
1

RadioGat´ un, a belt-and-mill hash function

Guido Bertoni, Joan Daemen, Gilles Van Assche Michaël Peeters

STMicroelectronics De Valck Consultants

July 20, 2006

Abstract

We present an approach to design cryptographic hash
functions that builds on and improves the one under­
lying the Panama hash function. We discuss the
properties of the resulting hash functions that need
to be investigated and give a concrete design called
RadioGat´ un that is quite competitive with SHA-1
in terms of performance. We are busy performing an
analysis of RadioGat´ un and present in this paper
some preliminary results.

Introduction

Cryptographic hash functions are symmetric primi­
tives, used in many cryptographic protocols and as
building blocks in many cryptographic functions. In
general, a hash function maps a bitstring of any
length, the input, to a fixed-length digest.

Almost all cryptographic hash functions in use
today can be considered as strengthened versions
of MD4 [17]. This includes MD5 [16], SHA-1 [9],
RIPEMD-160 [8], SHA-256 [10], SHA-384 [10] and
SHA-512 [10]. These hash functions are defined in
terms of the repeated application of a compression
function that transforms a state variable and takes a
fixed length input block. For their collision-resistance
they rely on the collision-resistance of this underly­
ing compression function. The compression functions
of these hash functions consist of an input expansion
schedule and a state updating function. The input
expansion schedule converts the (typically 16) words
of an input block to 3 to 5 times as many round input
words using a simple function. The state updating

function transforms the state by a sequence of sim­
ple and invertible rounds each taking a round input
word, as many as there are round input words. It is
widely believed that this compression function, given
an input block, should not be invertible. For that
reason, the compression function includes a feedfor­
ward loop, whereby the initial value of the state is
added to the result of the rounds. For their security
all these hash functions rely heavily on the combi­
nation of XOR and integer addition. Cryptanalysis
has advanced to the level that MD4, MD5 and SHA-1
are nowadays no longer considered to offer a sufficient
level of collision-resistance. More recent designs at­
tempt to inspire more confidence by including more
complex input expansion schedules, more rounds and
a bigger state resulting in hash functions that are
slower and bulkier.

Recently, a refreshing approach to hash function
design was taken in the form of the SMASH hash
function [12]. Unfortunately, the SMASH design ap­
proach was broken soon after publication in [14].
Nevertheless, we believe the field of hash functions
would greatly benefit from alternative design ap­
proaches. We present in this paper a design approach
leading to hash functions that are more elegant than
the MD4 derivatives, and we believe will offer better
security at a lower implementation cost.

In our approach, the hash function consists of the
iterated application to a large state of a single simple
round function, alternated with the injection of input
blocks. After injection of all input blocks, the state
undergoes a number of blank rounds after which part
of the state is returned as the hash result.

The round function by itself has no cryptographic

2

properties such as collision resistance. As in block
ciphers, the supposed cryptographic strength of the
function lies in the iterated application of the round
function. The design approach we present is not new,
but builds further on the one underlying Panama

[4] that in turn goes back to StepRightUp [3] and
Subterranean [2, 3]. In fact, the breaking of the
Panama hash function in [15] revealed serious prob­
lems with its design strategy. We started by ana­
lyzing the attack to see how Panama could be fixed.
This lead to some generalizations of the attack in [15]
and a new powerful attack that forced us to abandon
some of the design principles underlying Panama and
introduce other. The result is the design approach
presented in this paper. We illustrate it with a con­
crete design called RadioGat´ un.

We start by describing a generic cryptographic
primitive called an iterative mangling function (IMF),
of which cryptographic hash functions are a spe­
cial case. This is followed by a presentation of the
alternating-input construction for realising an IMF,
a presentation of a generic attack for generating in­
ternal collisions called trail backtracking and a discus­
sion on other aspects. We then present the belt-and­
mill structure for the round function of a alternating­
input IMF and discuss implications of trail backtrack­
ing on the design. Finally we present our concrete de­
sign RadioGat´ un, provide a rationale for our design
choices and discuss hardware and software implemen­
tation aspects.

As far as we know, there are no patents on
RadioGatun´ , the belt-and-mill structure or the
alternating-input construction.

Iterative mangling functions

First we introduce mangling functions, which are a
generalization of a hash functions. Instead of return­
ing a fixed-length digest, a mangling function returns
an infinite output stream. It can be converted to a
hash function by truncating the output to the first n
bits.

A mangling function takes a variable-length input
and returns an infinite output stream. Informally, a
good mangling function should not have properties

different from that of a random oracle [1]. A ran­
dom oracle returns a completely randomly generated
stream for each different input. So, for example, find­
ing an input that matches a given pattern in the first
n bits of the output stream would require computing
the mangling function for on the average 2n inputs.
Finding a collision in the first n bits of the output
stream would require computing the mangling func­
tion for on the average 2n/2 inputs.

Almost all practical hash functions are iterative.
The input is padded (if necessary) and split up in
a sequence of input blocks. The input blocks are
sequentially injected into the state by means of what
is usually called a compression function. Then a final
transformation may be applied to the state resulting
in the digest.

Iterative hash functions can be implemented in
hardware or software with limited amount of working
memory, irrespective of the length of the input. They
have however the disadvantage that different inputs
may be found that lead to the same value of the state
before the final transformation. This is called an in­
ternal collision.

An iterative mangling function (IMF) can be de­
fined analogously with an iterative hash function as
operating on a state with fixed size. Due to the lim­
ited size of the state, an IMF cannot behave like a
random oracle. If the state has u bits, it can only
generate 2u different output sequences over all possi­
ble inputs. Hence, the work factor of finding a colli­
sion in the first n bits of the output is upper bounded
by 2u/2 .

As behaving like a random oracle is out of reach for
any IMF, we replace the objective by a more modest
one: to behave not worse than what we call a ran­
dom IMF. A random IMF has a given capacity [5],
denoted by £c. A random IMF with capacity £c con­
sists of the iterated application of a random oracle
used as a £c + 1-bit to £c-bit compression function.
This compression function consists of calling the ran­
dom oracle for a £c + 1 input and taking the first
£c bits of its output. It has a £c-bit state initialized
to 0 and for each bit of the input the new value of
the state is computed by applying the compression
function on the concatenation of the state and the
input bit. The initial value of the state is 0 and the

compression function is iteratively applied for all bits
of the input. After this, the output stream is gener­
ated by iteratively applying the compression function
to the state concatenated with a bit equal to 0 and
giving the first bit of the state as output bit.

