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Abstract 

Cryptographic hash functions have been widely studied 
and are used in many current systems. Though much re­
search has been done on the security of hash functions, 
system designers cannot determine which hash function is 
most suitable for a particular system. The main reason for 
this is that the current security classification does not cor­
respond very well to the security requirements of practical 
systems. This paper describes a new classification which 
is more suitable for designing real-life systems. This clas­
sification is the result of a new theoretical classification 
and a new qualitative classification. We show a mapping 
between each class and standard protocols. In addition, 
we show new requirements for four types of hash function 
for a future standard. 

1 Introduction 

A cryptographic hash function provides certain security 
properties and plays a crucial role in building security ap­
plications related to digital signatures, authentication, and 
message integrity. It is also used to construct pseudoran­
dom number generators and practical instantiation of the 
random oracle. The most commonly used hash functions 
are MD5 and SHA-1, designed by Ronald Rivest and by 
the National Security Agency (NSA), respectively. These 
have become de facto standards and are widely used in 
many applications. Recently, successful attacks against 
hash functions have been demonstrated by numerous re­
searchers. Among these, the attacks by Wang [74, 75, 76] 
have had a great impact on both theoretical and practical 
research on hash functions. Wang’s attack finds a pair of 
two distinct messages with the same hash digest of SHA­
0 and MD5. It takes only a few hours to find collisions 
of two distinct messages for MD5. On the other hand, 
according to Wang’s latest announcement, the estimated 
cost to find a collision for SHA-1 is 263 . These attacks 
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unveil the vulnerability of some applications using exist­
ing hash functions, and the replacement of existing hash 
functions can be a severe burden for vendors, system de­
signers, and users. In particular, the vulnerability of hash 
functions affects the public key infrastructure scheme and 
the replacement of weakened hash functions by new ones in 
PKI schemes or real-life protocols will be a major project. 
We note that Bellovin and Rescorla discuss how to deploy 
a new hash function without harming the existing real-life 
systems. Hash functions are chiefly used for authentica­
tion and data integrity, and so the security provided can 
be measured by the lifespan of the data. Traditionally, 
the security notion of hash functions is discussed from a 
theoretical standpoint. Since hash functions are usually 
fixed techniques and the security parameter is not fed, the 
security is not measured asymptotically to the security pa­
rameter. On the other hand, it is sometimes necessary to 
consider the trade-off between security and performance 
because of some constraints. In this paper, we clarify the 
usage of cryptographic hash functions and the security re­
quirement in practical security systems. In particular, we 
survey the usage in practical protocols specified in RFC 
and so on. Looking into practical applications, we observe 
that the security requirements are not properly evaluated. 
Therefore, a reexamination of the security concept of hash 
functions in protocols is required before replacement hash 
functions can be created. Hence, we discuss how to widen 
the scope of cryptographic hash functions and give a new 
classification for the future use of cryptographic hash func­
tions in practical use. We also discuss changing the con­
cepts of hash functions and their mode of operations. 

In Section 2, we discuss the traditional classifications 
of hash functions and recall typical usages of hash func­
tions in cryptographic schemes. In Section3, we list several 
usages hash functions in real-life systems. We exemplify 
that hash functions are inevitable in numerous information 
communication systems even though the strong security 
properties of hash functions are not necessarily required 
in some cases. In Section 4, we argue the several reasons 
for traditional classification is not suitable for the current 
usages in real-life systems. Then we shall discuss how to 
classify hash-related techniques and how to evaluate its 
security properties in Section 5. We exclude message au­
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thentication codes (MAC) from our discussion because our 
goal is to discuss successor of the traditional collision re­
sistant hash functions such as SHA-1. Then our proposal 
on classification will be given in Section 6 in which we 
emphasize four types of hash functions. The classification 
is made based on theoretical assurance, availability and 
performance. In Section 7, we consider additional require­
ments for hash functions. 

Existing Cryptographical Clas­
sification 

Hash functions are traditionally classified into two essen­
tially distinct categories: non-cryptographic hash func­
tions and cryptographic hash functions. Cryptographic 
hash functions are classified into message authenticated 
codes (MAC), one-way hash functions (OWHF), collision-
resistant hash functions (CRHF), and universal one-way 
hash functions (UOWHF) (Figure 1). While we do not dis­
cuss any technical definition of these techniques, we con­
sider the current usage of them in industrial scenes. Non-
cryptographic hash functions have been chiefly used to 
search database systems and have had nothing to do with 
security systems. Cryptographic hash functions are almost 
always required to be collision resistant, and most of the 
instantiations in practical security systems are restricted 
to a few hash algorithms of the SHA-family or the MD4­
family. Cryptographic hash functions are constructed us­
ing compression functions and composition methods. 

Non-cryptographic hash functions may also require se­
curity to some extent. Of course, these need not be as 
secure as cryptographic hash functions. Here, we explain 
the necessity of reexamining such hash functions. 

