
Classification of Hash Functions Suitable for Real-life Systems

Yasumasa Hirai ∗, Takashi Kurokawa†, Shin’ichiro Matsuo∗ ,

Hidema Tanaka† and Akihiro Yamamura†

Abstract

Cryptographic hash functions have been widely studied
and are used in many current systems. Though much re­
search has been done on the security of hash functions,
system designers cannot determine which hash function is
most suitable for a particular system. The main reason for
this is that the current security classification does not cor­
respond very well to the security requirements of practical
systems. This paper describes a new classification which
is more suitable for designing real-life systems. This clas­
sification is the result of a new theoretical classification
and a new qualitative classification. We show a mapping
between each class and standard protocols. In addition,
we show new requirements for four types of hash function
for a future standard.

1 Introduction

A cryptographic hash function provides certain security
properties and plays a crucial role in building security ap­
plications related to digital signatures, authentication, and
message integrity. It is also used to construct pseudoran­
dom number generators and practical instantiation of the
random oracle. The most commonly used hash functions
are MD5 and SHA-1, designed by Ronald Rivest and by
the National Security Agency (NSA), respectively. These
have become de facto standards and are widely used in
many applications. Recently, successful attacks against
hash functions have been demonstrated by numerous re­
searchers. Among these, the attacks by Wang [74, 75, 76]
have had a great impact on both theoretical and practical
research on hash functions. Wang’s attack finds a pair of
two distinct messages with the same hash digest of SHA­
0 and MD5. It takes only a few hours to find collisions
of two distinct messages for MD5. On the other hand,
according to Wang’s latest announcement, the estimated
cost to find a collision for SHA-1 is 263 . These attacks

∗NTT DATA Corporation, 1-21-2, Shinkawa, Chuo-ku, Tokyo
104-0033

†National Institute of Information and Communications Technol­
ogy (NICT), 4-2-1, Nukui-Kitamachi, Koganei, Tokyo, 184-8795

unveil the vulnerability of some applications using exist­
ing hash functions, and the replacement of existing hash
functions can be a severe burden for vendors, system de­
signers, and users. In particular, the vulnerability of hash
functions affects the public key infrastructure scheme and
the replacement of weakened hash functions by new ones in
PKI schemes or real-life protocols will be a major project.
We note that Bellovin and Rescorla discuss how to deploy
a new hash function without harming the existing real-life
systems. Hash functions are chiefly used for authentica­
tion and data integrity, and so the security provided can
be measured by the lifespan of the data. Traditionally,
the security notion of hash functions is discussed from a
theoretical standpoint. Since hash functions are usually
fixed techniques and the security parameter is not fed, the
security is not measured asymptotically to the security pa­
rameter. On the other hand, it is sometimes necessary to
consider the trade-off between security and performance
because of some constraints. In this paper, we clarify the
usage of cryptographic hash functions and the security re­
quirement in practical security systems. In particular, we
survey the usage in practical protocols specified in RFC
and so on. Looking into practical applications, we observe
that the security requirements are not properly evaluated.
Therefore, a reexamination of the security concept of hash
functions in protocols is required before replacement hash
functions can be created. Hence, we discuss how to widen
the scope of cryptographic hash functions and give a new
classification for the future use of cryptographic hash func­
tions in practical use. We also discuss changing the con­
cepts of hash functions and their mode of operations.

In Section 2, we discuss the traditional classifications
of hash functions and recall typical usages of hash func­
tions in cryptographic schemes. In Section3, we list several
usages hash functions in real-life systems. We exemplify
that hash functions are inevitable in numerous information
communication systems even though the strong security
properties of hash functions are not necessarily required
in some cases. In Section 4, we argue the several reasons
for traditional classification is not suitable for the current
usages in real-life systems. Then we shall discuss how to
classify hash-related techniques and how to evaluate its
security properties in Section 5. We exclude message au­

1

2

Cryptographic hash function

MAC MDC

OWHF CRHF
UOWHF

Figure 1: Cryptographic hash functions

thentication codes (MAC) from our discussion because our
goal is to discuss successor of the traditional collision re­
sistant hash functions such as SHA-1. Then our proposal
on classification will be given in Section 6 in which we
emphasize four types of hash functions. The classification
is made based on theoretical assurance, availability and
performance. In Section 7, we consider additional require­
ments for hash functions.

Existing Cryptographical Clas­
sification

Hash functions are traditionally classified into two essen­
tially distinct categories: non-cryptographic hash func­
tions and cryptographic hash functions. Cryptographic
hash functions are classified into message authenticated
codes (MAC), one-way hash functions (OWHF), collision-
resistant hash functions (CRHF), and universal one-way
hash functions (UOWHF) (Figure 1). While we do not dis­
cuss any technical definition of these techniques, we con­
sider the current usage of them in industrial scenes. Non-
cryptographic hash functions have been chiefly used to
search database systems and have had nothing to do with
security systems. Cryptographic hash functions are almost
always required to be collision resistant, and most of the
instantiations in practical security systems are restricted
to a few hash algorithms of the SHA-family or the MD4­
family. Cryptographic hash functions are constructed us­
ing compression functions and composition methods.

Non-cryptographic hash functions may also require se­
curity to some extent. Of course, these need not be as
secure as cryptographic hash functions. Here, we explain
the necessity of reexamining such hash functions.

2.1	 Security of cryptographic hash func­
tions

Suppose h : {0, 1}∗ → {0, 1}n is a hash function. Crypto­
graphic hash functions should have the following proper­
ties.
Collision resistant : The computational cost to find the

′input pair x and x which holds h(x) = h(x ′) must not be
n

smaller than 2 2 , which is estimated with respect to the
birthday paradox.
Pre-image resistant : The computational cost to find
the input x, where h(x) = y must not be smaller than 2n .
Second pre-image resistant : The computational cost
to find the input x ′(̸ ′) = y= x), where h(x) = y and h(x
must not be smaller than 2n . It has been shown in [39]
that the necessary number of algorithm step may be less
than 2n if immense memory is allowed, that is, a kind of
time-memory trade-off methods is used.
Universal one-way : Choose an element x ∈ D. When
a key K is randomly chosen, it is hard for an adversary to
find y ∈ D (x ̸= y) such that hK (x) = hK (y).

2.2	 Message authentication code

The message authentication code (MAC) is a keyed hash
function. There are two types of popular MAC: HMAC,
which is constructed from two hash functions, and those
based on a block cipher such as CBC-MAC or CMAC.
The security property of MAC is unforgeability. A block­
cipher-based MAC is easier to forge than HMAC for an ad­
versary who gets the key. Security against side-channel at­
tacks should also be considered. We do not discuss MACs
in this paper because our goal is to discuss successor of
the traditional collision resistant hash functions such as
SHA-1 and much of the research done on MACs is well
known.

2.3	 Collision resistant hash functions

Most collision-resistant hash functions h : {0, 1}∗ →
{0, 1}n are constructed through the iterated use of com­
pression function f : {0, 1}n+m → {0, 1}n . Then the se­
curity of such hash functions depends on the design of
compression functions and the iteration methods.

2.3.1 Construction

The Merkle-Damg̊ard construction is a well known solu­
tion for the question of how to iterate a compression func­
tion [20, 51]. Tree construction is another way, but most
practical hash functions are based on Merkle-Damg̊ard or
its extensions.

