
1

Lost in Translation:
Understanding the Hacker Mindset

11710 Plaza America Dr., Ste 520, Reston, VA
20190

www.KnowledgeCG.com

Voice: 703.467.2000 Fax: 703.547.0322

2

Agenda

Introductions

Secure SDLC Approach

Penetration Testing: Real-world Examples

Lessons Learned

Open Q&A

3

Speaker Bios

Paul Nguyen, CISSP, CISA, CGEIT, currently

serves as the Vice President of Cyber Solutions for

Knowledge Consulting Group where he advises

federal Chief Information Officers (CIO) and CISOs

on various cybersecurity issues. He is also a

former software developer in a CMM Level 5

organization, former CISO of the U.S. Court

Services and Supervision Agency, and

attack/exploitation practitioner with renowned firms

such as @stake and Neohapsis. Mr. Nguyen holds

a Bachelors and Masters degrees from Carnegie

Mellon University.

Paul Nguyen

Ryan Stinson is the lead for Cyber Assessment

Services at Knowledge Consulting Group. The

KCG Cyber Assessment Group provides

penetration testing, code reviews, secure

architecture assessments, web application security

testing, and vulnerability research. Mr. Stinson

holds a Bachelor of Science in Computer Science,

as well as certifications as a Certified Information

Systems Security Professional (CISSP), GIAC

Certified Incident Handler and GIAC Certified

Penetration Tester.

Ryan Stinson

4

Secure SDLC Approach

5

Where to Begin?

FIPS 199
NIST SP 800-53

rev. 3

NIST Risk

Management

Framework

DoD 8500.2 ICD 503

OWASP Top 10

Top 25 Common

Weakness

Enumeration

DISA Secure

Technical

Implementation

Guide

Software Dev. Methodology

• RAD

• Waterfall

• Prototyping

• RUP

• Agile

• ...

Before we even get into development of an application, one must rationalize the various

frameworks, standards, best practices, software development methodology, and any drivers that

may impact the security posture of the system. The security approach should adapt to the software

development methodology chosen and ensure the proper checks and balances are in place.

6

Top 25 CWE and OWASP Top 10 – Deeper Look

Understanding the Top 25 and OWASP Top 10 provides a basis for understanding how malicious

attackers think. Permutations of the vulnerabilities will vary from platform to platform (e.g. .NET,

J2EE, AJAX, etc...). The goal is to provide context for engineers and developers to understand the

various mistakes that can be avoided (I’ve made the same mistakes as a reformed developer!).

Rank ID Name
[1] CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site

Scripting')
[2] CWE-89 Improper Neutralization of Special Elements used in an SQL Command

('SQL Injection')
[3] CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

[4] CWE-352 Cross-Site Request Forgery (CSRF)
[5] CWE-285 Improper Access Control (Authorization)
[6] CWE-807 Reliance on Untrusted Inputs in a Security Decision
[7] CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path

Traversal')
[8] CWE-434 Unrestricted Upload of File with Dangerous Type
[9] CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS

Command Injection')
[10] CWE-311 Missing Encryption of Sensitive Data
[11] CWE-798 Use of Hard-coded Credentials
[12] CWE-805 Buffer Access with Incorrect Length Value
[13] CWE-98 Improper Control of Filename for Include/Require Statement in PHP

Program ('PHP File Inclusion')
[14] CWE-129 Improper Validation of Array Index
[15] CWE-754 Improper Check for Unusual or Exceptional Conditions
[16] CWE-209 Information Exposure Through an Error Message
[17] CWE-190 Integer Overflow or Wraparound
[18] CWE-131 Incorrect Calculation of Buffer Size
[19] CWE-306 Missing Authentication for Critical Function
[20] CWE-494 Download of Code Without Integrity Check
[21] CWE-732 Incorrect Permission Assignment for Critical Resource
[22] CWE-770 Allocation of Resources Without Limits or Throttling
[23] CWE-601 URL Redirection to Untrusted Site ('Open Redirect')
[24] CWE-327 Use of a Broken or Risky Cryptographic Algorithm
[25] CWE-362 Race Condition

7

Threats to Your Applications

Area Threats/Attacks
Input Validation Buffer overflows; Cross-Site Scripting; SQL Injection; Cannonicalization attacks

Authentication Network eavesdropping; Brute force attacks; Dictionary attacks; Cookie replay

attacks; Credential theft

Authorization Elevation of privilege; Disclosure of confidential data; Data tampering; Luring attacks