2.1	 Security of cryptographic hash func­
tions 

Suppose h : {0, 1}∗ → {0, 1}n is a hash function. Crypto­
graphic hash functions should have the following proper­
ties. 
Collision resistant : The computational cost to find the 

′input pair x and x which holds h(x) = h(x ′) must not be 
n

smaller than 2 2 , which is estimated with respect to the 
birthday paradox. 
Pre-image resistant : The computational cost to find 
the input x, where h(x) = y must not be smaller than 2n . 
Second pre-image resistant : The computational cost 
to find the input x ′(̸ ′) = y= x), where h(x) = y and h(x 
must not be smaller than 2n . It has been shown in [39] 
that the necessary number of algorithm step may be less 
than 2n if immense memory is allowed, that is, a kind of 
time-memory trade-off methods is used. 
Universal one-way : Choose an element x ∈ D. When 
a key K is randomly chosen, it is hard for an adversary to 
find y ∈ D (x ̸= y) such that hK (x) = hK (y). 

2.2	 Message authentication code 

The message authentication code (MAC) is a keyed hash 
function. There are two types of popular MAC: HMAC, 
which is constructed from two hash functions, and those 
based on a block cipher such as CBC-MAC or CMAC. 
The security property of MAC is unforgeability. A block­
cipher-based MAC is easier to forge than HMAC for an ad­
versary who gets the key. Security against side-channel at­
tacks should also be considered. We do not discuss MACs 
in this paper because our goal is to discuss successor of 
the traditional collision resistant hash functions such as 
SHA-1 and much of the research done on MACs is well 
known. 

2.3	 Collision resistant hash functions 

Most collision-resistant hash functions h : {0, 1}∗ → 
{0, 1}n are constructed through the iterated use of com­
pression function f : {0, 1}n+m → {0, 1}n . Then the se­
curity of such hash functions depends on the design of 
compression functions and the iteration methods. 

2.3.1 Construction 

The Merkle-Damg̊ard construction is a well known solu­
tion for the question of how to iterate a compression func­
tion [20, 51]. Tree construction is another way, but most 
practical hash functions are based on Merkle-Damg̊ard or 
its extensions. 
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Some research has examined the security relation be­
tween f and h, but has not led to a practical improve­
ment in security. Recent results (e.g., Wang et al.) of 
attacks have show that pseudo-collisions or near-collisions 
are a real threat to the Merkle-Damg̊ard construction. A 
solution to these potential problems is needed. 

2.3.2 Compression function 

Block cipher based: Block ciphers are used as com­
pression functions because they are highly trusted func­
tions that provide practical security and are easy to eval­
uate. PGV-style construction is widely used [58]. On the 
other hand, they must execute the key set-up function 
many times, so the performance is very slow. 

Dedicated function: The MD4-family that has evolved 
from MD4 to SHA-224/-256/-384/-512 is a de facto stan­
dard. Many types of dedicated function have been chosen 
as international standards (e.g., SHA-1,2, RIPEMD-160, 
Whirlpool). Until 1998, the results of an attack on a hash 
function were known only for the reduced MD4 [17] and 
the near collision of [73]. In 1998, MD4 was completely 
broken by Dobbertin [23]. Until 2004, analysis confirmed 
the security properties of the MD5 and SHA-1 compres­
sion functions and the collision search for reduced MD5, 
SHA-0, and SHA-1. In 2004, MD5 was completely broken 
by Wang et al. [74] and SHA-1 now seems close to be­
ing broken [75]. Though practical performance has been 
achieved, most dedicated functions are now in a critical 
situation. 

Arithmetic function: MASH-1/-2, which are based 
on modular arithmetic, were among the functions chosen 
for ISO/IEC 10118-4. The functions based on the knap­
sack problem have unresolved problems regarding security. 
Some, such as VSH [15], have provable collision resistance, 
but most are not suitable for practical use. 

2.3.3 Recent works 

In response to the SHA-1 crisis, research has shown that 
security can be improved with minimal changes made to 
the algorithm. SHA-1 IME [72] has an improved form of 
message preparation compared to that of SHA-1, and ran­
domized hash [30] is a technique which makes it difficult to 
find a collision pair through a randomizing message. In ad­
dition, new dedicated hash functions have been proposed 
(FORK-256, DHA-256, etc). While most hash functions 
have a fixed output length, there have been some attempts 
to enable a variable length. For example, SHA-V is a vari­
able length hash function based on SHA-1 [31]. 

2.4	 Random Oracle methodology 

In practical systems, random oracles are instantiated by 
a hash function. Such instantiation does not necessar­
ily provide a level of security equal to provable security. 
We should not depend too much on random oracle mod­
els: several studies have shown that various cryptographic 
systems are secure in the random oracle model, but in­
secure for any concrete instantiation of the random ora­
cle [13, 29, 18]. At present, given the success of Wang’s 
attack, we should concentrate on techniques such as sig­
nature schemes and time stamps. There are several ap­
proaches that enable provable security with or without 
depending on random oracle models [10, 16]. 

