathrm{MAC}_{\mathrm{K}}^{\mathrm{V}}(\mathrm{M}, \sigma)$

- Security addresses an adversary's inability to forge a valid authentication tag for some new message.
- Most MACs are deterministic-they need no nonce/state/IV/\$. In practice, such MACs are preferable. Deterministic MACs are usually PRFs.

CBC MAC

Inherently sequential

PMAC's Goals

- A fully parallelizable alternative to the CBC MAC
- But without paying much for parallelizability in terms of serial efficiency
- While we're at it, fix up other "problems" of the CBC MAC
- Make sure PMAC applies to any bit string
- Make sure it is correct across messages of different lengths

What is PMAC ?

- A variable-input-length pseudorandom function (VIL PRF):

$$
\text { PMAC: }\{0,1\}^{\mathrm{k}} \times\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{n}}
$$

- That you make from
a fixed-input-length pseudorandom function (FIL PRF) invariably a block cipher such as $\mathrm{E}=\mathrm{AES}$:

E: $\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$

PMAC's Properties

- Functionality: VIL PRF: $\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{n}}$

Can't distinguish PMAC $_{\mathrm{K}}(\cdot)$ from a random function $\mathbf{R}(\cdot)$

- Customary use of a VIL PRF:

A (stateless, deterministic) Message Authentication Code (MAC)

- PRFs make the most pleasant MACs because they are deterministic and stateless.
- Few block-cipher calls: $\lceil|\mathrm{M}| / \mathrm{n}\rceil$ to PMAC message M
- Low session-setup cost: about one block-cipher call
- Fully parallelizable
- No n-bit addition or mod p operations - just xors and shifts
- Uses a single block-cipher key
- Provably secure: If E is a secure block cipher then PMAC-E is a good PRF

Definition of PMAC [E, t]

```
algorithm PMAC \(_{K}(\mathrm{M})\)
\(\mathrm{L}(0)=\mathrm{E}_{\mathrm{K}}(\mathbf{0})\)
\(\mathrm{L}(-1)=1 \mathrm{sb}(\mathrm{L}(0))\) ? \((\mathrm{L}(0) \gg 1) \oplus\) Const43 : (L(0) >>1)
for \(\mathrm{i}=1,2, \ldots\) do \(\mathrm{L}(\mathrm{i})=\operatorname{msb}(\mathrm{L}(\mathrm{i}-1))\) ? \((\mathrm{L}(\mathrm{i}-1) \ll 1) \oplus\) Const87: \((\mathrm{L}(\mathrm{i}-1) \ll 1)\)
Partition M into M[1] \(\cdots \mathrm{M}[\mathrm{m}] \quad / /\) each 128 bits, except M[m] may be shorter
Offset = \(\mathbf{0}\)
for \(\mathrm{i}=1\) to \(\mathrm{m}-1\) do
    Offset \(=\) Offset \(\oplus \mathrm{L}(\mathrm{ntz}(\mathrm{i}))\)
    \(\Sigma=\Sigma \oplus \mathrm{E}_{\mathrm{K}}(\mathrm{M}[\mathrm{i}] \oplus\) Offset \()\)
\(\Sigma=\Sigma \oplus \operatorname{pad}(\mathrm{M}[\mathrm{m}])\)
if \(|\mathrm{M}[\mathrm{m}]|=\mathrm{n}\) then \(\Sigma=\Sigma \oplus \mathrm{L}(-1)\)
FullTag \(=\mathrm{E}_{\mathrm{K}}(\Sigma)\)
Tag \(=\) first t bits of FullTag
return Tag
```


Related Work

- [Bellare, Guerin, Rogaway 95] - the XOR MAC.

Not a PRF, but introduced central element of the construction

- [Bernstein 99] - A PRF-variant of the XOR MAC
- [Gligor, Donescu 00, 01] - Another descendent of the XOR MAC. Introduced the idea of combining message blocks with a sequence of offsets as an alternative to encoding. Not a PRF
- [Black, Rogaway 00] - Tricks for optimal handing of arbitrary input lengths (XCBC method you have just seen)
- [Carter-Wegman 79, 81] - A completely different approach that can achieve the same basic goals.
- Tree MAC (a la Merkle) - Another approach, not fully parallelizable.

