CDC Home

Chapter 2The Pre-Travel ConsultationCounseling & Advice for Travelers

Food Poisoning from Marine Toxins

Vernon E. Ansdell

Seafood poisoning from marine toxins is an underrecognized hazard for travelers, particularly in the tropics and subtropics. Furthermore, the risk is increasing because of factors such as climate change, coral reef damage, and spread of toxic algal blooms.

CIGUATERA FISH POISONING

Ciguatera fish poisoning occurs after eating reef fish contaminated with toxins such as ciguatoxin or maitotoxin. These potent toxins originate from small marine organisms (dinoflagellates) that grow on and around coral reefs. Dinoflagellates are ingested by herbivorous fish. The toxins are then concentrated as they pass up the food chain to large carnivorous fish (usually >6 lb) and finally to humans. Toxins in fish are concentrated in the liver, intestinal tract, roe, and head.

Gambierdiscus toxicus, which produces ciguatoxin, tends to proliferate on dead coral reefs. The risk of ciguatera is likely to increase as more coral reefs die because of climate change, construction, and nutrient runoff.

Risk for Travelers

More than 50,000 cases of ciguatera poisoning occur globally every year. The incidence in travelers to highly endemic areas has been estimated as high as 3 per 100. Ciguatera is widespread in tropical and subtropical waters, usually between the latitudes of 35°N and 35°S; it is particularly common in the Pacific and Indian Oceans and the Caribbean Sea.

Fish that are most likely to cause ciguatera poisoning are carnivorous reef fish, including barracuda, grouper, moray eel, amberjack, sea bass, or sturgeon. Omnivorous and herbivorous fish such as parrot fish, surgeonfish, and red snapper can also be a risk.

Clinical Presentation

Typical ciguatera poisoning results in a gastrointestinal illness, followed by neurologic symptoms and, rarely, cardiovascular collapse. The first symptoms usually appear 1–3 hours after eating contaminated fish and include nausea, vomiting, diarrhea, and abdominal pain.

Neurologic symptoms appear 3–72 hours after the meal and include paresthesias, pain in the teeth or the sensation that the teeth are loose, itching, metallic taste, blurred vision, or even transient blindness. Cold allodynia (dysesthesia when touching cold water or objects) is characteristic and almost pathognomonic of ciguatera poisoning. Neurologic symptoms usually last a few days to several weeks.

Chronic neuropsychiatric symptoms resembling chronic fatigue syndrome may be disabling, last several months, and include malaise, depression, headaches, myalgias, and fatigue. Cardiac manifestations include bradycardia, other arrhythmias, and hypotension.

The overall death rate from ciguatera poisoning is approximately 0.1% but varies according to the toxin dose and availability of medical care to deal with complications. The diagnosis of ciguatera poisoning is based on the clinical signs and symptoms and a history of eating fish that are known to carry ciguatera toxin. Commercial kits are available to test for ciguatera in fish. They are sensitive but expensive. There is no test for ciguatera in humans.

Preventive Measures for Travelers

Travelers can take the following precautions to prevent ciguatera fish poisoning:

  • Avoid or limit consumption of the reef fish listed above, particularly when the fish weighs 6 lb or more.
  • Never eat high-risk fish such as barracuda or moray eel.
  • Avoid the parts of the fish that concentrate ciguatera toxin: liver, intestines, roe, and head.

Remember that ciguatera toxins do not affect the texture, taste, or smell of fish, and they are not destroyed by gastric acid, cooking, smoking, freezing, canning, salting, or pickling. Commercial kits (if available) can be used to check if the fish is safe to eat.

Treatment

There is no specific antidote for ciguatoxin or maitotoxin. Treatment is generally symptomatic and supportive. Intravenous mannitol has been reported to reduce the severity and duration of neurologic symptoms, particularly if given within 48 hours of the appearance of symptoms.

SCOMBROID

Scombroid, one of the most common fish poisonings, occurs worldwide in both temperate and tropical waters. The illness occurs after eating improperly refrigerated or preserved fish containing high levels of histamine, and often resembles a moderate to severe allergic reaction.

Fish that cause scombroid have naturally high levels of histidine in the flesh and include tuna, mackerel, mahimahi (dolphin fish), sardine, anchovy, herring, bluefish, amberjack, and marlin. Histidine is converted to histamine by bacterial overgrowth in fish that has been improperly stored (>20°C) after capture. Histamine and other scombrotoxins are resistant to cooking, smoking, canning, or freezing.

