# Precise Probabilities for Hash Collision Paths 

M. Gebhardt, G. Illies, W. Schindler

## Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn

Santa Barbara, August 25, 2006

## (Multiblock) Hash Collision Attack

pairs of related message blocks

$\left(\mathrm{cv}_{1}, \mathrm{cv}_{1}{ }^{\prime}\right) \quad\left(\mathrm{Cv}_{2}, \mathrm{Cv}^{{ }^{\prime}}{ }_{2}\right)$

$\square$ The pair $\left(\mathrm{Cv}_{\mathrm{j}}, \mathrm{Cv}_{j}{ }_{j}\right)$ is called a near-collision if both components are „almost" equal, fulfilling a set of specified conditions.
$\square$ Workload = Workload (Block1) + ... + Workload (Block k) Consequence: The blocks may be analysed independently.
$\square$ Set of sufficient (bit) conditions SC
$\square$ characterizes a (near-)collision path
$\square \rightarrow$ (near-)collision

## Workload and Success Probability

$\square S C=S C 1 \cup S C 2$
$\square$ SC1: conditions can be guaranteed by message modification
$\square$ SC2 (conditions after message modification): fulfilled with a particular probability
$\square$ Prob(near-collision path) $=$ Prob(all SC2-conditions are fulfilled)
$\square \operatorname{Prob}(($ near-)collision $) \geq \operatorname{Prob}(($ near-) collision path)
$\square \rightarrow$ workload

## The set SC2

$\square$ Example
SC2 := $\left\{\left(r_{27,5}, r^{s}{ }_{27,5}\right)=(0,1), r_{34,5}=r_{33,5},\left(r_{45,25}, r_{45,25}\right)=(0,0), \ldots\right\}$ where $r_{i, j}=$ register bit $j$ in Step $i$
$\square$ „Rule of thumb" (usually applied):
Prob(near-collision path) =
Prob(all cond's. of SC2 are fulfilled) $\approx 2-|S C 2|$
number of bit conditions

## Goal of this contribution

$\square$ This rule of thumb provides only a rough estimate of the true probabilities.
$\square$ Deviations may be caused by various interfering effects:
$\square$ cyclical shifts
$\square$ addition of 32-bit words ( $\rightarrow$ carry bits)
$\square$ bit conditions on the chaining values (post addition with fixed values; bit counting is very inaccurate)
NOTE: Specific effects have been addressed in literature (qualitatively and / or quantitatively)
$\square$ Our contribution supplies universal tools that support the systematic calculation of probabilities of (near-)collision paths.

## Stochastic Model

$\square$ Step functions (examples)
$\square$ (MD5) $r_{i}=r_{i-1}+\left(\Phi_{i}\left(r_{i-1}, r_{i-2}, r_{i-3}\right)+r_{i-4}+m_{i}+\text { const }_{i}\right)^{\lll s}\left(\bmod 2^{32}\right)$
$\square$ (SHA-1) $r_{i}=r_{i-1} \lll 5+\Phi_{i}\left(r_{i-2}, r_{i-3}, r_{i-4}\right)+r_{i-5}+m_{i}+\operatorname{const}_{i}\left(\bmod 2^{32}\right)$

$$
r_{i-2}=r_{i-2} \ll 30
$$

$\square$ Stochastic model
We interpret the intermediate register values $\left(r_{1}, r_{1}^{\prime}\right),\left(r_{2}, r_{2}^{\prime}\right), \ldots$ and the message blocks $\left(m_{1}, m_{1}^{\prime}\right),\left(m_{2}, m^{\prime}\right), \ldots$ as values assumed by random variables $\left(R_{1}, R_{1}^{\prime}\right),\left(R_{2}, R_{2}^{\prime}\right), \ldots$ and $\left(M_{1}, M_{1}^{\prime}\right),\left(M_{2}, M^{\prime}\right), \ldots$, respectively.
These random variables have specific properties which depend on the hash function and the near-collision path.

