PMAC: A Parallelizable Message Authentication Code

John Black

Department of Computer Science University of Nevada, Reno jrb@cs.unr.edu http://www.cs.unr.edu/~jrb

Phillip Rogaway

Department of Computer Science UC Davis + CMU rogaway@cs.ucdavis.edu http://www.cs.ucdavis.edu/~rogaway +66 1 530 7620 +1 530 753 0987

NIST Modes of Operation Workshop 2 - Aug 24, 2001 - Santa Barbara, California

- Security addresses an adversary's **inability** to forge a **valid** authentication tag for some **new** message.
- Most MACs are **deterministic**—they need no nonce/state/IV/\$. In practice, such MACs are preferable. Deterministic MACs are usually PRFs.

CBC MAC Inherently sequential

PMAC's Goals

- A fully parallelizable alternative to the CBC MAC
- But without paying much for parallelizability in terms of serial efficiency
- While we're at it, fix up other "problems" of the CBC MAC
 - Make sure PMAC applies to any bit string
 - Make sure it is correct across messages of different lengths

What is PMAC ?

- A variable-input-length pseudorandom function (VIL PRF): PMAC: $\{0,1\}^k \times \{0,1\}^* \rightarrow \{0,1\}^n$

PMAC's Properties

• Functionality: **VIL PRF**: $\{0,1\}^* \rightarrow \{0,1\}^n$

Can't distinguish $PMAC_{K}(\cdot)$ from a random function $\mathbf{R}(\cdot)$

• Customary use of a VIL PRF:

A (stateless, deterministic) Message Authentication Code (MAC)

- PRFs make the most pleasant MACs because they are deterministic and stateless.
- Few block-cipher calls: $\lceil |M| / n \rceil$ to PMAC message M
- Low session-setup cost: about one block-cipher call
- Fully parallelizable
- No n-bit addition or mod p operations just xors and shifts
- Uses a single block-cipher key
- **Provably secure**: If E is a secure block cipher

then PMAC-E is a good PRF

Definition of PMAC [E, t]

```
algorithm PMAC<sub>K</sub>(M)
L(0) = E_{K}(0)
L(-1) = lsb(L(0))? (L(0) >> 1) \oplus Const43 : (L(0) >>1)
for i = 1, 2, ... do L(i) = msb(L(i-1))? (L(i-1) << 1) \oplus Const87 : (L(i-1) <<1)
Partition M into M[1] ··· M[m] // each 128 bits, except M[m] may be shorter
Offset = 0
for i=1 to m-1 do
     Offset = Offset \oplus L(ntz(i))
     S = S \oplus E_{K}(M[i] \oplus Offset)
S = S \oplus pad(M[m])
if |M[m]| = n then S = S \oplus L(-1)
FullTag = E_{K}(S)
Tag = first t bits of FullTag
return Tag
```

Related Work

- [Bellare, Guerin, Rogaway 95] the XOR MAC.
 - Not a PRF, but introduced central element of the construction
- [Bernstein 99] A PRF-variant of the XOR MAC
- [Gligor, Donescu 00, 01] Another descendent of the XOR MAC. Introduced the idea of combining message blocks with a sequence of offsets as an alternative to encoding. Not a PRF
- [Black, Rogaway 00] Tricks for optimal handing of arbitrary input lengths (XCBC method you have just seen)
- [Carter-Wegman 79, 81] A completely different approach that can achieve the same basic goals.
- Tree MAC (a la Merkle) Another approach, not fully parallelizable.

Speed

Data courtesy of Ted Krovetz

PMAC-AES18.4 cpbCBCMAC-AES17.1 cpb

The CBC MAC is in its "raw" form. Code is Pentium 3 assembly under gcc. This CBC MAC figure is **inferior** to Lipmaa's **OCB** results, indicating that PMAC and OCB add so little overhead that quality-of-code differences contribute more to measured timing differences than algorithmic differences across CBC - CBCMAC - PMAC - OCB. Since Lipmaa obtained **15.5** cpb for the CBC MAC, adding 8% to this, **16.7** cpb, is a conservative estimate for well-optimized Pentium code.

Provable Security

- Provable security begins with [Goldwasser, Micali 82]
- Despite the name, one doesn't really prove security
- Instead, one gives *reductions*: theorems of the form If a certain primitive is secure

then the scheme based on it is secure

For us:

If AES is a secure block cipher

then PMAC-AES is a secure authenticated-encryption scheme Equivalently:

If some adversary A does a good job at breaking PMAC-AES then some comparably efficient B does a good job to break AES

• Actual theorems quantitative: they measure how much security is "lost" across the reduction.

 $\mathbf{Adv}^{\mathbf{prp}}\left(\mathbf{B}\right) = \Pr[\mathbf{B}^{\mathbf{E}_{\mathbf{K}}} = 1] - \Pr[\mathbf{B}^{\mathbf{\pi}} = 1]$

Slide 12

[Goldreich, Goldwasser, Micali] [Bellare, Kilian, Rogaway]

 $\mathbf{Adv}^{\mathbf{prf}}(\mathbf{A}) = \Pr[\mathbf{A}^{\mathbf{PMAC}_{\mathbf{K}}} = 1] - \Pr[\mathbf{A}^{\mathbf{R}} = 1]$

Slide 13

PMAC Theorem

Suppose \exists an adversary A that breaks PMAC-E with:	Then \exists an adversary B that breaks block cipher E with:
time = t	$time \approx t$
$total-num-of-blocks = \sigma$	num-of-queries $\approx \sigma$
$adv = \mathbf{Adv}^{\mathbf{prf}}(\mathbf{A}) \sigma^2 / 2^n$	$\mathbf{Adv^{prp}}(\mathbf{B}) \approx \mathbf{Adv^{prf}}(\mathbf{A}) - \sigma^2 / 2^{n-1}$

(To wrap up, it is a standard result that any τ -bit-output PRF can be used as a MAC, where the forging probability will be at most $Adv^{prf}(A) + 2^{-\tau}$)

	Donain	AS S	J.	Performance Perfor	Sillade *calls	terits	10t or other
CBCMAC	◇ ({0,1} ⁿ) ^m	<i>₹</i> ,	τ	<i>२</i> °	∞ M / n	∼ k	1 xor
	{0,1}*	\checkmark	τ		[M / n]	k + 2n	1 xor
[BR 00] XECB-MAC (3 versions) [GD 00,01]	{0,1}*		τ+ν	✓	$\left[\mathbf{M} / \mathbf{n} \right] + $ varies	varies	1 xor 2 add
PMAC [BR 00,01]	{0,1}*	\checkmark	τ	\checkmark	[M / n]	k	3 xor

For More Information

- PMAC web page → www.cs.ucdavis.edu/~rogaway Contains FAQ, papers, reference code, test vectors...
- Feel free to call or send email
- Or grab me now!