### Forgery and Partial Key Recovery attacks on HMAC and NMAC using Hash Collisions

#### 2<sup>nd</sup> NIST Hash Function Workshop

Scott Contini Macquarie University Yiqun Lisa Yin Independent Security Consultant

To appear in Asiacrypt'06

# Outline

- Background and motivation
- Summary of results
  - □ Various attacks on HMAC/NMAC
    - Using special collisions of underlying hash function
- Closer look partial key-recovery attacks
  - □ How to recover *entire* inner key
- Practical implications

(Not included in CD-Rom)

- New observations on 2nd preimage resistance (eSPR & rSPR)
  - □ MD5, reduced SHA-1

## HMAC and NMAC

Hash-based message authentication code (MAC)
Proposed by Bellare, Canetti, Krawczyk in 1996

HMAC has been widely implemented in practice

- □ Standards: SSL/TLS, SSH, IPsec, etc.
- □ Usages: MAC, PRF, random oracle, etc.

Construction

□ NMAC: NMAC<sub>(k1, k2)</sub> (m) =  $F_{k1}(F_{k2}(m))$ 

 $\square \text{ HMAC:} \quad (k1, k2) = \text{KDF}(k) \\ \text{HMAC}_k(m) = \text{NMAC}_{(k1, k2)}(m)$ 

•  $F_k(m) = F(k, m)$  is a hash function with IV = secret key k

## Related attacks on MDx

We studied existing attacks on MDx, especially

- Pseudo-collision attack on MD5 [DB 93]
- Collision attack on SHA-0 [CJ 98]
- Collision attack on reduced SHA-1 [BCJCJL 05]
- □ 2<sup>nd</sup> pre-image attack on MD4 [YWZW 05]

Differential paths in above attacks can be used to construct distinguishing attacks on f<sub>k</sub>
□ For MD4, SHA-0, reduced SHA-1, f<sub>k</sub> is not a PRF
□ For MD5, f<sub>k</sub> is not a PRF against related-key attacks

# Summary of our results

- Attacks on HMAC/NMAC-MDx
  - Distinguishing attacks
  - Forgery attacks
  - Partial key-recovery attacks
    - Can recover entire k2 (128 or 160 bits)
- Complexity (estimated # MAC queries)
  - □ NMAC-MD5 [related-key attacks] :
  - □ HMAC/NMAC-MD4:
  - □ HMAC/NMAC-SHA0:
  - reduced HMAC/NMAC-SHA1:
    - inner function is reduced to 34 rounds
- Biham and Yin (8/24/06, *not included in CD-Rom*)
  - □ 40-round NMAC-SHA1 [related-key attacks] : ~2<sup>55</sup> queries
  - □ 40-round HMAC-SHA1:



- 2<sup>47</sup> queries
- 2<sup>58</sup> queries
- 2<sup>84</sup> queries
- $\sim 2^{40}$  queries

 $\sim 2^{110}$  queries

# Summary of our results

- Attacks on HMAC/NMAC-MDx
  - Distinguishing attacks
  - Forgery attacks
  - Partial key-recovery attacks
    - Can recover entire k2 (128 or 160 bits)
- Complexity (estimated # MAC queries)
  - □ NMAC-MD5 [related-key attacks] :
  - □ HMAC/NMAC-MD4:
  - □ HMAC/NMAC-SHA0:
  - □ reduced HMAC/NMAC-SHA1:
    - inner function is reduced to 34 rounds
  - Kim, Biryukov, Preneel, Hong [SCN'06]
    - Independent work on distinguishing and forgery attacks



2<sup>47</sup> queries

2<sup>58</sup> queries

2<sup>84</sup> queries

 $\sim 2^{40}$  queries

### Partial key-recovery attacks on NMAC-MD5 (related-key setting)

### High-level steps

- Generate random messages and query the two NMAC oracles until obtaining a collision
  - $NMAC_{(k1, k2)}(m) = NMAC_{(k1, k2')}(m)$
- □ Modify certain bits of *m* to create a set of new messages
  - Based on new message modification techniques
- □ Check whether the set of new messages yield a new collision
  - Each yes/no answer roughly reveals one bit of internal state
- □ Step through the computation of  $F_{k2}(m)$  backwards to obtain the initial state the inner key k2

## Danger of hash collisions

- It is *not* surprising that hash collisions are useful for key recovery
  - Several earlier attacks on MACs use collisions
- Reason 1:
  - □ Collision path contains useful information about the internal hash computation  $F_{k2}(m)$ , and hence the initial secret key k2

### Reason 2:

□ Outer function  $F_{k1}$  in HMAC/NMAC does not hide collisions of inner function  $F_{k2}$ 

## Implications of our results

### HMAC-MD4

- □ Should no longer be used in practice
- Our results complement designers' analysis
  - $\Box$  Designers show that HMAC/NMAC is secure assuming  $f_k$  is a PRF
  - $\square$  We show that attacks are possible if  $f_k$  is *not* a PRF
- HMAC-MD5, HMAC-SHA1
  - No immediate practical threats
- Proper differential paths are crucial
  - Collision attacks, 2<sup>nd</sup> preimage attacks, and attacks on HMAC require paths with *different* properties
  - Automated method is a promising way to search for suitable paths

# 2nd preimage resistance (SPR)

- Compression function f(c,m)
- Goal of attacker S:
  - $\Box$  present (*c*,*m*) and (*c*',*m*') s.t.
    - (c,m) ≠ (c',m')
    - f(c,m) = f(c',m')

Variants of CR & SPR

|           | Attacker is given             | Attacker picks |
|-----------|-------------------------------|----------------|
| pseodo-CR |                               | c, m, c', m'   |
| CR        | fixed c=c'                    | <i>m, m</i> '  |
|           |                               |                |
|           |                               |                |
| SPR       | fixed c=c'<br><i>random m</i> | m'             |

# 2nd preimage resistance (SPR)

- Compression function f(c,m)
- Goal of attacker S:
  - $\Box$  present (*c*,*m*) and (*c*',*m*') s.t.
    - (c,m) ≠ (c',m')
    - f(c,m) = f(c',m')

#### Sort of known

- □ MD4, SHA-0 are not eSPR, rSPR
  - Since they are not SPR

#### New observations

- □ MD5 is not eSPR, rSPR
  - workload O(1)
  - success prob = 2<sup>-48</sup>
- 40-round SHA-1 is not eSPR, rSPR, SPR [Biham, Yin]

#### Variants of CR & SPR

|           | Attacker is given               | Attacker picks |
|-----------|---------------------------------|----------------|
| pseodo-CR |                                 | c, m, c', m'   |
| CR        | fixed c=c'                      | <i>m, m</i> '  |
| eSRP      | "somewhat" random c<br>random m | c', m'         |
| rSPR      | random c, m                     | c', m'         |
| SPR       | fixed c=c'<br><i>random m</i>   | m'             |

## Thank you very much !

Publication info:

To appear in Asiacrypt'06

Authors' contact info: scott\_contini [at] yahoo.com yiqun [at] alum.mit.edu