Status of the ITU-T CWE
Cybersecurity
Recommendation

Robert A. Martin
3 February 2011

ITU Overview

ITU
Helping the World Communicate
ITU-T ITU-D
Telecommunication Assisting

standardization of Implementation and

network and service operation of
aspects telecommunications in

| ITU-R developing countries
Radiocommunication

standardization and
global radio spectrum
management

ITU-T structure

WORLD TELECOMMUNICATION
STANDARDIZATION ASSEMBLY

TELECOMMUNICATION
STANDARDIZATION

@ ADVISORY GROUP

STUDY GROUP STUDY GROUP F=-=-=-=-=--- STUDY GROUP 17

[1

WORKING WORKING

w PARTY PARTY

Q4

The CYBEX Model

Cybersecurity Cybersecurity

Entities O structuring cybersecurity information for Entities
""""" exchange purposes |
3 identifying and discovering

I

: | I ;

Cybersecurity | cybersecurity information and entities 1 Cybersecurity
Information ! O establishment of trust and policy : Information
acquisition : agreement bet(\;veen t=,-xc(:ihangim_lz|1 entities | use

d requesting and responding wit

(out of scope™) : cybersecurity information : (out of scope™)

__________ [d providing for the assurance of Y i St

cybersecurity information exchange

* Some specialized cybersecurity information exchange implementations may require
application specific frameworks specifying acquisition and use capabilities

CYBEX Clusters
_____ { Policy l
Exchange \

Query .
Exchange

Identification,
Discovery, &

Query
Information

| Identity Assurance |

XCCDF
eXensible
Configuration
Checklist
Description
Format

CPE
Common
Platform

Enumeration

OVAL
Open
Vulnerability
and
Assessment
Language

CCE ARF
Common Assessment
Configuration Result Format
Enumeration

CVSS
Common
Vulnerability
Scoring
System

CVE
Common
Vulnerabilities
and
Exposures

IODEF
Incident
Object
Description
Exchange

CWSS
Common
Weakness
Scoring
System

CWE
Common
Weakness
Enumeration

CAPEC
Common
Attack Pattern
Enumeration
and
Classification

CEE
Common
Event
Expression

Information Exchange
Schema —
CYBEX context

Application
Specific
Extensions

CYBEX ontology model

f

Y

@®
3 Provider
‘ Resource DB
ICT Infrastructure
ICT Asset Provider
Management
Domain
o]
e LLEL Resourc
Administrator
@
. =————| Incident DB
Incident Response Team
Handling
Domain
&
3| Warning DB

Coordinator

Product & Service KB

Version KB

Configuration KB

Countermeasure KB

Assessment KB

Detection /
Protection KB

i
Researcher
. Knowledge
— ‘ Accumulation
) Domain
Registrar

|

Cyber Risk KB

Vulnerability KB

Threat KB

Product
& Service
Developer

DB: Database KB: Knowledge Base

Detailed view of the CYBEX ontology
model with technigues shown

/

Sy

Provider Resource
A — "t
ICT Infrastructure
ICT Asset Provider
Management
Domain
[] User Resource DB
3 ARF <
Administrator °
. —
Incident DB
& —s
) Response Team
Incident
Handling
Domain

I

Warning DB }’

Coordinator

£

/]

Product & Service KB

N

Countermeasure KB

cwss Il cvss
ovar Il xceor

. Knowledge
— ‘ Accumulation
) Domain
Registrar

N

Cyber Risk KB

Researcher

!

‘
Product

& Service
Developer

DE: Database KB: Knowledge Base

XCCDF OVAL

eXensible Open
Configuration Vulnerability
Checklist and
Description Assessment
Format Language
SCAP —p
Security
Automation
Tools
CPE CCE ARF
Common Common Assessment
Platform Configuration Result Format
Enumeration Enumeration

Information Exchange
Schema —
SCAP Use Case

CVSS
Common
Vulnerability
Scoring
System

CVE
Common
Vulnerabilities
and
Exposures

IODEF
Incident
Object
Description
Exchange
Format

CWSS
Common
Weakness
Scoring
System

CWE
Common
Weakness
Enumeration

CAPEC CEE
Common Common
Attack Pattern Event
Enumeration Expression
and

Classification

Application

Specific
Extensions

Weaknesses, Vulnerabilities, & State

Events, Incidents, & Heuristics

ITU-T Study Group 17 Question 4.
Adopting the Information Security Community’s Efforts

XXX is one of a class of ITU-T Recommendations that
comes from a large, existing, global development and user
community that has written and evolved an open
specification that is made available to the ITU-T for adoption
with agreement that any changes or updates to the
specification will be done in a manner that ensures full
technical equivalency and compatibility will be maintained,
that discussions about changes and enhancements will be
done through the original user community processes, and
Includes explicit reference to the corresponding specific
version maintained by the user community. Thus, at the
time of Initial adoption of Rec. X.XXXX, a due diligence
verification and statement of equivalency will occur; and as
changes are effected among the user community, timely
reflection of those changes will be incorporated in
subsequent versions of the Recommendation through
continued collaboration.

Status of ITU-T Recommendations

X- Title ITU-T Planned
series Status | Determination

x.1500 Cybersecurity Information Exchange (CYBEX) Tec hniques Final Dec 2010
x.1520 Common Vulnerabilities and Exposures Final Dec2 010
x.1521 Common Vulnerability Scoring System Final Dec20 10
X.cwe Common Weakness Enumeration Draft Aug 2011
x.oval Open Vulnerability and Assessment Language Draft Aug 2011
x.cce Common Configuration Enumeration Draft Aug 2011
x.capec Common Attack Pattern Enumeration and Classi fication Draft Feb 2012
x.maec Malware Attribute Enumeration and Classificat ion Draft 2012
x.cwss Common Weakness Scoring System Draft 2012
x.cee Common Event Expression Draft 2012
X.cpe Common Platform Enumeration Draft 2012

x.arf Asset Reporting Format Draft 2012
x.xccdf Extensible Configuration Checklist Descripti on Format Draft 2012

Bob Martin, 3 March 2011

BUILDING SECURITY IN

Mitigating the Top 25
Egregious Software Errors

Robert A. Martin

CWE 3 March 2011 MITRE

If the weaknesses In
software were as
easy to spot and
their impact as
obvious as...

Vulnerability Type Trends:
A Look at the CVE List (2001 - 2007)

25.00% -
XSS

- buf

sql-inject
20.00% - ______,_.//\ dot

-~ php-include
infoleak

15.00% - —— dos-malform

link

\ format-string

- crypt
10.00% - \-\ >\ .
priv

| perm
5.00% H r——-—-’—'\\
] i |
Sl G [

2001 2002 2003 2004 2005 2006 2007 MITRE

metachar

int-overflow

0.00%

Removing and Preventing the Vulnerabilities
Requires More Specific Definitions... CWEs

9

XSS
14

Improper Neutralization of Input During Web Pagen€mtion (‘Cross-site Scriptingy9)
« Improper Neutralization of Script-Related HTML Taigp a Web Page (Basic XS$0)
Improper Neutralization of Script in an Error Mage Web Pagé1)
Improper Neutralization of Script in Attributes G Tags in a Web Pag82)
Improper Neutralization of Script in Attributes &aWeb Pagé33)
Improper Neutralization of Encoded URI Schemea iWeb Pagé34)
¢ Doubled Character XSS Manipulations (85)
e Improper Neutralization of Invalid Characters dehtifiers in Web Pag&86)
e Improper Neutralization of Alternate XSS Syn{&X)

