
1 

Long-lived digital integrity using short-lived hash functions 

Stuart Haber
 
Hewlett-Packard Laboratories
 

stuart.haber@hp.com 

May 12, 2006 

Abstract	 function? This is no longer the merely academic ques
tion it was when it was first raised by the authors of 

New collision-finding attacks on widely used crypto- [3], who proposed an incorrect solution, and then cor
graphic hash functions raise questions about systems rectly solved by [1]. 
that depend on certain properties of these functions 
for their security. Even after new and presumably 
better hash functions are deployed, users may have 2 Renewing integrity certifi
digital signatures and digital time-stamp certificates 

cates that were computed with recently deprecated hash 
functions. Is there any way to use a new and cur
rently unassailable hash function to buttress the se- 2.1 Time-stamp certificates 
curity of an old signature or time-stamp certificate? Here we describe the process of “renewing” digital 

The main purpose of this note is to remind the time-stamp certificates, as presented by [1]. 
technical community of a simple solution to this prob-

Suppose that an implementation of a particular lem that was published more than a decade ago. 
time-stamping system is in place, and consider the 
pair (x, c1), where c1 is a valid time-stamp certifi
cate (in this implementation) for the bit-string x.Introduction 
Now suppose that some time later an improved time-

With advances in computational power and re- stamping system is implemented and deployed—by 
sources, as well as the discovery of entirely new crypt- replacing the hash function used in the original sys
analytic algorithms, particular instances of crypto- tem with a new hash function, or even perhaps af
graphic primitives that were secure when they were ter the invention of a completely new algorithm. Is 
first deployed may become insecure several years there any way to use the new time-stamping system 
later. In the last couple of years, the cryptographic to buttress the guarantee of integrity supplied by the 
community has been surprised by powerful new at- certificate, c1, in the face of potential later attacks on 
tacks on the hash functions MD5 and SHA-1, among the old system? 
others [6, 5]. This raises the question of how best to One could simply submit x as a request to the new 
introduce a new and presumably more secure hash time-stamping system. But this would lose the con-
function into a system that now uses an older hash- nection to the original time of certification. 
function design that may soon be subject to devas- Another possibility is to submit c1 as a request to 
tating compromise. In particular, what can be done the new time-stamping system. But that would be 
with digital signatures and time-stamp certificates vulnerable to the later existence of a devastating at-
that were computed using the original system’s hash tack on the hash function used in the computation 

1 

mailto:stuart.haber@hp.com


of c1, as follows: if an adversary could find another 
document xl with the same hash value as x, then he 
could use this renewal system to back-date xl to the 
original time. (In fact, resubmission of c1 was erro
neously suggested by the authors of [3] as a solution 
to this problem.) 

Suppose instead that the pair (x, c1) is time-
stamped by the new system, resulting in a new cer
tificate c2, and that some time after this is done (i.e. 
at a definite later date), the original method is com
promised. The certificate c2 provides evidence not 
only that the document content x existed prior to 
the time of the new time-stamp, but that it existed at 
the time stated in the original certificate, c1. Prior to 
the compromise of the old implementation, the only 
way to create a valid time-stamp certificate was by 
legitimate means. 

2.2 Digital signatures 

Similar logic applies in the case of digital signatures. 
Let s be a digital signature for the document x, to 
be verified with respect to a particular public key, 
perhaps as part of a particular PKI. 

The PKI adds an extra complication. Specifically, 
let V denote the extra data—public-key certificates, 
CRLs, signed statements by trusted parties such as 
Online Certificate Status Protocol (OCSP) servers, 
etc.—needed in this PKI in order to validate the pub
lic key for the signature s. Here are two different ways 
to integrate time-stamping securely: 

•	 The receiver of (d, s) assembles the key-
validating data V , requests a time-stamp certifi
cate c for (d, s, V ), and saves (d, s, V, c). A later 
verifier needs to revalidate each of s, V , and c. 

•	 The signer of d computes a time-stamp certifi
cate c for (d, s) and saves (d, s, c). Later verifiers 
of this triple must retrieve (from an appropriate 
service) a trustworthy archived version of V , and 
revalidate all the data. 

Naturally, other choices are possible for dividing up 
the responsibilities. 

3 Remarks 

3.1 A challenge for theorists? 

Observe that the security offered by an “updated” 
time-stamp certificate computed as above depends on 
the arguably questionable assumption that the first 
time-stamping system will not be compromised until 
a definite time after the second system was launched. 
But in practice, this is not an unreasonable assump
tion. Advances in cryptanalytic attacks on hash func
tions typically proceed incrementally, and well before 
a hash function is completely broken, fielded systems 
can swap in a new hash function. 

But this does raise the question of whether it is 
possible to capture in a mathematically satisfying 
way the actual state of affairs in cryptographic se
curity, which is that the computational difficulty of 
the cryptanalyst’s algorithmic task is a moving tar
get. 

3.2 Practical implementation 

A version of the time-stamping service described in 
[1] has been offered commercially by Surety since 
1995 [4]. Originally, the service used MD5 and SHA
1, evaluated in parallel, as its hash function. Last 
year, in light of recent attacks on both of these func
tions, Surety deployed a new version of its service, 
using SHA-256 and RIPEMD-160 (also evaluated in 
parallel), and offered the renewal capability described 
above for records that were originally time-stamped 
with the older version of the service. 

3.3 A generalization 

Updating the time-stamp certificate accompanying 
a digital document is just one example of the sort 
of transformation that objects in a long-lived digi
tal archive will undergo from time to time. In [2], 
the authors generalize this procedure to a broad class 
of transformations, describing a service that can be 
used to prove the integrity of the contents of a well-
managed digital archive over the course of its lifetime. 

2 



References 

[1] D.	 Bayer, S. Haber, and W.S. Stornetta. Im
proving the efficiency and reliability of digital 
time-stamping. In R.M. Capocelli, A. De Santis, 
and U. Vaccaro, editors, Sequences II: Methods 
in Communication, Security, and Computer Sci
ence, pages 329–334. Springer-Verlag, 1993. (Pro
ceedings of the Sequences Workshop, Positano, 
Italy, 1991.). 

[2] S. Haber and P. Kamat. A content integrity ser
vice for long-term digital archives. In Proceedings 
of Archiving 2006. Society for Imaging Science 
and Technology, 2006. To appear. Available at 
http://www.hpl.hp.com/techreports/2006/ 
HPL-2006-54.html. 

[3] S. Haber and W.S. Stornetta. How to time-stamp 
a digital document. Journal of Cryptology, 3(2), 
1991. 

[4] Surety. http://www.surety.com. 

[5] X.	 Wang, Y.L. Yin, and H. Yu. Finding colli
sions in the full SHA-1. In Victor Shoup, editor, 
Advances in Cryptology — CRYPTO 2005, vol
ume 3621 of Lecture Notes in Computer Science. 
Springer-Verlag, 200. 

[6] X. Wang and H. Yu. How to break MD5 and other 
hash functions. In R. Cramer, editor, Advances in 
Cryptology — EUROCRYPT 2005, volume 3494 
of Lecture Notes in Computer Science. Springer-
Verlag, 200. 

3 

http:http://www.surety.com
http://www.hpl.hp.com/techreports/2006

