
A Framework for Iterative Hash Functions:

HAIFA

(HAsh Iterative FrAmework)

Eli Biham Orr Dunkelman

Computer Science Department
Technion, Haifa 32000, Israel

August 25, 2006

c© Orr Dunkelman - August 25, 2006 1 NIST Second Hash Functions workshop, Santa Barbara, 2006

The Merkle-Damg̊ard Construction

A method to compute the digest of a message M in one pass, using a compres
sion function with a fixed input size and a fixed output size.

The compression function is represented by CF : {0, 1}mc ×{0, 1}n � {0, 1}mc .

We denote the length of the digest by m (and assume the common case mc =
m).

c© Orr Dunkelman - August 25, 2006 2 NIST Second Hash Functions workshop, Santa Barbara, 2006

Attacks against the Merkle-Damg̊ard Construction

Let k be the number of blocks of a given message M , and let k' be the number
of given messages (for one-of-many attacks).

1. Easily invertible compression functions (the backward attack) — preimage
attack — 2mc/2 (late 1970’s)

2. One-of-many preimage attacks, one-of-many second preimage attacks —
2m/k', (O(2m/2)) (Merkle 1979)

3. Multi-collision — O(2mc/2) (Joux, 2004)

4. Fixpoint and second preimage attacks (long messages) — 2mc/k, (O(2mc/2))
(Dean, 1999) [mainly for Davies-Meyer functions]

5. One-of-many second preimage attacks — 2mc/(kk'), (O(2mc/2)) (Dean,
1999)

6. Expandable messages and second preimage attacks (long messages) —
2mc/k, (O(2mc/2)) (Kelsey, Schneier, 2005) [any iterative hash function]

7. Applicable also to one-of-many second preimage attacks (they missed to
mention) — 2mc/(kk'), (O(2mc/2))

c© Orr Dunkelman - August 25, 2006 3 NIST Second Hash Functions workshop, Santa Barbara, 2006

Attacks against the Merkle-Damg̊ard Construction (cont.)

8. Herding attacks (a commitment to some digest value, with a respec
tive pre-computation that allows concatenating any prefix) — Offline
O(2mc/2+t), Online: O(2mc−t).

c© Orr Dunkelman - August 25, 2006 4 NIST Second Hash Functions workshop, Santa Barbara, 2006

Possible Conclusions

We have to accept that second preimages are as easy to find as collisions.

A possible solution: Incresing the size of the chaining value (mc) while the
digest size (m) remains unchanged.

The wide hash strategy uses this idea. This approach increases the memory
requirements of the construction.

Bound the size of a message by at most 2m/2 blocks (or bits) — does not help,
as the current limit is even smaller (264 bits= 255 blocks).

c© Orr Dunkelman - August 25, 2006 5 NIST Second Hash Functions workshop, Santa Barbara, 2006

Fix-Points

The standard protection against backward attacks on hash functions with easily
invertible compression functions involves mixing the input to the output of the
function (Davies-Meyer).
Though the function becomes difficult to invert with this solution, it is still easy
to find fix-points:

1. Select the output before the feedback to be zero.

2. Invert the functions to get the input chaining value hi−1.

3. The output chaining value equals the input chaining value hi = hi−1.

Fix-points can be used to find second preimages.

c© Orr Dunkelman - August 25, 2006 6 NIST Second Hash Functions workshop, Santa Barbara, 2006

Fix-Points (cont.)

Protection: Either

1. Apply the mixing more than once, say every 20 rounds in SHA-1.

2. Mix the chaining value into the expanded message (e.g., like a few addi
tional message words, or by XORing them to a few words)

3. In the design of a new compression function, there is a lot of freedom for
such a mixing.

This protection against easily-to-find fixpoints does not help against expandable
messages.

c© Orr Dunkelman - August 25, 2006 7 NIST Second Hash Functions workshop, Santa Barbara, 2006

Protection Against the Second Preimage Attacks

Kelsey and Schneier proposed to add the block index as an input to the com
pression function, i.e.,

hi = CF (hi−1, Mi, i),

instead of
hi = CF (hi−1, Mi).

But the block index is never kept nowadays in the state of the hash.
We propose to use the current bit count as an additional input

hi = CF (hi−1, Mi, #bits),

where #bits is the number of already hashed bits, including this block.
This #bits is already computed by every hash function, to the padding with
the length.

c© Orr Dunkelman - August 25, 2006 8 NIST Second Hash Functions workshop, Santa Barbara, 2006

Protection Against the Second Preimage Attacks (cont.)