Speed

Data courtesy of Ted Krovetz

The CBC MAC is in its "raw" form. Code is Pentium 3 assembly under gcc. This CBC MAC figure is inferior to Lipmaa's $\mathbf{O C B}$ results, indicating that PMAC and OCB add so little overhead that quality-of-code differences contribute more to measured timing differences than algorithmic differences across CBC - CBCMAC - PMAC - OCB.
Since Lipmaa obtained $\mathbf{1 5 . 5} \mathrm{cpb}$ for the CBC MAC, adding 8% to this, $\quad \mathbf{1 6 . 7} \mathrm{cpb}$, is a conservative estimate for well-optimized Pentium code.

Provable Security

- Provable security begins with [Goldwasser, Micali 82]
- Despite the name, one doesn't really prove security
- Instead, one gives reductions: theorems of the form

If a certain primitive is secure
then the scheme based on it is secure
For us:
If AES is a secure block cipher
then PMAC-AES is a secure authenticated-encryption scheme Equivalently:

If some adversary \mathbf{A} does a good job at breaking PMAC-AES then some comparably efficient \mathbf{B} does a good job to break AES

- Actual theorems quantitative: they measure how much security is "lost" across the reduction.

Block-Cipher Security Security as a FIL PRP

[Goldreich, Goldwasser, Micali]
[Luby, Rackoff]
[Bellare, Kilian, Rogaway]

$\mathbf{A d} \mathbf{v}^{\mathrm{prp}}(\mathbf{B})=\operatorname{Pr}\left[\mathbf{B}^{\mathrm{E}_{\mathrm{K}}}=1\right]-\operatorname{Pr}\left[\mathbf{B}^{\pi}=1\right]$

PMAC's Security

 Security as a VIL PRF[Goldreich, Goldwasser, Micali]
[Bellare, Kilian, Rogaway]

$\mathbf{A d v}^{\text {prf }}(\mathbf{A})=\operatorname{Pr}\left[\mathbf{A}^{\mathrm{PMAC}_{\mathrm{K}}}=1\right]-\operatorname{Pr}\left[\mathbf{A}^{\mathrm{R}}=1\right]$

PMAC Theorem

Suppose \exists an adversary \mathbf{A}	Then \exists an adversary \mathbb{B}
that breaks PMAC- \mathbb{E} with:	that breaks block cipher \mathbb{E} with:
time $=\mathrm{t}$	time $\approx \mathrm{t}$
total-num-of-blocks $=\sigma$	num-of-queries $\approx \sigma$
$a d v=\mathbf{A d v}^{\text {prf }}(\mathbf{A})$	$\mathbf{A d v}^{\text {prp }}(\mathbf{B}) \approx \mathbf{A d v}^{\text {prf }}(\mathbf{A})-\boldsymbol{\sigma}^{2} / 2^{\mathrm{n}-1}$

(To wrap up, it is a standard result that any τ-bit-output PRF ${ }^{\text {[Bellare, Kilian, Rogaway]) }}$ can be used as a MAC, where the forging probability will be at most $\mathbf{A d v}^{\mathrm{prf}}(\mathbf{A})+2^{-\tau}$)

CBCMAC	$0^{\text {oś }}$	2				-		
	$\left(\{0,1\}^{\text {n }}\right)^{\text {m }}$	\checkmark	τ		$\|\mathrm{M}\|$ / n	k	1 xor	
XCBC	\{0, $\}^{*}$	\checkmark	τ		「\|M	/n7	$k+2 n$	1 xor
XECB-MAC (3 versions)	$\{0,1\}^{*}$		$\tau+V$	\checkmark	$\lceil\|\mathrm{M}\| / \mathrm{n}\rceil+$ varies	varies	$\begin{aligned} & 1 \text { xor } \\ & 2 \text { add } \end{aligned}$	
PMAC	$\{0,1\}^{*}$	\checkmark	τ	\checkmark	$\lceil\|\mathrm{M}\|$ / n\rceil	k	3 xor	

For More Information

- PMAC web page \rightarrow www.cs.ucdavis.edu/~rogaway Contains FAQ, papers, reference code, test vectors...
- Feel free to call or send email
- Or grab me now!