2.4.1 Full Domain Hash Scheme 

Here, the output size of a hash function is exactly the size 
of the (RSA) modulus. Implementing such a scheme re­
quires a concrete method, such as MGF1, to extend the 
length of a hash function. In general, it is desirable to 
have consistency among the hash sizes and other security 
parameters such as the size of the modulus of the compos­
ite numbers used in factoring-based systems. It may be 
better to have hash functions that allow choice regarding 
the digest size. 

2.4.2 Mask generation functions 

In some provably secure cryptosystems, a mask generation 
function, such as MGF1 [88, 86], is used as a building block 
for instantiating random oracles. For example, RSASSA­
PSS [88] was recently included in NIST FIPS 186-3 [84] 
and SP800-78 [85]. 

MGF1 is based on the ideas of Bellare and Rogaway [5] 
and [6]. It is viewed as a custom method to extend the 
length of a hash function. Such a construction has been 
adopted to avoid structured operations in standard hash 
functions. This may not be completely unrelated to the 
design criteria of the hash function. 

2.5	 UOWHF(Universal one-way hash 
function) 

UOWHFs (introduced by Naor and Yung [54]) can be 
considered keyed hash functions that satisfy the following 
property: an adversary chooses a message x and then the 
function hK is chosen randomly; it then becomes hard for 
the adversary to find y (x ̸= y) such that hK (x) = hK (y). 

Signature schemes constructed based on the hash-and­
sign method are no more secure than a hash function 
against a collision-finding attack. The recent attacks by 
Wang against SHA-1 call these methods into question. 
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It is well known that a simple modification of the hash­
and-sign paradigm may replace the collision-resistant hash 
with a UOWHF [54, 7]. 

On the other hand, the UOWHF has several disad­
vantages. So far, UOWHFs are inefficient compared to 
CRHFs; the key size grows logarithmically with the mes­
sage size. However, a few practical techniques currently 
use UOWHFs; for example, ACE-Sign [68] is based on 
UOWHFs and has a not so tight reduction [47]. 

This poor efficiency and other disadvantages have 
slowed the development and deployment of UOWHFs. For 
example, no standard technique has been established by 
any international standards organization. This means it 
is hard to achieve interoperability and difficult to deploy 
UOWHFs. 

3	 Hash Functions in Information 
Systems 

Generally, a hash function is used to securely provide ser­
vices through systems. However, many system developers 
and engineers use security products in which a hash func­
tion is applied, yet they are not conscious of each hash 
function’s security requirements. They therefore choose 
hash functions such as MD5 and SHA-1 without being 
aware of how an attack on the hash function can affect 
a system. In this section, we describe hash function re­
quirements from a system developer’s viewpoint. First, 
we describe the requirements during the design of systems. 
After that, we describe the current usage of hash function 
in systems. We then categorize hash function usage with 
regard to the requirements. 

3.1 Requirements in system design 

The system design requirements are as follows. 

Security requirements : Systems have to fulfill the fol­
lowing security requirements to provide services securely. 

Confidentiality : Systems which store and use data, 
such as individual information, have to protect it from 
eavesdropping by malicious users. 

Authentication and Certification : In some systems, 
such as those used for content delivery services, con­
tent providers have to identify users for payment. 
When operators log onto systems to update software, 
the systems need to confirm the validity of each op­
erator to prevent internal crimes. 

Integrity : Some systems which issue certificates, such 
as a driver’s license, have to prevent falsification of 
certificates and guarantee their validity. 

System development requirements : 

Choosing an algorithm : The design or algorithms 
used in a system are chosen based on requirements 
with respect to performance and operating environ­
ment. For example, a light-weight algorithm is needed 
for low-power devices. Thus, algorithms that can sat­
isfy various performance and environmental require­
ments should be prepared. 

Development-cost : In almost all cases, the develop­
ment cost is decided beforehand, and this includes 
the cost of security mechanisms. However, most cus­
tomers are unaware of the additional costs of replac­
ing a broken hash function with a new one. 

Development period and system life cycle : Most 
information systems have a life cycle which includes 
development, operation, and renewal phases. The 
basic design and algorithm are decided early in the 
development phase. Thus, when a hash function is 
broken during a later phase, replacement of the hash 
function will be planned immediately before the next 
renewal. 

Requirements for each service : 

Compliance (Long-term assurance) : In financial 
systems and healthcare systems, many documents 
must be securely preserved for a long time. For exam­
ple, in the United States, SEC17a-4 states that e-mail 
messages regarding the dealing of securities and so on 
must be stored for at least five years. The Sarbanes-
Oxley (SOX) Act obliges corporations to store fiscal 
reports, audit reports, and all business transaction 
and conference related documents for at least five 
years [89]. Furthermore, the Health Insurance Porta­
bility and Accountability Act (HIPAA) requires the 
storage of medical information for at least seven years 
[83]. If, for example, we use time-stamp technology to 
ensure the integrity of documents, this sort of legisla­
tion means that a time-stamping system must provide 
long-term assurance, such as a guarantee of at least 
five years. 