This solution protects against the second preimage attacks, as each computed
block becomes static — cannot be used in any other location of any message,
just at the original location.
It also ensures that there will not be cycles of chaining values (even if there is
some value twice, e.g., as a fix-point, it will not be repeated).
Notice that it is not needed to increase the chaining size mc any more.

c© Orr Dunkelman - August 25, 2006 9 NIST Second Hash Functions workshop, Santa Barbara, 2006

Protection Against Message Expansion

The previous solution also protects against the ability to append data at end of
a message, without knowing the message (e.g., when the hash function is used
for MAC).
In block i,

#bits = n · i,
hi = CF (hi−1, Mi, n · i).

In the padding block(s), and in particular in the last block k:

#bits = length →= k · i,
#bits = length < k · i − message length field,

hi = CF (hi−1, Mi, length) →= CF (hi−1, Mi, n · i).

c© Orr Dunkelman - August 25, 2006 10 NIST Second Hash Functions workshop, Santa Barbara, 2006

Protection Against Message Expansion (cont.)

But, in order to append another block to the message, the attacker will have
to know

CF (hk−1, Mk, k · i),

rather than
CF (hk−1, Mk, length),

so it is no longer possible to append extra blocks!

[similar property would not hold if the block index would be used]

c© Orr Dunkelman - August 25, 2006 11 NIST Second Hash Functions workshop, Santa Barbara, 2006

Variable Hash Size

In some functions the hash size can be truncated (e.g., Tiger), or uses a trun
cated version of another function (e.g., SHA-384).
In some of these cases the initial value is replaced to ensure that the output
will be different.
We propose a general construction for such functions.

c© Orr Dunkelman - August 25, 2006 12 NIST Second Hash Functions workshop, Santa Barbara, 2006

Variable Hash Size (cont.)

Let hi = CF (hi−1, Mi) be the compression function of some hash function with
mc bits of chaining, and let 0 < m < mc be the (possibly) truncated output
size.
Let IVm be the initial value for the function with the m bits of output.
We propose to select a global IV , and compute

IVm = CF (m, IV, #bits)

(or IVm = CF (m, IV)), where m is padded in some standard way to fit a
block.
Note that any suggestion such that m ∈ mc can not achieve greater security
than possible when mc = m.

c© Orr Dunkelman - August 25, 2006 13 NIST Second Hash Functions workshop, Santa Barbara, 2006

Variable Hash Size (cont.)

Advantages:

1. A general method for truncation of the hash size for any hash function

2. IVm can be computed in advance, so that no extra time is required to
hash a message (just like it is done in SHA-384, SHA-512)

3. On the other hand, applications that need several hash sizes, can compute
IVm on the fly, or actually compute

truncatem(HashFromIV(m||M)).

c© Orr Dunkelman - August 25, 2006 14 NIST Second Hash Functions workshop, Santa Barbara, 2006

Variable Hash Size (cont.)

A potential problem:

1. The compression function is the same for all these functions

2. An attacker may wish to have the same hash value for two different hash
sizes (up to truncation)

3. If the attacker has the freedom to select different prefixes, he may apply
a collision attack (or birthday attack) on the first few blocks, getting the
same chaining value. The rest of the chaining values will be the same, as
well as the hash value (up to truncation).

4. In order to solve this possible problem, we propose to change the padding
algorithm slightly to include the hash size as well:

(a) append a single 1, and may 0’s.
(b) append hash size.
(c) append length.

5. It may also be useful to input the hash size as an additional input to the
compression function, but at this moment it seems unnecessary.

c© Orr Dunkelman - August 25, 2006 15 NIST Second Hash Functions workshop, Santa Barbara, 2006

Last Modification: Family of Hash Functions and Salts

Observe that theoretic definitions of hash functions define families of hash
functions hi(), i E {0, 1, . . . , l}.
All the solutions shown till now cannot protect against one-of-many second
preimage attacks.
We can adopt families of hash functions as a solution: Users will select a one
function of the family every time they compute hash, either at random, or by
incrementing by one, or as the frame number or sequence number of the message
that is transmitted (there is such a number in every secure communication
frame) or of the document (many signature implementations keep sequential
numbers anyway), or date, etc.
[The member number might be called an IV in the sense of IV in a stream
cipher, but the term is already used; we will call it salt instead, as in UNIX
password hashing]
Such a modified definition of a cryptographic hash function should protect
against one-of-many preimages, and other attacks that use several messages
generated by the legal user.

c© Orr Dunkelman - August 25, 2006 16 NIST Second Hash Functions workshop, Santa Barbara, 2006

Last Modification: Family of Hash Functions and Salts (cont.)

The salt should be used as an additional input to the compression function (but
not change the IV), and should be added to the padding.
Some applications that cannot select a hash function from a family, due to
application dependent requirements, may select a fixed member (e.g., salt=0).
The cost of this solution is negligible.