2

Some research has examined the security relation be­
tween f and h, but has not led to a practical improve­
ment in security. Recent results (e.g., Wang et al.) of
attacks have show that pseudo-collisions or near-collisions
are a real threat to the Merkle-Damg̊ard construction. A
solution to these potential problems is needed.

2.3.2 Compression function

Block cipher based: Block ciphers are used as com­
pression functions because they are highly trusted func­
tions that provide practical security and are easy to eval­
uate. PGV-style construction is widely used [58]. On the
other hand, they must execute the key set-up function
many times, so the performance is very slow.

Dedicated function: The MD4-family that has evolved
from MD4 to SHA-224/-256/-384/-512 is a de facto stan­
dard. Many types of dedicated function have been chosen
as international standards (e.g., SHA-1,2, RIPEMD-160,
Whirlpool). Until 1998, the results of an attack on a hash
function were known only for the reduced MD4 [17] and
the near collision of [73]. In 1998, MD4 was completely
broken by Dobbertin [23]. Until 2004, analysis confirmed
the security properties of the MD5 and SHA-1 compres­
sion functions and the collision search for reduced MD5,
SHA-0, and SHA-1. In 2004, MD5 was completely broken
by Wang et al. [74] and SHA-1 now seems close to be­
ing broken [75]. Though practical performance has been
achieved, most dedicated functions are now in a critical
situation.

Arithmetic function: MASH-1/-2, which are based
on modular arithmetic, were among the functions chosen
for ISO/IEC 10118-4. The functions based on the knap­
sack problem have unresolved problems regarding security.
Some, such as VSH [15], have provable collision resistance,
but most are not suitable for practical use.

2.3.3 Recent works

In response to the SHA-1 crisis, research has shown that
security can be improved with minimal changes made to
the algorithm. SHA-1 IME [72] has an improved form of
message preparation compared to that of SHA-1, and ran­
domized hash [30] is a technique which makes it difficult to
find a collision pair through a randomizing message. In ad­
dition, new dedicated hash functions have been proposed
(FORK-256, DHA-256, etc). While most hash functions
have a fixed output length, there have been some attempts
to enable a variable length. For example, SHA-V is a vari­
able length hash function based on SHA-1 [31].

2.4	 Random Oracle methodology

In practical systems, random oracles are instantiated by
a hash function. Such instantiation does not necessar­
ily provide a level of security equal to provable security.
We should not depend too much on random oracle mod­
els: several studies have shown that various cryptographic
systems are secure in the random oracle model, but in­
secure for any concrete instantiation of the random ora­
cle [13, 29, 18]. At present, given the success of Wang’s
attack, we should concentrate on techniques such as sig­
nature schemes and time stamps. There are several ap­
proaches that enable provable security with or without
depending on random oracle models [10, 16].

2.4.1 Full Domain Hash Scheme

Here, the output size of a hash function is exactly the size
of the (RSA) modulus. Implementing such a scheme re­
quires a concrete method, such as MGF1, to extend the
length of a hash function. In general, it is desirable to
have consistency among the hash sizes and other security
parameters such as the size of the modulus of the compos­
ite numbers used in factoring-based systems. It may be
better to have hash functions that allow choice regarding
the digest size.

2.4.2 Mask generation functions

In some provably secure cryptosystems, a mask generation
function, such as MGF1 [88, 86], is used as a building block
for instantiating random oracles. For example, RSASSA­
PSS [88] was recently included in NIST FIPS 186-3 [84]
and SP800-78 [85].

MGF1 is based on the ideas of Bellare and Rogaway [5]
and [6]. It is viewed as a custom method to extend the
length of a hash function. Such a construction has been
adopted to avoid structured operations in standard hash
functions. This may not be completely unrelated to the
design criteria of the hash function.

2.5	 UOWHF(Universal one-way hash
function)

UOWHFs (introduced by Naor and Yung [54]) can be
considered keyed hash functions that satisfy the following
property: an adversary chooses a message x and then the
function hK is chosen randomly; it then becomes hard for
the adversary to find y (x ̸= y) such that hK (x) = hK (y).

Signature schemes constructed based on the hash-and­
sign method are no more secure than a hash function
against a collision-finding attack. The recent attacks by
Wang against SHA-1 call these methods into question.

3

It is well known that a simple modification of the hash­
and-sign paradigm may replace the collision-resistant hash
with a UOWHF [54, 7].

On the other hand, the UOWHF has several disad­
vantages. So far, UOWHFs are inefficient compared to
CRHFs; the key size grows logarithmically with the mes­
sage size. However, a few practical techniques currently
use UOWHFs; for example, ACE-Sign [68] is based on
UOWHFs and has a not so tight reduction [47].

This poor efficiency and other disadvantages have
slowed the development and deployment of UOWHFs. For
example, no standard technique has been established by
any international standards organization. This means it
is hard to achieve interoperability and difficult to deploy
UOWHFs.

3	 Hash Functions in Information
Systems

Generally, a hash function is used to securely provide ser­
vices through systems. However, many system developers
and engineers use security products in which a hash func­
tion is applied, yet they are not conscious of each hash
function’s security requirements. They therefore choose
hash functions such as MD5 and SHA-1 without being
aware of how an attack on the hash function can affect
a system. In this section, we describe hash function re­
quirements from a system developer’s viewpoint. First,
we describe the requirements during the design of systems.
After that, we describe the current usage of hash function
in systems. We then categorize hash function usage with
regard to the requirements.

3.1 Requirements in system design

The system design requirements are as follows.

Security requirements : Systems have to fulfill the fol­
lowing security requirements to provide services securely.

Confidentiality : Systems which store and use data,
such as individual information, have to protect it from
eavesdropping by malicious users.

Authentication and Certification : In some systems,
such as those used for content delivery services, con­
tent providers have to identify users for payment.
When operators log onto systems to update software,
the systems need to confirm the validity of each op­
erator to prevent internal crimes.

Integrity : Some systems which issue certificates, such
as a driver’s license, have to prevent falsification of
certificates and guarantee their validity.

System development requirements :

Choosing an algorithm : The design or algorithms
used in a system are chosen based on requirements
with respect to performance and operating environ­
ment. For example, a light-weight algorithm is needed
for low-power devices. Thus, algorithms that can sat­
isfy various performance and environmental require­
ments should be prepared.

Development-cost : In almost all cases, the develop­
ment cost is decided beforehand, and this includes
the cost of security mechanisms. However, most cus­
tomers are unaware of the additional costs of replac­
ing a broken hash function with a new one.

Development period and system life cycle : Most
information systems have a life cycle which includes
development, operation, and renewal phases. The
basic design and algorithm are decided early in the
development phase. Thus, when a hash function is
broken during a later phase, replacement of the hash
function will be planned immediately before the next
renewal.

Requirements for each service :

Compliance (Long-term assurance) : In financial
systems and healthcare systems, many documents
must be securely preserved for a long time. For exam­
ple, in the United States, SEC17a-4 states that e-mail
messages regarding the dealing of securities and so on
must be stored for at least five years. The Sarbanes-
Oxley (SOX) Act obliges corporations to store fiscal
reports, audit reports, and all business transaction
and conference related documents for at least five
years [89]. Furthermore, the Health Insurance Porta­
bility and Accountability Act (HIPAA) requires the
storage of medical information for at least seven years
[83]. If, for example, we use time-stamp technology to
ensure the integrity of documents, this sort of legisla­
tion means that a time-stamping system must provide
long-term assurance, such as a guarantee of at least
five years.