Enforcement of products : The Certificate Authority 
(CA) and Time Stamping Authority (TSA) systems, 
for example, must be high-level security systems. 
Therefore, customers typically request that these sys­
tems use a Hardware Security Module (HSM) that 
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has been validated under the Cryptographic Module 
Validation Program (CMVP). 

3.2 Usage of hash functions in systems 

Many information systems use security protocols with 
hash functions, such as SHA-1. In this section, we list 
the protocols used with a hash function, and the impact 
of a broken hash function. 

3.2.1 Protocols used with Hash Function 

Certification : This category consists of certification 
protocols which guarantee the validity of signers, docu­
ments, issuers, etc. 

Digital Signature : Digital signature is an encryption 
scheme for authenticating digital data. In general, 
a digital signature scheme consists of both message 
authentication codes compressed by a hash function 
and digital signature schemes encoded by public key 
encryption. Most digital signature schemes use a hash 
function to ensure the integrity of messages. 

PKIX : PKIX provides an Internet X.509 Public Key 
Infrastructure Certificate and CRL profiles. PKIX 
uses a hash function to ensure the integrity of the 
certificates and CRL profiles. 

Time Stamping : The Time Stamping protocol pro­
vides a time stamp token which guarantees the time 
at which data existed. The Time Stamping protocol 
uses a hash function to ensure the integrity of the 
time stamp token. 

Authentication : This category consists of authentica­
tion protocols which confirm clients, etc. 

Kerberos : Kerberos provides authentication, prevents 
eavesdropping, and ensures the integrity of data on 
the client-server model. Kerberos uses a hash func­
tion to calculate the hash value of the entered client 
password and this becomes the secret key of the client. 

IEEE802.1X-EAP : IEEE802.1X-EAP provides au­
thentication, active key generation, and key delivery 
on wireless networks. The EAP-FAST protocols in 
IEEE802.1X-EAP are based on the TLS handshake 
protocol, which uses a hash function. 

APOP : APOP provides authentication which enciphers 
the password used for reception of an e-mail message. 
APOP uses a hash function (MD5) to prevent replay 
attacks and disclosure of a shared secret. 

RADIUS is also a protocol that uses a hash function 
(e.g., SHA-1) to ensure the integrity of data and applica­
tions in information systems. 

Secure communication : This category consists of the 
secure communication protocols which include key ex­
change, etc. 

IPsec : IPsec provides secure communication at the 
network layer by encrypting and authenticating IP 
packets. Internet Key Exchange (IKE) protocols in 
IPsec use hash functions as pseudo-random functions. 
Moreover, hash functions are used to ensure the in­
tegrity of all protocol messages in protocols. 

SSL/TLS : Secure Socket Layer (SSL) and Transport 
Layer Security (TLS) enables authentication and se­
cure communication on the Internet. These proto­
cols prevent eavesdropping, falsification, and message 
forgery. The handshake protocol in SSL uses a hash 
function to create a message authentication code. 

SSH : SSH authenticates users, and provides a secure 
channel between a local and a remote computer. SSH 
uses hash functions to produce message authentica­
tion codes that ensure the integrity of data exchanged 
between the two computers. 

Secure E-mail : This category consists of secure e-mail 
protocols which encrypt e-mail messages to protect pri­
vacy and verify the integrity of messages. We show them 
as follows. 

S/MIME : S/MIME provides authentication, message 
integrity protection, and privacy protection of data. 
S/MIME uses a hash function in a digital signature 
scheme to ensure the authenticity and integrity of e-
mail messages. 

PGP : PGP provides e-mail encryption and authentica­
tion. PGP uses a hash function to ensure the integrity 
of e-mail messages. 

Other protocols : Protocols in this category do not 
have precise security requirements regarding the hash 
function. 

Packet sampling and filtering : Packet sampling pro­
tocols select a representative subset of packets, and 
packet filtering protocols remove packets that are not 
needed. Packet sampling protocols use hash functions 
as pseudo-random functions to select packets at ran­
dom. Packet filtering protocols use hash functions 
to generate packet digests which are used to identify 
packets. 
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Database retrieval : Hash functions are applied to 
generate keys used to efficiently retrieve target data 
from large bodies of data stored in a database. 

Software download : Software download systems use 
hash values as check sums to ensure the integrity of 
software. Users confirm whether the software has 
been altered. 

Intrusion Detection System (IDS) and DomainKeys 
Identified Mail (DKIM) are also protocols that use hash 
functions. IDS uses a hash function for the system in­
tegrity verifier (SIV), and DKIM uses a digital signature 
scheme which includes hash functions to ensure the mes­
sage integrity. 