When designing an IMF, one can claim that it of­
fers a capacity of £c. Clearly, this claimed capacity
cannot be higher than the number of bits in the state
in the IMF.

3	 The alternating-input con­

struction

We present a simple construction for IMF called
alternating-input. It consists of the alternation of in­
put injection and a simple invertible round function,
followed by a fixed number of rounds without input or
output, followed by the iterated application of rounds
while returning part of the state. The construction
is given in Algorithm 1.

Algorithm 1 The alternating-input construction

takes £i-bit input blocks p0 to pnp−1

generates £o-bit output blocks z0 to znz−1

operates on an £s-bit state S
S ← 0 {State initialization}
for i = 0 to np − 1 do

T = S ⊕ Fi(pi) { Fi: input mapping}
S ← R(T) { R: round function}

end for{Injection}
for i = 0 to nb − 1 do

S ← R(S)
end for{Mangling}
for i = 0 to nz − 1 do

S ← R(S)
zi = Fo(S) { Fo: output mapping}

end for{Extraction}

The input mapping maps the bits of an input block
to bits of the state and the output mapping maps
bits of the state to the bits of an output block. Both
are linear operations. Note that functions such as
Subterranean and Panama fit this model, but also
SMASH.

For a alternating-input IMF, the design is reduced
to that of the round function, the input and output
mappings and the number of blank rounds nb. The
goal is to choose these such that the resulting IMF
behaves no worse than a random IMF with a given
capacity. We believe the central design challenges are
the following, in order of importance:

Internal collisions The expected workload L to
generate internal collisions shall not be less than
suggested by the capacity. This is the classic re­
quirement for a cryptographic hash function and
addresses the round function and the input lay­
out.

State guessing The expected workload L to guess
the value of the state given a sequence of out­
put blocks shall not be less than suggested by
the capacity. This is the classic requirement for
a synchronous stream cipher and addresses the
round function and the output layout.

Decorrelation The transformation consisting of a
sequence of rounds shall not reveal large corre­
lations between any parity of state bits at its
output to any parity of state bits at its input.
This is the classic requirement for a block cipher
to be resistant to linear cryptanalysis and ad­
dresses the round function and the number of
blank rounds.

Difference propagation The transformation con­
sisting of a sequence of rounds shall not reveal
large propagation probabilities between differ­
ence in the state at its output to any difference in
the state at its input. This is a classical require­
ment for a block cipher to be resistant to dif­
ferential cryptanalysis and addresses the round
function and the number of blank rounds.

We believe that a alternating-input IMF that meets
these challenges behaves no worse than a random
IMF with a given capacity. We illustrate this for
the often-cited properties of cryptographic hash func­
tions: collision resistance and (2nd-) preimage resis­
tance [13, Table 9.2]:

Collision and 2nd-preimage resistance When
internal collisions are infeasible, any pair of

i

inputs will start the blank rounds with a
difference. The series of blank rounds operate
as a block cipher on the state and the difference
propagation property makes controlling the
difference after the blank rounds infeasible.

Preimage resistance When state guessing is infea­
sible, finding a preimage for a given digest is also
infeasible.

In this paper we focus on internal collisions as this
seems to be the most difficult design goal to meet.
State guessing is mostly relevant if the length of the
digest is of the same order as the state. Difference
propagation and decorrelation can be improved by
increasing the number of blank rounds.

4 Internal collisions

In this section we consider approaches to generate in­
ternal collisions for alternating-input IMF. First we
concentrate on techniques used in differential crypt­
analysis to control the difference propagation through
the rounds. This results in a criterion for the design
of such hash functions: the minimum backtracking
cost. This is followed by a treatment of alternative
approaches to generate internal collisions.

4.1 Differential trails

Consider the round function R. We denote a differ-
Sential over the round function in round i by (tSi, si+1)

and call it a round differential. Its differential proba­
bility (DP) is the proportion of state pairs {Ti, Ti⊕tS}i

Ssuch that R(Ti)⊕R(Ti⊕ti
S) = si+1. If DP > 0, we say

the differential is possible. The (restriction) weight of
Sa possible differential, wr(t

S
i, si+1), is defined by

 S S 2−wr(t ,s)i i+1DP(ti, s = . (1) i+1)

We now define a (differential) trail through the
IMF. A r-round trail consists of the concatenation
of r possible round differentials and is defined by a
sequence of r difference triplets plus the final state
difference:

S S S S S S SQ : (s0, p 0, t0), . . . , (sr−1, p r−1, tr−1), s . (2) r

A trail describes a propagation of differences through
Sthe IMF during a number of rounds: pi denotes the

difference in the input injected before round i and
the three members of each triplet are related by tS =
S S Ssi ⊕ Fi(pi). We say this trail starts in s0 and ends in
Ss .r

The probability of a trail DP(Q) is defined as the
proportion of all state/input pairs with initial state

Sdifference s0 and r-round input sequence difference
S S Sp0, p1, . . . , pr−1 such that the difference in the state

follows the trail. We define the weight of a trail by
the sum of the weights of its round differentials:

r−1
L

S Swr(Q) = wr(ti, s . (3) i+1)
i=0

If we assume that the the conditions imposed by the
round differentials are independent, the weight deter­
mines the probability of the trail: DP(Q) ≈ 2−wr(Q).
However, this independence is not necessarily satis­
fied and the probability of a trail may be larger than
this or even 0 in the case of conflicting conditions.

We call a trail that starts and ends both in 0 a
collision trail.

