2nd Cryptographic Hash Workshop (2006/8/24-25, Santa Barbara, California)

How to Construct Double-Block-Length Hash Functions

Shoichi Hirose

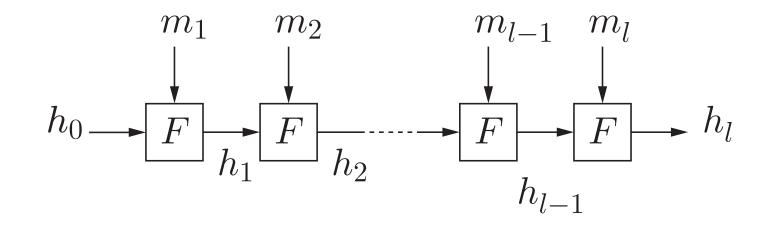
University of Fukui, Japan

24th Aug. 2006

Iterated Hash Function

- Compression function $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell'} \rightarrow \{0,1\}^{\ell}$
- Initial value $h_0 \in \{0,1\}^\ell$

Input $m = (m_1, m_2, \dots, m_l)$, $m_i \in \{0, 1\}^{\ell'}$ for $1 \le i \le l$



 $H(m) = h_l$

How to construct a compression function using a smaller component?

E.g.) Double-block-length (DBL) hash function

- The component is a block cipher.
- output-length = $2 \times \text{block-length}$
- abreast/tandem Davies-Meyer, MDC-2, MDC-4,

Cf.) Any single-block-length HF with AES is not secure.

- Output length is 128 bit.
- Complexity of birthday attack is $O(2^{64})$.

<u>Result</u>

- Some plausible DBL HFs
 - Composed of a smaller compression function
 - * F(x) = (f(x), f(p(x)))
 - \boldsymbol{p} is a permutation satisfying some properties
 - * Optimally collision-resistant (CR) in the random oracle model
 - Composed of a block cipher with key-length > block-length
 - * AES with 192/256-bit key-length
 - * Optimally CR in the ideal cipher model
- A new security notion: Indistinguishability in the iteration

Def. (optimal collision resistance)

Any collision attack is at most as efficient as a birthday attack.

Related Work on Double-Block-Length Hash Function

- Lucks 05
 - F(g, h, m) = (f(g, h, m), f(h, g, m))
 - Optimally CR if f is a random oracle
- Nandi 05
 - F(x) = (f(x), f(p(x))), where p is a permutation
 - Optimally CR schemes if f is a random oracle

Single block-length

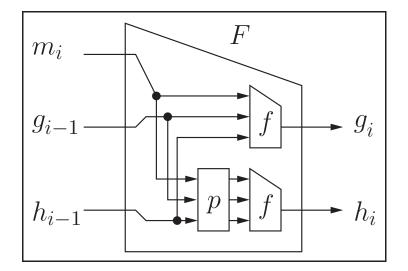
- Preneel, Govaerts and Vandewalle 93
 PGV schemes and their informal security analysis
- Black, Rogaway and Shrimpton 02
 Provable security of PGV schemes in the ideal cipher model

Double block-length

- Satoh, Haga and Kurosawa 99 Attacks against rate-1 HFs with a (n,2n) block cipher
- Hattori, Hirose and Yoshida 03 No optimally CR rate-1 parallel-type CFs with a (n, 2n) block cipher

DBL Hash Function Composed of a Smaller Compression Function

- *f* is a random oracle
- \bullet p is a permutation
 - Both p and p^{-1} are easy
 - $p \circ p$ is an identity permutation



F(x) = (f(x), f(p(x)))F(p(x)) = (f(p(x)), f(x))

f(x) and f(p(x)) is only used for F(x) and F(p(x)).

We can assume that an adversary asks x and p(x) to f simultaneously.

Collision Resistance

Th. 1 Let $F : \{0,1\}^{2n+b} \to \{0,1\}^{2n}$ and F(x) = (f(x), f(p(x))). Let H be a hash function composed of F. Suppose that

- $p(p(\cdot))$ is an identity permutation
- p has no fixed points: $p(x) \neq x$ for $\forall x$

 $\operatorname{Adv}_{H}^{\operatorname{coll}}(q) \stackrel{\text{def}}{=} \operatorname{success} \operatorname{prob.}$ of the optimal collision finder for Hwhich asks q pairs of queries to f.

Then, in the random oracle model, $\operatorname{Adv}_{H}^{\operatorname{coll}}(q) \leq \frac{q}{2^{n}} + \left(\frac{q}{2^{n}}\right)^{2}$.

