
Update on
Randomized
Hashing
Shai Halevi, Hugo Krawczyk
IBM Research

http://www.ee.technion.ac.il/~hugo/rhash/

Update on Randomized Hashing 2August 24, 2006

Reminder: randomized hashing

To hash a message m:
Choose random salt r
Hash m and r together
hash-value = Hr(m)

Useful for digital signatures
Signer chooses fresh salt for each signature
Protects against collision attacks

More on that later

Update on Randomized Hashing 3August 24, 2006

What we propose
A randomized mode-of-operation

Applicable to iterated hash functions
No changes to underlying hash functions

Resists off-line collision attacks
Provably: only need something close to 2nd pre-image
resistance, not full collision-resistance [Crypto’06]
Attack is inherently on-line

Use for signatures
No changes to sig algorithms (RSA, DSA)

Update on Randomized Hashing 4August 24, 2006

Why randomized hashing?

Safety net in case our hash functions are
not as strong as we think

Much like HMAC does for MAC/PRF
Prudent engineering: adds another major line
of defense against cryptanalysis

Complements search for better hash
functions, doesn’t replace it

Update on Randomized Hashing 5August 24, 2006

Why now?

Changes in standards, implementations
are coming our way
Even moving to SHA-2 takes significant
effort (cf. [Bellovin-Rescorla])
Residual effort to also support RMX is
small in comparison

Small overhead, significant returns

Update on Randomized Hashing 6August 24, 2006

New since last time

Slightly modified the proposed mode
Hr(m1 | … | mL) = H(r | m1⊕r | … | mL⊕r)

The new thing: r at the beginning

Signatures don’t need to “sign the salt” !
Sufficient to sign only the hash value

Same as with deterministic hashing
Greatly simplifies implementations/deployment

No need to change encoding for signatures, etc.

Update on Randomized Hashing 7August 24, 2006

The RMX transform

RMX: message-randomization transform
RMX(r, m1 | … | mL) = r | m1⊕r | … | mL⊕r

+ rules for padding, etc.

Can be used with any hash function
This is a mode-of-operation
E.g., RMX-SHA1, RMX-SHA256, etc.

Should be standardized on its own
separately from individual hash functions

Update on Randomized Hashing 8August 24, 2006

Analogous to CBC

Mode-of-operation
Can be used with any cipher
Requires an additional input (the IV)

IV generation, transmission, etc. handled by
the applications
Different applications handle the IV differently

Update on Randomized Hashing 9August 24, 2006

Implementing RMX: test cases

Modified openssl
Support for RMX in signatures
Use it for certificates

XML-signatures:
RMX implemented by Michael McIntosh (IBM)
Can work with XML-sig’s “two-level hashing”

See additional slides for details
S/MIME, PGP, are next on our list

Less than 100 LOC due
to the randomness, the
rest would have to be
done also for any new
deterministic hashing

Update on Randomized Hashing 10August 24, 2006

Feedback is Appreciated
Feedback/suggestions regarding using
RMX in other applications

Thank you for your attention

Additional Slides

Update on Randomized Hashing 12August 24, 2006

Modifying openssl

Hardest part: adding OIDs, changing
config files to compile, link new functions

Changes in 10-15 files
Implementing RMX: 2 new files (~360 LOC)
Support for RMX signatures

~40 LOC changed in evp/evp.h, evp/digest.c
Use RMX for certificates

~40 LOC changed in asn1/a_sign.c, asn1/a_verify.c

This is needed also when adding
a new deterministic hash function

This is unique to RMX

Update on Randomized Hashing 13August 24, 2006

Support for RMX signatures

Signature interface in openssl:
EVP_SignInit, EVP_SignUpdate, EVP_SignFinal
EVP_VerifyInit, EVP_VeridyUpdate, EVP_VerifyFinal

Init/Update just macros for DigestInit/Udpate
New Init interfaces

EVP_DigestInit_ex2(ctx, MD-type,
engine, new-param)

Macros EVP_SignInit_ex2/VerifyInit_ex2
New OIDs (types) for randomized hashing

Update on Randomized Hashing 14August 24, 2006

Inserting RMX to control-flow

Added “transform-needed” flag to MD-type
(and param field to MD context)
DigestInit/Update/Final check flag

If set, call RMX_Init/Update/Final rather
than the underlying MD functions
RMX_ functions do transform (using param),
then call underlying MD functions

Update on Randomized Hashing 15August 24, 2006

Using RMX for Certificates

Signing/verifying from ASN1 modules
ASN1_item_verify(ASN1_ITEM *it, X509_ALGOR *a,

ASN1_BIT_STRING *signature, void *asn,
EVP_PKEY *pkey)

ASN1_item_sign is similar

The salt is passed inside X509_ALGOR

Parameter of the RMX-SHA1-RSA algorithm
ASN1_item_verify calls the new Init interface
EVP_VerifyInit_ex2(..., salt)

Update on Randomized Hashing 16August 24, 2006

XML Signatures

Include transforms that are applied to data
before hashing/signing
Just add the RMX transform

Must be last transform before hashing
Done by application, no change to signing code
// Do other transformations (envelope, canonicalize)
RMX = get_a_pointer_to_implementation(“URI-of-RMX”);
salt = call_your_favorite_RNG();
x.addTransform(RMX, salt);
// Proceed as usual

Update on Randomized Hashing 17August 24, 2006

XML Signatures: 2-level Hashing

XML sigs use a 2-level hashing scheme
1. Each document is hashed to get digest
2. Digests concatenated and hashed again
3. Result is signed
Part 2 does not have transforms

But it has canonicalization
Can write new canonicalization method that
includes RMX

Update on Randomized Hashing 18August 24, 2006

Aside: “first-party attacks”
Can signer itself find collisions?

Only if hash is not collision-resistant
And even then non-repudiation is not effected

If signature is valid, signer is responsible
Most apps are not effected (e.g., certificates)

Use RMX with a “strong hash function” H
If H is strong then all is dandy
If H is weaker than we initially thought,
most applications are still protected

	Update on Randomized Hashing
	Reminder: randomized hashing
	What we propose
	Why randomized hashing?
	Why now?
	New since last time
	The RMX transform
	Analogous to CBC
	Implementing RMX: test cases
	Feedback is Appreciated
	Additional Slides
	Modifying openssl
	Support for RMX signatures
	Inserting RMX to control-flow
	Using RMX for Certificates
	XML Signatures
	XML Signatures: 2-level Hashing
	Aside: “first-party attacks”