4.2 A naive attack

A collision trail Q with non-zero probability can be
used to generate internal collisions. An attacker just
applies pairs of inputs that exhibit the difference se-

Squence pi and verifies whether this results in an in­
ternal collision. These pairs look like this:

p−d p1−d . . . p0 p1 . . . pr−1

p−d p1−d . . . p0 ⊕ pS0 p1 ⊕ pS1 . . . pr−1 ⊕ pSr−1.
(4)

The attacker has to try about 1/DP(Q) pairs. In
general, the workload L of the attack may be smaller
than DP(Q) suggests: for the same sequence of input

S S Sdifferences p0, p1, . . . , pr−1 other collision trails may
exist that lead to a collision. The workload L of the
attack is determined by the sum of the probabilities
of all collision trails for a given sequence of input
differences.

4.3 Trail backtracking

In the trail backtracking attack, the attacker applies
pairs of inputs as specified in Equation (4) and tracks
the difference propagation as it proceeds through the
trail. We call an input entering round i the input
sequence p−d . . . pi. If we speak of a pair of inputs,
we always assume it has the right difference.

Say we have N random pairs of inputs entering
S Sround 0. For these pairs, s = 0 and tS = Fi(p0). For 0 0

each pair we compute the difference after round 0. If
Sthis is equal to s1, we say it is a right pair coming out

of round 0. The total number of right pairs coming
(t ,s)0 1out of round 0 is about N2−wr . For each such

right pair, we can append an input block p1 to one
Smember and p1 ⊕ p1 to the other. As there are 2£i

input block values, this results in N2£i−wr(t ,s) right 0 1

Spairs entering round 1. If wr(t0
S , s1) < £i, the number

of right pairs entering round 1 is even larger than the
total number of pairs entering round 0. Following this
reasoning, and assuming the conditions imposed by
the round differentials are independent, the number
of right pairs entering round g is

 g−1

N2g£i− wr(t ,s)
i=0 i i+1 .

If we define the excess weight in round g for a trail Q
�g−1 Sas We(g) = wr(tj

S , s)− £i , this becomes j=0 j+1

N2−We(g).

The number of right pairs coming out of round h < r
is:

N2−£i−We(h+1).

The excess weight before the trail is 0, hence We(0) =
0.

We can now ask two questions: how large must N
be to have a collision with reasonable probability and
what is the workload L(Q) of the resulting attack.
We express the workload of the attack L(Q) by the
number of round function evaluations that must be
performed. Clearly, this is the sum of the number of
right pairs entering each round.

First of all, the number of right pairs coming out
of each round h must be at least 1:

2£i+We(h+1) 2£i+maxh We(h+1) N ≥ max = . (5)
h

We call the round with the least number of right pairs
at its output the lonesome round.

For most trails, there is a single round in which the
number of right pairs entering is much larger than all
other. We call this the crowded round. The workload
can then be approximated by the number of right
pairs entering the crowded round:

N2−We(g) N2−ming We(g)L(Q) ≈ max = .
g

It may happen that there are more than a single
round where the excess weight reaches a minimum.
In that case the actual workload will be a small fac­
tor higher than the value derived here. Filling in the
minimum value of N given by Eq. (5) yields:

L(Q) ≈ 2£i+maxg,h,0≤g<h≤r We(h)−We(g). (6)

We define the backtracking cost of the trail by

Cb(Q) = £i + max We(h)− We(g). (7)
g,h,0≤g<h≤r

The backtracking cost of a trail can be easily com­
puted from its excess weight profile We(i). This is
illustrated in Figure 1.

When a trail has a sequence of rounds where the
weight is 0, or smaller than £i, the excess weight de­
creases. This suggests that the number of right pairs
grows per round. Clearly, the attacker will not need
all these right pairs to generate a collision, just as
many to have at least one right pair coming out of
the lonesome round further along the trail.

SSometimes the differential (tS i, si+1) is independent
of some bits or bit parities in pi. If that occurs in
the lonesome round, the backtracking cost increases
with the number of independent bit parities that the

Sdifference propagation (tS h, s) is independent of. h+1

Note that the trail backtracking attack only finds
collisions that follow one specific trail, while the naive
attack results in an internal collision whenever a col­
lision trail is followed for the given sequence of input
differences. It turns out that in practice an input dif­
ference must have very many collision trails for the
naive attack to be more efficient than the trail back-
tracker attack. For a given alternating-input IMF,
an attacker must hence look for trails with a low
backtracking cost, a designer can try to prove lower
bounds for the minimum backtracking cost.

crowded
round

lonesome
round

weight

input blocks

right pairs coming out (neg. log.)

right pairs entering (neg. log.)

b
a

ck
track

in
g

 co
st

rounds

Figure 1: Example of trail with its weight and back­
tracking cost

4.4 Fixed points

In the attacks considered until now, two inputs that
lead to an internal collision have the same length.
One may however try to generate collisions with in­
puts of different length. One method to do so is by
exploiting fixed points.

Let F [x](S) be the state transformation of apply­
ing r rounds while injecting a series of input blocks

x = x0�x1� . . . �xr−1

with � meaning concatenation. With q is a single
input block we can define this recursively as:

F [q](S) = R(S ⊕ Fi(q))

F [x�q](S) = R(F [x](S)⊕ Fi(q)) .

For a fixed x, the transformation F [x](S) is a per­
mutation of £s-bit values. Such a function may have
fixed points y = F [x0](y). As a matter of fact, if the
state space is large, the number of fixed points in a
random permutation has a Poisson distribution with

λ = 1 [7]. A fixed point can be used to create inter­
nal collisions: given an input sequence x that leads
to a fixed point y in the state for F [x](S), appending
any number of strings x will not affect the state and
hence result in the same digest whatever the number
of strings x attached.

If x is 1 or 2 input blocks and the round function
is simple, one may determine the fixed points by al­
gebraically solving a set of equations. For longer val­
ues of x, determining fixed points becomes increas­
ingly difficult. As the number of input blocks in x
grows, the permutations F [x](S) are expected to be­
have more like random permutations. For realistic
values of the state size, the number of fixed points
that can be determined with respect to all state val­
ues is negligible. Still, the designer may investigate
whether the number of fixed points for short x is
not too large or that some easy to reach state val­
ues are not fixed points. Easy to reach state values
include the initial all-zero value or any value that can
be reached from this after one or two rounds.