## Relevant Types of Probabilities

- Notation:
$\square$ The random variables $X, X^{\prime}, Y, Y^{\prime}$ assume values in $Z_{2^{\wedge} 32}$
$\square \mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3} \subseteq \mathrm{Z}_{2^{\wedge} 32} \times \mathrm{Z}_{2^{\wedge} 32}$ denote specific subsets ( $\rightarrow$ bit conditions)
$\square \mathrm{T}_{\mathrm{i}}:=\mathrm{pr}_{1}\left(\mathrm{~S}_{\mathrm{i}}\right) \subseteq \mathrm{Z}_{2^{\wedge} 32}$ (projection onto the $1^{\text {st }}$ component)
$\square$ Relevant types of conditional probabilities:
$\square \operatorname{Prob}\left(\left(X, X^{\prime}\right)+\left(Y, Y^{\prime}\right)\left(\bmod 2^{32}\right) \in S_{3} \mid\left(X, X^{\prime}\right) \in S_{1},\left(Y, Y^{\prime}\right) \in S_{2}\right)$
$\square \operatorname{Prob}\left(\left(X, X^{\prime}\right)^{\lll s}+\left(Y, Y^{\prime}\right)\left(\bmod 2^{32}\right) \in S_{3} \mid\left(X, X^{\prime}\right) \in S_{1},\left(Y, Y^{\prime}\right) \in S_{2}\right)$
$\square \operatorname{Prob}\left(\left(X, X^{\prime}\right)^{\lll s}+\left(Y, Y^{\prime}\right)\left(\bmod 2^{32}\right) \in S_{3} \mid\left(X-X^{\prime}\right)\left(\bmod 2^{32}\right)=\Delta\right.$,
$\left.\left(Y, Y^{\prime}\right) \in S_{2}\right)$


## Main results

$\square$ Under suitable assumptions the conditional probabilities from the last slide can be simplified to
$\square \operatorname{Prob}\left(X+Y\left(\bmod 2^{32}\right) \in T_{3} \mid X \in T_{1}, Y \in T_{2}\right) * 1_{\{0\}}\left(A\left[S_{1}, S_{2}, S_{3}\right]\right)$
$\square \operatorname{Prob}\left(X^{\lll s}+Y\left(\bmod 2^{32}\right) \in T_{3} \mid X \in T_{1}, Y \in T_{2}\right) * 1_{\{0\}}\left(B\left[s, S_{1}, S_{2}, S_{3}\right]\right)$
$\square \operatorname{Prob}\left(X^{\lll s}+Y\left(\bmod 2^{32}\right) \in T_{3} \mid X \in V\left[s, S_{1}, S_{2}, S_{3}\right], Y \in T_{2}\right)$ * $\operatorname{Prob}\left(\mathrm{X} \in \mathrm{V}\left[\mathrm{s}, \mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}\right]\right)$

The paper provides characterisations for the conditions $A\left[S_{1}, S_{2}, S_{3}\right]$, $\mathrm{B}\left[\mathrm{s}, \mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}\right]$ and for the set $\mathrm{V}\left[\mathrm{s}, \mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}\right]$ that are appropriate for concrete calculations.

## Example: MD5, Block 1 (1)

Stochastic model: $\rightarrow$ paper

Impact of bit conditions on the chaining values:
Post additions in Steps 61-63: 6 bit conditions

- Wang Conditions (Eurocrypt 2005, PAPER):
$\square$ Transition probability for standard IV $\approx 0.005$
- Wang Conditions (Eurocrypt 2005, PUBLISHED EXAMPLE):
- Transition probability for standard IV $\approx 0.095$
$\square$ Transition probability for IV = (0x 80000000, 0x 00000000, 0x 82000000, 0x 10325476) $=0.5$
$\square$ Transition probability for IV=(0x 00000000, 0x 82000000, 0x 80000000, $0 \times 10325476)=0$


## Example: MD5, Block 1 (2)

$\square$ We analysed three different near-collision paths after message modification:
$\square$ Path 1: Wang Conditions (PAPER, Eurocrypt 2005)
$\square$ Path 2: Wang Conditions (PUBLISHED EXAMPLE)
$\square$ Path 3: "Almost"-Wang conditions
Path1 Path 2 Path3

| \# bit conditions | 38 | 38 | 39 |
| :--- | :--- | :--- | :--- |
| calculated probability | $2^{-41.64}$ | $2^{-37.41}$ | $2^{-36.61}$ |
| empirical (241.87 samples) |  | $2^{-37.11}$ | $2^{-36.25}$ |

## Conclusion

$\square$ "Bit condition counting" yields only rough estimators for the probabilities of (near-)collision paths.
$\square$ Our contribution provides universally applicable theorems that support the precise computation of collision path probabilities.
$\square$ These theorems do not support the search for new (near-) collision paths.
$\square$ Our formulae were empirically confirmed by concrete MD5 near-collision paths.

## Contact

Bundesamt für Sicherheit in der
Informationstechnik (BSI)
Werner Schindler
Godesberger Allee 185-189
53175 Bonn
Germany

> Tel: +49 (0)1888-9582-5652
> Fax: +49 (0)1888-10-9582-5652

Werner.Schindler@bsi.bund.de www.bsi.bund.de www.bsi-fuer-buerger.de

