Gröbner Base Based Cryptanalysis of SHA-1

Makoto Sugita IPA Security Center Joint work with Mitsuru Kawazoe (Osaka Prefecture university) and Hideki Imai (Chuo University and RCIS, AIST)

Wang's attack, nonlinear code and Gröbner basis

• Wang's attack can be considered as decoding problem of nonlinear code.

Wang's attack

Outline of the attack.

- Find differential paths characteristics (difference for subtractions modular 2³²)
- Determine certain sufficient conditions
- For randomly chosen M, apply the message modification techniques
- However, not all information is published
 - How to find such differential path (disturbance vector)?
 - Candidates are too many
 - How to determine sufficient conditions?
 - What is multi-message modification?
 - Details are unpublished

Many details are not public!!

- 1. How to find the differentials?
- 2. How to determine sufficient conditions on a_i ?
- 3. What are the details of message modification technique?

=>

We have clarified 2 and 3, and partially 1

Our Contribution:

- Developing the searching method for 'good' message differentials
- Developing the method to determine sufficient conditions
- Developing new multi-message modification technique
 - Proposal of a novel message modification technique employing the Gröbner base based method

Wang's attack and nonlinear code

- Wang's attack is decoding a nonlinear code {a_i, m_i} in GF(2)^{32x80x2}.
 - Satisfying sufficient conditions
 - Satisfying nonlinear relations between a and m

 $m_i = (m_{i-3} \oplus m_{i-8} \oplus m_{i-14} \oplus m_{i-16}) \lll 1$

for $i = 16, \dots, 79$, where $x \ll n$ denotes *n*-bit left rotation of *x*. Using expanded messages, for $i = 1, 2, \dots, 80$,

$$\begin{aligned} a_i &= (a_{i-1} \lll 5) + f_i(b_{i-1}, c_{i-1}, d_{i-1}) + e_{i-1} + m_{i-1} + k_i \\ b_i &= a_{i-1} \\ c_i &= b_{i-1} \lll 30 \\ d_i &= c_{i-1} \\ e_i &= d_{i-1} \end{aligned}$$

where initial chaining value $IV = (a_0, b_0, c_0, d_0, e_0)$ is (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0).

How to decode nonlinear code?

- A general method
 - Gröbner bases based algorithm
- Difficult to calculate Gröbner basis directly:
 System of equations is very complex
- How to decode?
 - Employ Gröbner base based method
 - Employ techniques of error correcting code
 - Note: Nonlinear relations between a and m can be linearly approximated

IPA

Control sequence

• Control sequence represents Gröbner base

Control	Control	Controlled relation r_i
sequence	bit	°
s _i	b_i	
^s 120	$a_{16,31}$	$m_{15,31} = 1$
^s 119	$a_{16,29}$	$m_{15,29} = 0$
^s 118	a16,28	$\begin{array}{l} m_{15,28}+m_{10,28}+m_{8,29}+m_{7,29}+m_{4,28}\\ +m_{2,28}=1 \end{array}$
^s 117	a16,27	$\begin{array}{r} m_{15,27}+m_{14,25}+m_{12,28}+m_{12,26}+m_{10,28}+m_{9,27}\\ +m_{9,25}+m_{8,29}+m_{8,28}+m_{7,28}+m_{7,27}+m_{6,26}\\ +m_{5,28}+m_{4,26}+m_{3,25}+m_{2,28}+m_{1,25}+m_{0,28}=1 \end{array}$
^s 116	a16,26	$\begin{array}{c} m_{15,26}+m_{10,28}+m_{10,26}+m_{8,28}+m_{8,27}+m_{7,27}\\ +m_{6,29}+m_{5,27}+m_{4,26}+m_{2,27}+m_{2,26}+m_{0,27}=1 \end{array}$
^s 115	a _{16,25}	$\begin{array}{r} m_{15,25}+m_{11,28}+m_{10,27}+m_{10,25}+m_{9,28}+m_{8,27}\\ +m_{8,26}+m_{7,26}+m_{6,29}+m_{6,28}+m_{5,26}+m_{4,25}\\ +m_{3,28}+m_{2,28}+m_{2,26}+m_{2,25}+m_{1,28}+m_{0,28}\\ +m_{0,26}=0 \end{array}$
^s 114	a _{16,24}	$\begin{array}{c} m_{15,24}+m_{12,28}+m_{11,27}+m_{10,26}+m_{10,24}+m_{9,28}\\ +m_{9,27}+m_{8,29}+m_{8,26}+m_{8,25}+m_{7,25}+m_{6,29}\\ +m_{6,28}+m_{6,27}+m_{5,25}+m_{4,28}+m_{4,24}+m_{3,28}\\ +m_{3,27}+m_{2,27}+m_{2,25}+m_{2,24}+m_{1,28}+m_{1,27}\\ +m_{0,27}+m_{0,25}=1 \end{array}$
^s 113	a _{16,23}	$\begin{array}{l} m_{15,23}+m_{12,28}+m_{12,27}+m_{11,26}+m_{10,25}\\ +m_{10,23}+m_{9,27}+m_{9,26}+m_{8,28}+m_{8,25}+m_{8,24}\\ +m_{7,29}+m_{7,24}+m_{6,28}+m_{6,27}+m_{6,26}+m_{5,24}\\ +m_{4,27}+m_{4,23}+m_{3,27}+m_{3,26}+m_{2,26}+m_{2,24}\\ +m_{2,23}+m_{1,27}+m_{1,26}+m_{0,26}+m_{0,24}=1 \end{array}$
^s 112	$a_{16,22}$	$m_{15,22} + m_{14,25} + m_{12,28} + m_{12,27} + m_{11,25}$