If constructing an input sequence that leads to a
fixed point would be easy, generating an internal col­
lision would also be easy: take a random input and
consider the resulting state value. Then construct
the input that leads to the same state value. One
may try to address fixed points by having part of the
state and round function to behave as a counter, or
alternatively, include in the padding of the input a
coding of its length. However, this only complicates
the IMF and we think it is better to fix the design
rather than add a counter to solve the problem.

4.5 Starting from non-zero difference

One may also consider several (or many) input se­
quences, each one leading to a particular value of the
state, and then try to find pairs among these with
a state difference from which there is an easy route
to an internal collision. Note that a trail with low
backtracking cost does not necessarily help because
the attacker does not have the degrees of freedom
as in the collision trails before the first round of the
trail. In any given pair of input sequences, the ab­
solute values of bits are fixed. In this context, one
may conduct a quantitative analysis on the propor­

tion of state differences from which there are trails
with low weight or backtracking cost to an internal
collision.

4.6 Computing backwards

As the round function is invertible, it is possible to
compute backwards from a given state value. How­
ever, any valid state value must result from applying
an input to an all-zero initial state. We believe that
reaching the all-zero initial state computing back­
wards will not be less difficult than reaching a target
state starting from the initial state. Still, comput­
ing backwards can be exploited in meet-in-the-middle
strategies where an input leading to a particular value
of the state might be constructed by appending two
input sequences. Here the number of bits in the state
whose value may be easily controlled by applying in­
put blocks in consecutive rounds plays an important
role and may be investigated by the designer.

4.7 Algebraic attacks and techniques

The definition of the round function allows the state
at its output to be expressed as a function of the
state at its input. In general, one can use this to
express the output state bits as Boolean functions of
the input state bits. In some cases one may find sim­
pler equations by grouping the bits in b-bit words and
interpreting these as elements of GF(2b) or integers.

Exploiting these equations, finding an input se­
quence leading to a given hash result or internal state
can be reduced to solving a system of algebraic equa­
tions. The difficulty of solving such a system is in
general hard to evaluate and depends on the number
of variables and equations, the complexity of the lat­
ter and their interconnection. Clearly, the amount of
diffusion and nonlinearity of the round function plays
an important role in this respect.

Consider a collision-generating attack based on a
Sdifferential trail. With a round differential (tS i, s)i+1

corresponds a set of right state pairs. If the restric-
Stion weight wr(ti

S , s) is an integer, it can be inter­i+1

preted as follows. The bits of the right state pairs
satisfy a set of independent Boolean equations each
with probability 1/2 of being satisfied. The number

of equations is the restriction weight. Now, given Si,
some of these equations can be converted to equa­
tions in bits of the input block pi. By taking into
account these conditions in the generation of input
pairs, the complexity of the attack can be improved.
In general, the ability to choose input pairs that sat­
isfy b binary conditions with certainty, reduces the
expected number of pairs to try by a factor 2b .

In fact, at most £i of these equations can be con­
verted to equations in bits of the input block pi. The
remaining ones can only be addressed by the attacker
by transferring them via the round function to equa­
tions in bits of earlier input blocks. For round i− 1,

Swe similarly have wr(t
S
i−1, s) equations that must be i

transferred to input blocks. If we require both round
i − 1 and round i differentials to be followed, the
number of equations that must be transferred to in­
put blocks entering round i − 1 is the sum of the
two weights minus £i. In general, when requiring the
round differentials of rounds g up to h to be satisfied,
the number of equations that must be transferred to
input blocks entering round g is We(h)− We(g) + £i.
If we apply this to the full trail, this number reaches
a maximum when g is the crowded round and h the
lonesome round and is equal to the backtracking cost
Cb(Q) of the trail.

We can now define the backtracking depth d of a
trail as its backtracking cost divided by £i. The
backtracking depth gives the number of rounds over
which an attacker performing an algebraic attack
must transfer equations on the state to conditions
on the input blocks.

Given a round function, decreasing £i has a nega­
tive impact on performance but a positive on security
as it has a threefold impact on the minimum back­
tracking depth:

•	 It gives less freedom for trail construction and
will typically increase the minimum weight of
trails.

S•	 For the same trail, it increases the wr(t
S
j , s)−j+1

£i of the round differentials and hence the back­
tracking cost of the trail.

•	 For the same backtracking cost, it increases the
backtracking depth.

5 The belt-and-mill structure

The round function is the central component of any
alternating-input IMF. In this section we generalize
the structure of the round function of Panama and
call it the belt-and-mill structure. The state consists
of two parts, the belt and the mill, and the round
function treats them very differently. It consists of
four operations that can take place in parallel:

Mill function an invertible non-linear function ap­
plied to the mill,

Belt function an invertible simple linear function
applied to the belt,

Milt feedforward some bits of the mill are fed to
the belt in a linear way,

Bell feedforward some bits of the belt are fed to
the mill in a linear way.

The algorithm is given in Algorithm 2.

Algorithm 2 A belt-and-mill round function

(A, B) = R(a, b), with
A = Mill(a)⊕ Bell(b) and
B = Belt(b)⊕ Milt(a)

The positions of the bits that are fed forward shall
be chosen so that the resulting round function is in­
vertible. If Bell(Belt

−1(Milt(a))) = 0 for any
value of a, then Bell(b) = Bell(Belt

−1(B)) can
be found from B, allowing to recover a, hence mak­
ing the round function invertible.

The only non-linear component in the round func­
tion is the mill function. This has an important im­
pact on its differential propagation properties.

Consider differentials over the round function. Us­
ing the linearity of the functions, given an input dif­
ference (aS, bS), the output difference (AS, BS) is:

AS = Mill(a)⊕ Mill(a ⊕ a S)⊕ Bell(bS) (8)

BS = Milt(a S)⊕ Belt(bS) (9)

The output difference in the belt BS is fully deter­
mined by the input difference and hence independent

of the value of the state (a, b). The output difference
in the mill AS is also independent of b but depends
on a through Mill(a)⊕ Mill(a⊕ aS). It follows that
the DP and weight of a possible round differential is
fully determined by the differences at the input and
the output of the mill function. We have:

wr((a S, bS), (AS, BS)) = wr(a S, AS ⊕ Bell(bS)) (10)

SAny differential with a = 0 has weight 0 and hence
imposes no conditions on the state. Moreover, this
upper bounds the weight of round differentials to the
number of bits in the mill minus 1.

