Gröbner Base Based Cryptanalysis of SHA-1

Makoto Sugita
IPA Security Center
Joint work with Mitsuru Kawazoe (Osaka Prefecture university) and Hideki Imai (Chuo University and RCIS, AIST)

Wang's attack, nonlinear code and Gröbner basis

- Wang's attack can be considered as decoding problem of nonlinear code.

Wang's attack

Outline of the attack.

- Find differential paths - characteristics (difference for subtractions modular 2^{32})
- Determine certain sufficient conditions
- For randomly chosen M, apply the message modification techniques
- However, not all information is published
- How to find such differential path (disturbance vector)?
- Candidates are too many
- How to determine sufficient conditions?
- What is multi-message modification?
- Details are unpublished

Many details are not public!!

1. How to find the differentials?
2. How to determine sufficient conditions on a_{i} ?
3. What are the details of message modification technique?
=>
We have clarified 2 and 3, and partially 1

Our Contribution:

- Developing the searching method for 'good' message differentials
- Developing the method to determine sufficient conditions
- Developing new multi-message modification technique
- Proposal of a novel message modification technique employing the Gröbner base based method

Wang's attack and nonlinear codeIPA

- Wang's attack is decoding a nonlinear code $\left\{a_{i}, m_{i}\right\}$ in GF(2) ${ }^{32 \times 80 \times 2}$.
- Satisfying sufficient conditions
- Satisfying nonlinear relations between a and m

$$
m_{i}=\left(m_{i-3} \oplus m_{i-8} \oplus m_{i-14} \oplus m_{i-16}\right) \lll 1
$$

for $i=16, \cdots, 79$, where $x \lll n$ denotes n-bit left rotation of x. Using expanded messages, for $i=$ $1,2, \cdots, 80$,

$$
\begin{aligned}
a_{i} & =\left(a_{i-1} \lll 5\right)+f_{i}\left(b_{i-1}, c_{i-1}, d_{i-1}\right)+e_{i-1}+m_{i-1}+k_{i} \\
b_{i} & =a_{i-1} \\
c_{i} & =b_{i-1} \lll 30 \\
d_{i} & =c_{i-1} \\
e_{i} & =d_{i-1}
\end{aligned}
$$

where initial chaining value $I V=\left(a_{0}, b_{0}, c_{0}, d_{0}, e_{0}\right)$ is $\quad(0 x 67452301,0 x e f c d a b 89,0 x 98 b a d c f e, 0 x 10325476$, $0 x c 3 d 2 e 1 f 0)$.

How to decode nonlinear code?

- A general method
- Gröbner bases based algorithm
- Difficult to calculate Gröbner basis directly:
- System of equations is very complex
- How to decode?
- Employ Gröbner base based method
- Employ techniques of error correcting code
- Note: Nonlinear relations between a and m can be linearly approximated

