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Abstract 

We present an approach to design cryptographic hash 
functions that builds on and improves the one under­
lying the Panama hash function. We discuss the 
properties of the resulting hash functions that need 
to be investigated and give a concrete design called 
RadioGat´ un that is quite competitive with SHA-1 
in terms of performance. We are busy performing an 
analysis of RadioGat´ un and present in this paper 
some preliminary results. 

Introduction 

Cryptographic hash functions are symmetric primi­
tives, used in many cryptographic protocols and as 
building blocks in many cryptographic functions. In 
general, a hash function maps a bitstring of any 
length, the input, to a fixed-length digest. 

Almost all cryptographic hash functions in use 
today can be considered as strengthened versions 
of MD4 [17]. This includes MD5 [16], SHA-1 [9], 
RIPEMD-160 [8], SHA-256 [10], SHA-384 [10] and 
SHA-512 [10]. These hash functions are defined in 
terms of the repeated application of a compression 
function that transforms a state variable and takes a 
fixed length input block. For their collision-resistance 
they rely on the collision-resistance of this underly­
ing compression function. The compression functions 
of these hash functions consist of an input expansion 
schedule and a state updating function. The input 
expansion schedule converts the (typically 16) words 
of an input block to 3 to 5 times as many round input 
words using a simple function. The state updating 

function transforms the state by a sequence of sim­
ple and invertible rounds each taking a round input 
word, as many as there are round input words. It is 
widely believed that this compression function, given 
an input block, should not be invertible. For that 
reason, the compression function includes a feedfor­
ward loop, whereby the initial value of the state is 
added to the result of the rounds. For their security 
all these hash functions rely heavily on the combi­
nation of XOR and integer addition. Cryptanalysis 
has advanced to the level that MD4, MD5 and SHA-1 
are nowadays no longer considered to offer a sufficient 
level of collision-resistance. More recent designs at­
tempt to inspire more confidence by including more 
complex input expansion schedules, more rounds and 
a bigger state resulting in hash functions that are 
slower and bulkier. 

Recently, a refreshing approach to hash function 
design was taken in the form of the SMASH hash 
function [12]. Unfortunately, the SMASH design ap­
proach was broken soon after publication in [14]. 
Nevertheless, we believe the field of hash functions 
would greatly benefit from alternative design ap­
proaches. We present in this paper a design approach 
leading to hash functions that are more elegant than 
the MD4 derivatives, and we believe will offer better 
security at a lower implementation cost. 

In our approach, the hash function consists of the 
iterated application to a large state of a single simple 
round function, alternated with the injection of input 
blocks. After injection of all input blocks, the state 
undergoes a number of blank rounds after which part 
of the state is returned as the hash result. 

The round function by itself has no cryptographic 



2 

properties such as collision resistance. As in block 
ciphers, the supposed cryptographic strength of the 
function lies in the iterated application of the round 
function. The design approach we present is not new, 
but builds further on the one underlying Panama 

[4] that in turn goes back to StepRightUp [3] and 
Subterranean [2, 3]. In fact, the breaking of the 
Panama hash function in [15] revealed serious prob­
lems with its design strategy. We started by ana­
lyzing the attack to see how Panama could be fixed. 
This lead to some generalizations of the attack in [15] 
and a new powerful attack that forced us to abandon 
some of the design principles underlying Panama and 
introduce other. The result is the design approach 
presented in this paper. We illustrate it with a con­
crete design called RadioGat´ un. 

We start by describing a generic cryptographic 
primitive called an iterative mangling function (IMF), 
of which cryptographic hash functions are a spe­
cial case. This is followed by a presentation of the 
alternating-input construction for realising an IMF, 
a presentation of a generic attack for generating in­
ternal collisions called trail backtracking and a discus­
sion on other aspects. We then present the belt-and­
mill structure for the round function of a alternating­
input IMF and discuss implications of trail backtrack­
ing on the design. Finally we present our concrete de­
sign RadioGat´ un, provide a rationale for our design 
choices and discuss hardware and software implemen­
tation aspects. 

As far as we know, there are no patents on 
RadioGatun´ , the belt-and-mill structure or the 
alternating-input construction. 

Iterative mangling functions 

First we introduce mangling functions, which are a 
generalization of a hash functions. Instead of return­
ing a fixed-length digest, a mangling function returns 
an infinite output stream. It can be converted to a 
hash function by truncating the output to the first n 
bits. 

A mangling function takes a variable-length input 
and returns an infinite output stream. Informally, a 
good mangling function should not have properties 

different from that of a random oracle [1]. A ran­
dom oracle returns a completely randomly generated 
stream for each different input. So, for example, find­
ing an input that matches a given pattern in the first 
n bits of the output stream would require computing 
the mangling function for on the average 2n inputs. 
Finding a collision in the first n bits of the output 
stream would require computing the mangling func­
tion for on the average 2n/2 inputs. 

Almost all practical hash functions are iterative. 
The input is padded (if necessary) and split up in 
a sequence of input blocks. The input blocks are 
sequentially injected into the state by means of what 
is usually called a compression function. Then a final 
transformation may be applied to the state resulting 
in the digest. 

Iterative hash functions can be implemented in 
hardware or software with limited amount of working 
memory, irrespective of the length of the input. They 
have however the disadvantage that different inputs 
may be found that lead to the same value of the state 
before the final transformation. This is called an in­
ternal collision. 

An iterative mangling function (IMF) can be de­
fined analogously with an iterative hash function as 
operating on a state with fixed size. Due to the lim­
ited size of the state, an IMF cannot behave like a 
random oracle. If the state has u bits, it can only 
generate 2u different output sequences over all possi­
ble inputs. Hence, the work factor of finding a colli­
sion in the first n bits of the output is upper bounded 
by 2u/2 . 