Enforcement of products : The Certificate Authority
(CA) and Time Stamping Authority (TSA) systems,
for example, must be high-level security systems.
Therefore, customers typically request that these sys­
tems use a Hardware Security Module (HSM) that

4

has been validated under the Cryptographic Module
Validation Program (CMVP).

3.2 Usage of hash functions in systems

Many information systems use security protocols with
hash functions, such as SHA-1. In this section, we list
the protocols used with a hash function, and the impact
of a broken hash function.

3.2.1 Protocols used with Hash Function

Certification : This category consists of certification
protocols which guarantee the validity of signers, docu­
ments, issuers, etc.

Digital Signature : Digital signature is an encryption
scheme for authenticating digital data. In general,
a digital signature scheme consists of both message
authentication codes compressed by a hash function
and digital signature schemes encoded by public key
encryption. Most digital signature schemes use a hash
function to ensure the integrity of messages.

PKIX : PKIX provides an Internet X.509 Public Key
Infrastructure Certificate and CRL profiles. PKIX
uses a hash function to ensure the integrity of the
certificates and CRL profiles.

Time Stamping : The Time Stamping protocol pro­
vides a time stamp token which guarantees the time
at which data existed. The Time Stamping protocol
uses a hash function to ensure the integrity of the
time stamp token.

Authentication : This category consists of authentica­
tion protocols which confirm clients, etc.

Kerberos : Kerberos provides authentication, prevents
eavesdropping, and ensures the integrity of data on
the client-server model. Kerberos uses a hash func­
tion to calculate the hash value of the entered client
password and this becomes the secret key of the client.

IEEE802.1X-EAP : IEEE802.1X-EAP provides au­
thentication, active key generation, and key delivery
on wireless networks. The EAP-FAST protocols in
IEEE802.1X-EAP are based on the TLS handshake
protocol, which uses a hash function.

APOP : APOP provides authentication which enciphers
the password used for reception of an e-mail message.
APOP uses a hash function (MD5) to prevent replay
attacks and disclosure of a shared secret.

RADIUS is also a protocol that uses a hash function
(e.g., SHA-1) to ensure the integrity of data and applica­
tions in information systems.

Secure communication : This category consists of the
secure communication protocols which include key ex­
change, etc.

IPsec : IPsec provides secure communication at the
network layer by encrypting and authenticating IP
packets. Internet Key Exchange (IKE) protocols in
IPsec use hash functions as pseudo-random functions.
Moreover, hash functions are used to ensure the in­
tegrity of all protocol messages in protocols.

SSL/TLS : Secure Socket Layer (SSL) and Transport
Layer Security (TLS) enables authentication and se­
cure communication on the Internet. These proto­
cols prevent eavesdropping, falsification, and message
forgery. The handshake protocol in SSL uses a hash
function to create a message authentication code.

SSH : SSH authenticates users, and provides a secure
channel between a local and a remote computer. SSH
uses hash functions to produce message authentica­
tion codes that ensure the integrity of data exchanged
between the two computers.

Secure E-mail : This category consists of secure e-mail
protocols which encrypt e-mail messages to protect pri­
vacy and verify the integrity of messages. We show them
as follows.

S/MIME : S/MIME provides authentication, message
integrity protection, and privacy protection of data.
S/MIME uses a hash function in a digital signature
scheme to ensure the authenticity and integrity of e-
mail messages.

PGP : PGP provides e-mail encryption and authentica­
tion. PGP uses a hash function to ensure the integrity
of e-mail messages.

Other protocols : Protocols in this category do not
have precise security requirements regarding the hash
function.

Packet sampling and filtering : Packet sampling pro­
tocols select a representative subset of packets, and
packet filtering protocols remove packets that are not
needed. Packet sampling protocols use hash functions
as pseudo-random functions to select packets at ran­
dom. Packet filtering protocols use hash functions
to generate packet digests which are used to identify
packets.

5

Database retrieval : Hash functions are applied to
generate keys used to efficiently retrieve target data
from large bodies of data stored in a database.

Software download : Software download systems use
hash values as check sums to ensure the integrity of
software. Users confirm whether the software has
been altered.

Intrusion Detection System (IDS) and DomainKeys
Identified Mail (DKIM) are also protocols that use hash
functions. IDS uses a hash function for the system in­
tegrity verifier (SIV), and DKIM uses a digital signature
scheme which includes hash functions to ensure the mes­
sage integrity.

We show the classification of protocols which uses hash
function in systems, and influence on the attack in Figure
2.

4	 Gaps between Theoretical Clas­
sification and Current Usage

In this section, we first discuss gaps between the area cov­
ered by the present cryptographic classification and the
current usage of hash functions. After that, we state the
classification requirements suitable for both worlds.

4.1 Lack of quantitative security

In Section 2, we described the existing hash function clas­
sifications. These classifications are based on qualitative
analysis. However, the security of real-life systems is con­
sidered from the perspective of a risk analysis method such
as ISMS, ISO/IEC 15408, ISO/IEC 27001-2005, and so on.
The results of such an analysis are quantitative.

For example, a digital signature used in time-stamping
services must be valid for over seven years for HIPPA,
and a digital signature for certificates must be valid for
one to three years and remain resistant against possible
adversaries.

On the other hand, a hash value used in only one ses­
sion must be valid until the end of the session. If a hash
value is used as a cookie in a Web-based service to pre­
vent a man-in-the-middle attack, the system must prevent
generation of a collision for the hash value before the end
of the session. Typically, a session does not last long (i.e.,
one hour or less). For another example, a hash value used
in an APOP protocol does not require long-term collision
resistance. To protect such systems from being needlessly
weakened, a weaker security class should be added and a
guideline for such usage provided. The problem in this

area is there are no security criteria for such usage. In
most cases, a system engineer embeds hash functions into
a system without doing a formal security analysis. This is
because most engineers lack sufficient knowledge of hash
functions, and there is no formal measurement of hash
functions for such usage.

When we want to use the current classification to de­
sign a secure system, a system engineer cannot easily judge
whether any particular hash function is suitable for a spec­
ified system. Most hash functions ensure theoretical secu­
rity, such as collision resistance, second pre-image resis­
tance, and so on, but a system engineer cannot reliably
determine when each hash value becomes invalid in the
system. Thus, we must consider the quantitative security
aspect of hash functions and include this in the classifica­
tion.

4.2 Additions to theoretical classification

In governmental cryptographic standard such as NESSIE
and CRYPTREC, “provable security” is quite important
nature for cryptographic algorithms. Government recom­
mend provable secure digital signature schemes. This is
because, digital signatures in e-governments must be se­
cure for strong adversaries.

On the other hand, current qualitative criteria for hash
functions is collision resistance, second pre-image resis­
tance and one-wayness as explained in Section 2. Collision
resistance is seen as an important characteristics, because
it is thought as most strong notion among these three.
These three notions are all rigorously defined. However,
there are no provable secure constructions of them.

Current most secure digital signature schemes are
proven in random oracle model. However, all standard
hash function is not the random oracle. Consequently,
this shows there is no secure digital signature in real sys­
tem. The existing qualitative classification does not cover
all hash function usage. Thus, we must consider the fol­
lowing modifications to theoretical classification.

Collision resistance is sufficient for most usages. This is
helpful for authentication, key exchange, and other light
weight usages. However, it is not sufficient for high-level
security such as several systems in e-government. To cover
such usage, a theoretical class which ensures a “real” prov­
able secure digital signature is needed additional to colli­
sion resistance.

4.3 Requirements for new classification

For the reasons given above, we must define a new system
of classification which covers everything from cryptograph­
ically strong classes to light-weight but practically secure

6

classes.
The requirements that such a classification must meet

are as follows.

•	 The classification must include a quantitative index,
which covers from long-term security assurance to
short-term security assurance.

•	 Theoretical classification must be redefined to cover
the entire range from provable security to light and
practical security.

Thus, a new classification system will be based on a
two-dimensional matrix containing both qualitative index
values and quantitative index values.

5	 New Security Classification of
Hash Functions

5.1 Cryptographical security

5.1.1 Redefine of security

The security of hash functions has been evaluated only
in terms of collision resistance as estimated by the birth­
day paradox, as shown by Yuval in 1979 [80]. The at­
tack criteria with respect to the reduced round type or
the properties of pseudo-collisions and near collisions have
not been studied enough compared to the differential and
linear properties of block ciphers. It is necessary to rede­
fine collision resistance. In particular, for an iterated hash
function, the present collision resistance is clearly not suffi­
cient with respect to the security property. Thus, collision
resistance should be classified using “full collision”, “near
collision” and “pseudo-collision” categories.

Full collision is the same as an existing collision and
the level of security against it can be estimated with re­
spect to the birthday paradox. This corresponds to a brute
force search and can be applied to the evaluation of a com­
pression function f .

Near collision is a collision within a few bit positions.
How the hash value is truncated (e.g., truncation of the
output from SHA-256 to a 160-bit hash value) will become
an important property. How to estimate a near-collision
is an open problem. In a certain situation, near collision
resistent property is useful, for example, near collision is
crucial in [78].

Pseudo collision is a collision where h(x; IV) =
h(x ′ ; IV ′) holds. The Merkle-Damg̊ard construction po­
tentially has this weak property. In particular, it is im­
portant to estimate the level of security against an attack

using a multi-message block, such as Wang’s SHA-1 at­
tack. How to estimate a pseudo-collision is an open prob­
lem.

5.1.2 Requirement of new CRHF

New CRHFs should be developed by taking into account
the following points.
Need to improve the compression function f
This will greatly affect the security and performance of
a CRHF. Dedicated designs should be devised to achieve
a theoretical security property such as provably secure.
Arithmetical functions should improve performance.
Need to improve the construction h
The Merkle-Damg̊ard construction has the property
h(x1||x2; IV) = h(x2; h(x1; IV)). In an actual system,
the demand for iterated hash functions is consequently
large because of their good performance and ease of use.
Therefore, the iterated construction should be used to find
another construction which can solve the pseudo-collision
problem or provide minimal security regarding collision
resistance in a theoretical way.
Size of hash value
In addition to the demand for iterated hash functions, as
stated above, from the viewpoint of hash size compatibil­
ity a decision on a standard 128-bit or 160-bit CRHF is
desirable. For such use, security requirements are within
a limited range. It is necessary to show that this limited
security is enough for such usage.

5.1.3 Requirement for UWOHF

Naor and Yung’s method [54] is not really practical be­
cause the length of keys for a UOWHF becomes longer in
proportion to the message size. Bellare and Rogaway [7]
provide a better solution to this problem. At present,
the best methods provide signature techniques with a
UOWHF where the key grows logarithmically with the
message size. Among these, Shoup [69] gives the most ef­
ficient construction, which can be considered an extended
Merkle-Damg̊ard construction.

Theoretical assurance of the security of signature
schemes has attracted increased attention since Wang’s
attacks. A UOWHF has some advantages compared to a
CRHF. It is theoretically possible to construct a UOWHF
using only a one-way function. This assumption is much
weaker than the assumption needed for CRHFs. Most
signature techniques depending on CRHFs are vulnera­
ble to the recent attacks of Wang et al. However, signa­
ture techniques have been introduced that depend only
on UOWHFs [54, 63] and Wang’s attack is not a threat
to signatures using UOWHFs. In addition, the security
of UOWHFs is not compromised by the birthday paradox

7

attack. Thus, the cost of a generic attack on a UOWHF
is 2n if the size of the hash digest is n. Note that the
cost of a generic attack (a birthday paradox attack) on a

n

CRHF is 2 2 . There is a trade-off between such generic se­
curity criteria and usability; UOWHFs need keys and the
key length grows logarithmically with the message size,
whereas a CRHF needs no key (Table. 1).

Gennaro, Gertner, Katz and Trevisan [28] claim that
the construction by [54] is optimal among a black box
construction of UOWHFs using one-way functions. It fol­
lows that there is no effective way to construct a UOWHF
in a universal manner. Therefore, it is necessary to con­
struct an effective UOWHF directly from its theoretical
primitives. In fact, we do not know whether an effec­
tive UOWHF actually exists. A worthy goal is to show
whether an effective UOWHF construction exists and to
standardize it if it does.

5.1.4 Mode of operations

The mode of operation related to hash functions would
be desirable in many ways; it provides additional prop­
erties for security systems based on hash functions. The
ability to change the length of hash digests would be an
attractive feature. An appropriate mode of operation may
allow the hash digest size to be changed. This is desired
for the FDH-based signature scheme. In a random oracle
model, we use many different mutually independent ran­
dom oracles. The mode of operation may allow such hash
function variations. In some applications, we need a hash
function whose digests belong to particular mathematical
structures, such as groups of elliptical curves. In such a
case, it is not easy to encode hash digests to an element
in the target domain, so it will be beneficial to provide
a mode of operation for encoding hash digests to a spe­
cific domain. It is sometimes critical to specify the object
identifier (OID) of hash functions, which is known as the
hash firewall [37]. It may be possible to adopt a mode of
operation that takes care of this.

5.2	 Quantitative classification from valid
period

Next, we add a quantitative classification. We catego­
rize the quantitative security of hash functions into three
groups.

Long-term security This category contains certificates
assuring that data has not been forged over long periods
of time; e.g., over five years to comply with the SOX Act.
A time-stamp token issued by a time-stamp authority is
an example of this category. Other possible examples are

signed contracts and the some kind of digital signatures
which are widely transferred.

In such applications, the system must prevent forgery of
time-stamp tokens over long time spans. Thus, the hash
functions used must be secure against any adversary for
the same period of time. Here, we assume that a hash
function which will be secure over five years must be used
for systems in this category. In addition, any desired se­
curity parameter (e.g., the search space) must exceed 2128

to account for the possibility of a birthday attack.

Medium-term security This category contains certifi­
cates which assure the data has not been forged and these
certificates must remain reliable for two to three years.
Public key certificates are a good example of this. The
valid period of a public key certificate varies according
to the security policy of the certificate authority, and this
may be two or three years. Credentials for certain services
realized through digital signatures or hash values are an­
other application. The valid period of such credentials is
limited to within one or two years, and is sometimes only
one month.

In this kind of application, the collision resistance of a
hash function is important, but the required security is
weaker than long-term security. Moreover, such opera­
tions may be done through smart cards, so light and min­
imally secure hash functions are desirable. Here, we as­
sume that a hash function which will be secure anywhere
from 1 month to five years should be used for systems in
this category. In addition, the desired security parameter
(e.g., the search space) must be 280 to cope with birthday
attacks.