-=— buf
sqgl-inject
dot 19

—— php-include
infoleak

—— dos-malform
link
format-string
crypt
priv
perm
metachar
int-overflow

Improper Restriction of Operations within the Bosimd a Memory Buffe119)
 Buffer Copy without Checking Size of Input (‘Clas8iuffer Overflow’) (120)
* Write-what-where Condition (123)
¢ Out-of-bounds Read (125)
 Improper Handling of Length Parameter Inconsistgi&p)
 Improper Validation of Array Inde(129)
¢ Return of Pointer Value Outside of Expected Ra{@d@®)

» Access of Memory Location Before Start of BufféB6)
e Access of Memory Location After End of Buffer (788)
 Buffer Access with Incorrect Length Value 805

» Untrusted Pointer Dereference (822)

» Use of Out-of-range Pointer Offset (823)

» Access of Uninitialized Pointer (824)

« Expired Pointer Dereference (825)

Path Traversal (22)
 Relative Path Traversal (23)
« Path Traversal: "../filedir' (24)
« Path Traversal: '/../filedir' (25)
R 8 more here -------------- >
 Path Traversal: "..../I' (34)
« Path Traversal: '.../.../I' (35)
« Absolute Path Traversal (36)
« Path Traversal: /absolute/pathname/here’ (37)
¢ Path Traversal: \absolute\pathname\here’ (38)
¢ Path Traversal: 'C:dirname’ (39)
¢ Path Traversal: \\UNC\share\name\' (Windows UNC Share) (40)

™

Exploitable Software Weaknesses (a.k.a. Vulnerabilities)
Vulnerabilities can be the outcome of non-secure practices and/or malicious
intent of someone in the development/support lifecycle.

The exploitation potential of a vulnerability is independent of the “intent”
behind how it was introduced.

Intentional vulnerabilities are spyware & malicious logic deliberately imbedded (and might not be

considered defects but they can make use of the same weakness patterns as unintentional
mistakes)

Note: Chart is not to sca- notional representatic-- for discussior

...which could be with
defensive and offensive
security capabilities.

'ﬁ:“?# o --5'+ -
Ve o R R o i

Security Feature

SQL Injection
(CWE-89)

Attack

(CWE-79)

Attack (g o e Rt f (CAPEC-66)
CAPEC-86) - e ¥ o) : i :

Software [In]security: Cyber Warmongering and
Influence Peddling

B2e:

“For years in computer security, we have
been attempting to protect the broken stuff
from the bad people Dby placing a barrier
between the bad people and the broken
stuff. We have failed. Instead, we need to
fix the broken stuff so that attacking it
successfully takes far more resources and
skill than is currently the case.”

o o 1 CWE - Common Weakness Enumeration

' @ @ (:[F " http://cwe.mitre.org

Y_\l -
‘ W Common Weakness Enumeration
A Community-Developed Dictionary of Software Weakness Tvpes

=3
‘,','_]"\' (-'I' Google Qx'
Ty

MOST DANGEROUS

SOFTWARE
ERRORS

International in scope and free for public use, CWE™ provides a unified, measurable

ol Dicoaaty ik set of software weaknesses that is enabling more effective discussion, description,
Dok VTR selection, and use of software security tools and services that can find these
e weaknesses in source code and operational systems as well as better understanding
Papors and management of software weaknesses related to architecture and design.

About |
SOl Building CWE & Consensus
Process

Fubdady Avalaide o1ty Tanurmimees
Dotuments Aomm.ach. e Chmechlinds

Related Activities
Discussion List
Research
CWE/SANS Top 25
CW55

Calendar
Froe Newslotter

Compatibility

Program
Reguirements
Declarations
TN el W1

Borhare duae e
[y L gl T L

Make a Declaration

it CRSAARTTR
Contact Us "
[—
Search the Site !
—

Similar Standards
Attack Patterns (CAPEC) Assessment Language (OVAL)

Vulnerabilities {CVE]) Checklist Language (XCCDF)
Configurations (CCE) Log Format (CEE)

Platfoarms (CPE) Security Content Automation (SCAP)
Malware (MAEC) Making Security Measurable

» Updated Common Weakness
Scoring System (CWSS) White
Paper Mow Available

» LDRA Makes Two Declarations of
CWE Compatibility

» Spftware Assurance keynote and
Making Security Measurable table
booth at International Conference
on Software Quality

» CWE/Making Security Measurable
booth at Black Hat OC 2011

= MONE

* CWE/Making Security Measurable
booth at RSA 2011, February 14-18

CWE/CAPEC/MAEC briefings at
DHS/DoD/NIST SwA Forum
February 28 - March 4

s CWE/Making Security Measurable
booth at 2011 Information
Assurance Symposium, March 8-10

= MOore

Status Report

Version 1.11 posted December 13,
2010. 7 new entries were created,
mostly related to synchronization and
"functionality inclusion.” One entry
was deprecated. There are changes to
135 entries, especially potential
mitigations, names, descriptions,
demonstrative examples, and
relationships. There were no schema
changes.

More Information

cwe@mitre.org

g

TE

|5

Protection

Analysis LOvER

Microst

il

il ol

Wil g

B b b 1 ool |

eep———
L TaE—
e T]
I-I_T‘d _.= e e
—
R _—|—-¢—==

—— Y Se—
ot o ———
e i
e = o e—
o ——— .-——_’
p=e im
—_— e
e —
= Sua
. |
m— = r—
S
]

——r —_—
e e —
Ji———=—= ——
rm——

.
B
e— e
Tt it
e — =]
—— T
IR
i
e
T
A —p———
et et
e —]
———
o
R - - —— —J
e e

oo =
e
—_—
e ———
—_— =

———

Pl
l!

e

I

:

H

El

PLOVER

ol o

[

b
b A Ay

o

i

A AL R R

Ol T

Hl i

INTIVPN

D0 0

(i

il

b f
(TN

ol

CWE
draft5 "=

e
I

Bl g 6 Gl

it

TR

-

4

o
Ja
i |
i

i)

|
1Lk
B

-
i

I

|

3

ot gt

-_A__—"— —_
L AW

i

AL -
]

i
MBI Hik

i

T T

-+
mﬂﬂgﬂﬂ@llhii

I

w1
B
i

L

CWE
draft 7 =

—+
SN | | L!lml

F10A |

+

h 7, L6, B
mn

2005
300 node

2006
599 node

2007
634 node

2009
799node

Dec 2010
835node:

CWE Is Meant for People to Use

\5\ Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

CWE Version 1.4

Edited by:
Steven M. Christey, Conor O. Harris, and Janis E. Kenderdine

Project Lead:
Robert A. Martin

MITRE

CWE Version 1.4

Table of Contents

Sjuauog Jo ajqel

CWE Version 1.4
CWE-1: Location

Status: Incomplete|

roduced during the

v Page
6og 1
69¢ 13
699 13
699 695

nmental
Vi Page
699 1
699 i
yption 700 2
700 3
700 4
700 5
B 700 6
700 7
700 8
File 700 9
699 10
700
699 12
699 465
699 560
699 643
700 696

ES

nmental conditions

v Page
699 1
699 1
699 540
1

*E-3MO

uoles0o

CWE Version 1.4
ture ('SQL Injection’)

bes.
liminate the SQL

Good Cade

e boxes, the
tion user has the

h database.
Bad Code

First of all, the

in SQL. If a user
hich may bypass
data / command
Able to after the
possibly accessing
strophe are

h programmer may
revent any data /

lows SQL injection

rly encoded output.
ke Java Beans,

ion between
g, encoding, and
ability at every

ltored procedures.

ng. Do not
pxec" or similar

103

(,uonoaluj TOS,) 21Monas Aienp 1OS 2Ai2sald 0} ainjied :68-IMI

CWE Version 1.4
Index

7 - Characters and

8 - Memory Management
9 - Input Output (FIO),

0 - Environment (ENV),

1- Signals (SIG), 736
2 - Error Handling (ERR),

9 - Miscellaneous (MSC),

0-POSIX (POS), 738

joint ('Man-in-the-Middie”),

[Comparison Errors, 200
rmation, 338

& Information, 342
I-Side Security, 596
(), 578

. 211
essible Directory, 560

514
Instead of Object

1 Modification of Security-
ar Buffers, 10

762

rors), 247
, 396

ctory with Incorrect
hsecure Permissions,
jhal Modifier, 521
750

ation Leak, 244
F), 373

[During Sensitive
r Injection’), 611
6

Fxception, 424
Exception, 425
I, 487

61
it Timing Channel, 539

827

xapu|

CWE Version 1.4
Index

uplicate Identifier, 692
for Authorization

h to Detect NULL Pointer

ary Authentication, 334
frmine Size, 492

ction, 670

n, 333

-thread-safe Manner,

490
Argument, 564

Fomparison, 592

79
fion, 319

les, 651

s, 287
nism for Forgotien

41

ERT C Secure Coding

TE, 620

(2004), 718
(2007), 619

n G, 652

n G+, 653
nJava, 655

n PHP, 657

NS Top 25 Most

739
esign, 696
703

birectories, 621

Processes, 622

jection), 107

833

Xapu|

Behavioral Problems Channel and Path Errors

Initialization and
Cleanup Errors

Bmgmed fmrstailds

P vy, Ml ST e by e L v ol Bt o

“RetiralC sl uf Coimynd Wt s AR

Common Security Errors in Programming

*En ey il g by Lomp
« Sl B ima nares v Peaca bl lps

LT W aaen b Wi b | pwision
g
| Nenrnc ke ladrraivd bim i Thuea Mask eral]

» Pamubly bybatjaafiem

SANY MITRE

. A9 Top 15 CVE Cimipes
and impertant COWES

Wemmers B I e 302 oo S B RTE HIH TR A
e
R T - o benciand farms B
" oy, weder i s i I et wsdee
o CFE I o fnd
s e Dy 8

T
b bl e gt s

Namiten bmvar pousn b e i i i o 1 ol
e TR O el on s e Ty g et |l
hitp:rmes miirs cepdvinidefnmnra lree himl

Sperial oy Ladaberrd Wartn o WTFF Enperaton

Failure to Fulfill ARl Contract
[‘AP1 Abuse’)

& Whyrary Baww s [ypimgiapha Vg
oy o W Y e O

1'as Crpimpapbpls Pusmedy -rrlllr-ilnﬂil

- il Panimct e Bewrmssma
« 5 Ui Pt g
Frepbem Crnh p mHE T v Wiy

+ Fanrmcrd Mg s Larg Box nims
Tarai artos

o Fegursacis and Parars -Whesdi Pranmcr e B4 ey Machami w ki Fergaiia

—
s ParepT]
e

+ By pt i o Tawanss as Urararad Da s ot
Trarsd Qus

+ grapedy Trrssd Sevs sn DR

o WTTP Fenue

TP Hcsd

g Dt sl Pulive. Tl
- iz | Mesnnd Carbiesd Bk

With all of
these CWEsS,
where do you
start?

2009 SANS/CWE Top 25 Programming Errors
(released 12 Jan 2009)

cwe.mitre.org/top25/

806

why SANS?

The right security training for your staff, at the right time, in the right place.

certification resources

training

pick a course

SANS Institute - CWE/SANS TOP 25 Most Dangerous Programming Errors

vendor

why certify?

portal

register now

I :orch

storm center college developer about

806

CWE - 2009 CWE/SANS Top 25 Most Dangerous Programming Errors]

CWE/SANS TOP 25 Most [

Experts Announce Agreement on th
And How to Fix Them
Agreement Will Change How Organ|

Q4

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

Project Manager: Bob Martin, MITRE
Questions: top25@sans.org

-
= PDF For Printing

(January 12, 2009) Today in Washington, DC, ex|
organizations jointly released the consensus lis|
security bugs and that enable cyber espionage
well understood by programmers; their avoidarn
their presence is frequently not tested by orgd

The impact of these errors is far reaching. Justj
breaches during 2008 - and those breaches casq
sites, turning their computers into zombies.

People and organizations that provided substan
the most respected security experts and they
Microsoft, to DHS's National Cyber Security Divig
the Japanese IPA, to the University of Californii
Institute managed the Top 25 Errors initiative,
Security Agency and financial support for MITRH
Homeland Security’s National Cyber Security Dif
National Cybersecurity Division at DHS have con|
improve the security of software purchased by

What was remarkable about the process was hq |

heated discussion. "There appears to be broad
Mason Brown, "Now it is time to fix them. First
write code that is free of the Top 25 errors, an
processes in place to find, fix, or avoid these p
free of these errors as automated tools can ver|

Tho Office of tho D nd bl | lokollioa o

Full Dictionary View
Development View
Research View
Reports

About |
Sources
Process
Documents

Related Activities
Discussion List
Research
CWE/SANS Top 25
CWsS

Calendar
Free Newsletter
Compatiblility
Program
Requirements
Declarations
Make a Declaration

Search the Site

Section Contents

CWE/SANS Top 25
Supporting Quotes
Contributors

2009 CWE/SANS Top 25 Most Dangerous
Programming Errors

On the Cusp

Top 25 FAQ
Document version: 1.0 (pdf) Date: January 12, 2009 Top 25 Process

Change Log

Document Editor:
Steve Christey (MITRE)

Project Coordinators:
Bob Martin (MITRE)
Mason Brown (SANS)

Alan Paller (SANS) http://cwe.mitre.org/top25

Introduction

The 2009 CWE/SANS Top 25 Most Dangerous Programming Errors is a list of the most significant
programming errors that can lead to serious software vulnerabilities. They occur frequently, are often
easy to find, and easy to exploit. They are dangerous because they will frequently allow attackers to
completely take over the software, steal data, or prevent the software from working at all.

The list is the result of collaboration between the SANS Institute, MITRE, and many top software
security experts in the US and Europe. It leverages experiences in the development of the SANS Top 20
attack vectors (http://www.sans.org/top20/) and MITRE's Common Weakness Enumeration (CWE)
(http://cwe.mitre.org/). MITRE maintains the CWE web site, with the support of the US Department of
Homeland Security's National Cyber Security Division, presenting detailed descriptions of the top 25
programming errors along with authoritative guidance for mitigating and avoiding them. The CWE site
also contains data on more than 700 additional programming errors, design errors, and architecture
errors that can lead to exploitable vulnerabilities.

The main goal for the Top 25 list is to stop vulnerabilities at the source by educating programmers on
how to eliminate all-too-common mistakes before software is even shipped. The list will be a tool for
education and awareness that will help programmers to prevent the kinds of vulnerabilities that plague
the software industry. Software consumers could use the same list to help them to ask for more secure
software. Finally, software managers and CIOs can use the Top 25 list as a measuring stick of progress
in their efforts to secure their software.

L R

20010 CWE/SANS Top 25 Programming Errors

(released 16 Feb 2010)
e Sponsored by:

cwe.mitre.org/top25/

— National Cyber Security Division (DHS)
o List was selected by a group of security experts fr om 34

organizations including:

— Academia: Purdue, Northern Kentucky University

— Government: CERT, NSA, DHS

— Software Vendors: Microsoft,
Oracle, Red Hat, Apple, Juniper,
McAfee, Symantec, Sun,

RSA (of EMC)

— Security Vendors: Veracode,
Fortify, Mandiant, Cigital, SR,
Secunia, Breach, SAIC, Aspect,
WhiteHat

— Security Groups: OWASP, WASC

S M-S why SANS? pick a course why cel register now _E

The most trusted source for computer security training, certification and research.

training certification resources vendor portal storm center college developer about

CWE/SANS TOP 25 Most Dangerous Programming Errors

2070 gimore, mo

June 6-14

25 in a series of daily
postings between 22
Feb and 26 March.

What Errors Are Included in the Top 25 Programming Errors?

Version 2.0 Updated February 16, 2010
Visit the blog to learn

more, see useful
The Top 25 Programming Errors are listed below in three categories: resources and enter the
discussion.

1 Comp (8 errors)

ent (10 errors)
=5 (7 errors)

Yearly Archive
2010

2009

Click on the headline in any of the listings (or the MORE link) and you will be directed to the relevant spot in
the MITRE CWE site where you wil find the following:

Ranking of each Top 25 entry,
Links to the full CWE entry data,

Data fields for weakness prevalence and consequences,
Remediation cost,

Ease of detection,

Code examples,

Detection Methods,

Attack frequency and attacker awareness

Related CWE entries, and

Related pattems of attack for this weakness

Each entry at the Top 25 Programming Errors site also includes fairly extensive prevention and remediation
steps that developers can take to mitigate or eliminate the weakness.

/N

Programming Error Category: Insecure Interaction Between Components Real Threats,

N N . e Real Skills,
[1] CWE-79: Failure to Preserve Web Page Structure (‘Cross-site Scripting’) 4
Cross-site scripting (XSS) is one of the most prevalent, obstinate, and dangerous vulnerabilities in web Real Success
applications. ..If you're not careful, attackers can.

SANS
Cyber Guardian
Program

[2] CWE-89: Failure to Preserve SQL Query Structure (aka 'SQL Injection’)
If attackers can influence the SQL that you use to communicate with your database, then they can.

Top 25 Main Goals

Raise awareness for developers
Help universities to teach secure coding

Empower customers who want to ask for
more secure software

Provide a starting point for in-house
software shops to measure their own
progress

@f@w ([f _http:che.mitre.nrg,ftapESfindex.html 'i:.i"'—" (:-"'.'- Google

CWE - 2010 CWE/SANS Top 25 Most Dangerous Software Errors ==}

I
Common Weakness Enumeration ||:8 MOST DANGEROUS
A Community-Developed Dictionary of Software Weakness Tvpes SOFTWARE
ERRORS

Full Dictionary Wiew

Devalopment View
Research Wiew
Reports

Sources
Procass

Dotuments

Retated Activitios
Digcresion List
Research
CWE/SANS Top 25

ig

Calendar

Free Newsletter
Compatibility
Program
Reguiremeants
Declarations

Make a Declaration

i

Search the Site

Section Contents

CWE/SANS Top 25
Contributors
Supporting Quotes
Monster Mitigations
Focus Profiles
On the Cusp
Documents & Podcasts
Training Materials

2010 CWE/SANS Top 25 Most Dangerous
Software Errors

Copyright © 2010
http://fcwe.mitre.org/top25/

The MITRE Corporation

Top 25 FAD
Top 25 Process
Document version: 1.06 (pdf) Date: September 27, 2010 Change Liod

SANS News Release

Section Archives
2009 CWE/SANS Top 25

Supporting Quotes
Contributars

On The Cusp
Change Log

Document Editor:
Steve Christey (MITRE)

Project Coordinators:

Bob Martin (MITRE)
Masaon Brown (SANS)
Alan Paller {SAMNS)
Dennis Kirby (SANS)

Introduction

The 2010 CWE/SANS Top 25 Most Dangerous Software Errors is a list of the most widespread and
critical programming errors that can lead to serious software vulnerabilities. They are often easy to
find, and easy to exploit. They are dangerous because they will frequently allow attackers to
completely take over the software, steal data, or prevent the software from working at all.

The Top 25 list is a tool for education and awareness to help programmers to prevent the kinds of
vulnerabilities that plague the software industry, by identifying and avoiding all-too-common

mistakes that occur before software is even shipped. Software customers can use the same list to =
heln them to ask for more secure software. Researchers in software securitv can usethe Ton 25ta 7

=

Robert C. Seacrd
Fasal Meuier
Mt Bsop
Honne van Wiy
sl Terath
ean Barum
Manesh Seotars
Casso oldschmic
Adam Han

Jf Wlmg
Carten Eram
Josh Dre
Chuck W1
Michel Howard
Bruce Lol
Mark). Cox
Jacd Vst
Djeana Campare
James Welcen
Frank K

Chis Eng

Chis Wysal

000 CWE - Top 25 Credited Contributors

CERT Rvan Bame{t Breach [< | b] &‘(£ http: /jcwe.mitre.org/top25 /contributors.html 20 10 ¢] (Qr D
. \, Common Weakness Enumeration

(ERAS, e sty Moo Newke QUVE Semmen Weskness Epumeration .

lnupsolhy of Callfrsnln Boue Masls Gineaunl 1T Mieelnn | EOTCNN ;s ~amdeilagt

4

CE
Gomtr e e e ransren. ORAC_I " —

Secu Al a SRI International

NSA pbHs IPA MABR

GRAMMATECH INFORMATION-TECHNOLOGY PROMOTION AGENCY, JAPAN
SRA FORTIFY " symantec.

5SS O F T W A R

armorize ogcechnologles VERACODE
uniper’

TWORKS

e

Y McAfee

ktey

CWE/SANS 'r op 25
rib

SANS News Release

Section Archives

2009 CWE/SANS Top 25
Supporting Quotes
Contributors
On The Cusp
Change Log

ational Cyber Security Division of the U.S. Department of Homeland Securits

CWE

2009 Homeland This
@. Security Cop

Conf

2 CWE logo are trademarks of The MITRE Corporation

Veraode, I

rrrrrrrrr

@OF=— OVE - 200 CWE/SANS Top 25 Mot Dangerous Pograming Errs —

Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is sent and received between separate components, modules,
programs, processes, threads, or systems.

CWE-20: Improper Input Validation

CWE-116: Improper Encoding or Escaping of Output

CWE-89: Failure to Preserve SQL Query Structure (aka 'SQL Injection’)

CWE-79: Failure to Preserve Web Page Structure (aka 'Cross-site Scripting')
CWE-78: Failure to Preserve OS Command Structure (aka 'OS Command Injection')
CWE-319: Cleartext Transmission of Sensitive Information

CWE-352: Cross-Site Request Forgery (CSRF)

CWE-362: Race Condition

CWE-209: Error Message Information Leak

Risky Resource Management

The weaknesses in this category are related to ways in which software does not properly manage the creation, usage,
transfer, or destruction of important system resources.

s CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer
e CWE-642: External Control of Critical State Data

» CWE-73: External Control of File Name or Path

¢ CWE-426: Untrusted Search Path

+ CWE-94: Failure to Control Generation of Code (aka 'Code Injection')

» CWE-494: Download of Code Without Integrity Check

+ CWE-404: Improper Resource Shutdown or Release

s CWE-665: Improper Initialization

o« CWE-682: Incorrect Calculation

Porous Defenses
The weaknesses in this category are related to defensive techniques that are often misused, abused, or just plain ignored.

o« CWE-285: Improper Access Control (Authorization)

+ CWE-327: Use of a Broken or Risky Cryptographic Algorithm

e CWE-259: Hard-Coded Password

e CWE-732: Insecure Permission Assignment for Critical Resource
o CWE-330: Use of Insufficiently Random Values

o CWE-250: Execution with Unnecessary Privileges

+ CWE-602: Client-Side Enforcement of Server-Side Security v

el

Insecure Interaction Between Components
These weaknesses are related to insecure ways in which data is sent and received between separate components, modules, programs, processes, threads, or systems.

For each weakness, its ranking in the general list is provided in square brackets.