Control sequence

- Control sequence represents Gröbner base

$\begin{gathered} \text { Control } \\ \text { sequence } \\ s_{i} \\ \hline \end{gathered}$	$\begin{gathered} \text { Control } \\ \text { bit } \\ b_{i} \\ \hline \end{gathered}$	Controlled relation r_{i}
s_{120}	$a_{16,31}$	$m_{15,31}=1$
s_{119}	$a_{16,29}$	$m_{15,29}=0$
s_{118}	$a_{16,28}$	$\begin{aligned} & m_{15,28}+m_{10,28}+m_{8,29}+m_{7,29}+m_{4,28} \\ & +m_{2,28}=1 \end{aligned}$
s_{117}	$a_{16,27}$	$\begin{aligned} & m_{15,27}+m_{14,25}+m_{12,28}+m_{12,26}+m_{10,28}+m_{9,27} \\ & +m_{9,25}+m_{8,29}+m_{8,28}+m_{7,28}+m_{7,27}+m_{6,26} \\ & +m_{5,28}+m_{4,26}+m_{3,25}+m_{2,28}+m_{1,25}+m_{0,28}=1 \end{aligned}$
s_{116}	$a_{16,26}$	$\begin{aligned} & m_{15,26}+m_{10,28}+m_{10,26}+m_{8,28}+m_{8,27}+m_{7,27} \\ & +m_{6,29}+m_{5,27}+m_{4,26}+m_{2,27}+m_{2,26}+m_{0,27}=1 \end{aligned}$
s_{115}	$a_{16,25}$	$\begin{aligned} & m_{15,25}+m_{11,28}+m_{10,27}+m_{10,25}+m_{9,28}+m_{8,27} \\ & +m_{8,26}+m_{7,26}+m_{6,29}+m_{6,28}+m_{5,26}+m_{4,25} \\ & +m_{3,28}+m_{2,28}+m_{2,26}+m_{2,25}+m_{1,28}+m_{0,28} \\ & +m_{0,26}=0 \end{aligned}$
s_{114}	$a_{16,24}$	$\begin{aligned} & m_{15,24}+m_{12,28}+m_{11,27}+m_{10,26}+m_{10,24}+m_{9,28} \\ & +m_{9,27}+m_{8,29}+m_{8,26}+m_{8,25}+m_{7,25}+m_{6,29} \\ & +m_{6,28}+m_{6,27}+m_{5,25}+m_{4,28}+m_{4,24}+m_{3,28} \\ & +m_{3,27}+m_{2,27}+m_{2,25}+m_{2,24}+m_{1,28}+m_{1,27} \\ & +m_{0,27}+m_{0,25}=1 \end{aligned}$
s_{113}	$a_{16,23}$	$\begin{aligned} & m_{15,23}+m_{12,28}+m_{12,27}+m_{11,26}+m_{10,25} \\ & +m_{10,23}+m_{9,27}+m_{9,26}+m_{8,28}+m_{8,25}+m_{8,24} \\ & +m_{7,29}+m_{7,24}+m_{6,28}+m_{6,27}+m_{6,26}+m_{5,24} \\ & +m_{4,27}+m_{4,23}+m_{3,27}+m_{3,26}+m_{2,26}+m_{2,24} \\ & +m_{2,23}+m_{1,27}+m_{1,26}+m_{0,26}+m_{0,24}=1 \\ & \hline \end{aligned}$
s_{112}	$a_{16,22}$	$m_{15,22}+m_{14,25}+m_{12,28}+m_{12,27}+m_{11,25}$

Neutral bit

- Introduced by Biham and Chen
- Some bits do not affect relations
- Increase the probability of collision

Semi-neutral bit

- We introduce new notion 'Semi-neutral bit'
- Change of some bits can easily be adjusted in a few steps of control sequence
- Which means that noise on semi-neutral bits can be easily decoded

Sufficient conditions and new message modification techniques

chaining variable	31-24 23-16 15-8 8 - 0
a_{0}	01100111010001010010001100000001
a_{1}	101V--vV Y------- -------- -1-a10aa
a_{2}	01100vVv ------0- ----a--- 1-w00010
a_{3}	0010--Vv -10---1a ------0-0aX1a0W0
a_{4}	11010vv- -01----- 01aaa--- 0W10-100
a_{5}	10w01aV- -1-01-aa --00100-0w--01W1
a_{6}	11W-0110-a-1001-01100010 1-a111W1
a_{7}	w1x-1110 a1a1111--101-001 1---0-10
a_{8}	h0Xvvv10 0000000a a001a1-- 100X0-1h
a_{9}	00XVrr-V 1100010000000000 101-1-1y
a_{10}	0w1-rv-v 1111101111100000 00hW0-1h
a_{11}	1w0--V-V -------1 01111110 11x---0Y
a_{12}	0w1-rV-V -------- -------- -1XVa
a_{13}	1w0--vv- -rr----- -------- -1-qq01y
a_{14}	1rhhvvVh hh------ qNNNNNqN N1hhh1hh
a_{15}	OrwhhhVh hhhh---N qNNqqNqN NNhh0hh0
a_{16}	W1whhhhh hhqNqNqN NNqNNqqq qWWhahhh
a_{17}	-0------ ---------------- ----100-
a_{18}	1-1----- -------- -------- -----00-

1, 0, a: Wang's sufficient conditions
w : adjust $\mathrm{a}_{\mathrm{i}+1, \mathrm{j}}$ so that $\mathrm{m}_{\mathrm{i}, \mathrm{j}}=0$
W: adjust $\mathrm{a}_{\mathrm{i}+1, \mathrm{j}}$ so that $\mathrm{m}_{\mathrm{i}, \mathrm{j}}=1$
v : adjust $\mathrm{a}_{\mathrm{i}, \mathrm{j}-5}$ so that $\mathrm{m}_{\mathrm{i}, \mathrm{j}}=0$
V : adjust $\mathrm{a}_{\mathrm{i}, \mathrm{j}-5}$ so that $\mathrm{m}_{\mathrm{i}, \mathrm{j}}=1$
N : semi-neutral bit