Short-term security This category contains hash val­
ues and digital signatures used for key exchange, to pre­
vent replay attacks and man-in-the-middle attacks, or for
temporary authentication. The valid period of such values
varies according to the services; however, this is limited to
the period of service use. This is typically one month at
the longest.

In this kind of application, the collision resistance of
a hash function is still important, but the required secu­
rity is weaker than medium-term security, and a lighter
and minimally secure hash function is desirable. Some
standard protocols require a short hash length, which is
limited by the packet size and performance requests. Such
usage also falls into this category. We assume that hash
functions which will be secure for up to one month can be
used for systems in this category. In addition, the desired
security parameter (e.g., search space) should be 264 to
cope with birthday attacks. A shorter security parame­
ter may be acceptable depending on the security policy of

8

CRHF UOWHF

Key No Key size grows logarithmically with the message size
Adversary

Goal
Find x, y ∈ D (x ̸= y)

s.t. h(x) = h(y)
Choose x ∈ D
Given hK ∈ H

Find y ∈ D (x ̸= y) s.t. hK (x) = hK (y)
Compression

functions
Dedicated functions
Block cipher based

Arithmetic

Strongly universal2 functions

Construction
methods

Merkle-Damg̊ard
Tree

XOR linear
XOR tree

Shoup (extended Merkle-Damg̊ard)
Standard ISO 10118-3 No standard exists

Table 1: Comparison between CRHF and UOWHF

Category Period Security parameter
Long-term over 5 years 2128

Medium-term 1 month - 5 years 280

Short-term under 1 month 264

Table 2: Comparison among three categories

each system.
These three categories are compared in Table 2.

6 Our Proposal

In this section, we propose a new classification, then map
the various types of usage described in Section 3.2 with
respect to this classification.

6.1 New classification

The new classification is based on a two-dimensional ma­
trix with qualitative index values and quantitative index
values. The qualitative index has two members as de­
scribed in Section 5.1. These are the CRHF and the
UOWHF.

The quantitative index has three members, described in
Section 5.2. These are long-term security, medium-term
security, and short-term security. Consequently, the re­
sulting matrix contains six cells.

Next, we map current forms of usage (described in Sec­
tion 3.2) into the matrix. Table 3 shows the result of this
mapping.

Time-stamping realized through the use of a digital sig­
nature must assure the validity of time-stamping tokens,
and this depends on the ability to find collisions. Thus,
it must take into consideration the provable security and

long security parameter, and it is mapped onto a UOWHF
with long-term security. S/MIME and PGP are also used
for signing e-mail messages. These signed messages must
guarantee the senders identity and the integrity of the e-
mail; in some cases, the e-mail might be equivalent to a
contract. Security again depends on whether collisions
can be found. These methods are mapped into the same
column as time-stamping. Code signing is used to authen­
ticate the software vendor for each software application.
The prevention of signature forgery by finding a collision
is critical to ensure the security of code signing. Software
with digital signatures may be used for long-term pur­
poses. Thus, code signing is also mapped into the same
column.

Time-stamping realized through only a hash function,
such as with a linking protocol, must be collision resis­
tant. Long-term security must be guaranteed as described
above. Thus, a CRHF with a long security parameter is
needed for this kind of time-stamping. The hash value
for a software download is used to check the integrity of
a downloaded file. Although the purpose is only to check
the integrity, this hash value may be used for a long time
so the hash function for this usage must be a CRHF and
provide long-term security.

Public key certificate, which is standardized by PKIX,
assures the correctness of a key pair in a public key cryp­
tosystem. PKI is the foundation of public key cryptogra­
phy, so the forgery of a public key certificate is a critical

9

CRHF UOWHF

Long-term
Certification

(Time-stamping by hash func.)
Integrity check

(Software Download)

Certification
(Time-stamping by signature,

Code Signing)
Secure E-mail

(S/MIME, PGP)

Medium-term N/A
Certification

(PKIX)

Short-term

Secure communication
(IPSEC, SSL/TLS, SSH)

Authentication
(IEEE 802.1X-EAP,

Kerberos, APOP, DKIM)
Other usage

(Packet sampling/filtering,
Database Retrieval)

N/A

Table 3: Proposed classification and mapping of current usage

issue with regard to PKI. Thus, a hash function in the
certificate must consider provable security, so it should be
a UOWHF however, the valid period of a public key cer­
tificate is generally under five years, so the hash function
for PKIX should provide medium-term security.

Many security protocols, including IPSEC, SSL/TLS,
SSH, IEEE802.1X EAP, and Kerberos, use hash values
for their security. In these protocols, the hash value must
be secure for a short time. Thus, the hash functions for
such usage should be CRHFs with a short-term security
parameter. DKIM, which is used to block spam e-mail
or phishing mail, uses digital signatures for sender au­
thentication. In this usage, the valid period of the digital
signature can be short, because only one verification of
the digital signature is required when a receiver obtains
the e-mail. Thus, the hash function for DKIM should also
be in the left column of Table 3. Hash values for packet
sampling/filtering and database retrieval require collision
resistance for only a short period. Thus, the hash func­
tions for this usage are in the same column.

In table 3, only four of the six cells are occupied. These
are the four types of hash function that should be consid­
ered to establish an industrial standard.

6.2 Desired hash function features

As shown in Table 3, four types of hash function are re­
quired for real-life information systems.

Type1. UOWHF with a long security parameter:
In this type, the hash function must have universal one­

wayness and consider the provable security. The hash
function is required to preserve universal one-wayness over
a long term. Thus, the security parameter of this hash
function must be over 2128 and be extendable.

Type2. CRHF with a long security parameter:
In this type, the hash function must be collision resis­
tant and preserve its collision resistance over a long term.
Thus, the security parameter of this hash function must
exceed 2128 and the security parameter must be extend­
able.

Type3. UOWHF with a medium security param­
eter:
In this type, the hash function must have universal one­
wayness and consider the provable security. The hash
function must preserve universal one-wayness over the
medium term. Thus, the security parameter of this hash
function must exceed 280 .

Type4. CRHF with a short security parameter:
In this type, the hash function must be collision resistant,
and preserve its collision resistance over the short term.
Thus, the security parameter of this type of hash function
may be about 264 . A shorter security parameter may be
chosen if security conditions permit

The above four types can cover almost all the existing
usage of hash functions. Thus, they meet the requirements
for hash functions suitable for real-life systems. We believe
that the design of future standard hash functions should

10

http:IEEE802.1X

7

focus on these four types and that any standardization
process should consider each type.

Discussions

Hash functions have to satisfy other requirements from a
system designer’s point of view. Two additional points
should be considered when designing hash functions.

Compatibility with existing systems When a sys­
tem engineer plans to replace a weak hash function in a
system with a stronger one, he must consider the replace­
ment’s compatibility with the existing system’s design to
minimize the replacement cost. The main issue is usually
the hash value length. When designing a system, the de­
signer decides which data structures to use for communi­
cation messages, databases, and so on. Changing the hash
value length can necessitate system re-design, re-coding,
and re-testing. The affected parts include not only hash-
related processing, but also non-cryptographic processing.
Thus, designing strong hash functions with the same out­
put length is preferable for most system designers. The
inclusion of this consideration into the requirements of a
future hash standard should be further discussed.

Implementation for embedded hardware The key
devices in current security systems include tamper-
resistant devices such as smart cards. Smart cards are
used for user authentication, key management, signing
documents, and so on.