As behaving like a random oracle is out of reach for 
any IMF, we replace the objective by a more modest 
one: to behave not worse than what we call a ran­
dom IMF. A random IMF has a given capacity [5], 
denoted by £c. A random IMF with capacity £c con­
sists of the iterated application of a random oracle 
used as a £c + 1-bit to £c-bit compression function. 
This compression function consists of calling the ran­
dom oracle for a £c + 1 input and taking the first 
£c bits of its output. It has a £c-bit state initialized 
to 0 and for each bit of the input the new value of 
the state is computed by applying the compression 
function on the concatenation of the state and the 
input bit. The initial value of the state is 0 and the 



compression function is iteratively applied for all bits 
of the input. After this, the output stream is gener­
ated by iteratively applying the compression function 
to the state concatenated with a bit equal to 0 and 
giving the first bit of the state as output bit. 

When designing an IMF, one can claim that it of­
fers a capacity of £c. Clearly, this claimed capacity 
cannot be higher than the number of bits in the state 
in the IMF. 

3	 The alternating-input con­

struction 

We present a simple construction for IMF called 
alternating-input. It consists of the alternation of in­
put injection and a simple invertible round function, 
followed by a fixed number of rounds without input or 
output, followed by the iterated application of rounds 
while returning part of the state. The construction 
is given in Algorithm 1. 

Algorithm 1 The alternating-input construction 

takes £i-bit input blocks p0 to pnp−1 

generates £o-bit output blocks z0 to znz−1 

operates on an £s-bit state S 
S ← 0 {State initialization} 
for i = 0 to np − 1 do 

T = S ⊕ Fi(pi) { Fi: input mapping} 
S ← R(T ) { R: round function} 

end for{Injection} 
for i = 0 to nb − 1 do 

S ← R(S) 
end for{Mangling} 
for i = 0 to nz − 1 do 

S ← R(S) 
zi = Fo(S) { Fo: output mapping} 

end for{Extraction} 

The input mapping maps the bits of an input block 
to bits of the state and the output mapping maps 
bits of the state to the bits of an output block. Both 
are linear operations. Note that functions such as 
Subterranean and Panama fit this model, but also 
SMASH. 

For a alternating-input IMF, the design is reduced 
to that of the round function, the input and output 
mappings and the number of blank rounds nb. The 
goal is to choose these such that the resulting IMF 
behaves no worse than a random IMF with a given 
capacity. We believe the central design challenges are 
the following, in order of importance: 

Internal collisions The expected workload L to 
generate internal collisions shall not be less than 
suggested by the capacity. This is the classic re­
quirement for a cryptographic hash function and 
addresses the round function and the input lay­
out. 

State guessing The expected workload L to guess 
the value of the state given a sequence of out­
put blocks shall not be less than suggested by 
the capacity. This is the classic requirement for 
a synchronous stream cipher and addresses the 
round function and the output layout. 

Decorrelation The transformation consisting of a 
sequence of rounds shall not reveal large corre­
lations between any parity of state bits at its 
output to any parity of state bits at its input. 
This is the classic requirement for a block cipher 
to be resistant to linear cryptanalysis and ad­
dresses the round function and the number of 
blank rounds. 

Difference propagation The transformation con­
sisting of a sequence of rounds shall not reveal 
large propagation probabilities between differ­
ence in the state at its output to any difference in 
the state at its input. This is a classical require­
ment for a block cipher to be resistant to dif­
ferential cryptanalysis and addresses the round 
function and the number of blank rounds. 

We believe that a alternating-input IMF that meets 
these challenges behaves no worse than a random 
IMF with a given capacity. We illustrate this for 
the often-cited properties of cryptographic hash func­
tions: collision resistance and (2nd-) preimage resis­
tance [13, Table 9.2]: 

Collision and 2nd-preimage resistance When 
internal collisions are infeasible, any pair of 
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inputs will start the blank rounds with a 
difference. The series of blank rounds operate 
as a block cipher on the state and the difference 
propagation property makes controlling the 
difference after the blank rounds infeasible. 

Preimage resistance When state guessing is infea­
sible, finding a preimage for a given digest is also 
infeasible. 

In this paper we focus on internal collisions as this 
seems to be the most difficult design goal to meet. 
State guessing is mostly relevant if the length of the 
digest is of the same order as the state. Difference 
propagation and decorrelation can be improved by 
increasing the number of blank rounds. 

4 Internal collisions 

In this section we consider approaches to generate in­
ternal collisions for alternating-input IMF. First we 
concentrate on techniques used in differential crypt­
analysis to control the difference propagation through 
the rounds. This results in a criterion for the design 
of such hash functions: the minimum backtracking 
cost. This is followed by a treatment of alternative 
approaches to generate internal collisions. 

4.1 Differential trails 

Consider the round function R. We denote a differ-
Sential over the round function in round i by (tSi, si+1) 

and call it a round differential. Its differential proba­
bility (DP) is the proportion of state pairs {Ti, Ti⊕tS}i

Ssuch that R(Ti)⊕R(Ti⊕ti
S) = si+1. If DP > 0, we say 

the differential is possible. The (restriction) weight of 
Sa possible differential, wr(t

S
i, si+1), is defined by 

  S S 2−wr(t ,s )i i+1DP(ti, s = . (1) i+1)

We now define a (differential) trail through the 
IMF. A r-round trail consists of the concatenation 
of r possible round differentials and is defined by a 
sequence of r difference triplets plus the final state 
difference: 

  

S S S S S S SQ : (s0, p 0, t0), . . . , (sr−1, p r−1, tr−1), s . (2) r

A trail describes a propagation of differences through 
Sthe IMF during a number of rounds: pi denotes the 

difference in the input injected before round i and 
the three members of each triplet are related by tS = 
S S Ssi ⊕ Fi(pi). We say this trail starts in s0 and ends in 
Ss .r

The probability of a trail DP(Q) is defined as the 
proportion of all state/input pairs with initial state 

Sdifference s0 and r-round input sequence difference 
S S Sp0, p1, . . . , pr−1 such that the difference in the state 

follows the trail. We define the weight of a trail by 
the sum of the weights of its round differentials: 

r−1 
L 

S Swr(Q) = wr(ti, s . (3) i+1)
i=0 

If we assume that the the conditions imposed by the 
round differentials are independent, the weight deter­
mines the probability of the trail: DP(Q) ≈ 2−wr(Q). 
However, this independence is not necessarily satis­
fied and the probability of a trail may be larger than 
this or even 0 in the case of conflicting conditions. 