Clinical Presentation

Symptoms of scombroid poisoning resemble an acute allergic reaction and usually appear 10–60 minutes after eating contaminated fish. They include flushing of the face and upper body (resembling sunburn), severe headache, palpitations, itching, blurred vision, abdominal cramps, and diarrhea. Untreated, symptoms usually resolve within 12 hours. Rarely, there may be respiratory compromise, malignant arrhythmias, and hypotension requiring hospitalization. Diagnosis is usually clinical. A clustering of cases helps exclude the possibility of fish allergy.

Preventive Measures for Travelers

Fish contaminated with histamine may have a peppery, sharp, salty, or bubbly taste but may also look, smell, and taste normal. The key to prevention is to make sure that the fish is promptly chilled (below 38°F) after capture. Cooking, smoking, canning, or freezing will not destroy histamine in contaminated fish.

Treatment

Scombroid poisoning usually responds well to antihistamines (H1-receptor blockers, although H2-receptor blockers may also be of benefit).

SHELLFISH POISONING

Several forms of shellfish poisoning may occur after ingesting filter-feeding bivalve mollusks (such as mussels, oysters, clams, scallops, and cockles) that contain potent toxins. The toxins originate in small marine organisms (dinoflagellates or diatoms) that are ingested and concentrated by shellfish.

Risk for Travelers

Contaminated shellfish may be found in temperate and tropical waters, typically during or after dinoflagellate blooms or “red tides.”

Clinical Presentation

Poisoning results in gastrointestinal and neurologic illness of varying severity. Symptoms typically appear 30–60 minutes after ingesting toxic shellfish but can be delayed for several hours. Diagnosis is usually made clinically in patients who recently ate shellfish.

Paralytic Shellfish Poisoning

This is the most common and most severe form of shellfish poisoning. Symptoms usually appear 30–60 minutes after eating toxic shellfish and include numbness and tingling of the face, lips, tongue, arms, and legs. There may be headache, nausea, vomiting, and diarrhea. Severe cases are associated with ingestion of large doses of toxin and clinical features such as ataxia, dysphagia, mental status changes, flaccid paralysis, and respiratory failure. The case-fatality ratio averages 6%. The death rate may be particularly high in children.

Neurotoxic Shellfish Poisoning

Neurotoxic shellfish poisoning usually presents as gastroenteritis accompanied by minor neurologic symptoms, resembling mild ciguatera poisoning or mild paralytic shellfish poisoning. Inhalation of aerosolized toxin in the sea spray associated with a red tide may cause an acute respiratory illness, rhinorrhea, and bronchoconstriction.

Diarrheic Shellfish Poisoning

This produces chills, nausea, vomiting, abdominal cramps, and diarrhea. No deaths have been reported.

Amnesic Shellfish Poisoning

This is a rare form of shellfish poisoning that produces a gastroenteritis that may be accompanied by headache, confusion, and permanent short-term memory loss. In severe cases, seizures, paralysis, and death may occur.

Preventive Measures for Travelers

Shellfish poisoning can be prevented by avoiding potentially contaminated bivalve mollusks. This is particularly important in areas during or shortly after “red tides.” Travelers to developing countries should avoid eating all shellfish because they carry a high risk of viral and bacterial infections. Marine shellfish toxins cannot be destroyed by cooking or freezing.

Treatment

Treatment is symptomatic and supportive. Severe cases of paralytic shellfish poisoning may require mechanical ventilation.

BIBLIOGRAPHY

  1. Ansdell V. Food-borne Illness. In: Keystone JS, Kozarsky PE, Freedman DO, Nothdurft HD, Connor BA, editors. Travel Medicine. 2nd ed. Philadelphia: Mosby; 2008. p. 475–84.
  2. Isbister GK, Kiernan MC. Neurotoxic marine poisoning. Lancet Neurol. 2005 Apr;4(4):219–28.
  3. Palafox NA, Jain LG, Pinano AZ, Gulick TM, Williams RK, Schatz IJ. Successful treatment of ciguatera fish poisoning with intravenous mannitol. JAMA. 1988 May 13;259(18):2740–2.
  4. Schnorf H, Taurarii M, Cundy T. Ciguatera fish poisoning: a double-blind randomized trial of mannitol therapy. Neurology. 2002 Mar 26;58(6):873–80.
  5. Sobel J, Painter J. Illnesses caused by marine toxins. Clin Infect Dis. 2005 Nov 1;41(9):1290–6.
 
Contact Us:
  • Centers for Disease Control and Prevention
    1600 Clifton Rd
    Atlanta, GA 30333
  • 800-CDC-INFO
    (800-232-4636)
    TTY: (888) 232-6348
  • New Hours of Operation
    8am-8pm ET/Monday-Friday
    Closed Holidays
  • Contact CDC-INFO
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #