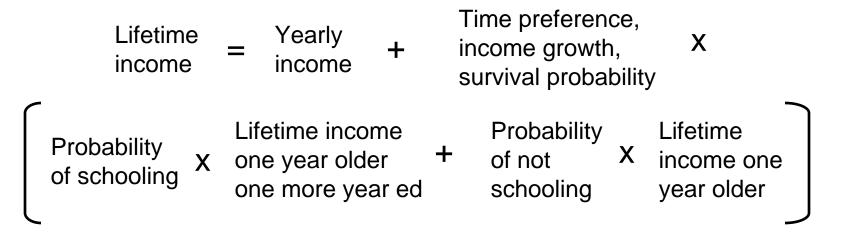
Human Capital Accounting in the United States: 1994-2006

Michael Christian Wisconsin Center for Education Research May 7, 2010

Human capital accounting

- Presents a human capital account for United States for 1994-2006
 - Adaptation of Jorgenson-Fraumeni approach
- Human capital stock is huge
 16 times size of stock of physical assets
- Issues with data, education investment


Jorgenson-Fraumeni model

- Human capital is expected lifetime incomes in PDV of all persons in U.S.
 - Lifetime income measured as per capita average by age, sex, and education
 - Market income: value of time spent at work
 - Non-market income: value of time not spent at work, school, or personal maintenance
 - Time valued at wage rate, with adjustments for taxation

Measuring lifetime income

• Lifetime income at a given age computed using lifetime income the next age older

$$life_{y,s,a,e} = yi_{y+1,s,a,e} + [(1+r)^{-1}(1+g)sr_{y,s,a+1}] \times [senr_{y+1,s,a,e} \ life_{y,s,a+1,e+1} + (1 - senr_{y+1,s,a,e}) life_{y,s,a+1,e}]$$

Measuring lifetime income

- Start with lifetime income at oldest age and work backward
 - Original J-F accounts: lifetime income 0 at 75
 - Here: PDV of constant income stream at 80
 - Gets lifetime income for every age/sex/ed cell
- Yearly income only earned at ages 15+
- Schooling only takes place at ages 5-34

Human capital stock

• Stock of human capital sums per capital lifetime incomes over persons in a year

$$hc_{y} = \sum_{s} \sum_{a} \sum_{e} pcount_{y,s,a,e} life_{y,s,a,e}$$

Human
capital =
$$\sum_{s} \sum_{e} pcount_{y,s,a,e} life_{y,s,a,e}$$

No. persons
by sex, age, X
education
$$\sum_{e} pcount_{y,s,a,e} life_{y,s,a,e}$$

 Can be broken down into market, nonmarket components

Human capital stock

 Changes in human capital break down into revaluation and net investment

$$\Delta hc_{y} = \sum_{s,a,e} pcount_{y,s,a,e} \Delta life_{y,s,a,e} + \sum_{s,a,e} \Delta pcount_{y,s,a,e} life_{y+1,s,a,e}$$

Change in human = capital Revaluation: change due to change in lifetime incomes Net investment: change due to

+ change in size and distribution of population

Human capital net investment

• Changes in net investment break down across causes of changes in population

$$\sum_{s,a,e} \Delta pcount_{y,s,a,e} life_{y+1,s,a,e}$$

$$= \sum_{s,a,e} births_{y,s,a,e} life_{y+1,s,a,e}$$

+
$$\sum_{s,a,e}$$
 education_{y,s,a,e} life_{y+1,s,a,e}

+*etc*....

Net investment

Investment from births:

 change in human capital due to change in population from births

Investment from education:

- + change in human capital due to change in population from schooling
- + Deaths, aging, migration, etc.