We call a trail that starts and ends both in 0 a 
collision trail. 

4.2 A naive attack 

A collision trail Q with non-zero probability can be 
used to generate internal collisions. An attacker just 
applies pairs of inputs that exhibit the difference se-

Squence pi and verifies whether this results in an in­
ternal collision. These pairs look like this: 

p−d p1−d . . . p0 p1 . . . pr−1 

p−d p1−d . . . p0 ⊕ pS0 p1 ⊕ pS1 . . . pr−1 ⊕ pSr−1. 
(4) 

The attacker has to try about 1/DP(Q) pairs. In 
general, the workload L of the attack may be smaller 
than DP(Q) suggests: for the same sequence of input 

S S Sdifferences p0, p1, . . . , pr−1 other collision trails may 
exist that lead to a collision. The workload L of the 
attack is determined by the sum of the probabilities 
of all collision trails for a given sequence of input 
differences. 



  

  

  

  

4.3 Trail backtracking 

In the trail backtracking attack, the attacker applies 
pairs of inputs as specified in Equation (4) and tracks 
the difference propagation as it proceeds through the 
trail. We call an input entering round i the input 
sequence p−d . . . pi. If we speak of a pair of inputs, 
we always assume it has the right difference. 

Say we have N random pairs of inputs entering 
S Sround 0. For these pairs, s = 0 and tS = Fi(p0). For 0 0 

each pair we compute the difference after round 0. If 
Sthis is equal to s1, we say it is a right pair coming out 

of round 0. The total number of right pairs coming 
(t ,s )0 1out of round 0 is about N2−wr . For each such 

right pair, we can append an input block p1 to one 
Smember and p1 ⊕ p1 to the other. As there are 2£i 

input block values, this results in N2£i−wr(t ,s ) right 0 1

Spairs entering round 1. If wr(t0
S , s1) < £i, the number 

of right pairs entering round 1 is even larger than the 
total number of pairs entering round 0. Following this 
reasoning, and assuming the conditions imposed by 
the round differentials are independent, the number 
of right pairs entering round g is 

 g−1 

N2g£i− wr(t ,s )
i=0 i i+1 . 

If we define the excess weight in round g for a trail Q 
�g−1 Sas We(g) = wr(tj

S , s )− £i , this becomes j=0 j+1

N2−We(g). 

The number of right pairs coming out of round h < r 
is: 

N2−£i−We(h+1). 

The excess weight before the trail is 0, hence We(0) = 
0. 

We can now ask two questions: how large must N 
be to have a collision with reasonable probability and 
what is the workload L(Q) of the resulting attack. 
We express the workload of the attack L(Q) by the 
number of round function evaluations that must be 
performed. Clearly, this is the sum of the number of 
right pairs entering each round. 

First of all, the number of right pairs coming out 
of each round h must be at least 1: 

2£i+We(h+1) 2£i+maxh We(h+1) N ≥ max = . (5) 
h 

We call the round with the least number of right pairs 
at its output the lonesome round. 

For most trails, there is a single round in which the 
number of right pairs entering is much larger than all 
other. We call this the crowded round. The workload 
can then be approximated by the number of right 
pairs entering the crowded round: 

N2−We(g) N2−ming We(g)L(Q) ≈ max = . 
g 

It may happen that there are more than a single 
round where the excess weight reaches a minimum. 
In that case the actual workload will be a small fac­
tor higher than the value derived here. Filling in the 
minimum value of N given by Eq. (5) yields: 

L(Q) ≈ 2£i+maxg,h,0≤g<h≤r We(h)−We(g). (6) 

We define the backtracking cost of the trail by 

Cb(Q) = £i + max We(h)− We(g). (7) 
g,h,0≤g<h≤r 

The backtracking cost of a trail can be easily com­
puted from its excess weight profile We(i). This is 
illustrated in Figure 1. 

When a trail has a sequence of rounds where the 
weight is 0, or smaller than £i, the excess weight de­
creases. This suggests that the number of right pairs 
grows per round. Clearly, the attacker will not need 
all these right pairs to generate a collision, just as 
many to have at least one right pair coming out of 
the lonesome round further along the trail. 

SSometimes the differential (tS i, si+1) is independent 
of some bits or bit parities in pi. If that occurs in 
the lonesome round, the backtracking cost increases 
with the number of independent bit parities that the 

Sdifference propagation (tS h, s ) is independent of. h+1

Note that the trail backtracking attack only finds 
collisions that follow one specific trail, while the naive 
attack results in an internal collision whenever a col­
lision trail is followed for the given sequence of input 
differences. It turns out that in practice an input dif­
ference must have very many collision trails for the 
naive attack to be more efficient than the trail back-
tracker attack. For a given alternating-input IMF, 
an attacker must hence look for trails with a low 
backtracking cost, a designer can try to prove lower 
bounds for the minimum backtracking cost. 
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Figure 1: Example of trail with its weight and back­
tracking cost 

4.4 Fixed points 

In the attacks considered until now, two inputs that 
lead to an internal collision have the same length. 
One may however try to generate collisions with in­
puts of different length. One method to do so is by 
exploiting fixed points. 

Let F [x](S) be the state transformation of apply­
ing r rounds while injecting a series of input blocks 

x = x0�x1� . . . �xr−1 

with � meaning concatenation. With q is a single 
input block we can define this recursively as: 

F [q](S) = R(S ⊕ Fi(q)) 

F [x�q](S) = R(F [x](S)⊕ Fi(q)) . 