As for algebraic attacks, only the mill function re­
sults in nonlinear equations and all other equations
are linear. This limits the number of internal Boolean
variables that need to be introduced per round to the
number of bits in the mill.

The belt and mill each have their own function.
The mill is the confusion engine, with a task similar
to that of a round function in a SPN block cipher
or the F function in a Feistel block cipher. It should
provide nonlinearity and local diffusion. The belt has
a function similar to that of the key schedule in block
ciphers, the input expansion in hash functions or the
switching of the two halves in a Feistel cipher. It
takes care of global diffusion and plays an important
role in avoiding collision trails with low cost.

The Panama round function has the belt-and-mill
structure. However, it has two modes called push
and pull. The push mode is used in the input injec­
tion phase and the pull mode in the output extrac­
tion phase. In the push mode, there is no feedfor­
ward from the mill to the belt, leading to a linear
dependence of all belt bits from the input sequence.
This property was exploited in the breaking of the
Panama hash function. We refer to Appendix A for
more explanations on this.

6 RadioGat´ un

We say:
z = un[£w](x) (11) RadioGat´

with

• x: input that can be a bit string of any length

•	 £w: parameter word length that can have any
value from 1 to 64. Each value of £w defines
another function. The word length is by default
64: RadioGat´	 un[64]. un means RadioGat´

•	 z: infinite length output stream.

We claim that RadioGat´] offers a security un[£w

level indicated by a capacity £c = 19£w. For the 64­
bit version RadioGat´ un this is a capacity of 1216
bits, for the 32-bit version and 16-bit version this
gives 608 and 304 bits respectively.

RadioGatun´ [£w] can be used as a hash function
with a £h-bit digest by taking the first £h bits of the
output stream. Note that taking for values £h > £c

the claimed collision-resistance level is determined by
£c rather than £h.

Reference and optimized code, test vectors and ex­
tra information can be found in [18].

6.1 The building blocks

The RadioGat´ function is a alternating-input un

IMF with the belt-and-mill structure. The mill a
consists of 19 words a[i], the belt b of 13 stages b[i]
of 3 words b[i, j] each. An input block p consists of 3
words p[i], an output block z consists of 2 words z[i].
All indexing starts from 0.

The round function is specified in Algorithm 3 and
illustrated in Figure 2. It makes use of the mill func­
tion that is specified in Algorithm 4.

The input mapping is specified in Algorithm 5 and
the output mapping in Algorithm 6.

Algorithm 3 The round function R

(A, B) = R(a, b)
for all i do

B[i] = b[i + 1 mod 13]
end for{Belt function: simple rotation}
for i = 0 to 11 do

B[i + 1, i mod 3] = B[i + 1, i mod 3] ⊕ a[i + 1]
end for{Mill to belt feedforward}
A = Mill(a) {Mill function}
for i = 0 to 2 do

A[i + 13] = A[i + 13]⊕ b[12, i]
end for{Belt to mill feedforward}

Algorithm 4 The mill function

A = Mill(a)

all indices should be taken modulo 19,

x » y denotes rotation of bits within x over y

positions

for all i do

A[i] = a[i]⊕ a[i + 1]a[i + 2]
end for{γ: non-linearity}
for all i do

a[i] = A[7i] » i(i + 1)/2
end for{π: intra-word and inter-word dispersion}
for all i do

A[i] = a[i]⊕ a[i + 1] ⊕ a[i + 4]
end for{θ: diffusion}
A[0] = A[0]⊕ 1 {ι: asymmetry}

Algorithm 5 The input mapping Fi

(a, b)← 0
for i = 0 to 2 do

b[0, i] = p[i]
a[i + 16] = p[i]

end for

Return (a, b)

Algorithm 6 The output mapping Fo

z[0] = a[1]
z[1] = a[2]
Return z

6.2 The function

The function is specified as follows.

•	 First apply reversible padding to x by append­
ing a single bit equal to 1 and zeroes until the
length of the result is a multiple of the input
block length and decompose the latter in input
blocks p0 to pnp−1.

•	 Then execute Algorithm 1 with the round func­
tion specified in Algorithm 3 until sufficient out­
put bits are generated. The number of blank
rounds is nb = 16.

Figure 2: The RadioGat´ un round function and input mapping

7 Design rationale

The design of RadioGat´ un borrows heavily from
Panama: the latter can be seen as a strengthened
version of the former. In this section we first discuss
the properties of the mill function followed by a treat­
ment of the one-bit word version RadioGat´ un[1].
Finally we describe how we went about deciding the
dimensions and layouts in RadioGat´ un.

7.1 The mill function

The mill function consists of a sequence of four invert­
ible transformations and is very similar to the func­
tion ρ in Panama. The only difference is that the
mill of RadioGat´ un has length 19 while this is 17
for Panama and the fact that the injection of input
blocks and belt words is not part of the mill function.
γ and θ are both shift-invariant transformations that
are invertible for length 19 [3, Chapter 6]. The per­
mutation π combines rotation of the bits within the
words and a permutation of the word positions. ι is
only there to break the symmetry.

Within the mill function, only γ is non-linear. It
has algebraic degree 2 in GF(2) and consequently spe­
cific differential propagation properties. Note that its
inverse does not have algebraic degree 2. The differ­
ential propagation properties of γ are studied in [3,

Section 6.9]. We give a short summary here:

•	 Given an input difference aS, the values cS for
Swhich (a , cS) is a possible differential form an

affine space γ(aS) ⊕ Va with Va a vector space
Scompletely determined by a .

•	 The (restriction) weight of all these differentials
is equal to the dimension of Va . This means:

S–	 The weight of (a , cS) for all possible values
of cS is the same and hence completely de-

S	 Stermined by a . We can say wr(a , cS) =
wr(a

S).

–	 The weight of any differential over γ is an
integer.

S•	 The differential (a , cS) imposes wr(a
S) affine

Boolean conditions on the input a.

Thanks to the fact that π, θ and ι are linear, given
a difference aS at the input of the mill function, the
possible differences at the output of the round form
an affine space. Note that the inverse is not the case:
given a difference at the output of the mill function,
the possible input differences do not form an affine
space.

7.2 One-bit word version

The state of RadioGatun´ [£w = 1] has size 19 + 3×
13 = 58 bits. Although this is too small to pro­
vide a practical cryptographic hash function, we can
nevertheless learn something from the case of one-bit
words.

First of all, RadioGatun´ [n] with n = 1 or small
are interesting subjects for trying out algebraic at­
tacks and getting a better understanding of their
complexity.

Another interesting exercise consists in finding col­
lision trails for RadioGat´ un[1]. Due to the symme­
try of the construction, a trail for RadioGat´ un[1]
can be extended to any other word size £w > 1: for
each bit of the one-bit input or state difference, it is
repeated £w times, i.e., 0 (resp. 1) becomes 0£w (resp.
1£w), where the exponentiation by n denotes the con­
catenation of n identical strings. In RadioGat´ un,
all the operations independently operate on each bit
of the words, except for the (intra-word) rotation in
π. Clearly, the repeated bit difference is insensitive to
the rotation. Note that the constant in ι is not sym­
metric, that is, not identical for all bits. If this con­
stant was symmetric, RadioGat´ > 1] would un[£w

reduce to RadioGat´ un[1] for symmetric inputs.

As a convention, we say a trail is 1-symmetric (or
simply symmetric) if it is invariant to a rotation of
1 bit within a word. In such a trail, the words are
either all zeroes or all ones. A symmetric trail in
RadioGat´] has a cost equal to the cost of the un[£w

corresponding trail in RadioGat´ un[1] multiplied by
£w. This follows from the fact that the restriction
weight in RadioGatun´ [£w] is the sum of the restric­
tion weights in each of the £w one-bit slices.

Note that this extension can be generalized to other
small variants of RadioGat´ For instance, a trail un.
of RadioGat´ un[2] can be extended to any even word
size. Whenever a 2-bit word difference is xy, x, y ∈
GF(2), it becomes (xy)£w/2 . In general, a trail in
RadioGatun´ [£w] can be extended to a £w-symmetric
trail in RadioGatun´ [n£w] for any positive integer n.
In this current study, however, we limit ourselves to
the case of 1-symmetric trails.

Finding internal collisions for RadioGat´ is un[1]
feasible: thanks to the birthday paradox, after taking

about 258/2 = 229 random inputs, it is likely to find
two of them that cause an internal collision.

We looked for internal collisions by using input
pairs of the form as in Equation (4) with d = 7 and
r = 7; the input block p−7 is the first block of the
input. There are thus seven input blocks of prepara­
tion, which determine the absolute value of the state
before the differences can appear. Eight block pairs
are then input to RadioGat´ con­un[1], each possibly
taining a difference. Remember that each input block
consists only of three bits.

Due to time considerations, the search was re­
stricted to the case of p−7 = 0. Nevertheless, we
searched the described input space exhaustively and
found more than 4 million internal collisions. The
minimum backtracking cost found was Cb = 46 and
there were two trails with this cost. Then, a few in­
ternal collisions have cost Cb = 51. The distribution
is centered around a maximum in Cb = 107.

For instance, exploiting this given trail with Cb =
46 using the trail backtracking attack of Section 4.3
has a complexity of about 246 evaluations of the
round function, much higher than that of the birth­
day paradox attack.

Used as a symmetric trail in RadioGat´ un with
£w > 1, the backtracking cost scales with the word
size £w. Following the same example, the complex­
ity of the backtracking attack is 246£w . Thanks to
the rotation in π, one cannot apply this attack inde­
pendently on each of the £w bits, and thanks to the
asymmetric constant in ι, one cannot work only with
symmetric words as input. Also, to exploit this sym­
metric trail with Cb = 46£w using the backtracking
attack, one needs to populate the crowded round with
enough input pairs, which requires more than fifteen
rounds with three input words each to get enough
degrees of freedom.

This investigation is ongoing work and should be
taken rather carefully. First of all, we found the sym­
metric trail with the lowest backtracking cost only
within the input space described above, not in an ab­
solute sense. There may well be trails with a lower
backtracking cost. Moreover, it is likely that asym­
metric trails exist for RadioGat´ > 1, un with £w

with a lower backtracking cost than for symmetric
ones. Yet, this experiment is interesting in that we

Windows Linux

(32 bits) (x86 64)

Visual Studio 2005 GCC 3.3.5

can challenge our design. We have tried a number
of configurations, focusing on the internal collisions,
and the one presented in this paper came out best for
the time being.

7.3 Dimensions and layouts

The dimensions of the belt and mill in RadioGat´ un

and the input, output, bell and milt layout are
the result of an iterative adjusting process that had
Panama as a starting point. The adjustments were
triggered by our discovery of the trail backtracking
attack and the outcome of trail- and collision-search
experiments for the one-bit word versions. In our
choice between different alternative modifications,
we always tried to choose the simplest one. The
most important differences between RadioGat´ un

and Panama are the following:

•	 Introduction of feedforward from mill to belt
(See Appendix A)

•	 Reduction of input block size and belt width

•	 Expansion of the mill from 17 to 19 words

The number of blank rounds is 16, resulting in 18
rounds between the injection of the last input block
and the output of the first output block. In the 64-bit
version, it takes 18 rounds for each bit of the mill to
depend on each bit of the state.

8 Performance aspects

We now give some elements on its performance with
a comparison to SHA-1, SHA-256 and Panama as
references.

8.1 Software

To demonstrate its suitability for fast software im­
plementation, we have written optimized C code for
RadioGat´ un and made it publically available at
[18]. Given its similarity with Panama, we have
based ourselves on the high-speed Panama code in
the Crypto++ library, publically available from [6].

Table 1: Software performance in MByte/sec.

SHA-1 90 91
SHA-256 65 80
Panama 480 288
RadioGat´ un[32] 120 175
RadioGat´ un[64] 55 270

We expect that further optimization may result in
even better performance.

Table 1 compares the speed for hashing long in­
puts of our optimized code for RadioGat´ un with the
Crypto++ code [6] of SHA-1, SHA-256 and Panama.
These measurements were taken on a Dell Precision
670 with Intel Xeon 3GHz.

For short inputs, the fixed cost due to the blank
rounds and the padding becomes significant. This
cost can be modeled in terms of extra bytes to be
processed. In RadioGat´ un[64], the blank rounds
take as much time as iterating 384 bytes and the
padding adds 1 to 24 bytes. In RadioGat´ un[32],
the blank rounds add 192 bytes and the padding
adds 1 to 12 bytes. In Panama the blank rounds
add 1056 bytes and the padding adds 1 to 32 bytes.
In SHA-1 and SHA-256, there are no blank rounds
but the padding adds between 1 and 64 bytes. Using
the numbers of the last column of Table 1, hashing
an input of length smaller than a single input block
takes about 0.7µsec for SHA-1, 0.8µsec for SHA-256,
3.8µsec for Panama, 1.2µsec for RadioGat´ un[32]
and 1.5µsec for RadioGat´ un[64].

8.2 Hardware

RadioGat´ un can be implemented in a straightfor­
ward way as a circuit that keeps the state and has
a state-updating function that consists of the input
injection followed by a round. By analyzing the struc­
ture of the mill function and its connection to the belt
function, it is clear that the critical path of this circuit
consists of a NOT, a two-input NAND, a two-input
XOR, a three-input XOR and a two-input XOR. In

such a circuit, about 50% of the area is used for stor­
ing the bits of the state.

The structure of RadioGat´ allows un for
area/speed trade-offs. Area can be reduced at the
cost of increasing the number of cycles per input
block by instantiating only a fraction of the mill
function. Speed can be doubled for the same clock
rate by cascading two rounds and input injections
in the updating function. Such a circuit has the
same number of registers for storing the state and
only doubles the logic that implements the updating
function. Since the critical path of a round and input
injection is very short, the maximum clock frequency
remains high compared to other hash functions such
as SHA-1.

We have modeled a straightforward RadioGat´ un

circuit in VHDL, mapped it to a technology library
of STMicroelectronics and used a general purpose
0.13 µm library. This resulted in a circuit with 37
Kgates for RadioGat´ un[64] and 18.5 Kgates for
RadioGat´ that can both run up to 1 GHz. un[32]

In the case of SHA-1 and SHA-256, a common
choice is to instantiate the round logic and using it
80 and 64 times respectively for processing 512 bits
of the input. Typical examples are the Helion ASICs
described in datasheets available from [11]. Their de­
signs on 0.18 µm take 20 to 26 Kgates and run from
150 MHz up to 290 MHz.

Taking into account the additional cycles due to
the blank rounds and padding, we can give ex­
pressions for the number of clock cycles required
for hashing an n-bit input to a 256-bit hash re­
sult (160 bits for SHA-1). Our RadioGat´ un[32]
and RadioGat´ circuits take In/96l + 20 and un[64]
In/192l + 18 clock cycles respectively, while the He­
lion SHA-1 and SHA-256 ASICs require 80×In/512l
and 64 × In/512l clock cycles respectively. For the
same clock frequency, RadioGat´ is 12 times un[32]
faster than SHA-256 for long inputs and 3.2 times
faster for short inputs, while it takes less gates.
RadioGat´ is even 24 times faster than SHA­un[64]
256 for long inputs, but has about 50% more gates.
The same exercise can be easily done for SHA-1.

9 Conclusions

Alternating-input IMF with the belt-and-mill struc­
ture are an interesting alternative for MD4-like hash
functions.

References

[1] M. Bellare and P. Rogaway, “Random Oracles
are Practical: A Paradigm for Designing Effi­
cient Protocols,” ACM Conference on Computer
and Communications Security 1993, ACM, 1993,
pp. 62-73.

[2] J. Daemen, L. Claesen, M. Genoe, G. Peeters,
R. Govaerts and J. Vandewalle, “A Crypto­
graphic Chip for ISDN and High Speed
Multi-Media Applications,” Proceedings of
VLSI Signal Processing VI, L.D.J. Eggermont,
P. Dewilde, E. Deprettere and J. van Meerber­
gen, Eds., IEEE, 1993, pp. 12-20.

[3] J. Daemen, “Cipher and hash function design
strategies based on linear and differential crypt-
analysis,” Doctoral Dissertation, March 1995,
K.U.Leuven.

[4] J. Daemen and C.S.K. Clapp, “Fast hashing and
stream encryption with PANAMA,” Fast Soft­
ware Encryption 1998, LNCS 1372, S. Vaude­
nay, Ed., Springer-Verlag, 1998, pp. 60-74.

[5] J. Daemen and V. Rijmen, “A new MAC
Construction ALRED and a Specific Instance
ALPHA-MAC,” Fast Software Encryption 2005,
LNCS 3557, H. Gilbert and H. Handschuh, Eds.,
Springer-Verlag, 2005, pp. 1-17.

[6] W. Dai, Crypto++ 5.2.1 Benchmarks,

http://www.eskimo.com/~weidai/benchmarks.html,

2004.

[7] Wikipedia, Random Permutation,
http://en.wikipedia.org/wiki/Random permutation,
2006.

[8] H. Dobbertin, A. Bosselaers and B. Preneel,
“RIPEMD-160: A Strengthened Version of

http://en.wikipedia.org/wiki/Random
http://www.eskimo.com/~weidai/benchmarks.html

RIPEMD”, Fast Software Encryption 1996,
LNCS 1039, Ed. D. Gollmann, pp. 71-82, 1996

[9] Federal Information Processing Standard 180-1,
Secure Hash Standard, FIPS-180-1, NIST, April
1995.

[10] Federal Information Processing Standard 180-2,
Secure Hash Standard, FIPS-180-2, NIST, Au­
gust 1, 2002.

[11] Helion Authentication cores,
http://www.heliontech.com/auth.htm, 2006

[12] L. Knudsen, “SMASH, A Cryptographic Hash
Function,” Fast Software Encryption 2005,
LNCS 3557, H. Gilbert and H. Handschuh, Eds.,
Springer-Verlag, 2005, pp. 228-242.