Configuration

Management

Unauthorized access to administration interfaces; Unauthorized access to

configuration stores; Retrieval of clear text; configuration secrets; No individual

accountability; Over privileged process and service accounts

Sensitive Data Access sensitive data in storage; Network eavesdropping; Information Disclosure

Session Management Session Hijacking; Session Replay; Man in the Middle

Cryptography Poor key generation or key management; weak or custom encryption

Parameter Manipulation Query string manipulation; Form field manipulation; Cookie manipulation; HTTP

header manipulation

Exception Management System or Application Details Are Revealed; Denial of service

Auditing and Logging User denies performing an operation; Attacker exploits an application without trace;

Attacker covers his tracks

8

Secure Development Lifecycle

Security Tools &
Documentation Management

The Security Push Final Security Review

Security Response Planning Product Release
Security Response

Execution

P
ro

c
e
s
s
 a

n
d
 T

e
c
h
n
o
lo

g
y
 R

e
v
ie

w

SDL program capability:

 Do you have the fundamental
framework to incorporate
security

 What is are the required
phases to address security
from initial design through
deployment

 What additional skill set
development is required

 What additional processes can
accommodate our current
requirements

 What does a mature SDL
process consist of, and what
will suit our organization

SDL struggles:

 How do we validate
application security
throughout the development
process

 How do I incorporate security
into our development process

 How do I measure externally
developed applications adhere
to a similar process

Preparation

Design

Analysis

Development

Review

Release

SDL Prerequisites

Project Inception Security Requirements
Define/

Design Best Practices

Product Risk Assessments Risk Analysis

Secure Coding Policies Secure Testing Policies

Education & Awareness

9

Putting the SDL into Action

Application Security

Requirements Analysis

Design Development Testing MaintenanceRequirements

Application Security

Design Review
Application Code

Review

Application Penetration

Testing/

Vulnerability

Assessment

Periodic Reviews/

Application Penetration

Testing

A
p

p
li

c
a

ti
o

n
s

Infrastructure Security

Requirements Analysis

Infrastructure Security

Design Review
Infrastructure

Configuration Review

Penetration Testing/

Vulnerability

Assessment

Periodic Configuration

Reviews/

Infrastructure

Penetration Testing

In
fr

a
s

tr
u

c
tu

re

System Development Life Cycle Support

S
e

c
u

ri
ty

•Provide guidance and

interpretation of security

policies and

requirements; support

development of security-

related functional and

technical requirements

•Support system security

design and assist in the

selection of controls that

suit the architecture of the

system

•Conduct reviews of

modules/Components to

validate design

specifications

•Support the development

of appropriate test cases,

scenarios, and

procedures to tailor to the

specific operating

environment; intent is to

test “functional” security

requirements

•Support analysis of

continuous monitoring

results and recommend

technical enhancements

to continue to improve

security posture

10

Requirements Analysis

Key Considerations Security’s Role

• Understand the threat environment and

potential pitfalls (Top 25 CWE/OWASP)

• FIPS 199 Categorization

• NIST 800-53 Baseline Requirements:

biggest challenge comes from

interpreting the requirements within the

context of the architecture

• Review your agency’s policies,

standards, and Enterprise Architecture to

ensure proper alignment

• Conduct threat modeling prior to

requirements phase (understand what

threat scenarios you’re concerned about)

• Providing enough interpretation and

expertise in defining the proper security

requirements (understanding the

malicious mindset to prevent the

mistakes)

• Injecting the proper security

requirements within the context of the

architecture

11

Design Considerations
Area Guidelines

Input Validation Don’t trust input; validate input: length, range, format and type; constrain, reject, sanitize

input

Authentication Use strong password policies; Don’t store credentials; Encrypt communication channels to

secure authentication tokens; use HTTPs only with Forms cookies

Authorization Use least privilege accounts; Consider granularity of access; Enforce separation of privileges

Configuration Management Use least privileged service accounts; Don’t store credentials in plaintext; Use strong

authentication and authorization on administrative interfaces; Don’t use the LSA; avoid

storing sensitive information in the web space

Sensitive Data Don’t store secrets in software; Enforce separation of privileges; Encrypt sensitive data over

the wire; Secure the channel

Session Management Partition site by anonymous, identified and authenticated; reduce the timout; avoid storing

sensitive data in Session; Secure the channel

Parameter Manipulation Don’t trust fields the client can manipulate (Query string, Form fields, Cookie values, HTTP

headers)

Exception Management Use structured exception handling (try-catch); Only catch and wrap exceptions if the

operation adds value/information; Don't reveal sensitive system or app info; Don't log private

data (passwords ... etc.)