For a fixed x, the transformation F [x](S) is a per­
mutation of £s-bit values. Such a function may have 
fixed points y = F [x0](y). As a matter of fact, if the 
state space is large, the number of fixed points in a 
random permutation has a Poisson distribution with 

λ = 1 [7]. A fixed point can be used to create inter­
nal collisions: given an input sequence x that leads 
to a fixed point y in the state for F [x](S), appending 
any number of strings x will not affect the state and 
hence result in the same digest whatever the number 
of strings x attached. 

If x is 1 or 2 input blocks and the round function 
is simple, one may determine the fixed points by al­
gebraically solving a set of equations. For longer val­
ues of x, determining fixed points becomes increas­
ingly difficult. As the number of input blocks in x 
grows, the permutations F [x](S) are expected to be­
have more like random permutations. For realistic 
values of the state size, the number of fixed points 
that can be determined with respect to all state val­
ues is negligible. Still, the designer may investigate 
whether the number of fixed points for short x is 
not too large or that some easy to reach state val­
ues are not fixed points. Easy to reach state values 
include the initial all-zero value or any value that can 
be reached from this after one or two rounds. 

If constructing an input sequence that leads to a 
fixed point would be easy, generating an internal col­
lision would also be easy: take a random input and 
consider the resulting state value. Then construct 
the input that leads to the same state value. One 
may try to address fixed points by having part of the 
state and round function to behave as a counter, or 
alternatively, include in the padding of the input a 
coding of its length. However, this only complicates 
the IMF and we think it is better to fix the design 
rather than add a counter to solve the problem. 

4.5 Starting from non-zero difference 

One may also consider several (or many) input se­
quences, each one leading to a particular value of the 
state, and then try to find pairs among these with 
a state difference from which there is an easy route 
to an internal collision. Note that a trail with low 
backtracking cost does not necessarily help because 
the attacker does not have the degrees of freedom 
as in the collision trails before the first round of the 
trail. In any given pair of input sequences, the ab­
solute values of bits are fixed. In this context, one 
may conduct a quantitative analysis on the propor­



tion of state differences from which there are trails 
with low weight or backtracking cost to an internal 
collision. 

4.6 Computing backwards 

As the round function is invertible, it is possible to 
compute backwards from a given state value. How­
ever, any valid state value must result from applying 
an input to an all-zero initial state. We believe that 
reaching the all-zero initial state computing back­
wards will not be less difficult than reaching a target 
state starting from the initial state. Still, comput­
ing backwards can be exploited in meet-in-the-middle 
strategies where an input leading to a particular value 
of the state might be constructed by appending two 
input sequences. Here the number of bits in the state 
whose value may be easily controlled by applying in­
put blocks in consecutive rounds plays an important 
role and may be investigated by the designer. 

4.7 Algebraic attacks and techniques 

The definition of the round function allows the state 
at its output to be expressed as a function of the 
state at its input. In general, one can use this to 
express the output state bits as Boolean functions of 
the input state bits. In some cases one may find sim­
pler equations by grouping the bits in b-bit words and 
interpreting these as elements of GF(2b) or integers. 

Exploiting these equations, finding an input se­
quence leading to a given hash result or internal state 
can be reduced to solving a system of algebraic equa­
tions. The difficulty of solving such a system is in 
general hard to evaluate and depends on the number 
of variables and equations, the complexity of the lat­
ter and their interconnection. Clearly, the amount of 
diffusion and nonlinearity of the round function plays 
an important role in this respect. 

Consider a collision-generating attack based on a 
Sdifferential trail. With a round differential (tS i, s )i+1

corresponds a set of right state pairs. If the restric-
Stion weight wr(ti

S , s ) is an integer, it can be inter­i+1

preted as follows. The bits of the right state pairs 
satisfy a set of independent Boolean equations each 
with probability 1/2 of being satisfied. The number 

of equations is the restriction weight. Now, given Si, 
some of these equations can be converted to equa­
tions in bits of the input block pi. By taking into 
account these conditions in the generation of input 
pairs, the complexity of the attack can be improved. 
In general, the ability to choose input pairs that sat­
isfy b binary conditions with certainty, reduces the 
expected number of pairs to try by a factor 2b . 

In fact, at most £i of these equations can be con­
verted to equations in bits of the input block pi. The 
remaining ones can only be addressed by the attacker 
by transferring them via the round function to equa­
tions in bits of earlier input blocks. For round i− 1, 

Swe similarly have wr(t
S 
i−1, s ) equations that must be i

transferred to input blocks. If we require both round 
i − 1 and round i differentials to be followed, the 
number of equations that must be transferred to in­
put blocks entering round i − 1 is the sum of the 
two weights minus £i. In general, when requiring the 
round differentials of rounds g up to h to be satisfied, 
the number of equations that must be transferred to 
input blocks entering round g is We(h)− We(g) + £i. 
If we apply this to the full trail, this number reaches 
a maximum when g is the crowded round and h the 
lonesome round and is equal to the backtracking cost 
Cb(Q) of the trail. 

We can now define the backtracking depth d of a 
trail as its backtracking cost divided by £i. The 
backtracking depth gives the number of rounds over 
which an attacker performing an algebraic attack 
must transfer equations on the state to conditions 
on the input blocks. 

Given a round function, decreasing £i has a nega­
tive impact on performance but a positive on security 
as it has a threefold impact on the minimum back­
tracking depth: 

•	 It gives less freedom for trail construction and 
will typically increase the minimum weight of 
trails. 

S•	 For the same trail, it increases the wr(t
S 
j , s )−j+1

£i of the round differentials and hence the back­
tracking cost of the trail. 

•	 For the same backtracking cost, it increases the 
backtracking depth. 