[13] Alfred J. Menezes, Paul C. van Oorschot and
Scott A. Vanstone, Handbook of Applied Cryp­
tography, CRC Press, 1997.

[14] N. Pramstaller, C. Rechberger, V. Rijmen,
“Breaking a New Hash Function Design Strategy
Called SMASH,” Selected Areas in Cryptography
2005, LNCS 3897, B. Preneel and S. Tavares,
Eds., Springer-Verlag, 2006, pp. 233-244.

[15] V. Rijmen, B. Van Rompay, B. Preneel, J. Van­
dewalle; “Producing Collisions for PANAMA,”
Fast Software Encryption 2001, LNCS 2355,
M. Matsui, Ed., Springer-Verlag, 2002, pp. 37­
51.

[16] RFC 1321, “The MD5 message-digest algo­
rithm”, Internet Request for Comments 1321,
R. Rivest, April 1992.

[17] R. Rivest, “The MD4 message digest algorithm”,
Advances in Cryptology Crypto ’90, LNCS 537,
A. Menezes and S. Vanstone, Ed., Springer-
Verlag, 1991, pp. 303-311.

[18] RadioGat´ un web page,
http://radiogatun.noekeon.org, 2006

A On Panama and its attacks

Panama can be presented as an alternating-input
IMF with the belt-and-mill structure. The belt b is a
linear feedback shift register (LFSR) with 32 stages
each containing 8 32-bit words. The mill a is gov­
erned by a mill function. The input mapping maps
an 8-word input block to the first stage of b and 8
of the 17 words of a. The Panama function was
designed with collision-resistance as one of the main
criteria.

In Panama, the function of the belt is to ensure
that internal collisions can only occur for inputs that
have a difference that satisfies certain criteria. Ba­
sically, in Panama each difference in the input that
potentially leads to an internal collision leads to dif­
ference injections in the mill a in at least 5 different
rounds.

It was shown that Panama is not collision-resistant
in [15]. The attack actually injects a sequence of
differences in 5 different instances in the mill each
time over 3 rounds. A first difference, then no dif­
ference and then a second difference that results in
an internal collision in the mill. All differences are
1-symmetric. We call these local mill collisions. In
the belt, this difference sequence leads to an internal
collision at the moment the last difference is injected.

Each of the local mill collisions consist of a se­
quence of two differentials over the mill function,
where each differential imposes conditions on the ab­
solute values of the bits of the mill at the input of
the round. The authors of [15] noticed that some of
these conditions can be easily converted to conditions
on input bits, while for satisfying the remaining con­
ditions one must try many input pairs and hope they
are satisfied. Based on this, a collision-generating
attack was found with complexity below that given
by the birthday paradox. Having made their point,
the authors did not attempt to improve their attack.
Notice that the attack of [15] can be modeled as be­
ing based on a collision trail and that this collision
trail has a backtracking cost. The complexity of the
attack is given by 2n with n the backtracking cost
minus the number of conditions that can be satisfied
by choosing input blocks with the correct values.

When studying the attack with the aim of patching

http://radiogatun.noekeon.org,2006
http://www.heliontech.com/auth.htm,2006

up Panama, it became clear to us that it can be made
more efficient:

•	 For the basic difference sequence they only con­
sidered a sequence dx, 0, dy. In fact it is likely
that there are differences of type dx, dy, dz that
also lead to local collisions in the 5 instances. As
the number of such sequences is (28−1)3 instead
of (28 − 1)2 for those of type dx, 0, dy it is very
likely that this will reduce the attack complexity.

•	 They only considered 1-symmetric differences.
By also considering differences with less symme­
try, the search space becomes larger, probably
leading to even better attack complexity.

•	 They did not do a lot of effort to resolve the
equations algebraically. One may convert con­
ditions on bits of the mill to conditions on the
input of some rounds earlier, thereby greatly
reducing the number uncontrolled bits and the
number of inputs to try.

The first approach to fix these problems was to
modify the belt LFSR so that the number of times
a difference is injected in the state grows from 5 to
a large number. This imposes more restrictions on
the basic difference sequence as it must have collision
trails in the mill for each of the instances, and hence
in general raises the weight of the trails under con­
sideration. However, we then realized that there is
a generic collision attack that works for any efficient
IMF where there is no feedforward from mill to belt.

This attack takes any pair of input sequences and
constructs trailing parts so that the inputs lead to an
internal collision. It goes like this:

•	 Apply two input sequences to the function, lead­
ing to two values of the internal state.

•	 Consider the difference in the internal state.
Compute the difference that the input blocks
must have to finally result in a zero difference
in the belt. This is solving a set of linear equa­
tion and is easy.

•	 Pick a pair of input trailers that have the correct
difference and perform a number of rounds for
injecting them, minus the last few rounds.

•	 Look now at the mill. Try to find from the cur­
rent difference in the mill a differential trail lead­
ing to zero. This trailfinding seems not so dif­
ficult because the output difference of the last
round is known and the input difference of the
current round is known, meet-in-the-middle is
possible.

•	 Try now to convert the conditions on the bits of
the mill imposed by the mill differentials to bits
of the input. This involves algebraic computa­
tions that become more difficult with the number
of rounds have to be bridged. Converting condi­
tions in the mill in round t to conditions in the
input in round t − m becomes more difficult as
m grows. We expect the number of conditions
to be about the order of magnitude of the num­
ber of bits in the mill. So the number of blocks
required is the size of the mill divided by the size
of an input block.

In Panama the mill has 17 words and the input 8
words, so only two input blocks have to be consid­
ered. To find an internal collision in a at time t, it

t−1is sufficient to express the conditions on bits of a
t−3and at−2 to conditions on pt−2 and p . Hence this

spans only two rounds. In order to make such a func­
tion resistant to this attack, the mill must be several
times larger than an input block. However, the speed
of the function is proportional to the size of an input
block divided by the size of the mill, as the mill func­
tion takes the largest portion of the computational
resources. From this we concluded that having no
feedback from mill to belt would never lead to an
efficient hash function.