Cryptography Don’t roll your own; XOR is not encryption; RNGCryptoServiceProvider for random numbers;

Avoid key management (use DPAPI); Cycle your keys

Auditing and Logging identify malign or malicious behavior; know your baseline (what does good traffic look like);

instrument to expose behavior that can be watched (the big mistake here is typically app

instrumentation is completely missing)

12

Development

Identify Source Code to be Reviewed

 Choose a threat path. Start with highest risk.

 If critical processing modules identified, review those modules first.

 Identify source code modules for components on the threat path

 Identify source code for utility classes and functions used by modules on the threat path

Review code for known classes of problems

 Arbitrary code injection: buffer overflows and format string attacks

 Race conditions

 Inadequate privilege checking

 Canonicalization issues

 Error handling

 Information leakage

 Script injection

 Cryptographic implementation errors

Code Review Toolkit

• Source Code Analyzers provide developers

with the ability to conduct unit testing for

security vulns

• Examples: Fortify, Ounce Labs, Parasoft…and

even open source

13

Stack Overflow example

The size of the string copied into a buffer exceeds its size

What happens when argv[1] has a length greater than 7?

#include <string.h> // for strcpy

int main(int argc, char *argv[])

{

char buff[8];

strcpy(buff, argv[1]);

return 1;

}

Buffers on heap can be exploited as well.

14

Testing

Key Considerations Security’s Role

• Choose a comprehensive approach to

include all components:

 Web App Pen. Testing

 Infrastructure Pen. Testing

 SOA Application Pen Testing

• Testing should occur as early as possible

to provide time for remediation

• Make sure the rules are established for

the testing (put a Rules of Engagement

in place)

• Simulation of threat vectors and attack

scenarios identified during threat

modeling

• Identification of attacks that could

compromise the system or data

• Documentation of the vulnerabilities and

risks

• Providing recommendations to support

remediation

15

Penetration Testing:
Real-World Examples

16

Overview of the Application Penetration Test

• 4-tier J2EE Internet-facing Web Application

 Apache JBOSS

 Windows Server 2008

 MS SQL Server 2008

• Contains highly sensitive information related to

personally identifiablee information (PII)

• Development timeframe was 6 months start to

finish

• Leveraged a COTS product as the core with

custom development to meet the agency’s

functional requirements

System Information

• Provide security subject matter expertise to

support all phases of the SDLC and integrate

into the development project plan

• Obtain an Authorization to Operate (ATO) for

the new system as required under FISMA

• Ensure risks are identified as early in the SDLC

as possible to minimize the cost of potential

vulnerabilities later in the SDLC

• Conduct final Security Assessment using

Application Penetration Testing techniques and

infrastructure vulnerability assessment

Our Objectives

17

The attack strategy used by professional white hat and black hat purposes follows five significant and noteworthy

stages, culminating in the discovery and possible removal of sensitive data, including PII.

Anatomy of an attack

Open Source Intel
Public

Accessibility

Privilege

Escalation

Data-centric

Exploitation

Identification of potential

client-side targets

• Spear phishing

preparation

• Review of social

network profiles

• Email address

harvesting

Identification of publicly

accessible services

• Service fingerprinting

• Public vulnerability

research

• Network profiling

• Development

environment

exploitation

• Application layer

vulnerabilities

• VPN password

guessing

• Malicious

authorized users

• Authorized client

compromise

• Exploitation of

internal

vulnerabilities

• Network

spidering

• Expand access

• Database

exploitation

• Credential

Intercept

• Man-in-the-

middle attacks

• Mainframe

attacks

• Credential

Reuse

Data

Exfiltration

• Data harvesting

• Removal of data from

the interior network

• Transmit externally

via SMTP, HTTPS

18

The attack strategy used by professional white hat and black hat purposes follows five significant stages,

culminating in the discovery and possible removal of sensitive data, including PII.

Anatomy of an attack

19

Input Validation – Am I properly handling user input?