5 The belt-and-mill structure 

The round function is the central component of any 
alternating-input IMF. In this section we generalize 
the structure of the round function of Panama and 
call it the belt-and-mill structure. The state consists 
of two parts, the belt and the mill, and the round 
function treats them very differently. It consists of 
four operations that can take place in parallel: 

Mill function an invertible non-linear function ap­
plied to the mill, 

Belt function an invertible simple linear function 
applied to the belt, 

Milt feedforward some bits of the mill are fed to 
the belt in a linear way, 

Bell feedforward some bits of the belt are fed to 
the mill in a linear way. 

The algorithm is given in Algorithm 2. 

Algorithm 2 A belt-and-mill round function 

(A, B) = R(a, b), with 
A = Mill(a)⊕ Bell(b) and 
B = Belt(b)⊕ Milt(a) 

The positions of the bits that are fed forward shall 
be chosen so that the resulting round function is in­
vertible. If Bell(Belt

−1(Milt(a))) = 0 for any 
value of a, then Bell(b) = Bell(Belt

−1(B)) can 
be found from B, allowing to recover a, hence mak­
ing the round function invertible. 

The only non-linear component in the round func­
tion is the mill function. This has an important im­
pact on its differential propagation properties. 

Consider differentials over the round function. Us­
ing the linearity of the functions, given an input dif­
ference (aS, bS), the output difference (AS, BS) is: 

AS = Mill(a)⊕ Mill(a ⊕ a S)⊕ Bell(bS) (8) 

BS = Milt(a S)⊕ Belt(bS) (9) 

The output difference in the belt BS is fully deter­
mined by the input difference and hence independent 

of the value of the state (a, b). The output difference 
in the mill AS is also independent of b but depends 
on a through Mill(a)⊕ Mill(a⊕ aS). It follows that 
the DP and weight of a possible round differential is 
fully determined by the differences at the input and 
the output of the mill function. We have: 

wr((a S, bS), (AS, BS)) = wr(a S, AS ⊕ Bell(bS)) (10) 

SAny differential with a = 0 has weight 0 and hence 
imposes no conditions on the state. Moreover, this 
upper bounds the weight of round differentials to the 
number of bits in the mill minus 1. 

As for algebraic attacks, only the mill function re­
sults in nonlinear equations and all other equations 
are linear. This limits the number of internal Boolean 
variables that need to be introduced per round to the 
number of bits in the mill. 

The belt and mill each have their own function. 
The mill is the confusion engine, with a task similar 
to that of a round function in a SPN block cipher 
or the F function in a Feistel block cipher. It should 
provide nonlinearity and local diffusion. The belt has 
a function similar to that of the key schedule in block 
ciphers, the input expansion in hash functions or the 
switching of the two halves in a Feistel cipher. It 
takes care of global diffusion and plays an important 
role in avoiding collision trails with low cost. 

The Panama round function has the belt-and-mill 
structure. However, it has two modes called push 
and pull. The push mode is used in the input injec­
tion phase and the pull mode in the output extrac­
tion phase. In the push mode, there is no feedfor­
ward from the mill to the belt, leading to a linear 
dependence of all belt bits from the input sequence. 
This property was exploited in the breaking of the 
Panama hash function. We refer to Appendix A for 
more explanations on this. 

6 RadioGat´ un 

We say: 
z = un[£w](x) (11) RadioGat´ 

with 

• x: input that can be a bit string of any length 



•	 £w: parameter word length that can have any 
value from 1 to 64. Each value of £w defines 
another function. The word length is by default 
64: RadioGat´	 un[64]. un means RadioGat´ 

•	 z: infinite length output stream. 

We claim that RadioGat´ ] offers a security un[£w

level indicated by a capacity £c = 19£w. For the 64­
bit version RadioGat´ un this is a capacity of 1216 
bits, for the 32-bit version and 16-bit version this 
gives 608 and 304 bits respectively. 

RadioGatun´ [£w] can be used as a hash function 
with a £h-bit digest by taking the first £h bits of the 
output stream. Note that taking for values £h > £c 

the claimed collision-resistance level is determined by 
£c rather than £h. 

Reference and optimized code, test vectors and ex­
tra information can be found in [18]. 

6.1 The building blocks 

The RadioGat´ function is a alternating-input un 

IMF with the belt-and-mill structure. The mill a 
consists of 19 words a[i], the belt b of 13 stages b[i] 
of 3 words b[i, j] each. An input block p consists of 3 
words p[i], an output block z consists of 2 words z[i]. 
All indexing starts from 0. 

The round function is specified in Algorithm 3 and 
illustrated in Figure 2. It makes use of the mill func­
tion that is specified in Algorithm 4. 

The input mapping is specified in Algorithm 5 and 
the output mapping in Algorithm 6. 

Algorithm 3 The round function R 

(A, B) = R(a, b) 
for all i do 

B[i] = b[i + 1 mod 13] 
end for{Belt function: simple rotation} 
for i = 0 to 11 do 

B[i + 1, i mod 3] = B[i + 1, i mod 3] ⊕ a[i + 1] 
end for{Mill to belt feedforward} 
A = Mill(a) {Mill function} 
for i = 0 to 2 do 

A[i + 13] = A[i + 13]⊕ b[12, i] 
end for{Belt to mill feedforward} 

Algorithm 4 The mill function 

A = Mill(a)
 
all indices should be taken modulo 19,
 
x » y denotes rotation of bits within x over y
 
positions
 
for all i do 

A[i] = a[i]⊕ a[i + 1]a[i + 2] 
end for{γ: non-linearity} 
for all i do 

a[i] = A[7i] » i(i + 1)/2 
end for{π: intra-word and inter-word dispersion} 
for all i do 

A[i] = a[i]⊕ a[i + 1] ⊕ a[i + 4] 
end for{θ: diffusion} 
A[0] = A[0]⊕ 1 {ι: asymmetry} 

Algorithm 5 The input mapping Fi 

(a, b)← 0 
for i = 0 to 2 do 

b[0, i] = p[i] 
a[i + 16] = p[i] 

end for 

Return (a, b) 

Algorithm 6 The output mapping Fo 

z[0] = a[1] 
z[1] = a[2] 
Return z 

6.2 The function 

The function is specified as follows. 