8

Neutral bit

- Introduced by Biham and Chen
- Some bits do not affect relations
 Increase the probability of collision

Semi-neutral bit

- We introduce new notion 'Semi-neutral bit'
- Change of some bits can easily be adjusted in a few steps of control sequence
 - Which means that noise on semi-neutral bits can be easily decoded

Sufficient conditions and new message modification techniques

chainin	0
variabl	
a_0	01100111 01000101 00100011 00000001
a_1	101VvV Y1-a10aa
a_2	01100vVv0a 1-w00010
a_3	0010Vv -101a0- 0aX1a0W0
<i>a</i> ₄	11010vv01 01aaa 0W10-100
a_5	10w01aV1-01-aa00100- 0w01W1
a_6	11W-0110 -a-1001- 01100010 1-a111W1
a_7	w1x-1110 a1a1111101-001 10-10
a_8	h0Xvvv10 0000000a a001a1 100X0-1h
a_9	00XVrr-V 11000100 00000000 101-1-1y
a_{10}	0w1-rv-v 11111011 11100000 00hW0-1h
a ₁₁	1w0V-V1 01111110 11x0Y
a_{12}	0w1-rV-V1XWa-Wh
a_{13}	1w0vvrr1-qq01y
a ₁₄	1rhhvvVh hh qNNNNNqN N1hhh1hh
a_{15}	OrwhhhVh hhhhN qNNqqNqN NNhhOhhO
a_{16}	W1whhhhh hhqNqNqN NNqNNqqq qWWhahhh
a ₁₇	-0100-
a ₁₈	1-100-
<i>a</i> ₁₀	0

1, 0, a: Wang's sufficient conditions w: adjust $a_{i+1,j}$ so that $m_{i,j} = 0$ W: adjust $a_{i+1,j}$ so that $m_{i,j} = 1$ v: adjust $a_{i,j-5}$ so that $m_{i,j} = 0$ V: adjust $a_{i,j-5}$ so that $m_{i,j} = 1$ N: semi-neutral bit

. . .