We show the classification of protocols which uses hash 
function in systems, and influence on the attack in Figure 
2. 

4	 Gaps between Theoretical Clas­
sification and Current Usage 

In this section, we first discuss gaps between the area cov­
ered by the present cryptographic classification and the 
current usage of hash functions. After that, we state the 
classification requirements suitable for both worlds. 

4.1 Lack of quantitative security 

In Section 2, we described the existing hash function clas­
sifications. These classifications are based on qualitative 
analysis. However, the security of real-life systems is con­
sidered from the perspective of a risk analysis method such 
as ISMS, ISO/IEC 15408, ISO/IEC 27001-2005, and so on. 
The results of such an analysis are quantitative. 

For example, a digital signature used in time-stamping 
services must be valid for over seven years for HIPPA, 
and a digital signature for certificates must be valid for 
one to three years and remain resistant against possible 
adversaries. 

On the other hand, a hash value used in only one ses­
sion must be valid until the end of the session. If a hash 
value is used as a cookie in a Web-based service to pre­
vent a man-in-the-middle attack, the system must prevent 
generation of a collision for the hash value before the end 
of the session. Typically, a session does not last long (i.e., 
one hour or less). For another example, a hash value used 
in an APOP protocol does not require long-term collision 
resistance. To protect such systems from being needlessly 
weakened, a weaker security class should be added and a 
guideline for such usage provided. The problem in this 

area is there are no security criteria for such usage. In 
most cases, a system engineer embeds hash functions into 
a system without doing a formal security analysis. This is 
because most engineers lack sufficient knowledge of hash 
functions, and there is no formal measurement of hash 
functions for such usage. 

When we want to use the current classification to de­
sign a secure system, a system engineer cannot easily judge 
whether any particular hash function is suitable for a spec­
ified system. Most hash functions ensure theoretical secu­
rity, such as collision resistance, second pre-image resis­
tance, and so on, but a system engineer cannot reliably 
determine when each hash value becomes invalid in the 
system. Thus, we must consider the quantitative security 
aspect of hash functions and include this in the classifica­
tion. 

4.2 Additions to theoretical classification 

In governmental cryptographic standard such as NESSIE 
and CRYPTREC, “provable security” is quite important 
nature for cryptographic algorithms. Government recom­
mend provable secure digital signature schemes. This is 
because, digital signatures in e-governments must be se­
cure for strong adversaries. 

On the other hand, current qualitative criteria for hash 
functions is collision resistance, second pre-image resis­
tance and one-wayness as explained in Section 2. Collision 
resistance is seen as an important characteristics, because 
it is thought as most strong notion among these three. 
These three notions are all rigorously defined. However, 
there are no provable secure constructions of them. 

Current most secure digital signature schemes are 
proven in random oracle model. However, all standard 
hash function is not the random oracle. Consequently, 
this shows there is no secure digital signature in real sys­
tem. The existing qualitative classification does not cover 
all hash function usage. Thus, we must consider the fol­
lowing modifications to theoretical classification. 

Collision resistance is sufficient for most usages. This is 
helpful for authentication, key exchange, and other light 
weight usages. However, it is not sufficient for high-level 
security such as several systems in e-government. To cover 
such usage, a theoretical class which ensures a “real” prov­
able secure digital signature is needed additional to colli­
sion resistance. 

4.3 Requirements for new classification 

For the reasons given above, we must define a new system 
of classification which covers everything from cryptograph­
ically strong classes to light-weight but practically secure 

6 



classes. 
The requirements that such a classification must meet 

are as follows. 

•	 The classification must include a quantitative index, 
which covers from long-term security assurance to 
short-term security assurance. 

•	 Theoretical classification must be redefined to cover 
the entire range from provable security to light and 
practical security. 

Thus, a new classification system will be based on a 
two-dimensional matrix containing both qualitative index 
values and quantitative index values. 

5	 New Security Classification of 
Hash Functions 

5.1 Cryptographical security 

5.1.1 Redefine of security 

The security of hash functions has been evaluated only 
in terms of collision resistance as estimated by the birth­
day paradox, as shown by Yuval in 1979 [80]. The at­
tack criteria with respect to the reduced round type or 
the properties of pseudo-collisions and near collisions have 
not been studied enough compared to the differential and 
linear properties of block ciphers. It is necessary to rede­
fine collision resistance. In particular, for an iterated hash 
function, the present collision resistance is clearly not suffi­
cient with respect to the security property. Thus, collision 
resistance should be classified using “full collision”, “near 
collision” and “pseudo-collision” categories. 

Full collision is the same as an existing collision and 
the level of security against it can be estimated with re­
spect to the birthday paradox. This corresponds to a brute 
force search and can be applied to the evaluation of a com­
pression function f . 