Rank CWE ID Name |
[11 CWE-79 Failure to Preserve Web Page Structure ('Cross-site Scripting') |
[2] CWE-89 Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection') |
[4] CWE-352 Cross-Site Request Forgery (CSRF)

[8] CWE-434 Unrestricted Upload of File with Dangerous Type

[9] CWE-78 Improper Sanitization of Special Elements used in an 0S Command ('0S Command Injection')

[17] CWE-209 Information Exposure Through an Error Message

[[23] |lcwe-s01 ||URL Redirection to Untrusted Site ('Open Redirect) |
[[25] |lcwe-362 ||Race Condition |

Risky Resource Management

The weaknesses in this category are related to ways in which software does not properly manage the creation, usage, transfer, or destruction of important system resources.

Rank | CWEID Name |
[3] CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer QOverflow') |
[7] CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

[12] CWE-805 Buffer Access with Incorrect Length Value

[13] CWE-754 Improper Check for Unusual or Exceptional Conditions

[14] CWE-98 Improper Control of Filename for Include/Require Statement in PHP Program ('PHP File Inclusion')

[15] CWE-129 Improper Validation of Array Index

[16] CWE-190 Integer Overflow or Wraparound |
[18] CWE-131 Incorrect Calculation of Buffer Size |
[20] CWE-494 Download of Code Without Integrity Check |
|[22] HCWE-??O ||A110cation of Resources Without Limits or Throttling |

Porous Defenses

The weaknesses in this category are related to defensive techniques that are often misused, abused, or just plain ignored.

Rank CWE ID Name
[5]1 CWE-285 Improper Access Control (Authorization)
[6]1 CWE-807 Reliance on Untrusted Inputs in a Security Decision |
[10] CWE-311 Missing Encryption of Sensitive Data
[11] CWE-798 Use of Hard-coded Credentials
[19] CWE-306 Missing Authentication for Critical Function |
[21] CWE-732 Incorrect Permission Assignment for Critical Resource |
[24] CWE-327 Use of a Broken or Risky Cryptographic Algorithm |

Nalelée CWE - 2010 CWE/SANS Top 25 Most Dangerous Software Errors

@v @ C(f " http://cwe.mitre.org /top25 /index.html {EV\\ (-"' Google Q\
2 CWE-89: Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')
Summary
| Weakness Prevalence | High | Consequences | Data loss, Security bypass 0
| Remediation Cost | Low | Ease of Detection | Easy
|Attack Frequency | Often |Attacker Awareness | High
Discussion

These days, it seems as if software is all about the data: getting it into the database, pulling it
from the database, massaging it into information, and sending it elsewhere for fun and profit. If
attackers can influence the SQL that you use to communicate with your database, then
suddenly all your fun and profit belongs to them. If you use SQL queries in security controls
such as authentication, attackers could alter the logic of those queries to bypass security. They
could modify the queries to steal, corrupt, or otherwise change your underlying data. They'll

even steal data one byte at a time if they have to, and they have the patience and know-how
to do so.

Technical Details | Code Examples | Detection Methods | References

Prevention and Mitigations
Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs
that make this weakness easier to avoid.

For example, consider using persistence layers such as Hibernate or Enterprise Java Beans, which can
provide significant protection against SQL injection if used properly.

Architecture and Design

If available, use structured mechanisms that automatically enforce the separation between data and
code. These mechanisms may be able to provide the relevant quoting, encoding, and validation
automatically, instead of relying on the developer to provide this capability at every point where output
is generated.

Process SQL queries using prepared statements, parameterized queries, or stored procedures. These -
features should accept parameters or variables and support strong typing. Do not dynamically construct :

and avacisbs Anace cbtrinoe aaithin fthaco faastairac 1icina

Nawvar” Aar cirmilar fanctinmnalite cimecas semis rrsse b §
http:/ /capec.mitre.org/data/definitions/247.html

Monster Mitigations

These mitigations will be effective in eliminating or reducing the severity of the Top 25. These mitigations will alse address many weaknesses that are not even on the Top 25. If
you adopt these mitigations, you are well on your way to making more secure software.

A Monster Mitigation Matrix is also available to show how these mitigations apply to weaknesses in the Top 25.

D Description
M1 . Establish and maintain control over all of your inputs,
M2 |Establish and maintain control over all of your outputs.
M3 |Lock down your environment.
M4 |Assume that external components can be subverted, and your code can be read by anyone.
M5 |Use industry-accepted security features instead of inventing your own.
|GP1 |(general) Use libraries and frameworks that make it easier to avoid introducing weaknesses.
IGP2 _|(general) Integrate security into the entire software development lifecycle.
[e]x] (general) Use a broad mix of methods to comprebensively find and prevent weaknesses.
IE_;H fI{g_l_:nera_l} Allow locked-down clients to interact with your software,

CWE

CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-78: Improper Sanitization of Special Elements used in an 0S5 Command ("0S Command Injection')

CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

CWE-89: Improper Sanitization of Special Elements used in an SQL Command ("SQL Injection’)

CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ("PHP File Inclusion')

ICWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow’)

CWE-129: Improper Validation of Array Index

CWE-131: Incorrect Calculation of Buffer Size

CWE-190: Integer Overflow or Wraparound

CWE-209: Information Exposure Through an Error Message

CWE-285: Improper Access Control (Authorization)

CWE-306: Missing Authentication for Critical Function

| S | W— | —

CWE-311: Missing Encryption of Sensitive Data

ky Cryptographic Algorithm

— —

|CWE-352: Cross-Site Request Forgery (CSRF)_

|CWE-362: Race Condition

oo Mo |

[CWE-434: Unrestricted Upload of File with Dangerous Type

S — —

|

[CWE-494: Download of Code Without Integrity Check

|CWE-601: URL Redirection to Untrusted Site (‘Open Redirect)

[Mod ||CWE-732: Incorrect Permission Assignment for Critical Resource

|CcWE-754: Improper Check for Unusual or Exceptional Conditions

;

|CWE-770: Allocation of Resources Without Limits or Throttling

[High [Mod |[CWE-798: Use of Hard-coded Credentials

||CWE-805: Buffer Access with Incorrect Length Value

eliance on Untrusted Inputs in a Security Decision

Focus Profiles

The prioritization of items in the general Top 25 list is just that - general. The rankings, and even the selection of which items should be included, can vary widely depending
on context. [deally, each organization can decide how to rank weaknesses based on its own criteria, instead of relying on a single general-purpose list.

A separate document provides several "focus profiles” with their own criteria for selection and ranking, which may be more useful than the general list.

| Name [Description

On the Cusp: : From the original nominee list of 41 submitted CWE entries, the Top 25 was selected. This "On the Cusp” profile includes the remaining 16

W! ke the 2010 Top 25 weaknesses that did not make it into the final Top 25.

Educational Etphas This profile ranks weaknesses that are important from an educational perspective within a school or university context. It focuses on the CWE
entries that graduating students should know, including historically important weaknesses,

Weaknesses by Lanayae This profile specifies which weaknesses appear in which programming languages. Notice that most weaknesses are actually language-
independent, although they may be more prevalent in one language or another.

Weaknesses Typically

Fixed in Design or This profile lists weaknesses that are typically fixed in design or implementation.

Atomated ve. Mangs This profile highlights which weaknesses can be detected using automated versus manual analysis. Currently, there is very little public,

b authoritative infarmation about the efficacy of these methods and their utility. There are many competing opinions, even ameng experts. As a

Aoty result, these ratings should only be treated as guidelines, not rules,

W i : This profile specifies which weaknesses appear in which programming languages. Notice that most weaknesses are actually language-
|independent, although they may be more prevalent in one language or another.

EQLD—?EJQM—“’M This profile is for developers who have already established security in their practice. It uses votes from the major developers who contributed to

Wﬁ rity Prack the Top 25.