Top 25 CWE OWASP

CWE-732: Incorrect

Permission Assignment for

Critical Resource

Category A6 - Security
Misconfiguration or

Category A4 - Insecure Direct

Object References

What if I inject "'" or 1=1;-- into the “Search” box…

Something isn’t right…looks like insufficient scrubbing of my input and definitely wasn’t expecting it

20

Error Handling – Giving Us Way Too Much Information
Building on the last step…we’re getting SQL fragments. Sign of a SQL Injection…

Top 25 CWE OWASP

CWE-209: Information

Exposure Through an Error

Message

Category A6 - Security

Misconfiguration

CWE-89: Improper

Neutralization of Special

Elements used in an SQL

Command ('SQL Injection')

Category A1 - Injection

21

SQL Injection – Can I get to the data I want?

Top 25 CWE OWASP

CWE-209: Information

Exposure Through an Error

Message

Category A6 - Security

Misconfiguration

Let’s test how far I can get with this SQL Injection and test the limits…

Simple test against SQL Server to pull

the server information.

• Couple things here...the application logic from the

search box kept interpreting spaces as separate search

terms.

• To pull this off we had to create a SQL query with no

spaces in it…

• How’d I accomplish that…I used SQL comment

characters /**/

Here’s the injection string…

'UNION/**/ALL/**/SELECT/**/1,36,@@version,'1','1','1',

1,'1';--

Look mom…no spaces!

• In fairness, they used PreparedStatements which

means…variables passed as arguments to prepared

statements will automatically be escaped by the JDBC

driver.

• However, all queries should be parameterized and not

passed directly to the query which is why this was

possible:

PreparedStatement prepStmt = con.prepareStatement("SELECT

* FROM user WHERE userId = '+strUserName+'");

22

Access Control – How deep do I go?

Top 25 CWE OWASP

CWE-732: Incorrect

Permission Assignment for

Critical Resource

Category A6 - Security

Misconfiguration or

Category A4 - Insecure Direct

Object References

Building on the last step I know a couple of things:

• The “Search” box is available without authentication yet I still have access to

SQL Server system tables…

• Indication the access control model is broken

• This function should not have read/write/update/delete access to any tables

outside of the table it needs and even then should only be read access

• Common mistake is to think hackers will never get that far back to even touch

the database

23

Local File Inclusion

Top 25 CWE OWASP

CWE-98: Improper Control of

Filename for Include

Category A8 – Failure to

Restrict URL Access

24

Clear-text Passwords – But it’s only on my internal network…

Top 25 CWE OWASP

CWE-311: Missing Encryption

of Sensitive Information

Category A8 - Insecure

Cryptographic Storage

Looks like we can traverse to the web.xml and pull out cleartext passwords…

25

Full Compromise! – There goes my data…

The injection string…'UNION/**/ALL/**/SELECT/**/1, ssn, ssn,null,null, first_name,1,null/**/FROM/**/peoples_PII;--

Here’s Johnny!!! We used test data to simulate the SSN.

• In the end, I want to make off with the information

and all I had to do was dump it to the “Search”

results page and I’m home free…

• Went right through an HTTPS port without even

being seen…every firewall has those ports open

(although an application firewall may have caught

this)

26

Lessons Learned

27

• You can’t possibly predict every possible permutation of a vulnerability

• This exploitation scenario was possible due to multiple vulnerabilities tied

together

• There was clear intent to implement security but somewhere in the

middle…things got “Lost in Translation” between security and the development

team

• Where do we go from here…

 Better education to help developers (I used to be one) understand the

potential threat scenarios and attack paths and have the “hacker

mindset”

 Application security continues to evolve with the technology but the

general principles remain the same

 We (security and IT) must continually work together and improve our

processes and technologies to mitigate these risks (I promise security is

not there to be a complete PITA…)

What’d we learn from this experience…

28

Knowledge Consulting Group (KCG)

11710 Plaza America Dr., Ste 520

Reston, VA 20190

Voice: 703.467.2000

Fax: 703.547.0322

http://www.KnowledgeCG.com

Paul Nguyen, Vice President, Cyber Solutions
Paul.nguyen@knowledgecg.com

Phone: (703) 467-2000 x108

Mobile: (571) 722-7083

Ryan Stinson, Lead Assessment Engineer

Ryan.stinson@knowledgecg.com

Phone: (703) 467-2000

Mobile: (703) 600-9388

Contact Us

http://www.knowledgecg.com/
mailto:Paul.nguyen@knowledgecg.com
mailto:Ryan.stinson@knowledgecg.com
mailto:Dusty.Wince@KnowledgeCG.com