Proposal of the method to determine sufficient
conditions and new message modification technique using Gröbner basis

New collision example of 58-step SHA-1

$M=0 x$
1ead6636 319fe59e 4ea7ddcb c7961642 0ad9523a f98f28db Oad135d0 e4d62aec 6c2da52c 3c7160b6 06ec74b2 b02d545e bdd9e466 $3 f 156319$ 4f497592 dd1506f93
$M^{\prime}=0 x$
ead6636 519fe5ac 2ea7dd88 e7961602 ead95278 998f28d9 8ad135d1 e4d62acc 6c2da52f 7c7160e4 46ec74f2 502d540c 1dd9e466 bf156359 $6 f 497593$ fd150699

- Note that the proposed method is the first fully-published method that can cryptanalyze 58-round SHA-1

Cryptanalysis of 58-round SHA-1

- We can achieve all message conditions and 8 chaining value conditions in $17-23$ round (success probability is 0.5)
- 29 conditions remained
- > exhaustive search (2 2^{29} message modification)
- Constant is practical?
- Utilization of Groebner base based method
- 2^{29} message modification -> 2^{8} message modification (symbolic computation)
- However, complexity is exactly same
- 2^{29} SHA-1 -> 2^{29} SHA-1
- Complexity can be reduced employing a suitable technique of error correcting code and Groebner basis?

Using Groebner base based method (Algorithm 3)

| chaining
 variable | $31-24$ | $23-16$ | $15-8$ |
| :---: | :--- | :---: | :---: |$\quad 8-0$

Problem to determine semi-neutral bits denoted as ' N ' is equivalent to calculating Groebner basis from algebraic equations on variable denoted as ' q ' or ' N '

Calculation of Groebner basis

A message differential of full SHA-1 slightly different from Wang's (first iteration)

	$\Delta^{ \pm}{ }_{m}$	$\Delta^{+} m$	$\Delta^{-}{ }_{m}$
$i=0$	$a 0000003$	00000001	$a 0000002$
$i=1$	20000030	20000020	00000010
$i=2$	60000000	60000000	00000000
$i=3$	$e 000002 a$	40000000	$a 000002 a$
$i=4$	20000043	20000042	00000001
$i=5$	$b 0000040$	$a 0000000$	10000040
$i=6$	$d 0000053$	$d 0000042$	00000011
$i=7$	$d 0000022$	$d 0000000$	00000022
$i=8$	20000000	00000000	20000000
$i=9$	60000032	20000030	40000002
$i=10$	60000043	60000041	00000002
$i=11$	20000040	00000000	20000040
$i=12$	$e 0000042$	$c 0000000$	20000042
$i=13$	60000002	00000002	60000000
$i=14$	80000001	00000001	80000000
$i=15$	00000020	00000020	00000000
$i=16$	00000003	00000002	00000001
$i=17$	40000052	00000002	40000050
$i=18$	40000040	00000000	40000040
$i=19$	$e 0000052$	00000002	$e 0000050$
$i=20$	$a 0000000$	00000000	$a 0000000$
$i=21$	80000040	80000000	00000040
$i=22$	20000001	00000001	20000000

	$\Delta^{ \pm}{ }_{a}$	$\Delta^{+}{ }_{a}$	$\Delta^{-}{ }_{a}$
$i=0$	00000000	00000000	00000000
$i=1$	$e 0000001$	$a 0000000$	40000001
$i=2$	20000004	20000000	00000004
$i=3$	$c 07 f f f 84$	$803 f f f 84$	40400000
$i=4$	$800030 e 2$	$800010 a 0$	00002042
$i=5$	$084080 b 0$	08008020	00400090
$i=6$	$80003 a 00$	$00001 a 00$	80002000
$i=7$	$0 f f f 8001$	08000001	$07 f f 8000$
$i=8$	00000008	00000008	00000000
$i=9$	80000101	80000100	00000001
$i=10$	00000002	00000002	00000000
$i=11$	00000100	00000000	00000100
$i=12$	00000002	00000002	00000000
$i=13$	00000000	00000000	00000000
$i=14$	00000000	00000000	00000000
$i=15$	00000001	00000001	00000000
$i=16$	00000000	00000000	00000000
$i=17$	80000002	80000002	00000000
$i=18$	00000002	00000002	00000000
$i=19$	80000002	80000002	00000000
$i=20$	00000000	00000000	00000000
$i=21$	00000002	00000002	00000000
$i=22$	00000000	00000000	00000000