•	 First apply reversible padding to x by append­
ing a single bit equal to 1 and zeroes until the 
length of the result is a multiple of the input 
block length and decompose the latter in input 
blocks p0 to pnp−1. 

•	 Then execute Algorithm 1 with the round func­
tion specified in Algorithm 3 until sufficient out­
put bits are generated. The number of blank 
rounds is nb = 16. 



  

 

Figure 2: The RadioGat´ un round function and input mapping 

7 Design rationale 

The design of RadioGat´ un borrows heavily from 
Panama: the latter can be seen as a strengthened 
version of the former. In this section we first discuss 
the properties of the mill function followed by a treat­
ment of the one-bit word version RadioGat´ un[1]. 
Finally we describe how we went about deciding the 
dimensions and layouts in RadioGat´ un. 

7.1 The mill function 

The mill function consists of a sequence of four invert­
ible transformations and is very similar to the func­
tion ρ in Panama. The only difference is that the 
mill of RadioGat´ un has length 19 while this is 17 
for Panama and the fact that the injection of input 
blocks and belt words is not part of the mill function. 
γ and θ are both shift-invariant transformations that 
are invertible for length 19 [3, Chapter 6]. The per­
mutation π combines rotation of the bits within the 
words and a permutation of the word positions. ι is 
only there to break the symmetry. 

Within the mill function, only γ is non-linear. It 
has algebraic degree 2 in GF(2) and consequently spe­
cific differential propagation properties. Note that its 
inverse does not have algebraic degree 2. The differ­
ential propagation properties of γ are studied in [3, 

Section 6.9]. We give a short summary here: 

•	 Given an input difference aS, the values cS for 
Swhich (a , cS) is a possible differential form an 

affine space γ(aS) ⊕ Va with Va a vector space 
Scompletely determined by a . 

•	 The (restriction) weight of all these differentials 
is equal to the dimension of Va . This means: 

S–	 The weight of (a , cS) for all possible values 
of cS is the same and hence completely de-

S	 Stermined by a . We can say wr(a , cS) = 
wr(a

S). 

–	 The weight of any differential over γ is an 
integer. 

S•	 The differential (a , cS) imposes wr(a
S) affine 

Boolean conditions on the input a. 

Thanks to the fact that π, θ and ι are linear, given 
a difference aS at the input of the mill function, the 
possible differences at the output of the round form 
an affine space. Note that the inverse is not the case: 
given a difference at the output of the mill function, 
the possible input differences do not form an affine 
space. 



7.2 One-bit word version 

The state of RadioGatun´ [£w = 1] has size 19 + 3× 
13 = 58 bits. Although this is too small to pro­
vide a practical cryptographic hash function, we can 
nevertheless learn something from the case of one-bit 
words. 

First of all, RadioGatun´ [n] with n = 1 or small 
are interesting subjects for trying out algebraic at­
tacks and getting a better understanding of their 
complexity. 

Another interesting exercise consists in finding col­
lision trails for RadioGat´ un[1]. Due to the symme­
try of the construction, a trail for RadioGat´ un[1] 
can be extended to any other word size £w > 1: for 
each bit of the one-bit input or state difference, it is 
repeated £w times, i.e., 0 (resp. 1) becomes 0£w (resp. 
1£w ), where the exponentiation by n denotes the con­
catenation of n identical strings. In RadioGat´ un, 
all the operations independently operate on each bit 
of the words, except for the (intra-word) rotation in 
π. Clearly, the repeated bit difference is insensitive to 
the rotation. Note that the constant in ι is not sym­
metric, that is, not identical for all bits. If this con­
stant was symmetric, RadioGat´ > 1] would un[£w 

reduce to RadioGat´ un[1] for symmetric inputs. 

As a convention, we say a trail is 1-symmetric (or 
simply symmetric) if it is invariant to a rotation of 
1 bit within a word. In such a trail, the words are 
either all zeroes or all ones. A symmetric trail in 
RadioGat´ ] has a cost equal to the cost of the un[£w

corresponding trail in RadioGat´ un[1] multiplied by 
£w. This follows from the fact that the restriction 
weight in RadioGatun´ [£w] is the sum of the restric­
tion weights in each of the £w one-bit slices. 

Note that this extension can be generalized to other 
small variants of RadioGat´ For instance, a trail un. 
of RadioGat´ un[2] can be extended to any even word 
size. Whenever a 2-bit word difference is xy, x, y ∈ 
GF(2), it becomes (xy)£w/2 . In general, a trail in 
RadioGatun´ [£w] can be extended to a £w-symmetric 
trail in RadioGatun´ [n£w] for any positive integer n. 
In this current study, however, we limit ourselves to 
the case of 1-symmetric trails. 

Finding internal collisions for RadioGat´ is un[1] 
feasible: thanks to the birthday paradox, after taking 

about 258/2 = 229 random inputs, it is likely to find 
two of them that cause an internal collision. 

We looked for internal collisions by using input 
pairs of the form as in Equation (4) with d = 7 and 
r = 7; the input block p−7 is the first block of the 
input. There are thus seven input blocks of prepara­
tion, which determine the absolute value of the state 
before the differences can appear. Eight block pairs 
are then input to RadioGat´ con­un[1], each possibly
taining a difference. Remember that each input block 
consists only of three bits. 

Due to time considerations, the search was re­
stricted to the case of p−7 = 0. Nevertheless, we 
searched the described input space exhaustively and 
found more than 4 million internal collisions. The 
minimum backtracking cost found was Cb = 46 and 
there were two trails with this cost. Then, a few in­
ternal collisions have cost Cb = 51. The distribution 
is centered around a maximum in Cb = 107. 