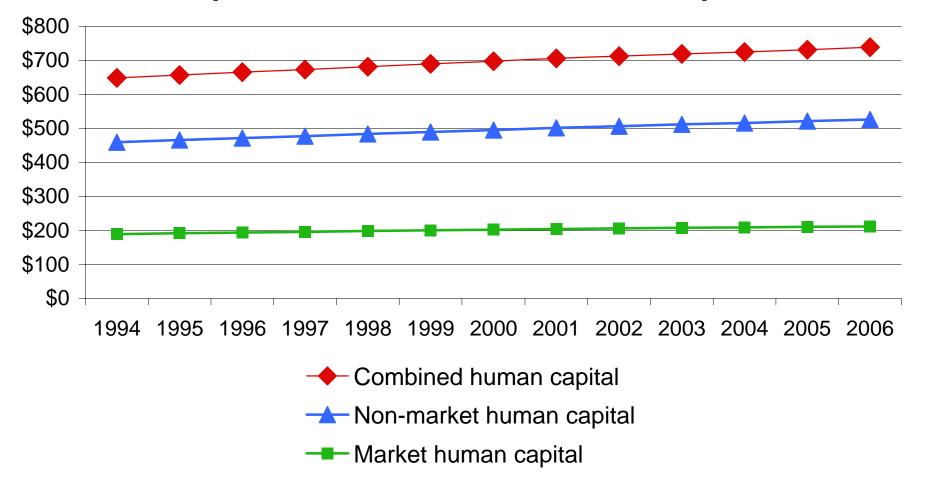
Data required for model

- Population
- Average yearly market income
- Average yearly non-market income

 Work hours, school hours, hourly wage rate
- School enrollment rate
- All by year, age, sex, education
- All from CPS in this application
- Survival rate from CDC

Adaptations to J-F

- Net investment broken down into 5 parts
 - Investment from births
 - Depreciation from deaths
 - Investment from education net of aging of enrolled
 - Net of aging because gross was unrealistic
 - Depreciation from aging of non-enrolled
 - Residual net investment


Adaptations to J-F

- Level of education
 - CPS no longer measures education by year
 - Year of education imputed from ages 0-34
 - Five levels for 35+ (<HS, HS, some, BA, MA)
 - Wage rates only rise across the five levels
- Investment before revaluation
- Pre-tax wage used for market income
- Oldest people age 80, can earn income

Human capital stock is huge

- Stock is \$738 trillion in 2006
 - \$536T non-market, \$212T market
 - Non-market share consistently about 70%
 - 16x stock of physical assets
- Real growth is 1.1% annual 1994-2006
 - Population growth is the cause
 - Slower than physical assets (19x in 1994)


Real human capital stock (in trillions of 2006 dollars)

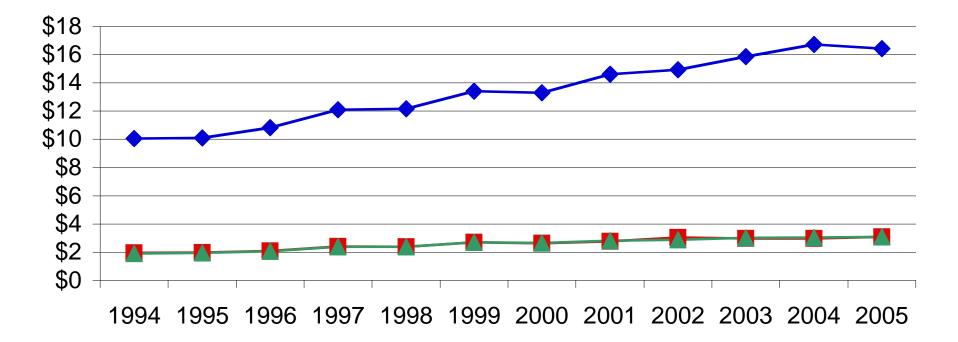
Investment in human capital

- In 2005:
 - Investment from births: \$9.7 trillion
 - Investment from education net of aging: \$6.9 trillion
 - Depreciation from deaths: \$2.7 trillion
 - Depreciation from aging of non-enrolled:
 \$9.5 trillion
 - Residual net investment: \$2.0 trillion

Net human capital investment (in trillions of 2005 dollars)

Investment in education

- Investment in education is net of aging
 - Combined effect of moving up a year in education and of becoming one year older
 - Effect of moving along age-ed profile
- Why not measure gross investment?
 Effect of education separate from aging


Gross education investment

- Actual stock minus counterfactual stock in which nobody attends school for a year
 - What would human capital stock be if nobody went to school?
 - What would people who went to school have done if they missed a year?
- Measures of gross educational investment sensitive to answer to second question

If we all missed a year of school

- CF1: We would become like people who actually missed a year of schooling
 - We all fall "off track"
 - Become much less likely to finish school
 - Huge impact on human capital: \$16T market
- CF2: We would enroll in school next year with the same probability as a year ago
 - We mostly stay "on track" and finish school
 - Smaller impact: \$3.1T market

Market component of investment in human capital

Gross investment, "off-track" counterfactual
 Gross investment, "on-track" counterfactual
 Net investment

Net educational investment

- Does not require strong counterfactual
 Follows people along the course they followed
- Safer route, at least given this data set
 - Gross investment may be OK if there were more direct payoffs to non-degree years; importance of being "on track" weaker

Avenues for future work

- Better adapting to available data
 - Improve imputation of education
 - Some data in the basic CPS I did not use
- Resolving education issue
 - Smaller payoffs to diplomas and degrees
 - Some direct payoff to intermediate years