Proposal of the method to determine sufficient conditions and new message modification technique using Gröbner basis

New collision example of 58-step

M = 0x

1ead6636 319fe59e 4ea7ddcb c7961642 0ad9523a f98f28db 0ad135d0 e4d62aec 6c2da52c 3c7160b6 06ec74b2 b02d545e bdd9e466 3f156319 4f497592 dd1506f93

M' = 0x

ead6636 519fe5ac 2ea7dd88 e7961602 ead95278 998f28d9 8ad135d1 e4d62acc 6c2da52f 7c7160e4 46ec74f2 502d540c 1dd9e466 bf156359 6f497593 fd150699

• Note that the proposed method is the first fully-published method that can cryptanalyze 58-round SHA-1

Cryptanalysis of 58-round SHA-1

- We can achieve all message conditions and 8 chaining value conditions in 17 – 23 round (success probability is 0.5)
- 29 conditions remained
 - > exhaustive search (2²⁹ message modification)
- Constant is practical?
 - Utilization of Groebner base based method
 - 2²⁹ message modification -> 2⁸ message modification (symbolic computation)
 - However, complexity is exactly same
 - 2²⁹ SHA-1 -> 2²⁹ SHA-1
 - Complexity can be reduced employing a suitable technique of error correcting code and Groebner basis?

Using Groebner base based method (Algorithm 3)

chaining				
variable	31 - 24	23 - 16	15 - 8	8 - 0
a_0	01100111	01000101	00100011	0000001
a_1	101VvV	Ү		-1-a10aa
a_2	01100vVv	_		
a_3	0010Vv	-101a	0-	0aX1a0W0
a_4	11010vv-	-01	01aaa	0W10-100
a_5	10w01aV-	-1-01-aa	00100-	0w01W1
a_6	11W-0110	-a-1001-	01100010	1-a111W1
a_7	w1x-1110	a1a1111-	-101-001	10-10
a_8	h0Xvvv10	0000000a	a001a1	100X0-1h
a_9	00XVrr-V	11000100	00000000	101-1-1y
a_{10}	0w1-rv-v	11111011	11100000	00hW0-1h
a_{11}	1w0V-V	1	01111110	11x0Y
a_{12}	0w1-rV-V			
a_{13}	1w0vv-	-rr		-1-qq01y
a ₁₄	1rhhvvVh	hh	qNNNNqN	N1hhh1hh
a_{15}	OrwhhhVh	hhhhN	qNNqqNqN	NNhh0hh0
a_{16}	W1whhhhh	hhqNqNqN	NNqNNqqq	qWWhahhh
a_{17}	-0			100-
a ₁₈	1-1			00-
<i>a</i> .10				0

Problem to determine semi-neutral bits denoted as 'N' is equivalent to calculating Groebner basis from algebraic equations on variable denoted as 'q' or 'N'

Calculation of Groebner basis

A message differential of full SHA-1 slightly different from Wang's (first iteration)

	$\Delta^{\pm}m$	Δ^+m	$\Delta^{-}m$
i = 0	a0000003	00000001	a0000002
i = 1	20000030	20000020	00000010
i = 2	60000000	60000000	00000000
i = 3	e000002a	4000000	a000002a
i = 4	20000043	20000042	00000001
i = 5	b0000040	a0000000	10000040
i = 6	d0000053	d0000042	00000011
i = 7	d0000022	d0000000	00000022
i = 8	20000000	00000000	20000000
i = 9	60000032	20000030	4000002
i = 10	60000043	60000041	00000002
i = 11	20000040	00000000	20000040
i = 12	e0000042	c0000000	20000042
i = 13	60000002	00000002	6000000
i = 14	80000001	00000001	80000000
i = 15	00000020	00000020	00000000
i = 16	0000003	00000002	00000001
i = 17	40000052	00000002	40000050
i = 18	40000040	00000000	40000040
i = 19	e0000052	00000002	e0000050
i = 20	a0000000	00000000	a0000000
i = 21	80000040	80000000	00000040
i = 22	20000001	00000001	20000000
: 0.9	00000000	00000000	000000000

	$\Delta^{\pm a}$	Δ^+a	$\Delta^{-}a$
i = 0	00000000	00000000	00000000
i = 1	e0000001	a0000000	40000001
i = 2	20000004	20000000	00000004
i = 3	c07 fff84	803 fff 84	40400000
i = 4	800030e2	800010a0	00002042
i = 5	084080b0	08008020	00400090
i = 6	80003a00	00001a00	80002000
i = 7	0 f f f 8001	08000001	07 f f 8000
i = 8	0000008	00000008	00000000
i = 9	80000101	80000100	00000001
i = 10	00000002	00000002	00000000
i = 11	00000100	00000000	00000100
i = 12	00000002	00000002	00000000
i = 13	00000000	00000000	00000000
i = 14	00000000	00000000	00000000
i = 15	00000001	00000001	00000000
i = 16	00000000	00000000	00000000
i = 17	80000002	80000002	00000000
i = 18	00000002	00000002	00000000
i = 19	80000002	80000002	00000000
i = 20	00000000	00000000	00000000
i = 21	00000002	00000002	00000000
i = 22	00000000	00000000	00000000
: 0.2	00000000	0000000	00000000