Sufficient conditions for the full SHA-1 (first iteration)

message variable	31-24 23-16 15-8 8 - 0
m_{0}	1-1----- -------- -------- ------10
m_{1}	--0----- -------- -------- --01-
m_{2}	-00----- ----------------
m_{3}	101----- -------- -------- --1-1-1-
m_{4}	--0----- -------- --------- -0----01
m_{5}	0-01---- ---------------- -
m_{6}	00-0---- -------- -------- -0-1--01
m_{7}	00-0---- -------- ---------1---1-
m_{8}	--1-----
m_{9}	-10----- -------- ----------00--1-
m_{10}	-00----- -------- ---------0----10
m_{11}	--1----- -------- --------- -
m_{12}	001----- -------- -------- -1----1-
m_{13}	-11----- -------- -------- ------0-
m_{14}	1------- -------- -------- -------0
m_{15}	-------- -------- -------- --0----
m_{16}	-- ------01
m_{17}	-1------ -------- -------- -1-1--0-
m_{18}	-1------- --------- --------- -
m_{19}	111----- -------- -------- -1-1--0-
$m 20$	1-1----- -------- --------
m_{21}	0------- --------- -------- -1
m_{22}	--1----- -------- -------- -------0
m_{23}	--1----- -------- --------- -11-

chaining variable	31-24 23-16 15-8 8 - 0
a_{0}	01100111010001010010001100000001
a_{1}	010----0 -0-01-0- 10-0-10- ---a0101
a_{2}	-100---1 0aa10a1a 01a1a011 1--a11a1
a_{3}	01011--- -1000000 00000000 01--a0a1
a_{4}	0-101--a ---10000 00101000 010---10
a_{5}	0-0101-1 -1-11110 00111-00 10010100
a_{6}	1-0a1a0a a0a1aaa- --10010- --01-0--
${ }^{a_{7}}$	--0-0111 11111111 111-010-0-0-0110
a_{8}	-10---01 11110000 010-111- 1---000-
a_{9}	00----11 11111111 111----0 ----1-01
a_{10}	-11----- -------- -----a-- -1--1-0-
a_{11}	100----- --------- -------1 -1--0---
a_{12}	------ -------- -------- -1----0-
a_{13}	0-------- --------- -------- -1---0--
a_{14}	1------- -------- -------- -----1
a_{15}	-- --------- ----0--0
a_{16}	-1------ -------- -------- ----1-A-
a_{17}	00------ --------- -------- ---0-0-
a_{18}	1-1------ --------- -------- ----a-0-
a_{19}	0-b----- -------- -------- ------0-
a_{20}	--0------ --------- -------- ----a-
a_{21}	-b------ --------- --------- ------0-
a_{22}	aa--
a_{23}	---- -------- ------00

Control sequence of full SHA-1 (first iteration)

