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Reminder: randomized hashing 

To hash a message m:
Choose random salt r
Hash m and r together
hash-value = Hr(m)

Useful for digital signatures
Signer chooses fresh salt for each signature
Protects against collision attacks

More on that later
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What we propose
A randomized mode-of-operation

Applicable to iterated hash functions
No changes to underlying hash functions

Resists off-line collision attacks
Provably: only need something close to 2nd pre-image 
resistance, not full collision-resistance [Crypto’06]
Attack is inherently on-line

Use for signatures
No changes to sig algorithms (RSA, DSA)
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Why randomized hashing?

Safety net in case our hash functions are 
not as strong as we think

Much like HMAC does for MAC/PRF
Prudent engineering: adds another major line 
of defense against cryptanalysis

Complements search for better hash 
functions, doesn’t replace it
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Why now?

Changes in standards, implementations 
are coming our way
Even moving to SHA-2 takes significant 
effort (cf. [Bellovin-Rescorla])
Residual effort to also support RMX is 
small in comparison

Small overhead, significant returns
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New since last time

Slightly modified the proposed mode
Hr(m1 | … | mL) = H( r | m1⊕r | … | mL⊕r)

The new thing: r at the beginning

Signatures don’t need to “sign the salt” !
Sufficient to sign only the hash value

Same as with deterministic hashing
Greatly simplifies implementations/deployment

No need to change encoding for signatures, etc. 
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The RMX transform

RMX: message-randomization transform
RMX(r, m1 | … | mL) = r | m1⊕r | … | mL⊕r

+ rules for padding, etc.

Can be used with any hash function
This is a mode-of-operation
E.g., RMX-SHA1, RMX-SHA256, etc.

Should be standardized on its own
separately from individual hash functions
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Analogous to CBC

Mode-of-operation
Can be used with any cipher
Requires an additional input (the IV)

IV generation, transmission, etc. handled by 
the applications
Different applications handle the IV differently
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Implementing RMX: test cases

Modified openssl
Support for RMX in signatures
Use it for certificates

XML-signatures: 
RMX implemented by Michael McIntosh (IBM)
Can work with XML-sig’s “two-level hashing”

See additional slides for details
S/MIME, PGP, are next on our list

Less than 100 LOC due 
to the randomness, the 
rest would have to be 
done also for any new 
deterministic hashing 
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Feedback is Appreciated
Feedback/suggestions regarding using 
RMX in other applications

Thank you for your attention



Additional Slides
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Modifying openssl

Hardest part: adding OIDs, changing 
config files to compile, link new functions

Changes in 10-15 files
Implementing RMX: 2 new files (~360 LOC)
Support for RMX signatures

~40 LOC changed in evp/evp.h, evp/digest.c
Use RMX for certificates

~40 LOC changed in asn1/a_sign.c, asn1/a_verify.c

This is needed also when adding
a new deterministic hash function

This is unique to RMX
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Support for RMX signatures

Signature interface in openssl:
EVP_SignInit,   EVP_SignUpdate,   EVP_SignFinal
EVP_VerifyInit, EVP_VeridyUpdate, EVP_VerifyFinal

Init/Update just macros for DigestInit/Udpate
New Init interfaces

EVP_DigestInit_ex2(ctx, MD-type,
engine, new-param)

Macros EVP_SignInit_ex2/VerifyInit_ex2
New OIDs (types) for randomized hashing 



Update on Randomized Hashing 14August 24, 2006

Inserting RMX to control-flow

Added “transform-needed” flag to MD-type 
(and param field to MD context)
DigestInit/Update/Final check flag

If set, call RMX_Init/Update/Final rather 
than the underlying MD functions
RMX_ functions do transform (using param), 
then call underlying MD functions
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Using RMX for Certificates

Signing/verifying from ASN1 modules
ASN1_item_verify(ASN1_ITEM *it, X509_ALGOR *a, 

ASN1_BIT_STRING *signature, void *asn, 
EVP_PKEY *pkey)

ASN1_item_sign is similar

The salt is passed inside X509_ALGOR

Parameter of the RMX-SHA1-RSA algorithm
ASN1_item_verify calls the new Init interface 
EVP_VerifyInit_ex2(..., salt)
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XML Signatures

Include transforms that are applied to data 
before hashing/signing
Just add the RMX transform

Must be last transform before hashing
Done by application, no change to signing code
// Do other transformations (envelope, canonicalize)
RMX = get_a_pointer_to_implementation(“URI-of-RMX”);
salt = call_your_favorite_RNG();
x.addTransform(RMX, salt);
// Proceed as usual
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XML Signatures: 2-level Hashing

XML sigs use a 2-level hashing scheme
1. Each document is hashed to get digest
2. Digests concatenated and hashed again
3. Result is signed
Part 2 does not have transforms

But it has canonicalization
Can write new canonicalization method that 
includes RMX
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Aside: “first-party attacks”
Can signer itself find collisions?

Only if hash is not collision-resistant
And even then non-repudiation is not effected

If signature is valid, signer is responsible
Most apps are not effected (e.g., certificates)

Use RMX with a “strong hash function” H
If H is strong then all is dandy
If H is weaker than we initially thought, 
most applications are still protected
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