For example, in general PKI, a key pair of a public key
cryptosystem is securely stored in the smart card of each
user, and a digital signature and ciphertext is calculated
within the smart card. Thus, a hash function must be
implemented into the smart card. Many smart cards im­
plement MD5 or SHA-1, but there is no commercial smart
card which implements SHA-256/384/512. The main rea­
sons for this are the processing speed and the working
memory size. Smart cards are widely used in current sys­
tems, and there is no good alternative for them at present,
so replacing the hash functions used in today’s smart cards
is a major concern regarding the hash function transition
in information systems. Any future hash standard must
include a family of hash functions which are easy to im­
plement in smart cards.

References

[1] B. Aboba and P. Calhoun, “RADIUS (Remote Au­
thentication Dial In User Service) Support For Ex­
tensible Authentication Protocol (EAP),” RFC3579.

[2] C. Adams, P.	 Cain, D. Ponkas and R.Zuccherato,
“Internet X.509 Public Key Infrastructure Time-
Stamp Protocol (TSP),” RFC3161.

[3] J. Arkko, V. Torvinen, G. Camarillo, A. Niemi and
T. Haukka, “Security Mechanism Agreement for the
Session Initiation Protocol (SIP),” RFC3329.

[4] M.Bellare and D.Micciancio, “A new paradigm for
collision ? free hashing: Incrementarity at reduced
cost,” Advances in Cryptology, EUROCRYPT97,
LNCS 1233,Springer-Verlag (1997), pp.163-192.

[5] M.Bellare	 and P.Rogaway, “Optimal Asymmet­
ric Encryption,” Advances in Cryptology, EURO­
CRYPT’94 LNCS 950, Springer-Verlag(1995), pp.
92-111.

[6] M.Bellare and P.Rogaway, “The Exact Security of
Digital Signatures-How to Sign with RSA and Ra­
bin,” Advances in Cryptology, EUROCRYPT’96
LNCS 1070, Springer-Verlag (1996), pp. 399-416.

[7] M.Bellare,	 and P.Rogaway, “Collision-Resistant
Hashing: Towards Making UOWHFs Practical,”
Advances in Cryptology - CRYPTO ’97, LNCS 1294,
Springer-Verlag (1997), pp.470-484.

[8] S. Bellovin and E. Rescorla, “Deploying a New Hash
Algorithm,” the NIST Hash Function Workshop,
2005.

[9] S.	 Blake-Wilson, M.Nystrom, D Hopwood, J.
Mikkelsen and T. Wright, “Transport Layer Secu­
rity (TLS) Extensions,” RFC3546.

[10] A. Boldyreva and M. Fischlin, “Analysis of Ran­
dom Oracle Instantiation Scenarios for OAEP and
other Practical Schemes,” Advances in Cryptology ­
CRYPTO 2005, LNCS 3621, Springer-Verlag (2005),
pp. 412-429.

[11] N. Cam-Winget, D. McGrew, J. Salowey and H.
Zhou, “The Flexible Authentication via Secure Tun­
neling Extensible Authentication Protocol Method
(EAP-FAST),” draft-cam-winget-eap-fast-03.

[12] R. Canetti, “Towards Realizing Random Oracles:
Hash Functions That Hide All Partial Information,”
Advances in Cryptology - CRYPTO ’97, LNCS 1294,
Springer-Verlag (1997), pp.455-469.

[13] R. Canetti, O. Goldreich, S. Halevi, “The random
oracle methodology, revisied,” In STOC’98. ACM,
1998.

11

[14] J.L.Carter and M.N.Wegman, “Universal classes of
hash functions,” JCSS 18 (1979), pp.143-154.

[15] S.Contini, A.K.Lenstra and R.Steinfeld “VSH, an
Efficient and Provable Collision Resistant Hash
Function,” http://eprint.iacr.org/2005/193

[16] J.	 Coron, Y. Dodis, C. Malinaud, P. Puniya,
“Merkele-Damg̊ard Revised: How to Construct
a Hash Function,” Advances in Cryptology ­
CRYPTO 2005, LNCS 3621, Springer-Verlag (2005),
pp. 430-448.

[17] B. den Boer and A. Bosselaers, “An Attack on the
Last Two Rounds of MD4,” Advances in Cryptology
CRYPTO91, LNCS 576, Springer-Verlag (1992), pp.
194-203.

[18] Y. Dodis, R. Oliveria and K. Pietrzak, “On the
Generic Insecurity of the Full Domain Hash,” Ad­
vances in Cryptology - CRYPTO 2005, LNCS 3621,
Springer-Verlag (2005), pp. 449-466.

[19] I. Damg̊ard, “Collision-Free Hash Functions and
Public-Key Signature Schemes,” Advances in Cryp­
tology - EUROCRYPT ’87 LNCS 304, Springer-
Verlag (1988), pp.203-216

[20] I.Damg̊ard, “A Design Principle for Hash Func­
tions,” Advances in Cryptology - CRYPTO ’89,
LNCS 435,Springer-Verlag(1990) pp.416-427

[21] T.	 Dierks and C.Allen, “The TLS Protocol,”
RFC2246.

[22] S. Dusse, P. Hoffman, B. Rmsdell, L. Lundblade and
L. Repka, “S/MIME Version 2 Message Specifica­
tion,” RFC2311.

[23] H.Dobbertin, “Cryptanalysis of MD4,” J. Cryptol­
ogy 11(4),1998 pp.253-271.

[24] S. Dusse, P.	 Hoffman, B. Rmsdell and J. Wein­
stein, “S/MIME Version 2 Certificate Handling,”
RFC2312.

[25] M. Elkins, D. Del Torto, R. Levien and T. Rossler,
“MIME Security with OpenPGP,” RFC3156.

[26] S. Farrell, T. Kause and T.Mononen, “Internet
X.509 Public Key Infrastructure Certificate Man­
agement Protocol (CMP),” RFC4210.

[27] M.Gebhardt, G. Illies and W. Schindler, “A Note
on the Practical Value of Single Hash Collisions for
Special File Formats,” the 1st Cryptographic Hash
Workshop, 2005.

[28] R.Gennaro,	 Y.Gertner, J.Katz and L.Trevisan,
“Bounds on the efficiency of generic cryptographic
constructions,” SIAM J. Comp. 35 (2005), pp.217­
246.

[29] S. Goldwasser and Y. Tauman, “On the (In)security
of the Fiat-Shamir Paradigm,” In Proceedings of the
44th Annual IEEE Symposium of Foundations of
Computer Science (2003), pp. 102-114.

[30] S.Halevi and H.Krawczyk, “Random­
ized Hashing: Secure Digital Signa­
tures without Collision Resistance,”
http://www.ee.technion.ac.il/ hugo/rhash.pdf

[31] Y.S.Her	 and K.Sakurai, “Analysis and De­
sign of SHA-V and RIPEMD-V with Vari­
able Output-Length,” http://itslab.csce.kyushu­
u.ac.jp/ ysher/14.pdf

[32] D.Hong, B.Preneel and S.Lee, “Higher order uni­
versal one-way hash functions,” Advances in Cryp­
tology - ASIACRYPT 2004, LNCS 3329, Springer-
Verlag (2004), pp.201-213.

[33] D.Hong, J.Sung, S. Hong and S. Lee, “How to Con­
struct Universal One-Way Hash Functions of Order
r,” Progress in Cryptology - INDOCRYPT 2005,
LNCS 3797, Springer-Verlag (2005), pp.90-103.