Note) MD-strengthening is assumed in the analysis.

Proof Sketch

 $F \text{ is } \mathsf{CR} \Rightarrow H \text{ is } \mathsf{CR}$

Two kinds of collisions:

$$\Pr[F(x) = F(x') | x' = p(x)]$$

=
$$\Pr[f(x) = f(x') \land f(p(x)) = f(p(x'))] = \left(\frac{1}{2^n}\right)^2$$

$$\Pr[F(x) = F(x') | x' = p(x)] = \Pr[f(x) = f(p(x))] = \frac{1}{2^n}$$

The collision finder asks q pairs of queries to $f: x_j$ and $p(x_j)$ for $1 \le j \le q$.

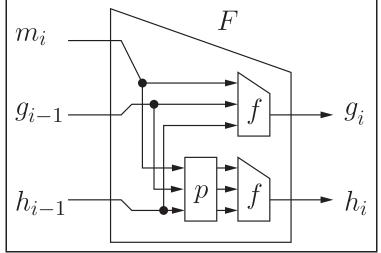
$$\mathbf{Adv}_{H}^{\mathrm{coll}}(q) \leq \frac{q}{2^{n}} + \left(\frac{q}{2^{n}}\right)^{2}$$

Th. 2 Let H be a hash function composed of $F : \{0, 1\}^{2n+b} \rightarrow \{0, 1\}^{2n}$. Suppose that

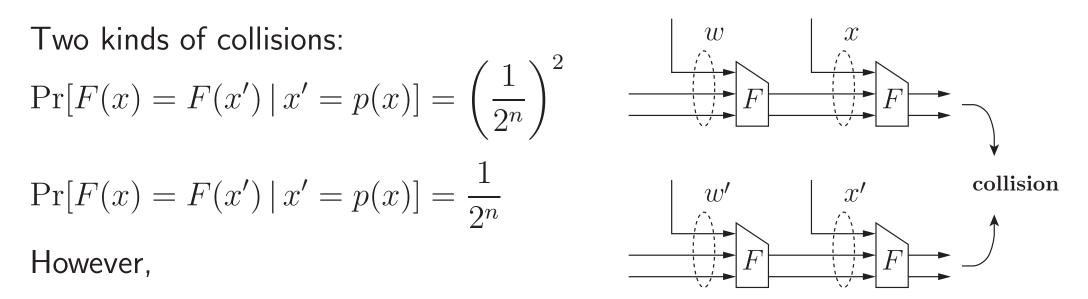
- $p(p(\cdot))$ is an identity permutation
- $p(g, h, m) = (p_{cv}(g, h), p_m(m))$
 - $p_{\rm cv}$ has no fixed points
 - $p_{\mathrm{cv}}(g,h) = (h,g)$ for $\forall (g,h)$

Then, in the random oracle model,

$$\mathbf{Adv}_{H}^{\mathrm{coll}}(q) \leq 3\left(\frac{q}{2^{n}}\right)^{2}$$



Proof Sketch



$$F(x) = F(x') \land x' = p(x) \Rightarrow F(w') = p_{cv}(F(w)) \land w' = p(w)$$
$$\Pr[F(w') = p_{cv}(F(w)) \mid w' = p(w)] = \left(\frac{1}{2^n}\right)^2$$

$$\mathbf{Adv}_{H}^{\mathrm{coll}}(q) \le 3\left(\frac{q}{2^{n}}\right)^{2} = \left(\frac{q}{2^{n}}\right)^{2} + 2\left(\frac{q}{2^{n}}\right)^{2}$$

<u>Th. 1 vs. Th. 2</u>

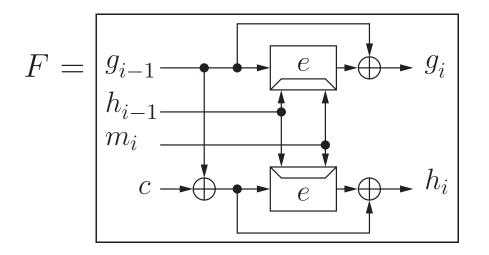
The difference between the upper bounds is significant.