Near collision is a collision within a few bit positions. 
How the hash value is truncated (e.g., truncation of the 
output from SHA-256 to a 160-bit hash value) will become 
an important property. How to estimate a near-collision 
is an open problem. In a certain situation, near collision 
resistent property is useful, for example, near collision is 
crucial in [78]. 

Pseudo collision is a collision where h(x; IV ) = 
h(x ′ ; IV ′) holds. The Merkle-Damg̊ard construction po­
tentially has this weak property. In particular, it is im­
portant to estimate the level of security against an attack 

using a multi-message block, such as Wang’s SHA-1 at­
tack. How to estimate a pseudo-collision is an open prob­
lem. 

5.1.2 Requirement of new CRHF 

New CRHFs should be developed by taking into account 
the following points. 
Need to improve the compression function f 
This will greatly affect the security and performance of 
a CRHF. Dedicated designs should be devised to achieve 
a theoretical security property such as provably secure. 
Arithmetical functions should improve performance. 
Need to improve the construction h 
The Merkle-Damg̊ard construction has the property 
h(x1||x2; IV ) = h(x2; h(x1; IV )). In an actual system, 
the demand for iterated hash functions is consequently 
large because of their good performance and ease of use. 
Therefore, the iterated construction should be used to find 
another construction which can solve the pseudo-collision 
problem or provide minimal security regarding collision 
resistance in a theoretical way. 
Size of hash value 
In addition to the demand for iterated hash functions, as 
stated above, from the viewpoint of hash size compatibil­
ity a decision on a standard 128-bit or 160-bit CRHF is 
desirable. For such use, security requirements are within 
a limited range. It is necessary to show that this limited 
security is enough for such usage. 

5.1.3 Requirement for UWOHF 

Naor and Yung’s method [54] is not really practical be­
cause the length of keys for a UOWHF becomes longer in 
proportion to the message size. Bellare and Rogaway [7] 
provide a better solution to this problem. At present, 
the best methods provide signature techniques with a 
UOWHF where the key grows logarithmically with the 
message size. Among these, Shoup [69] gives the most ef­
ficient construction, which can be considered an extended 
Merkle-Damg̊ard construction. 

Theoretical assurance of the security of signature 
schemes has attracted increased attention since Wang’s 
attacks. A UOWHF has some advantages compared to a 
CRHF. It is theoretically possible to construct a UOWHF 
using only a one-way function. This assumption is much 
weaker than the assumption needed for CRHFs. Most 
signature techniques depending on CRHFs are vulnera­
ble to the recent attacks of Wang et al. However, signa­
ture techniques have been introduced that depend only 
on UOWHFs [54, 63] and Wang’s attack is not a threat 
to signatures using UOWHFs. In addition, the security 
of UOWHFs is not compromised by the birthday paradox 
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attack. Thus, the cost of a generic attack on a UOWHF 
is 2n if the size of the hash digest is n. Note that the 
cost of a generic attack (a birthday paradox attack) on a 

n

CRHF is 2 2 . There is a trade-off between such generic se­
curity criteria and usability; UOWHFs need keys and the 
key length grows logarithmically with the message size, 
whereas a CRHF needs no key (Table. 1). 

Gennaro, Gertner, Katz and Trevisan [28] claim that 
the construction by [54] is optimal among a black box 
construction of UOWHFs using one-way functions. It fol­
lows that there is no effective way to construct a UOWHF 
in a universal manner. Therefore, it is necessary to con­
struct an effective UOWHF directly from its theoretical 
primitives. In fact, we do not know whether an effec­
tive UOWHF actually exists. A worthy goal is to show 
whether an effective UOWHF construction exists and to 
standardize it if it does. 

5.1.4 Mode of operations 

The mode of operation related to hash functions would 
be desirable in many ways; it provides additional prop­
erties for security systems based on hash functions. The 
ability to change the length of hash digests would be an 
attractive feature. An appropriate mode of operation may 
allow the hash digest size to be changed. This is desired 
for the FDH-based signature scheme. In a random oracle 
model, we use many different mutually independent ran­
dom oracles. The mode of operation may allow such hash 
function variations. In some applications, we need a hash 
function whose digests belong to particular mathematical 
structures, such as groups of elliptical curves. In such a 
case, it is not easy to encode hash digests to an element 
in the target domain, so it will be beneficial to provide 
a mode of operation for encoding hash digests to a spe­
cific domain. It is sometimes critical to specify the object 
identifier (OID) of hash functions, which is known as the 
hash firewall [37]. It may be possible to adopt a mode of 
operation that takes care of this. 

5.2	 Quantitative classification from valid 
period 

Next, we add a quantitative classification. We catego­
rize the quantitative security of hash functions into three 
groups. 

Long-term security This category contains certificates 
assuring that data has not been forged over long periods 
of time; e.g., over five years to comply with the SOX Act. 
A time-stamp token issued by a time-stamp authority is 
an example of this category. Other possible examples are 

signed contracts and the some kind of digital signatures 
which are widely transferred. 