SHA-1 (first iteration)

	-	
message		chaining
variable	31 - 24 23 - 16 15 - 8 8 - 0	variable
m_0	1-110	a_0
m_1	001	a_1
m_2	-00	a_2
m_3	1011-1-1-	a_3
m_4	001	a_4
m_5	0-011	a_5
m_6	00-00-101	a_6
m_7	00-0	a_7
m_8	1	a_8
m_9	-10001-	a_9
m_{10}	-00010	a ₁₀
m_{11}	11	a_{11}
m_{12}	0011-	a_{12}
m_{13}	-110-	a_{13}
m_{14}	10	a_{14}
m_{15}	0	a_{15}
m_{16}	01	a_{16}
m_{17}	-11-10-	a_{17}
m_{18}	-11	a_{18}
m_{19}	1111-10-	a_{19}
m_{20}	1-1	a_{20}
m_{21}	01	a_{21}
m_{22}	10	a_{22}
m_{23}	111	a_{23}

			8 - 0
01100111	01000101	00100011	0000001
0100	-0-01-0-	10-0-10-	a0101
-1001	0aa10a1a	01a1a011	1a11a1
01011	-1000000	00000000	01a0a1
0-101a	10000	00101000	01010
0-0101-1	-1-11110	00111-00	10010100
1-0a1a0a	a0a1aaa-	10010-	01-0
0-0111	11111111	111-010-	0-0-0110
-1001	11110000	010-111-	1000-
0011	11111111	1110	1-01
-11		a	-11-0-
100		1	-10
			-10-
0			-10
1			1
			0
-1			1-A-
00			0-0-
1-1			a-0-
0-b			0-
0			a
b			0-
			aa
			00
	01100111 0100 -1001 01011 0-101a 0-0101-1 1-0a1a0a 0-0111 -1001 0011 001 1-0 1 0 1 00 1-1 00 1-1 0-b 0-b	01100111 01000101 0100 -0-01-0- -1001 0aa10a1a 01011 -100000 0-101a 10000 0-0101-1 -11110 1-0a1a0a a0a1aaa- 0-0111 1111111 -1001 11110000 0011 1111111 -1101 1001 001 1 00	0100 -0-01-0- 10-0-10- -1001 0aa10a1a 01a1a011 01011 -1000000 00000000 0-101a 10000 00110000 0-0101-1 -1-11110 00111-00 1-0a1a0a a0a1aaa- 10010- -0-0111 1111111 111-010- -1001 11110000 010-111- 0011 11111111 1110 -1101 11110000 010-111- 0011 11111111 1110 -1101 1001 1001 100

IPA

Control sequence of full SHA-1 (first iteration)