E.g.)
$$n = 128, q = 2^{80}$$

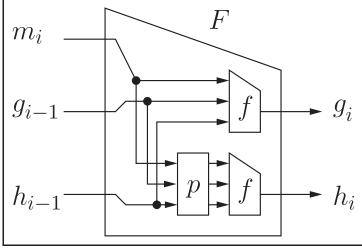
Th. 1 $\operatorname{Adv}_{H}^{\operatorname{coll}}(q) \leq \frac{q}{2^{n}} + \left(\frac{q}{2^{n}}\right)^{2} \approx 2^{-48}$
Th. 2 $\operatorname{Adv}_{H}^{\operatorname{coll}}(q) \leq 3\left(\frac{q}{2^{n}}\right)^{2} \approx 2^{-94}$

E.g.) A permutation p satisfying the properties in Th. 2 $p(g,h,m) = (g \oplus c_1, h \oplus c_2, m), \text{ where } c_1 = c_2$

DBL Hash Function Composed of a Block Cipher

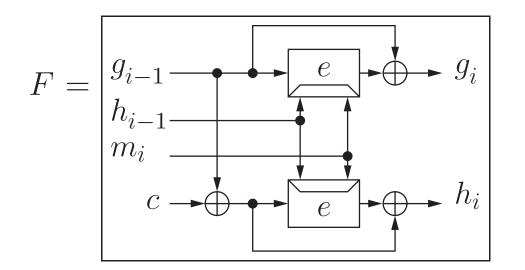


c is a non-zero constant.



such that $f = \begin{bmatrix} h_{i-1} & m_i \\ g_{i-1} & e \end{bmatrix}$ $p(g, h, m) = (g \oplus c, h, m)$

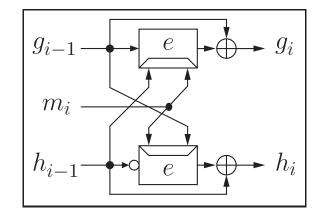
DBL Hash Function Composed of a Block Cipher

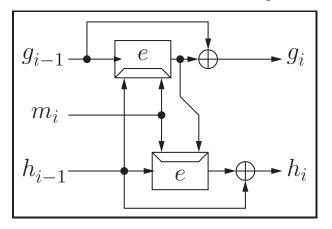


- can be constructed using AES with 192/256-bit key
- requires only one key scheduling

F is simpler than abreast Davies-Meyer and

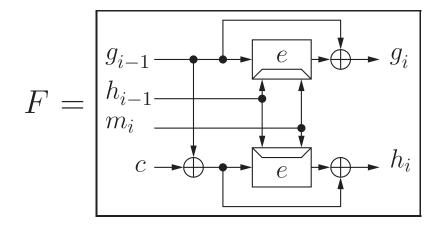
d tandem Davies-Meyer





Collision Resistance

Th. 3 Let H be a HF composed of $F : \{0,1\}^{2n+b} \rightarrow \{0,1\}^{2n}$ such that

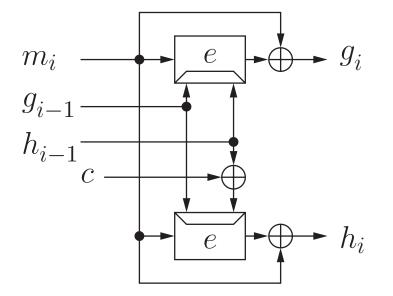


 $\operatorname{Adv}_{H}^{\operatorname{coll}}(q) \stackrel{\text{def}}{=} \operatorname{success prob.}$ of the optimal collision finder for Hwhich asks q pairs of queries to (e, e^{-1}) .

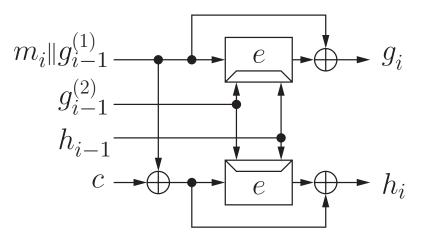
Then, in the ideal cipher model, for $1 \le q \le 2^{n-2}$,

$$\mathbf{Adv}_{H}^{\mathrm{coll}}(q) \le 3\left(\frac{q}{2^{n-1}}\right)^{2}$$

A Few More Examples of Compression Functions



for AES with 256-bit key



for AES with 192-bit key

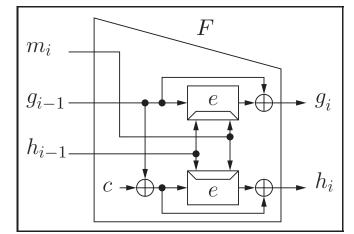
Conclusion

- Some plausible DBL HFs
 - $-\ composed$ of

 $\begin{array}{c}
m_i \\
g_{i-1} \\
h_{i-1} \\
\end{array}$

 $p \circ p$ is an identity permutation

- optimally collision-resistant
- A new security notion: Indistinguishability in the iteration



key-length > block-length