In such applications, the system must prevent forgery of 
time-stamp tokens over long time spans. Thus, the hash 
functions used must be secure against any adversary for 
the same period of time. Here, we assume that a hash 
function which will be secure over five years must be used 
for systems in this category. In addition, any desired se­
curity parameter (e.g., the search space) must exceed 2128 

to account for the possibility of a birthday attack. 

Medium-term security This category contains certifi­
cates which assure the data has not been forged and these 
certificates must remain reliable for two to three years. 
Public key certificates are a good example of this. The 
valid period of a public key certificate varies according 
to the security policy of the certificate authority, and this 
may be two or three years. Credentials for certain services 
realized through digital signatures or hash values are an­
other application. The valid period of such credentials is 
limited to within one or two years, and is sometimes only 
one month. 

In this kind of application, the collision resistance of a 
hash function is important, but the required security is 
weaker than long-term security. Moreover, such opera­
tions may be done through smart cards, so light and min­
imally secure hash functions are desirable. Here, we as­
sume that a hash function which will be secure anywhere 
from 1 month to five years should be used for systems in 
this category. In addition, the desired security parameter 
(e.g., the search space) must be 280 to cope with birthday 
attacks. 

Short-term security This category contains hash val­
ues and digital signatures used for key exchange, to pre­
vent replay attacks and man-in-the-middle attacks, or for 
temporary authentication. The valid period of such values 
varies according to the services; however, this is limited to 
the period of service use. This is typically one month at 
the longest. 

In this kind of application, the collision resistance of 
a hash function is still important, but the required secu­
rity is weaker than medium-term security, and a lighter 
and minimally secure hash function is desirable. Some 
standard protocols require a short hash length, which is 
limited by the packet size and performance requests. Such 
usage also falls into this category. We assume that hash 
functions which will be secure for up to one month can be 
used for systems in this category. In addition, the desired 
security parameter (e.g., search space) should be 264 to 
cope with birthday attacks. A shorter security parame­
ter may be acceptable depending on the security policy of 
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CRHF UOWHF 

Key No Key size grows logarithmically with the message size 
Adversary 

Goal 
Find x, y ∈ D (x ̸= y) 

s.t. h(x) = h(y) 
Choose x ∈ D 
Given hK ∈ H 

Find y ∈ D (x ̸= y) s.t. hK (x) = hK (y) 
Compression 

functions 
Dedicated functions 
Block cipher based 

Arithmetic 

Strongly universal2 functions 

Construction 
methods 

Merkle-Damg̊ard 
Tree 

XOR linear 
XOR tree 

Shoup (extended Merkle-Damg̊ard) 
Standard ISO 10118-3 No standard exists 

Table 1: Comparison between CRHF and UOWHF 

Category Period Security parameter 
Long-term over 5 years 2128 

Medium-term 1 month - 5 years 280 

Short-term under 1 month 264 

Table 2: Comparison among three categories 

each system. 
These three categories are compared in Table 2. 

6 Our Proposal 

In this section, we propose a new classification, then map 
the various types of usage described in Section 3.2 with 
respect to this classification. 

6.1 New classification 

The new classification is based on a two-dimensional ma­
trix with qualitative index values and quantitative index 
values. The qualitative index has two members as de­
scribed in Section 5.1. These are the CRHF and the 
UOWHF. 

The quantitative index has three members, described in 
Section 5.2. These are long-term security, medium-term 
security, and short-term security. Consequently, the re­
sulting matrix contains six cells. 

Next, we map current forms of usage (described in Sec­
tion 3.2) into the matrix. Table 3 shows the result of this 
mapping. 

Time-stamping realized through the use of a digital sig­
nature must assure the validity of time-stamping tokens, 
and this depends on the ability to find collisions. Thus, 
it must take into consideration the provable security and 

long security parameter, and it is mapped onto a UOWHF 
with long-term security. S/MIME and PGP are also used 
for signing e-mail messages. These signed messages must 
guarantee the senders identity and the integrity of the e-
mail; in some cases, the e-mail might be equivalent to a 
contract. Security again depends on whether collisions 
can be found. These methods are mapped into the same 
column as time-stamping. Code signing is used to authen­
ticate the software vendor for each software application. 
The prevention of signature forgery by finding a collision 
is critical to ensure the security of code signing. Software 
with digital signatures may be used for long-term pur­
poses. Thus, code signing is also mapped into the same 
column. 

Time-stamping realized through only a hash function, 
such as with a linking protocol, must be collision resis­
tant. Long-term security must be guaranteed as described 
above. Thus, a CRHF with a long security parameter is 
needed for this kind of time-stamping. The hash value 
for a software download is used to check the integrity of 
a downloaded file. Although the purpose is only to check 
the integrity, this hash value may be used for a long time 
so the hash function for this usage must be a CRHF and 
provide long-term security. 