Ranked by Importance - (This profile ranks weaknesses based primarily on their importance, as determined from the base voting data that was used to create the general

for Software Customers |list. Prevalence is included in the scores, but it has much less weighting than importance.

meﬂl ITI This profile lists weaknesses based on their technical impact, i.e., what an attacker can accomplish by exploiting each weakness,

Background Detalls to Check Out

o cwe.mitre.org/top25
* Process description J1top

e Changelog for each revision

 On the Cusp — weaknesses that almost
made It

* Appendices
— Selection Criteria and Supporting Fields

— Threat Model for the Skilled, Determined
Attacker

|r261 [136

|CWE-749: Exposed Dangerous Method or Function

[.fust 2 points from the Top 25,.. possibly on the rijs-e.
[27] _|129 CWE-307: Improper Restriction of Excessive Authentication Attempts
Pozsibly squeezed off the Top 25 by cousins such as missing authentication.
[28] [125 |CWE-212: Improper Cross-boundary Remaval of Sensitive Data
[Impurt.unt when privacy is 8 main concern.
[29] [124 |CWE-330: Use of Insufficiently Random Values
Not always security-relevant, but still dangerous if it is.,
[30] |12I‘.] CWE-59: Improper Link Resolution Before File Access ('Link Following)
|A burst in CVE statistics in 2008 shows that these can still be prevalent if focused attention is paid to them.
Eﬂ 120 |CWE-134: Uncontrolled Format String
: ' Usually easily findable, and code execution possibifities have been reduced due to compifer changes, e.g. remaval of support for "%n” sequences.
[32] 119 |CWE-476: NULL Pointer Dereference
Typically cause a denial of service in C/C++ but, for certain Linux kernels and possibly other environments, exploitable for code execution,
E:ﬂ 119 |CWE-681: Incorrect Conversion between Numeric Types
[Har be on the rise in future years, especially in transitions from 32-bit to 64-bit architectures.
[34] [118 [CWE-426: Untrusted Search Path
Prevalence fs uncertain.
[35] |115 CWE-454: External Initialization of Trusted Variables or Data Stores
High prevalence in PHP environments with register_globals enabled, or by programmers who are not familiar with the effectiveness of reverse engineering, or the many ways that
inputs can be modified.
[[36] |114 [CWE-416: Use After Free
|Likely on the rise in future years.
E.:,z} 114 |CWE-772: Missing Release of Resource after Effective Lifetime k
Important when prevention of denfal of service is critical,
[38] |1Dﬁ ICWE-799: Improper Control of Interaction Frequency
[Impwtanr when prevention of denial of service iz critical. Also a critical component of brule force attacks against security features.
[39] [100 |CWE-456: Missing Initialization
Not always securily-relevant; also, easily findable and fixable with modern compilers and code scanners,
[40] |91 CWE-672: Operation on a Resource after Expiration or Release
Sometimes catchable by the compiler, but may Increase in future years.
[41] [77__ |CWE-804: Guessable CAPTCHA
|Not very prevalent since the use of CAPTCHA is not very prevalent, and importance is generally less than that of other security features such as encryption and authentication.

Frequently Asked Questions (FAQ)

How is this different from the OWASP Top Ten?
The short answer is that the OWASP Top Ten covers more general concepts and is focused on web applications.
The CWE Top 25 covers a broader range of issues than what arise from the web-centric view of the OWASP
Top Ten, such as buffer overflows. Also, one goal of the CWE Top 25 is to be at a level that is directly
actionable to programmers, so it contains more detailed issues than the categories being used in the Top Ten.
There is some overlap, howewver, since web applications are so prevalent, and some issues in the Top Ten hawve
general applications to all classes of software.

How are the weaknesses prioritized on the list?
With the exception of Input YValidation being listed as number 1 (partially for educational purposes}, there is no
concrete prioritization. Prioritization differs widely depending on the audience (e.9. web application developers
viersus 05 developers) and the risk tolerance (whether code execution, data theft, or denial of service are more
important}. It was also believed that the use of categories would help the organization of the document, and
prioritization would impose a different ordering.

Why are you including overlapping concepts like input validation and XSS, or
incorrect calculation and buffer overflows? Why do you have mixed levels of

abstraction?
VWhile it would have been ideal to have a fixed level of abstraction and no overlap between weaknesses, there
are several reasons Wwhy this was not achieved.

Contributors sometimes suggested different CWE identifiers that were closely related. In some cases, this
difference was addressed by using a more abstract CWE identifier that covered the relevant cases.

In other situations, there was strong advocacy for including lower-level issues such as 5QL injection and cross-
site scripting, so these were added. The general trend, however, was to use more abstract weakness types.

While it might be desired to minimize overlap in the Top 25, many vulnerabilities actually deal with the
interaction of 2 or more weaknesses, For example, external control of user state data (CWE-642) could be an
important weakness that enables cross-site scripting (CWE-79) and S50QL injection (CWE-89). To eliminate
overlap in the Top 25 would lose some of this important subtlety.

Finally, it was a conscious decision that if there was enough prevalence and severity, design-related
weaknesses would be included. These are often thought of as being more abstract than weaknesses that arise
during implementation.

The Top 25 list tries to strike a delicate balance between usability and relevance, and we believe that it does
50, even with this apparent imperfection.

Why don’'t you use hard statistics to back up your claims?
The appropriate statistics simply aren't publicly available. The publicly available statistics are either too high-
level or not comprehensive enough. And none of them are comprehensive across all software types and
environmaents.

People are Starved for Simplicity

GOUSI(’ Analytics ramartin@mitre.org| Settings | My Account| Help|Sign Out

Analytics Settings | View Reports: My Analytics Accounts: {10

o February 3, 2010 - March §, 2010 =0= December 30, 2008 - January 29, 2009

80,000 80,000

0,000 40,000

/| N
Fab § Febf \¢ ﬁ.‘. Mar
! #,#
/ ’ \, 'fl—ul'zﬁ\‘;‘-"

- mf"-".ﬁah?- '
5 s s e o s g il

Top25 | AppSec Street Fighter — SANS Institute

I8 http://blogs.sans.org/appsecstreetfighter/category/top25/

=
By (-"]* Google Q-‘:‘

Top 25 Series — Summary and Links

Posted by Frank Kim on April 6, 2010 - 3:4] pm
Filed under Top25

As requested here are the links to all the posts on the Top 25 Most Dangerous Programming Errors. Please let us know if you

have any suggestions or comments.

| — Cross-Site Scripting (XSS

2 — SOL Injection

3 — Classic Buffer Overflow

4 — Cross-Site Request Forgery (CSRF)

5 — Improper Access Control (Authorization)

6 — Reliance on Untrusted Inputs in a Security Decision
7 — Path Traversal

8 — Unrestricted Upload of Dangerous File Type
9 — OS5 Command Injection

|0 — Missing Encryption of Sensitive Data

| | — Hardcoded Credentials

12 — Buffer Access with Incorrect Length Value
|13 — PHP File Inclusion

|4 — Improper Validation of Array Index

15 = Improper Check for Unusual or Exceptional Conditions

|6 — Information Exposure Through an Error Message
|7 — Integer Overflow Or Wraparound

|8 — Incorrect Calculation of Buffer Size

|19 — Missing Authentication for Critical Function

20 — Download of Code Without Integrity Check

2| — Incorrect Permission Assignment for Critical Response
22 — Allocation of Resources Without Limits or Throttling

23 — Open Redirect
24 — Use of a Broken or Risky Cryptographic Algorithm

25 — Race Conditions

i T e L S R e 3
Pl Ui JUITTE TTITOUgITLS ADUUL

a Passwords

Jim on Seven Security
(Mis)Configurations in Java
web.xml Files

Nick Owen on Some Thoughts
About Passwords

ARCHIVES
| Select Month E3)

META
Log in
Entries RSS
Comments RSS

WordPress.org

INITIATIVE

2010
December 10-17
Washington DC

More than 20
Courses to
Empower your

£

Dgfnﬂ; es .