In some sense, salt can be viewed as a long-term non-colliding value that pro
tects different hashes from colliding, just like the serial number does for different
blocks in the same message.
Salt can also be used as a key for keyed hash functions — may be possible to
design unified HASH/MAC designs. We did not explore that yet.
The salt suggestion has similarties to the randomized hashing proposal. How
ever, unlike in randomized hashing, in the HAIFA framework, the salt (random
string) is added to each and every compression function call. This allows a
better protection against the herding attack.

c© Orr Dunkelman - August 25, 2006 17 NIST Second Hash Functions workshop, Santa Barbara, 2006

New Designs

New designs of hash functions can easily apply these guidelines, with compres
sion functions of the form

hi = CF (hi−1, Mi, #bits, salt),

where h0 = IVm is
IVm = CF (m, IV, 0, 0),

and with padding that include a single 1, many 0’s, salt, m, and the length of
the message.

c© Orr Dunkelman - August 25, 2006 18 NIST Second Hash Functions workshop, Santa Barbara, 2006

Old Designs

Notice that the change of initial values for different hash sizes can easily be
combined into any existing iterative function, by prepending a block with the
hash size m to any message (and truncating the result to m bits). The change
of the padding is however more complicated.
All change that add parameters to the compression functions, can instead be
considered as part of the message block, effectively reducing the block size.
Some implementations may prefer to add a block with that extra information
every several blocks, for example, making a tradeoff between the extra protec
tion and the cost in speed and complexity of the application. This approach is
very risky when the number of blocks is relatively small (allowing for herding
attacks).
The extra fields in the padding can be added at the end of the message before
the original padding, without being counted in #bits.

c© Orr Dunkelman - August 25, 2006 19 NIST Second Hash Functions workshop, Santa Barbara, 2006

Summary

1. We proposed the HAIFA framework for design of new hash functions: a
mode of operation with a modified kind of compression functions

2. This framework protects against most known generic attacks.

3. A few attacks can only be protected by increasing mc (e.g., multi-collisions)
— in case they are considered a security risk, then m < mc should be
selected. However, m = mc is still OK against second preimage attacks.

4. Existing hash functions can be used at some additional cost.

5. We recommend designing new hash function using this framework

6. It may be discussed whether all or only some of the suggestions should
be applied.

7. We recommend that functions that do not follow these guidelines (e.g.,
all existing ones) will be discontinued in the long term.

8. [Some of these changes may be appropriate for block ciphers as well].

c© Orr Dunkelman - August 25, 2006 20 NIST Second Hash Functions workshop, Santa Barbara, 2006

Summary (cont.)

Type of Attack Ideal Hash MD HAIFA HAIFA
Function fixed salt with (distinct) salts

= > > >
Preimage 2m

c 2m
c 2m

c 2m
c

One-of-many pre-image 2m
c /k ' 2m

c /k ' 2m
c /k ' 2m

c

(k ' targets)
Second-pre-image 2m

c 2m
c /k 2m

c 2m
c

(k blocks)
One-of-many second 2m

c /k ' 2m
c/(kk ') 2m

c /k ' 2m
c

pre-image(k blocks in
total, k ' messages)

Collision 2m
c
/2 2m

c
/2 2m

c
/2 2m

c
/2

Multi-collision (k-collision) 2m
c
(k−1)/k llog2 kl2

m
c
/2 llog2 kl2

m
c
/2 llog2 kl2

m
c
/2

Herding – Offline: 2m
c
/2+t Offline: 2m

c
/2+t Offline: 2m

c
/2+t+s

Online: 2m
c −t Online: 2m

c −t Online: 2m
c −t

The figures are given for MD and HAIFA hash functions that use an ideal compression function.

c© Orr Dunkelman - August 25, 2006 21 NIST Second Hash Functions workshop, Santa Barbara, 2006

Questions?

c© Orr Dunkelman - August 25, 2006 22 NIST Second Hash Functions workshop, Santa Barbara, 2006

	
	NIST Second Hash Functions workshop, Santa Barbara, 2006
	 The Merkle-Damgunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {aglobal mathchardef accent@spacefactor spacefactor }accent 23 aegroup spacefactor accent@spacefactor rd Construction
	 Attacks against the Merkle-Damgunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {aglobal mathchardef accent@spacefactor spacefactor }accent 23 aegroup spacefactor accent@spacefactor rd Construction
	 Possible Conclusions
	 Fix-Points
	 Protection Against the Second Preimage Attacks
	 Protection Against Message Expansion
	 Variable Hash Size
	 Last Modification: Family of Hash Functions and Salts
	 New Designs
	 Old Designs
	 Summary
	 Questions?