For instance, exploiting this given trail with Cb = 
46 using the trail backtracking attack of Section 4.3 
has a complexity of about 246 evaluations of the 
round function, much higher than that of the birth­
day paradox attack. 

Used as a symmetric trail in RadioGat´ un with 
£w > 1, the backtracking cost scales with the word 
size £w. Following the same example, the complex­
ity of the backtracking attack is 246£w . Thanks to 
the rotation in π, one cannot apply this attack inde­
pendently on each of the £w bits, and thanks to the 
asymmetric constant in ι, one cannot work only with 
symmetric words as input. Also, to exploit this sym­
metric trail with Cb = 46£w using the backtracking 
attack, one needs to populate the crowded round with 
enough input pairs, which requires more than fifteen 
rounds with three input words each to get enough 
degrees of freedom. 

This investigation is ongoing work and should be 
taken rather carefully. First of all, we found the sym­
metric trail with the lowest backtracking cost only 
within the input space described above, not in an ab­
solute sense. There may well be trails with a lower 
backtracking cost. Moreover, it is likely that asym­
metric trails exist for RadioGat´ > 1, un with £w 

with a lower backtracking cost than for symmetric 
ones. Yet, this experiment is interesting in that we 
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can challenge our design. We have tried a number 
of configurations, focusing on the internal collisions, 
and the one presented in this paper came out best for 
the time being. 

7.3 Dimensions and layouts 

The dimensions of the belt and mill in RadioGat´ un 

and the input, output, bell and milt layout are 
the result of an iterative adjusting process that had 
Panama as a starting point. The adjustments were 
triggered by our discovery of the trail backtracking 
attack and the outcome of trail- and collision-search 
experiments for the one-bit word versions. In our 
choice between different alternative modifications, 
we always tried to choose the simplest one. The 
most important differences between RadioGat´ un 

and Panama are the following: 

•	 Introduction of feedforward from mill to belt 
(See Appendix A) 

•	 Reduction of input block size and belt width 

•	 Expansion of the mill from 17 to 19 words 

The number of blank rounds is 16, resulting in 18 
rounds between the injection of the last input block 
and the output of the first output block. In the 64-bit 
version, it takes 18 rounds for each bit of the mill to 
depend on each bit of the state. 

8 Performance aspects 

We now give some elements on its performance with 
a comparison to SHA-1, SHA-256 and Panama as 
references. 

8.1 Software 

To demonstrate its suitability for fast software im­
plementation, we have written optimized C code for 
RadioGat´ un and made it publically available at 
[18]. Given its similarity with Panama, we have 
based ourselves on the high-speed Panama code in 
the Crypto++ library, publically available from [6]. 

Table 1: Software performance in MByte/sec. 

SHA-1 90 91 
SHA-256 65 80 
Panama 480 288 
RadioGat´ un[32] 120 175 
RadioGat´ un[64] 55 270 

We expect that further optimization may result in 
even better performance. 

Table 1 compares the speed for hashing long in­
puts of our optimized code for RadioGat´ un with the 
Crypto++ code [6] of SHA-1, SHA-256 and Panama. 
These measurements were taken on a Dell Precision 
670 with Intel Xeon 3GHz. 

For short inputs, the fixed cost due to the blank 
rounds and the padding becomes significant. This 
cost can be modeled in terms of extra bytes to be 
processed. In RadioGat´ un[64], the blank rounds 
take as much time as iterating 384 bytes and the 
padding adds 1 to 24 bytes. In RadioGat´ un[32], 
the blank rounds add 192 bytes and the padding 
adds 1 to 12 bytes. In Panama the blank rounds 
add 1056 bytes and the padding adds 1 to 32 bytes. 
In SHA-1 and SHA-256, there are no blank rounds 
but the padding adds between 1 and 64 bytes. Using 
the numbers of the last column of Table 1, hashing 
an input of length smaller than a single input block 
takes about 0.7µsec for SHA-1, 0.8µsec for SHA-256, 
3.8µsec for Panama, 1.2µsec for RadioGat´ un[32] 
and 1.5µsec for RadioGat´ un[64]. 

8.2 Hardware 

RadioGat´ un can be implemented in a straightfor­
ward way as a circuit that keeps the state and has 
a state-updating function that consists of the input 
injection followed by a round. By analyzing the struc­
ture of the mill function and its connection to the belt 
function, it is clear that the critical path of this circuit 
consists of a NOT, a two-input NAND, a two-input 
XOR, a three-input XOR and a two-input XOR. In 



such a circuit, about 50% of the area is used for stor­
ing the bits of the state. 

The structure of RadioGat´ allows un for 
area/speed trade-offs. Area can be reduced at the 
cost of increasing the number of cycles per input 
block by instantiating only a fraction of the mill 
function. Speed can be doubled for the same clock 
rate by cascading two rounds and input injections 
in the updating function. Such a circuit has the 
same number of registers for storing the state and 
only doubles the logic that implements the updating 
function. Since the critical path of a round and input 
injection is very short, the maximum clock frequency 
remains high compared to other hash functions such 
as SHA-1. 

We have modeled a straightforward RadioGat´ un 

circuit in VHDL, mapped it to a technology library 
of STMicroelectronics and used a general purpose 
0.13 µm library. This resulted in a circuit with 37 
Kgates for RadioGat´ un[64] and 18.5 Kgates for 
RadioGat´ that can both run up to 1 GHz. un[32]

In the case of SHA-1 and SHA-256, a common 
choice is to instantiate the round logic and using it 
80 and 64 times respectively for processing 512 bits 
of the input. Typical examples are the Helion ASICs 
described in datasheets available from [11]. Their de­
signs on 0.18 µm take 20 to 26 Kgates and run from 
150 MHz up to 290 MHz. 