—* 4|k

‘Welcome to MSDN Blogs Sign in | Join | Help

I S
-

Sl e

RSS 2.0 ATOM 1.0

Recenk Posta SDL and the CWE/SANS Top 25

SDL Threat Modeling Teol 3.1.4
ships!
Early Days of the SDL, Part Four Bryan here. The security community has been buzzing since SANS and MITRE’s

Early Days of the SDL, Part joint announcement earlier this month of their list of the Top 25 Most Dangerous

Three Programming Errors. Now, | don't want to get into a debate in this blog about

Early Days of the SDL, Part Two Whether this new list will become the new de facto standard for analyzing

Early Days of the SDL, Part one SECUrity vulnerabilities {or indeed, whether it already has become the new
standard). Instead, I'd like to present an overview of how the Microsoft SDL maps

Tags to the CWE/SANS list, just| cwe Title

Education? Manual Process? Tools? Threat Model?

Common Criteria Crawl Wallk Improper Encoding or Escaping of Output ¥ Y

Run eri SDL soLp
Py . coverage of the Top 25 an 79 Failure to Preserve Web Page Structure (aka Cross-Site Scripting) Y ¥
Metwork Security Assurance believe that the results te
Security Blackhat SDL threat 25 were developed inde 319 Cleartext Transmission of Sensitive Information Y
meodelin e W 362 Race Condition
. AnalysiE Wil e papar ani —

Newes guidance around every m| 199 Failure to Constrain Memory Operations within the Bounds of a Memory Buffer Y

made many of the same

for you to download and { 73 External Control of File Name or Path Y ¥
About Us .

Below is a summary of hg 94 Failure to Control Generation of Code (aka 'Code Injection'} Y Y
Adam Shestack see the SDL covers every
Bryan Sullivan them (race conditions and 404 Improper Resource Shutdown or Release Y Y
David Ladd i i

by multiple SDL recquirem 682 Incorrect Calculation Y Y
Jeremy Dallman tools to prevent or detect
Michael Howard 2 327 Use of aBroken or Risky Cryptographic Algorithm Y Y Y
Steve Lipner CWE Title

732 Insecure Permission Assignment for Critical Resource Y Y
Blogroll 20 Improper Input V
116 Improper Encodir] 250 Execution with Unnecessary Privileges Y Y Y

BlueHat Security Briefings Escaping of Outp

CWE Outreach: A Team Sport

May/June Issue of IEEE

T've already couched on this
cral fmes here, b review all
aussions and AULS on all obj)
yous create in the file witem
voniggumation sores such as
Windows registry, In the cas
Windows Vit and later. o
change any default &
system or regscry unless you
temd tr weiken the ACL

bt tlac]

CWE-330:

Use of Insufficiently]
Random Values
ldentfe all the random o]
senerators. in voar code and d
nnne which, if any, genessie i
passwords. arsome otherseeret
ke sure e cude geovmting]
Jom b ooy oz
by mzmdom amd nest 3 detern)
i kil penertor
the L romome rand() funcy
Using fimsions like eand (
Firie, o ot e crypiope pliy

CWE-250: Execution
with Unnecessary
Privileges

Idertify all proccsses thar ru
part of your sclutien and de
mmine wha privabeges thew rey|
o operate correctly. I 2 prof
runs 3¢ rooc (on Linuy, Uiy
M O8 X)) or sysecm {Winlo
ak yourself, "W Somet|
the answer i otalle valil T
the ¢ode must erform a
leged wperation, bat somen)
you don't know why 11 runs
way other than. hat’s the
ity ahwaws wnl™ 1 the code
need 10 opetate a high proval
keep the time span within w]
the cade is high privileye s o
a4 possble—far example, of
g a pore below 1024 1 a Ly
application requires the codd
be run as voot, bt afeer that,

Basic Training

portant that def

file arah path o
form before us
oess 1 file or p:

or mm.lm.. Al
wiew, baok for

g aceeses il

o
o valid dara, H
and “Eriown g
cellent way to

CWE-426:
Untrusted|
Old versions

warched the

rent directory
filenames, whi
problems i the
had @ weak p
fully, weak o
aren’ oWy |
na piarantes
tiom wor't b
swarches or veal
ton from & pf
wrised s

environment
remedy s o
path, buc this |
| mternatonalizd

tems—for e
Vista, thie c:\ Y

erating systen
correct path o

(XSSE CWE-TY is the meal by
that makes CWE-116 worse, In
the past, we cook XSS bugs light-
Iy, bt now we see womms that can
exploi X85 vul

vial networks s

erbilities i

s MySpace
example, the Sy worm). Alsn,
research into Web-related volner-
ihilitees has progressed substan-
by over the past few years. with
new ways go ateck osten repn-
! cd. For pure XS5 bs-
ed by CWE-T9, the

st validae all in-

ays been
prob
ably contimue o be o for the fore-
de future.

it approach and

Develispers ean also

add a layer of de

autpt e
put fsee

CWE-78: Failure
to Preserve 0S
Command Structure

Many applications, particularly

server applications, reerive -
trosted requests and wse the daa
in them o interer wich the wn-
derbying. aperating. system. Un-

fiserunately, chis con lead 1o severe

server compromise if the incoming
dat isn't amalbyzed—ag:;

difense is v check the dak, ﬁho‘

applicaricon with law prn'll
help conain the danegs

CWE-319: Cleartext
Transmission of
Seansilive Informatian
Sensitive datn mose obvioady be
proweeed st rest and while on
the wire. The bea solution w
this vulnerhilivy 35 to use 2 well-
rested technology seh a5 SSL/
TLS or ISce, Do’ [ever!
yeur own conmuication method
and eryprographic defense, This
wieakness 13- related o CWE-327
(" Usee of a Broken or Risky Cryp-
wprphic Algorithim'), w ke
sure you aren’t using weak 4(0-hit

cate

CWE-352: Cross-Site
Reguest Forgery
Crose-site request forgery (abo
knowwn e CSRF) yvolserabilithes
are a relatively new fomn of Web
weakness cansed, in parg, by a bad
Wb apphcation designe In short,
this desipn doein’ verify chara re
quest canwe from valid vser code
and 1 irstesd a

i maliciondy
on the wer’s thH e

the best defense is o e 2 unigue

rally,

and unpredictat

user Tradisional

doewi't mitigate th
eaise the input b

CWE-362:
Race Condition

Race conditions are timing prob-
lemss thar e i
b
phcation wes o filename o veri-
Fy that a file cxasts and then wses
e

ot wnespor
ioe—ior example, an

sme Alename 10 open ‘that
file: The problen is in the amll
tme d
and the file open, wh

berween the check

k-

ers can use to change the file ar
delece or creas at. The safest way
file syscem race con-
dittons 15 to open the object and
then use the resulting handle for

1o mitig

Further operations. Als,
ader reducing o
abjects—fir examph
files should be ocal o the wer
and not shared with multiple wser

seconnits. Cirrect e of sy

tenpTary

nization primitives (mutes

+ eritical

senaglion

sections) is

similarly 1

peane

CWE-209:

Error Message
Information Leak

Errar info) cal to de-
buggging failed aperation
st wndepstand who can read
thar dita. In general, you shoold
resarict decatled error s
trusted wsers. Hemoe and anon-
vinous wiers shonld s gonenc

tation

bt you

[0

messgs with the dewiled data

CWE-119:

Failure to Constrain
Memory Operati
The dresded buffer
C and Crt
er vulnerabala
T —

Mo

runs, The bese way to ror
problem 10 move awoy|
ind O+ where v mak)
and wse higher-level 14
such as Buby, C#, and o
cause they don't offer diref
tomernory, ForCand C+
eanans, developers should

*known bad " functions sl

C runitime (for example,

STEEaT, STEACPY, &
sprint. and gets) and o
secure. versons. Visul €
many weak AP
and you shes
comipiles Ala,
lysis can el
remisl buffer overruns)
gem-level

reis space lay
domization and no exec

it cormpl
strive [
i tew]

Satc

operatis

such a5 a

can help reduee the dhan

Security & Privacy.