ctrl. seq.	control bits	controlled relation
^s 168	$a_{15,8}$	$a_{30,2} + a_{29,2} = 1$
s167	a16,6	$a_{26,2} + a_{25,2} = 1$
^s 166	$a_{15,7}$	$a_{25,3} + a_{24,3} = 0$
^s 165	$a_{13,7}$	$a_{24,3} + a_{23,3} = 0$
^s 164	$a_{13,9}$	$a_{23,0} = 0$
^s 163	$a_{16,10}$	$a_{22,3} + a_{21,3} = 0$
^s 162	$a_{16,11}$	$a_{21,29} + a_{20,31} = 0$
^s 161	$a_{16,8}$	$a_{21,1} = 0$
^s 160	$a_{16,9}$	$a_{20,29} = 0$
^s 159	$a_{15,10}$	$a_{20,3} + a_{19,3} = 0$
s158	$a_{15,11}$	$a_{19,31} = 0$
^s 157	$a_{15,9}$	$a_{19,29} + a_{18,31} = 0$
^s 156	$a_{14,8}$	$a_{19,1} = 0$
^s 155	$a_{14,11}$	$a_{18,31} = 1$
^s 154	$a_{15,14}$	$a_{18,29} = 1$
s153	$a_{13,8}$	$a_{18,1} = 0$
^s 152	$a_{13,11}$	$a_{17,31} = 0$
^s 151	$a_{13,10}$	$a_{17,30} = 0$
^s 150	$a_{13,13}$	$a_{17,1} = 0$
s149	$a_{16,31}$	$m_{15,31} = 0$
^s 148	$a_{16,29}$	$m_{15,29} = 1$
^s 147	$a_{16,28}$	$m_{15,28} + m_{10,28} + m_{4,28} + m_{2,28} = 0$
^s 146	$a_{16,27}$	$m_{15,27} + m_{10,27} + m_{8,28} + m_{4,27} + m_{2,28} + m_{2,27} + m_{0,28} = 1$
^s 145	$a_{16,26}$	$m_{15,26} + m_{10,28} + m_{10,26} + m_{8,28} + m_{8,27} + m_{7,27} + m_{5,27} + m_{4,26} + m_{2,27} + m_{2,26} + m_{2,27} + m_{2,2$
		$m_{0,27} = 0$
^s 144	$a_{16,25}$	$\begin{array}{l} m_{15,25} + m_{11,28} + m_{10,27} + m_{10,25} + m_{9,28} + m_{8,27} + m_{8,26} + m_{7,26} + m_{5,26} + m_{4,25} + m_{3,28} + m_{2,28} + m_{2,26} + m_{2,25} + m_{1,28} + m_{0,28} + m_{0,26} = 0 \end{array}$
^s 143	$a_{16,24}$	$m_{15,24} + m_{12,28} + m_{11,27} + m_{10,26} + m_{10,24} + m_{9,28} + m_{9,27} + m_{8,26} + m_{8,25} + m_{10,24} + m_{10,24} + m_{10,26} + m_{10,27} + m_{10,26} + m_{10,26$
		$m_{7,25} + m_{6,27} + m_{5,25} + m_{4,28} + m_{4,24} + m_{3,28} + m_{3,27} + m_{2,27} + m_{2,25} + m_{2,24} + m_{2,24} + m_{2,25} + m_{2,24} + m_{2,25} + m_{2,24} + m_{2,25} + m_{2,25} + m_{2,24} + m_{2,25} + m_{2,25} + m_{2,25} + m_{2,25} + m_{2,24} + m_{2,25} + m_{2,25} + m_{2,25} + m_{2,25} + m_{2,25} + m_{2,26} + m_{2,27} $
		$m_{1,28} + m_{1,27} + m_{0,27} + m_{0,25} = 1$
^s 142	$a_{16,23}$	$m_{15,23} + m_{12,28} + m_{12,27} + m_{11,26} + m_{10,25} + m_{10,23} + m_{9,27} + m_{9,26} + m_{8,28} + m_{2,25} + m_{2,25} + m_{2,26} + m_{2,27} + m_{2,26} + m_{2,27} + m_{$
		$ \begin{array}{c} m_{8,25} + m_{8,24} + m_{7,24} + m_{7,0} + m_{6,27} + m_{6,26} + m_{5,24} + m_{4,27} + m_{4,23} + m_{3,27} + m_{3,26} + m_{2,26} + m_{2,26} + m_{2,26} + m_{2,26} + m_{1,27} + m_{1,26} + m_{1,0} + m_{0,26} + m_{0,24} = 0 \end{array} $