Taking into account the additional cycles due to 
the blank rounds and padding, we can give ex­
pressions for the number of clock cycles required 
for hashing an n-bit input to a 256-bit hash re­
sult (160 bits for SHA-1). Our RadioGat´ un[32] 
and RadioGat´ circuits take In/96l + 20 and un[64]
In/192l + 18 clock cycles respectively, while the He­
lion SHA-1 and SHA-256 ASICs require 80×In/512l 
and 64 × In/512l clock cycles respectively. For the 
same clock frequency, RadioGat´ is 12 times un[32] 
faster than SHA-256 for long inputs and 3.2 times 
faster for short inputs, while it takes less gates. 
RadioGat´ is even 24 times faster than SHA­un[64]
256 for long inputs, but has about 50% more gates. 
The same exercise can be easily done for SHA-1. 

9 Conclusions 

Alternating-input IMF with the belt-and-mill struc­
ture are an interesting alternative for MD4-like hash 
functions. 
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A On Panama and its attacks 

Panama can be presented as an alternating-input 
IMF with the belt-and-mill structure. The belt b is a 
linear feedback shift register (LFSR) with 32 stages 
each containing 8 32-bit words. The mill a is gov­
erned by a mill function. The input mapping maps 
an 8-word input block to the first stage of b and 8 
of the 17 words of a. The Panama function was 
designed with collision-resistance as one of the main 
criteria. 

In Panama, the function of the belt is to ensure 
that internal collisions can only occur for inputs that 
have a difference that satisfies certain criteria. Ba­
sically, in Panama each difference in the input that 
potentially leads to an internal collision leads to dif­
ference injections in the mill a in at least 5 different 
rounds. 

It was shown that Panama is not collision-resistant 
in [15]. The attack actually injects a sequence of 
differences in 5 different instances in the mill each 
time over 3 rounds. A first difference, then no dif­
ference and then a second difference that results in 
an internal collision in the mill. All differences are 
1-symmetric. We call these local mill collisions. In 
the belt, this difference sequence leads to an internal 
collision at the moment the last difference is injected. 

Each of the local mill collisions consist of a se­
quence of two differentials over the mill function, 
where each differential imposes conditions on the ab­
solute values of the bits of the mill at the input of 
the round. The authors of [15] noticed that some of 
these conditions can be easily converted to conditions 
on input bits, while for satisfying the remaining con­
ditions one must try many input pairs and hope they 
are satisfied. Based on this, a collision-generating 
attack was found with complexity below that given 
by the birthday paradox. Having made their point, 
the authors did not attempt to improve their attack. 
Notice that the attack of [15] can be modeled as be­
ing based on a collision trail and that this collision 
trail has a backtracking cost. The complexity of the 
attack is given by 2n with n the backtracking cost 
minus the number of conditions that can be satisfied 
by choosing input blocks with the correct values. 

When studying the attack with the aim of patching 

http://radiogatun.noekeon.org,2006
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up Panama, it became clear to us that it can be made 
more efficient: 

•	 For the basic difference sequence they only con­
sidered a sequence dx, 0, dy. In fact it is likely 
that there are differences of type dx, dy, dz that 
also lead to local collisions in the 5 instances. As 
the number of such sequences is (28−1)3 instead 
of (28 − 1)2 for those of type dx, 0, dy it is very 
likely that this will reduce the attack complexity. 

•	 They only considered 1-symmetric differences. 
By also considering differences with less symme­
try, the search space becomes larger, probably 
leading to even better attack complexity. 

•	 They did not do a lot of effort to resolve the 
equations algebraically. One may convert con­
ditions on bits of the mill to conditions on the 
input of some rounds earlier, thereby greatly 
reducing the number uncontrolled bits and the 
number of inputs to try. 

The first approach to fix these problems was to 
modify the belt LFSR so that the number of times 
a difference is injected in the state grows from 5 to 
a large number. This imposes more restrictions on 
the basic difference sequence as it must have collision 
trails in the mill for each of the instances, and hence 
in general raises the weight of the trails under con­
sideration. However, we then realized that there is 
a generic collision attack that works for any efficient 
IMF where there is no feedforward from mill to belt. 

This attack takes any pair of input sequences and 
constructs trailing parts so that the inputs lead to an 
internal collision. It goes like this: 

•	 Apply two input sequences to the function, lead­
ing to two values of the internal state. 

•	 Consider the difference in the internal state. 
Compute the difference that the input blocks 
must have to finally result in a zero difference 
in the belt. This is solving a set of linear equa­
tion and is easy. 

•	 Pick a pair of input trailers that have the correct 
difference and perform a number of rounds for 
injecting them, minus the last few rounds. 

•	 Look now at the mill. Try to find from the cur­
rent difference in the mill a differential trail lead­
ing to zero. This trailfinding seems not so dif­
ficult because the output difference of the last 
round is known and the input difference of the 
current round is known, meet-in-the-middle is 
possible. 

•	 Try now to convert the conditions on the bits of 
the mill imposed by the mill differentials to bits 
of the input. This involves algebraic computa­
tions that become more difficult with the number 
of rounds have to be bridged. Converting condi­
tions in the mill in round t to conditions in the 
input in round t − m becomes more difficult as 
m grows. We expect the number of conditions 
to be about the order of magnitude of the num­
ber of bits in the mill. So the number of blocks 
required is the size of the mill divided by the size 
of an input block. 

In Panama the mill has 17 words and the input 8 
words, so only two input blocks have to be consid­
ered. To find an internal collision in a at time t, it 

t−1is sufficient to express the conditions on bits of a
t−3and at−2 to conditions on pt−2 and p . Hence this 

spans only two rounds. In order to make such a func­
tion resistant to this attack, the mill must be several 
times larger than an input block. However, the speed 
of the function is proportional to the size of an input 
block divided by the size of the mill, as the mill func­
tion takes the largest portion of the computational 
resources. From this we concluded that having no 
feedback from mill to belt would never lead to an 
efficient hash function. 