Basic Training
Eciiors: Richand Ford, dond e fledu
MEchan Howard, mikehow microsofl.com

Improving Software Security
by Eliminating the CWE
Top 25 Vulnerabilities

0 January 2009, MITRE and SANS issued the “2019 |
CWE/SANS Top 25 Most Dangerows Program-
ming Errors” to help make developers more aware
af the bugs that can cause secumty compromses

{hetpifeweamicre ong/top23), 1 was one of the many people|

buffer overrun u exploitay

CWE-642:
External Control
of Critical State [
Unpratected state info
such as profile dao or oo
tormiatzon, s subject to a
it's iniportane g protect |
by g the approprian
conerol lists (ACLs| or pord
tor prewsiscens dbata sl sor
of eryprographic defemse:
ahed mes auther
cade (HNA o
data. You can use an HM
persistent daes i well.

CWE-73:

External Control
of Filename or P4
Agtackers moght be able
artntrary file dam af they

el ddiga that's used a5 part

CWE-94: | RC3 or dured-key [PSec. logged to an audis log, or pach e, s criticd
Failure 1o

Generatiol e o

To's: comman to see - code Ejecs . Furz testing s also effeerive

ton valserabalites o fvaSesipt | ae detecting CWE-663,

ende thac builds o s Iyisami=

cally and puses 1t evali) w | CWE-G82: o sceret dacy - the code.

svecite. IF the amacker controle | dncorrect Calculation | veu should slse srore this data i 68

e e L
she can createa malicions P
The simplest w3y to erdi
bmd oo g s 0 eracc

af eval

| redesipming the application.

« b that could mean

IREE SEQUINTY & PRNAGY

e this
b wse

Many baffer overnun in © aned
nload, | O+ code oday are accoally refat-

ainns. I an awacker con-
ol one or men: of the cleme
an 3 size caleulation; he ar she can

a sevare Lo
Ering fyse
pratect it wi
EHETYE

i

| priate peraission

1 withars

it aml profe

the encryption key with o appro-

from industry, government, and
acadenia who provided foput w0
the docurent,

CWE, which stands for Com-
man Weknew Enumeraion, is 3
progeet spossored by the Mational
Cyber Secarity Division of the US
Department of Homeand Secunity
10 clasufy seeurity bugs. It assigns a
umique ramber o weaknes opes
such as bufler pverrums of crosesite
seripring bugs (for example. CWE-
327 i "Use of 3 Broken or Risky
Crypeographic Algenthni™), Short-
Iy after the Top 25 lics releace,
Microsolt unveiled a docuinent en-
ntled, “The Microsoft SUL and the
CWESANS Top 25, to explain
how Micrmolt's security processe
can hely prevent the worst offend-
e (hopeblogs msdn.com Adl
agehived 2009411727/ sdb-and-the
-ewe-gan-top-28.08p),

Full dischonure: Ty one of chat
docurnent’s coauthers, but my pus-
pose here isn't to regunitibe the
Microsofi picce. Racher, my paal n
10 describe somee best practioes that
wann help you eliminawe de CWE
Top 23 vulnerabalities in your ewn
development environmem and
procuces. I ale importet to un-
densand that addresang e weak-

COPUBLISHED B THE EEF CONPUTER AND RELIABLITY S0 Ti]

encenling Web-based oueputis 4 de-

| Ense in eae dhe develaper doswn't
detat 2nd prevent mualicious Wb
inpui fsee CWE79 aml (OWE-
200, However, the industry has teen
wmany security bugs that could have
been m«mﬁ ithe derelope

* DEALING WITH THE SMART GR

nesses i the st doesn't imply yous

suftware & seonre o all o o
atcack, there are plency mon vul
nerabiliry types 1o worrs sbout!
CWE-20: Improper

Input Validation
The vae mority of serious «-
cunity vulnerabilities are arput-|
vabdation wswes butfer evernanm,
SO injection. and cros-sit
senpting bugs come immedian
w0 . Devebapers siply truv

NG DepeNDABILITY, RELIABILITY, AND TRUST

the input for validity. | eant itres
this eneugh—if developers smpl
learned o pever wrme o
daa (in rerms of format, coneerie|
amd aze), many servos bugs would
o away. The care losson here i fo
developers to carctully vatidae in
put and for designers to understa
b they o buikd dheie systoms t
proteet input uch thar only trusned
wwers can manipukae the dita,

CWE-116:
'fnpms

\’uu coul
really isn't

Basic Training

the oy

68 Improving Software Security by
Eliminating the CWE Top 25 Vulnerabilities
Micuart Howaro

The Top 25 Is not...

A silver bullet

A guarantee of software health

A perfect match for your unique needs
As simple as it seems

The only thing to include In contract
language

Completely found by tools

The Top 25 1s...

A mechanism for awareness
A trigger of questions

A place for mitigations

A conversation starter

A first step on the long road to software
assurance

CWE Top 25 2011

Starting this week

Utilizing the Common Weakness Scoring
System (CWSS 0.3) as under-pinning

Will have numerous “Top 25’s”
— Including one for Web Applications

Final "master" Top 25 list, will leverage
combined score from multiple vignettes.

No fixed date for release of the 2011 Top
25 at this point, may take 2 to 3 months.

Common Weakness Scoring System (CWSS)

Archetypes: Vignettes:

 Web Browser User Interface 1. Web-based Retalil Provider
 Web Servers . Intranet resident hea

« Application Servers records management

« Database Systems system of hospital

* Desktop Systems

« SSL

Web

Browser

[[| . I I 1 2
1 Router Web Application Database
Servers Servers Systems
DMZ | - -

Web
Browser —\
Web
Browser
INTERNET /

— 1111 111 111 INTRANET
. | | 1 | | |

: Web Desktop Desktop Desktop Desktop

Application Servers Systems Systems Systems Systems
Servers Web Web Web Web

Browser Browser Browser Browser

Business Value Context (BVC)

 |dentifies critical assets and security concerns

e Links Technical Impacts (derived from CWE
weaknesses) with business implications

 More fine-grained model than the CIA Triad

CWE Technical Impacts

Modify memory

Read memory

Modify files or directories
Read files or directories
Modify application data
Read application data
DoS: crash / exit / restart
DoS: amplification

DoS: instability

DoS: resource consumption (CPU)

DoS: resource consumption (memory)
DoS: resource consumption (other)
Execute unauthorized code or commands
Gain privileges / assume identity

Bypass protection mechanism

Hide activities

Common Weakness Scoring System (CWSS)

Archetypes: Vignettes:

 Web Browser User Interface 1. Web-based Retalil Provider
 Web Servers . Intranet resident hea

« Application Servers records management

« Database Systems system of hospital

* Desktop Systems

« SSL

Web

Browser

[[| . I I 1 2
1 Router Web Application Database
Servers Servers Systems
DMZ | - -

Web
Browser —\
Web
Browser
INTERNET /

— 1111 111 111 INTRANET
. | | 1 | | |

: Web Desktop Desktop Desktop Desktop

Application Servers Systems Systems Systems Systems
Servers Web Web Web Web

Browser Browser Browser Browser

CWSS for a Technology Group

CWE Top 10 List for Web Applications can be used to
o |dentify skill and training needs for your web team
 Include in T's & C’s for contracting for web develo pment
o |dentify tool capability needs to support web asses sment

phartin@mitre.org