7

IPA

Advanced sufficient conditions and semi-neutral bits of full-round SHA-1

message	
variable	$31 - 24 \ 23 - 16 \ 15 - 8 \ 8 - 0$
m_0	1-110
m_1	L-001
m_2	L00L
m_3	1011-1-1L
m_4	LLO001
m_5	0L011L
m_6	00L00-101
m_{7}	00-01L1-
m_8	L-1LL
m_9	L1000-L1L
m_{10}	L000LLLL10
m_{11}	LL11LLLLLL
m_{12}	0011LLL-1L
m_{13}	L11LLLLL LLLLLLL L-LLLLLOL
m_{14}	1LLLLLL LLLLLLL L-LLLLLLLO
m_{15}	LLLLLLL LLLLLLL LL-L L-OLLLLL
m_{16}	01
m_{17}	-11-10-
m_{18}	-11
m_{19}	1111-10-
m_{20}	1-1
m_{21}	01
m_{22}	10
m_{23}	111
m_{24}	11

chaining				
variable	31 - 24	23 - 16	15 - 8	8 - 0
<i>a</i> ₀	01100111	01000101	00100011	0000001
a_1	010-FrF0	y0-01-0-	10-0-10-	F-Fa0101
a_2	F100-Vv1	0aa10a1a	01a1a011	1-wa11a1
<i>a</i> 3	01011VFV	-1000000	00000000	01FFa0a1
a_4	0w101v-a	y10000	00101000	010XWF10
a_5	0w0101y1	V1-11110	00111-00	10010100
a_6	1w0a1a0a		10010F	
a_7	ww0w0111	11111111	111-010F	
a_8	w10wvv01	11110000	010-111F	1-Wh000F
a_9	00WV11	11111111	1110	F1F01
a_{10}	W11x-Vvv		a	-1ww1h0w
a_{11}	100V		1	-1hhOh\\w
a_{12}	wwWF-v			-1hhhhOh
a_{13}	O₩₩V	-F-F-F	FNqNqqqq	q1hhhOWW
a_{14}	1WWhhhhh	hhhhhhh	hNhNqNNq	NNhhh1wh
a_{15}	WWwhhhhh	hhhhhhhh	hqhhqqqq	qNwh0hh0
a_{16}	w1Whhhhh	hhhhhhh	hhNhqqqq	hqwh1hAh
a_{17}	00			0-0-
a_{18}	1-1			a-0-
a_{19}	0-ъ			0-
a_{20}	0			a
a_{21}	р			0-
a_{22}				aa
a_{23}				00
a 9.4	-c			a

Cryptanalysis of full-round SHA-1 (first iteration)

- We can achieve all message conditions and all chaining variable conditions in 17 – 26 round
- 64 conditions remained
 - > exhaustive search (2⁶⁴ message modification)
- Constant is practical?
 - Utilization of Groebner base based method
 - 2⁶⁴ message modification -> 2⁵¹ message modification (symbolic computation)
 - However, total complexity is still same
 - Complexity can be reduced employing a suitable technique of error correcting code and Groebner basis?

Example which satisfies sufficient conditions until 28-th round

M = 0x

aa740c82 9f91e819 84c3e50f a898306b 1e5b4111 1867d96b 0616ea95 014a2f32 7ae92980 d5e4d6c6 9d49d0ba 3b8087d3 32717277 edcec899 dc537498 63bca615

 The above M satisfies all message conditions of 0-80 rounds and all chaining variable conditions of 0-28 rounds

Gröbner cryptanalysis of SHA-1

- Gröbner base based cryptanalysis (simplification of Wang's attack) of SHA-1 can be easily implemented by everyone
 - Everyone can evaluate the complexity accurately
 - Everyone can easily evaluate the immunity of SHA-2 against Gröbner base based attack (or Wang's attack)
 - Everyone can propose new algorithms immune to our attack (or Wang's attack)

IPA

(Near) Future Work

- Find the collision of full-round SHA-1
 - Use Gröbner base based cryptanalysis
 - As an improvement of Wang's attack
 - Community of symbolic computation has so many good techniques
 - Wang (probably) does not use such techniques e.g. iterative decoding, list decoding, Sudan algorithm, Groebner basis based method

Question:

Who and when will find the collision of full-round SHA-1?

- My (only personal, not public) conjecture
 - Someone in the crypto community or the community of symbolic computation
 - In a few years, not in 10 years as NIST considers

Future work: Application to SHA-2

- Finding good sufficient conditions

 Difficult to find?
 - Hint: Sufficient conditions do not need to be linear relations on $\{m_{ij}\}$ or $\{a_{ij}\}$
- Once good sufficient conditions are determined, problems are degenerated into symbolic computation