[34] R. Housley, W. Polk, W. Ford and D. Solo, “Internet
X.509 Public Key Infrastructure Certificate and Cer­
tificate Revocation List (CRL) Profile,” RFC3280.

[35] C.Hsiao and L.Reyzin, “Finding collisions on a pub­
lic road, or one-way hash functions,” Advances in
Cryptology - CRYPTO 2004, LNCS 3152, Springer-
Verlag (2004), pp.201-213.

[36] R.Impagliazzo and M.Naor, “Efficient cryptographic
schemes provably as secure as subset sum,” J. Cryp­
tology 9 (1996), pp.199-216.

[37] B. Kaliski, “On Hash Function Firewalls in Sig­
nature Schemes,” The Cryptographers’ Track at
the RSA Conference 2002, LNCS 2271 , Springer-
Verlag(2002), pp. 1-16.

[38] J.Kelsey and T.Kohno, “Herding Hash Functions
and the Nostradams Attack,” Advances in Cryptol­
ogy - Eurocrypt 2006, Springer-Verlag (2006).

[39] J. Kelsey and B. Schneier, “Second Preimages on n-
Bit Hash Functions for Much Less than 2n Work,”
Advances in Cryptology - Eurocrypt 2005, LNCS
3494, Springer-Verlag (2005), pp. 474-490.

12

http://itslab.csce.kyushu
http:http://www.ee.technion.ac.il
http://eprint.iacr.org/2005/193

[40] S. Kent and R. Atkinson, “IP Encapsulating Secu­
rity Payload (ESP),” RFC2406.

[41] G.Kim and E.Spafford, “design and implementation
of Tripwire: A file system integrity checker,” In Pro­
ceedings of the 2nd ACM Conference on Computer
and Communications Security, November 1994.

[42] G.Kim and E. Spafford, “Experiences with Tripwire:
Using integrity checkers for intrusion detection. In
Proceedings of Systems Administration, Network­
ing, and Security III, 1994.

[43] G.Kim and E. Spafford, “Writing, supporting, and
evalutaing tripwire: A publically available security
tool.,” In Proceedings of the Usenix UNIX Applica­
tions Development Symposium, 1994.

[44] J.H.Kim, D. R. Simon and P.	 Tetali, “Limits on
the Efficiency of One-Way Permutation-Based Hash
Functions,” 40th Annual Symposium on Founda­
tions of Computer Science (FOCS), (1999).

[45] J.	 Klensin, R. Catoe and P. Krumviede,
“IMAP/POP AUTHorize Extension for Simple
Challenge/Response,” RFC2095.

[46] A.K. Lenstra and E.R. Verheul, “Selecting Crypto­
graphic Key Sizes,” Journal of Cryptology (2001),
vol. 14, no. 4, pp. 255-293.

[47] The NESSIE book (draft	 version April 19 2004).
Available at http://www.cryptonessie.org.

[48] P. Hoffman, “Algorithms for Internet Key Exchange
version 1 (IKEv1),” RFC4109.

[49] W. Lee, D. Chang, S. Lee, S, Sung and M. Nandi
“Construction of UOWHF: Two New Parallel Meth­
ods,” IEICE Transactions on Fundamentals of Elec­
tronics, Communications and Computer Sciences
E88-A(1) (2005), pp.49-58.

[50] W. Lee, D. Chang, S. Lee, S, Sung and M. Nandi,
“PGV-style Block-Cipher-Based Hash Families and
Black-Box Analysis,” IEICE transaction on Funda­
mentals, E88-A, no.1 (2005), pp.39-48.

[51] R. Merkle, “One Way Hash Functions and DES,”
Advances in Cryptology - CRYPTO ’89, LNCS 435,
Springer-Verlag(1990), pp.428-446.

[52] I.Mironov, “Hash Functions: From Merkle-Damgard
to Shoup,” Advances in Cryptology - EUROCRYPT
2001, LNCS 2045, Springer-Verlag(2001), pp.166­
181.

[53] I.Mironov, “Collision-resistant no more: Hash-and­
sign paradigm revisited,” Public Key Cryptogra­
phy - PKC 2006, LNCS 3958, Springer-Verlag(2006),
pp.140-156.

[54] M.Naor and M.Yung, “Universal one-way hash func­
tions and their cryptographic applications,” Proc.
21st STOC (1989), pp.33-43.

[55] C. Neuman, S. Hartman and K. Raeburn, “The
Kerberos Network Authentication Service (V5),”
RFC4120.

[56] J. Peterson, “S/MIME Advanced Encryption Stan­
dard (AES) Requirement for the Session Initiation
Protocol (SIP),” RFC3853.

[57] W. Polk, R. Housley and L. Bassham, “Algorithms
and Identifiers for the Internet X.509 Public Key In­
frastructure Certificate and Certificate Revocation
List (CRL) Profile,” RFC3279.

[58] B.Preneel,	 R.Govaerts and J.Vandewalle, “Hash
Functions Based on Block Ciphers: A Synthetic Ap­
proach,” Advances in Cryptology - CRYPTO ’93,
LNCS 773, Springer-Verlag(1993) pp.368-378.

[59] B. Ramsdell, “Secure/Multipurpose	 Internet Mail
Extensions (S/MIME) Version 3.1 Certificate Han­
dling,” RFC3850.

[60] B. Ramsdell, “Secure/Multipurpose	 Internet Mail
Extensions (S/MIME) Version 3.1 Message Speci­
fication,” RFC3851.

[61] C. Rigney, W. Willats and P.	 Calhoun, “RADIUS
Extensions,” RFC2869.

[62] C. Rigney, S. Willens, A. Rubens and W. Simpson,
“Remote Authentication Dial In User Service (RA­
DIUS),” RFC2865.

[63] J.Rompel, “One-way functions	 are necessary and
sufficient for secure sugnatures,” Proc. 22nd STOC
(2000), pp.387-394.

[64] S. Santesson and R. Housley, “Internet X.509 Pub­
lic Key Infrastructure Authority Information Ac­
cess Certificate Revocation List (CRL) Extension,”
RFC4325.

[65] P.Sarkar,	 “Masking-based domain extenders for
UOWHFs: bounds and constructions,” IEEE Trans­
actions on IT 51 (2005), pp.4299-4311.

[66] J. Schaad, “Internet X.509 Public Key Infrastruc­
ture Certificate Request Message Format (CRMF),”
RFC4211.

13

http:http://www.cryptonessie.org

[67] J. Schaad, B. Kaliski and R. Housley, “Additional
Algorithms and Identifiers for RSA Cryptography
for use in the Internet X.509 Public Key Infras­
tructure Certificate and Certificate Revocation List
(CRL) Profile,” RFC4055.

[68] T.Schweinberger	 and V.Shoup, “ACE: The ad­
vanced cryptographic engine,”, August 14, 2000.
Available at http://www.shoup.net.

[69] V.Shoup,	 “A composition theorem for universal
one-way hash functions,” Advances in Cryptol­
ogy - EUROCRYPT 2000, LNCS 1807, Springer-
Verlag(2000), pp.445-452.

[70] D. Simon, “Finding Collisions on a One-Way Street:
Can Secure Hash Functions Be Based on General
Assumptions?,” Advances in Cryptology - EURO­
CRYPT ’98, LNCS 1403, Springer-Verlag(1998),
pp.334-345.