Public key certificate, which is standardized by PKIX, 
assures the correctness of a key pair in a public key cryp­
tosystem. PKI is the foundation of public key cryptogra­
phy, so the forgery of a public key certificate is a critical 
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CRHF UOWHF 

Long-term 
Certification 

(Time-stamping by hash func.) 
Integrity check 

(Software Download) 

Certification 
( Time-stamping by signature, 

Code Signing) 
Secure E-mail 

( S/MIME, PGP) 

Medium-term N/A 
Certification 

(PKIX) 

Short-term 

Secure communication 
(IPSEC, SSL/TLS, SSH) 

Authentication 
(IEEE 802.1X-EAP, 

Kerberos, APOP, DKIM) 
Other usage 

(Packet sampling/filtering, 
Database Retrieval) 

N/A 

Table 3: Proposed classification and mapping of current usage 

issue with regard to PKI. Thus, a hash function in the 
certificate must consider provable security, so it should be 
a UOWHF however, the valid period of a public key cer­
tificate is generally under five years, so the hash function 
for PKIX should provide medium-term security. 

Many security protocols, including IPSEC, SSL/TLS, 
SSH, IEEE802.1X EAP, and Kerberos, use hash values 
for their security. In these protocols, the hash value must 
be secure for a short time. Thus, the hash functions for 
such usage should be CRHFs with a short-term security 
parameter. DKIM, which is used to block spam e-mail 
or phishing mail, uses digital signatures for sender au­
thentication. In this usage, the valid period of the digital 
signature can be short, because only one verification of 
the digital signature is required when a receiver obtains 
the e-mail. Thus, the hash function for DKIM should also 
be in the left column of Table 3. Hash values for packet 
sampling/filtering and database retrieval require collision 
resistance for only a short period. Thus, the hash func­
tions for this usage are in the same column. 

In table 3, only four of the six cells are occupied. These 
are the four types of hash function that should be consid­
ered to establish an industrial standard. 

6.2 Desired hash function features 

As shown in Table 3, four types of hash function are re­
quired for real-life information systems. 

Type1. UOWHF with a long security parameter: 
In this type, the hash function must have universal one­

wayness and consider the provable security. The hash 
function is required to preserve universal one-wayness over 
a long term. Thus, the security parameter of this hash 
function must be over 2128 and be extendable. 

Type2. CRHF with a long security parameter: 
In this type, the hash function must be collision resis­
tant and preserve its collision resistance over a long term. 
Thus, the security parameter of this hash function must 
exceed 2128 and the security parameter must be extend­
able. 

Type3. UOWHF with a medium security param­
eter: 
In this type, the hash function must have universal one­
wayness and consider the provable security. The hash 
function must preserve universal one-wayness over the 
medium term. Thus, the security parameter of this hash 
function must exceed 280 . 

Type4. CRHF with a short security parameter: 
In this type, the hash function must be collision resistant, 
and preserve its collision resistance over the short term. 
Thus, the security parameter of this type of hash function 
may be about 264 . A shorter security parameter may be 
chosen if security conditions permit 

The above four types can cover almost all the existing 
usage of hash functions. Thus, they meet the requirements 
for hash functions suitable for real-life systems. We believe 
that the design of future standard hash functions should 
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focus on these four types and that any standardization 
process should consider each type. 

Discussions 

Hash functions have to satisfy other requirements from a 
system designer’s point of view. Two additional points 
should be considered when designing hash functions. 

Compatibility with existing systems When a sys­
tem engineer plans to replace a weak hash function in a 
system with a stronger one, he must consider the replace­
ment’s compatibility with the existing system’s design to 
minimize the replacement cost. The main issue is usually 
the hash value length. When designing a system, the de­
signer decides which data structures to use for communi­
cation messages, databases, and so on. Changing the hash 
value length can necessitate system re-design, re-coding, 
and re-testing. The affected parts include not only hash-
related processing, but also non-cryptographic processing. 
Thus, designing strong hash functions with the same out­
put length is preferable for most system designers. The 
inclusion of this consideration into the requirements of a 
future hash standard should be further discussed. 

Implementation for embedded hardware The key 
devices in current security systems include tamper-
resistant devices such as smart cards. Smart cards are 
used for user authentication, key management, signing 
documents, and so on. 

For example, in general PKI, a key pair of a public key 
cryptosystem is securely stored in the smart card of each 
user, and a digital signature and ciphertext is calculated 
within the smart card. Thus, a hash function must be 
implemented into the smart card. Many smart cards im­
plement MD5 or SHA-1, but there is no commercial smart 
card which implements SHA-256/384/512. The main rea­
sons for this are the processing speed and the working 
memory size. Smart cards are widely used in current sys­
tems, and there is no good alternative for them at present, 
so replacing the hash functions used in today’s smart cards 
is a major concern regarding the hash function transition 
in information systems. Any future hash standard must 
include a family of hash functions which are easy to im­
plement in smart cards. 
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Figure 2: Requirements for Hash function in systems 
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