ctrl. seq.	control bits	controlled relation
${ }^{s} 168$	$a_{15,8}$	$a_{30,2}+a_{29,2}=1$
$s 167$	$\alpha_{16,6}$	$a_{26,2}+a_{25,2}=1$
${ }^{s} 166$	$a_{15,7}$	$a_{25,3}+a_{24,3}=0$
s_{165}	$a_{13,7}$	$a_{24,3}+a_{23,3}=0$
${ }^{s} 164$	$\alpha_{13,9}$	$a_{23,0}=0$
${ }^{s} 163$	$a_{16,10}$	$a_{22,3}+a_{21,3}=0$
${ }^{s} 162$	$a_{16,11}$	$a_{21,29}+a_{20,31}=0$
s_{161}	$\alpha_{16,8}$	$a_{21,1}=0$
${ }^{s} 160$	$a_{16,9}$	$a_{20,29}=0$
${ }^{s} 159$	$a_{15,10}$	$a_{20,3}+a_{19,3}=0$
$s 158$	$a_{15,11}$	$a_{19,31}=0$
${ }^{s} 157$	$\alpha_{15,9}$	$a_{19,29}+a_{18,31}=0$
${ }^{s} 156$	$\alpha_{14,8}$	$a_{19,1}=0$
${ }^{s} 155$	$a_{14,11}$	$a_{18,31}=1$
${ }^{s} 154$	$a_{15,14}$	$a_{18,29}=1$
$s 153$	$\alpha_{13,8}$	$a_{18,1}=0$
${ }^{s} 152$	$a_{13,11}$	$a_{17,31}=0$
s_{151}	$a_{13,10}$	$a_{17,30}=0$
s_{150}	$a_{13,13}$	$a_{17,1}=0$
$s 149$	$a_{16,31}$	$m_{15,31}=0$
${ }^{s} 148$	$a_{16,29}$	$m_{15,29}=1$
${ }^{s} 147$	$a_{16,28}$	$m_{15,28}+m_{10,28}+m_{4,28}+m_{2,28}=0$
${ }^{s} 146$	$a_{16,27}$	$m_{15,27}+m_{10,27}+m_{8,28}+m_{4,27}+m_{2,28}+m_{2,27}+m_{0,28}=1$
${ }^{s} 145$	$a_{16,26}$	$\begin{aligned} & m_{15,26}+m_{10,28}+m_{10,26}+m_{8,28}+m_{8,27}+m_{7,27}+m_{5,27}+m_{4,26}+m_{2,27}+m_{2,26}+ \\ & m_{0,27}=0 \end{aligned}$
${ }^{s} 144$	$a_{16,25}$	$m_{15,25}+m_{11,28}+m_{10,27}+m_{10,25}+m_{9,28}+m_{8,27}+m_{8,26}+m_{7,26}+m_{5,26}+$ $m_{4,25}+m_{3,28}+m_{2,28}+m_{2,26}+m_{2,25}+m_{1,28}+m_{0,28}+m_{0,26}=0$
${ }^{s} 143$	${ }^{1} 16,24$	$\begin{aligned} & m_{15,24}+m_{12,28}+m_{11,27}+m_{10,26}+m_{10,24}+m_{9,28}+m_{9,27}+m_{8,26}+m_{8,25}+ \\ & m_{7,25}+m_{6,27}+m_{5,25}+m_{4,28}+m_{4,24}+m_{3,28}+m_{3,27}+m_{2,27}+m_{2,25}+m_{2,24}+ \\ & m_{1,28}+m_{1,27}+m_{0,27}+m_{0,25}=1 \end{aligned}$
${ }^{s} 142$	$a_{16,23}$	$m_{15,23}+m_{12,28}+m_{12,27}+m_{11,26}+m_{10,25}+m_{10,23}+m_{9,27}+m_{9,26}+m_{8,28}+$ $m_{8,25}+m_{8,24}+m_{7,24}+m_{7,0}+m_{6,27}+m_{6,26}+m_{5,24}+m_{4,27}+m_{4,23}+m_{3,27}+$ $m_{296}+m_{9} 96+m_{9} 94+m_{9} 92+m_{120}+m_{197}+m_{196}+m_{1}+m_{0} 96+m_{0} 94=0$

Advanced sufficient conditions and semi-neutral bits of full-round SHA-1

message variable	31-24 23-16 15-8 8 - 0
m_{0}	1-1----- -------- -------- ------10
m_{1}	L-0----- -------- --------- --01----
m_{2}	L00----- ---------------- -------L
m_{3}	101----- -------- -------- --1-1-1L
m_{4}	LL0----- -------- --------- -0----01
m_{5}	0L01---- -------- -------- -1-----L
m_{6}	00L0---- -------- -------- -0-1--01
m_{7}	00-0---- -------- -------- --1L--1-
m_{8}	L-1----- -------- -------- ----L--L
m_{9}	L10----- -------- -------- --00-L1L
m_{10}	L00----- -------- -------- -0LLLL10
m_{11}	LL1----- -------- -------- -1LLLLLL
m_{12}	001----- -------- -------- -1LLL-1L
m_{13}	L11LLLLL LLLLLLLL L-L----- --LLLLOL
m_{14}	1LLLLLLL LLLLLLLL L-LL---- --LLLLL0
m_{15}	LLLLLLLL LLLLLLLL LL-L---- L-OLLLLL
m_{16}	-----01
m_{17}	-1------ -------- -------- -1-1--0-
m_{18}	-1------ -------- --------- -1------
m_{19}	111----- -------- -------- -1-1--0-
m_{20}	1-1----- -------- --------
m_{21}	0------- -------- -------- -1------
m_{22}	--1----- -------- -------- -------0
m_{23}	--1----- -------- -------- -11-----
$m っ \wedge$	1------- -------- --------