[71] R.Steinfeld,J. Pieprzyk and H. Wang, “Higher Or­
der Universal One-Way Hash Functions from the
Subset Sum Assumption,” Public Key Cryptogra­
phy - PKC 2006, LNCS 3958, Springer-Verlag(2006),
pp.157-173.

[72] M.Szydlo and Y.L.Yin, “Collision-Resistant Usage
of MD5 and SHA-1 Via Message Preprocessing,”
Topics in Cryptology - CT-RSA 2006, LNCS 3860,
Springer-Verlag(2006), pp.99-114

[73] S. Vaudenay, “On the Need for Multipermutations:
Cryptanalysis of MD4 and SAFER,” Fast Soft­
ware Encryption FSE95, LNCS 1008, Springer-
Verlag(1995), pp. 286-297

[74] X.Wang, D.Feng, X. Lai, and H. Yu, “Collisions
for Has Functions MD4, MD5, HAVAL-128 and
RIPEMD,” IACR Eprint archive 2004/199, Aug.
2004

[75] X. Wang, Y. L.Yin, and H. Yu,	 “Finding Colli­
sions in the Full SHA-1,” Advances in Cryptology ­
CRYPTO 2005, LNCS 3621, Springer-Verlag(2005),
pp.17-36.

[76] X.Wang,	 A.Yao, and F.Yao, “Cryptanalysis on
SHA-1,” Proceedings of Cryptographic Hash Work­
shop,

[77] M.N.Wegman and J.L.Carter, “New hash functions
and their use in authentication and set equality,”
JCSS 22 (1981), pp.265-279.

[78] A.Yamamura and H.Ishizuka, “Detecting errors and
authentication in quantum key distribution,” Infor­
mation Security and Privacy (ACISP2001), LNCS
2119, Springer-Verlag(2001), pp.260-273.

[79] T. Ylonen and C. Lonvick, “The Secure Shell (SSH)
Transport Layer Protocol,” RFC4253.

[80] G. Yuval,	 “How to swindle Rabin,” Cryptologia
(3)(1979), pp.187-190.

[81] T. Zseby, M. Molina, N. Duffield, S. Niccolini and F.
Raspall, “Sampling and Filtering Techniques for IP
Packet Selection,” draft-ietf-psamp-sample-tech-07.

[82] G. Zorn, D. Leifer, A. Rubens, J. Shriver, M. Hol­
drege, I. Goyre, “RADIUS Attributes for Tunnel
Protocol Support,” RFC2868.

[83] “Health Insurance Portability and Accountability
Act,”
http://www.cms.hhs.gov/HIPAAGenInfo/

[84] National Institute of Standards and Technology,
“Draft Federal Information Processing Standard
(FIPS) 186-3 - Digital Signature Standard (DSS),”
March 2006. Available at http://csrc.nist.gov/.

[85] National	 Institute of Standards and Technol­
ogy, “NIST Special Publication 800-78: Crypto­
graphic Algorithms and Key Sizes for Personal
Identity Verification,” April 2005. Available at
http://csrc.nist.gov/.

[86] IEEE, “IEEE Std 1363-2000:	 Standard Specifica­
tions for Public-Key Cryptography,” January 2000
.

[87] “Information	 technology – Security techniques –
Time-stamping services –,” ISO/IEC18014-2.

[88] RSA Laboratories,	 “PKCS#1 v2.1: RSA Cryp­
tography Standard,” June 2002. Available at
http://www.rsasecurity.com/rsalabs/.

[89] “Sarbanes-Oxley Act of 2002,”
SOX:www.sec.gov/about/laws/soa2002.pdf

14

http://www.rsasecurity.com/rsalabs
http:http://csrc.nist.gov
http:http://csrc.nist.gov
http://www.cms.hhs.gov/HIPAAGenInfo
http:http://www.shoup.net

R
eq

u
ir

em
en

ts

P
ro

to
co

ls
C

o
n

fi
d

en
ti

al
it

y
A

u
th

en
ti

ca
ti

o
n

C
er

ti
fi

ca
ti

o
n

In
te

g
ri

ty
P

er
fo

rm
an

ce
C

o
st

-E
ff

ec
ti

v
en

es
s

D
ev

el
o

p
m

en
t

P
er

io
d

C
er

ti
fi

ca
ti

o
n

D
ig

it
al

 S
ig

n
at

u
re

 -
D

K
IM

:
S

h
o

rt
-t

er
m

D
o

cu
m

en
t:

 M
ed

iu
m

-t
er

m

P
K

IX
X

.5
0

9
 C

er
t

&
 C

R
L

:
R

F
C

3
2

8
0

E
x

te
n

si
o

n
s:

 R
F

C
4

3
2

5

T
im

e
S

ta
m

p
R

F
C

3
1

6
1

A
u

th
en

ti
ca

ti
o

n
K

er
b

er
o

s
R

F
C

4
1

2
0

IE
E

E
8

0
2

.1
X

-E
A

P
d

ra
ft

-c
am

-w
in

g
et

-e
ap

-f
as

t0
3

.t
x

t

A
P

O
P

R
F

C
2

1
9

5

R
F

C
2

0
9

5
S

h
o

rt
S

h
o

rt
-t

er
m

S
m

al
l

S
ec

u
re

 C
o

m
m

u
n

ic
at

io
n

IP
se

c
IK

E
:

R
F

C
4

1
0

9

E
S

P
:

R
F

C
2

4
0

6

S
S

L
/T

S
L

T
L

S
 P

ro
to

co
l:

 R
F

C
2

2
4

6

E
x

te
n

si
o

n
s:

 R
F

C
3

5
4

6

S
S

H
R

F
C

 4
2

5
3

S
ec

u
re

 E
-m

ai
l

S
/M

IM
E

V
er

2
:

R
F

C
2

3
1

2
,

R
F

C
2

3
1

1

V
er

3
.1

:
R

F
C

3
8

5
1
,

R
F

C
3

8
5

0

P
G

P
R

F
C

3
1

5
6

O
th

er
s

P
ac

k
et

 S
am

p
li

n
g

F
il

te
ri

n
g

d
ra

ft
-i

et
f-

p
sa

m
p

-s
am

p
le

-t
ec

h
-0

7
.t

x
t

M
ed

iu
m

S
h

o
rt

-t
er

m
S

m
al

l

D
at

ab
as

e
R

et
ri

ev
al

 -
M

ed
iu

m
M

ed
iu

m
-t

er
m

 -

S
o

ft
w

ar
e

D
o

w
n

lo
ad

 -
S

h
o

rt
L

o
n

g
-t

er
m

M
ed

iu
m

:
R

ec
al

cu
la

ti
o

n
 o

f
h

as
h

 v
al

u
e

S
h

o
rt

-t
er

m

L
o

n
g

-t
er

m

In
fl

lu
en

ce

L
ar

g
e:

 R
ev

o
ca

ti
o

n
 R

es
ig

n
in

g

sm
al

l

sm
al

l

L
ar

g
e:

 R
es

ig
n

in
g

L
o

n
g

-t
er

m
 a

ss
u

ra
n

ce

L
o

n
g

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

IE
T

F
 R

F
C

S
er

v
ic

e

D
ev

el
o

p
m

en
t

sm
ar

t
ca

rd

S
h

o
rt

-t
er

m

S
ec

u
ri

ty

Figure 2: Requirements for Hash function in systems

15