chaining variable	31-24 23-16 15-8 8-0
a_{0}	01100111010001010010001100000001
a_{1}	010-FrF0 y0-01-0- 10-0-10- F-Fa0101
a_{2}	F100-Vv1 Oaa10a1a 01a1a011 1-wa11a1
a_{3}	01011VFV -1000000 00000000 01FFa0a1
a_{4}	0w101v-a y--10000 00101000 010XWF10
a_{5}	0w0101y1 V1-11110 00111-00 10010100
a_{6}	1w0a1a0a a0a1aaa- --10010F -W01F0Fh
a_{7}	ww0w0111 11111111 111-010F 0w0W0110
a_{8}	w10wvv01 11110000 010-111F 1-Wh000F
a_{9}	00WV--11 11111111 111----0 ---F1F01
a_{10}	W11x-Vvv -------- -----a-- -1ww1h0w
a_{11}	100V---- -------- -------1 -1hh0hWw
a_{12}	wwWF-v-- -------- -------- -1hhhh0h
a_{13}	0wW--V-- -F-F-F-- FNqNqqqq q1hhh0WW
a_{14}	1WWhhhhh hhhhhhhh hNhNqNNq NNhhh1wh
a_{15}	WWwhhhhh hhhhhhhh hqhhqqqq qNwh0hh0
a_{16}	w1Whhhhh hhhhhhhh hhNhqqqq hqwh 1 hah
a_{17}	00------ -------- -------- ----0-0-
a_{18}	1-1----- ------------------- - - $0-$
a_{19}	0-b----- --------- -------- ------0-
a_{20}	--0----- --------
a_{21}	--b----- -------- -------- ------0-
a_{22}	a
a_{23}	------00
	-c------ --------

Cryptanalysis of full-round SHA-1 (first iteration)

- We can achieve all message conditions and all chaining variable conditions in 17-26 round
- 64 conditions remained
- > exhaustive search (264 message modification)
- Constant is practical?
- Utilization of Groebner base based method
- 2^{64} message modification -> 2^{51} message modification (symbolic computation)
- However, total complexity is still same
- Complexity can be reduced employing a suitable technique of error correcting code and Groebner basis?

Example which satisfies sufficient conditions until 28-th round
$M=0 x$
aa740c82 9f91e819 84c3e50f a898306b 1e5b4111 1867d96b 0616ea95 014a2f32 7ae92980 d5e4d6c6 9d49d0ba 3b8087d3 32717277 edcec899 dc537498 63bca615

- The above M satisfies all message conditions of 0-80 rounds and all chaining variable conditions of 0-28 rounds

Gröbner cryptanalysis of SHA-1

- Gröbner base based cryptanalysis (simplification of Wang's attack) of SHA-1 can be easily implemented by everyone
- Everyone can evaluate the complexity accurately
- Everyone can easily evaluate the immunity of SHA-2 against Gröbner base based attack (or Wang's attack)
- Everyone can propose new algorithms immune to our attack (or Wang's attack)

(Near) Future Work

- Find the collision of full-round SHA-1
- Use Gröbner base based cryptanalysis
- As an improvement of Wang's attack
- Community of symbolic computation has so many good techniques
- Wang (probably) does not use such techniques e.g. iterative decoding, list decoding, Sudan algorithm, Groebner basis based method

Question:

Who and when will find the collision of full-round SHA-1?

- My (only personal, not public) conjecture
- Someone in the crypto community or the community of symbolic computation
- In a few years, not in 10 years as NIST considers

Future work: Application to SHA-2

- Finding good sufficient conditions - Difficult to find?
- Hint: Sufficient conditions do not need to be linear relations on $\left\{m_{i j}\right\}$ or $\left\{a_{i j}\right\}$
- Once good sufficient conditions are determined, problems are degenerated into symbolic computation

