

# **Enterprise Risk Management – Balancing Assurance Costs**

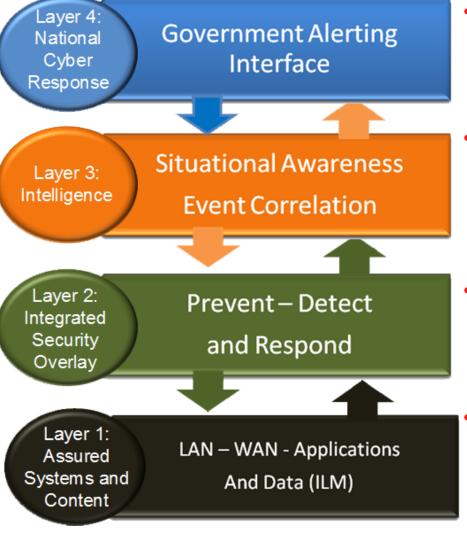
- NIST Special Publication 800-30, Risk Management Guide for Information Technology Systems describes risk management for IT systems as a process that balances the operational and economic costs of protective measures to achieve mission-essential security capabilities
- NIST Special Publication 800-27, Engineering Principles for Information Technology Security (A Baseline for Achieving Security), Revision A, recognizes that elimination of all risk is not cost-effective
  - A cost-benefit analysis should be conducted for each proposed control. In some cases, the benefits of a more secure system may not justify the direct and indirect costs. Benefits include more than just prevention of monetary loss; for example, controls may be essential for maintaining public trust and confidence

Principle 5: Reduce risk to an acceptable level



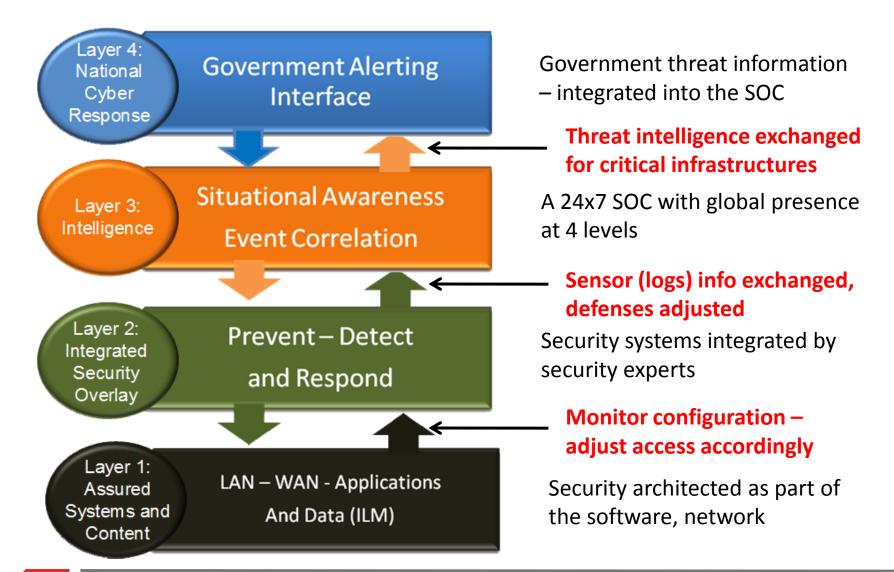





#### Risk Hierarchy for Enterprise Security

- Legal and Regulatory Risk
  - This class of risk addresses risks associated with failures regarding compliance with legal or regulatory requirements
  - Consequences may include fines, civil or criminal prosecution, prohibitions against provision of products to the market place.
- Operational Risk
  - This class of risk addresses both external and internal risk
    - External risks associated with failures of provided products in their operational environments,
    - Internal risks associated with failures in the engineering processes producing such products.
  - Consequences may include delivered exploitable vulnerabilities that result in harm to users, their systems, or their data
- Reputational Risk
  - This class of risk is linked with legal and regulatory, operational, and competitive risk
  - It addresses risks associated with damages to the organization's reputation in the market place resulting from legal and regulatory breaches and operational failures
  - Consequences include loss of standing in the market place and mistrust on the part of current and potential customers.

- Competitive Risk
  - This class of risk addresses risks associated with loss of stature with respect to competitors.
  - Consequences include loss of market share and potential difficulty entering new markets.
- Financial Risk
  - This class of risk addresses risks associated with monetary loss
  - Consequences include loss of revenue, negative impact on stock prices, and diminishing shareholder confidence.
- Strategic Risk
  - This class of risk is linked with all the other risk classes below it in the hierarchy
  - It addresses risks associated with failures to meet the strategic goals and objectives of the organization



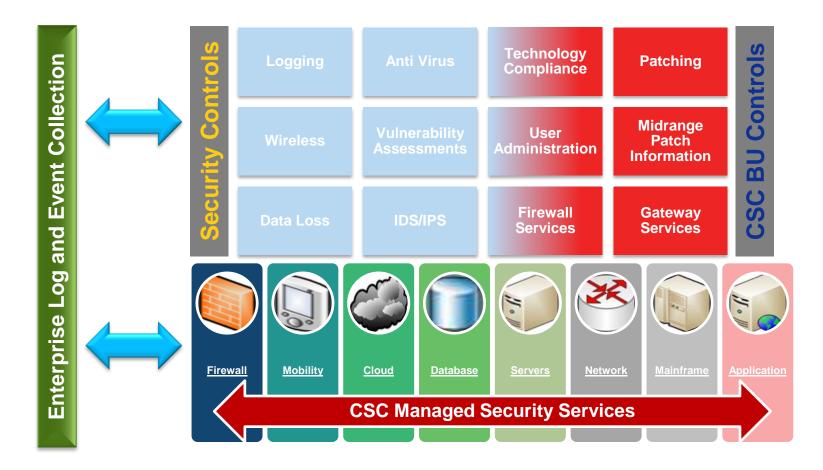

### A Model for Closing the Gap: The Security Stack



- Layer 4: Public-private interface of critical security information and remediation.
- Layer 3: The external intelligence component of the threat landscape that needs to be distributed across the environment at all levels.
- Layer 2: Holistically managing network security - distributing and acting on threat data.
- Layer 1: Data classificationseparation, allowing secure operation under a variety of risk profiles in different business verticals.

# A Model for Closing the Gap: Realizing The Security Stack




### **Layer 1: Assured Systems and Content**



- The set of information-communications technologies (ICT) architected and designed to operate securely within an appropriate cyber-threat environment
- Layer 1 employs technologies or methods such as data encryption or use of software assurance methodologies
- A disciplined method for configuration management is also essential
- Another central concept for this layer is the use of standards to achieve rigor in the processes for assured systems and content..
- The information exchange between Layers 1 and 2 can be extensive and requires that information go from machine to machine without human intervention to achieve speed in detecting anomalous behavior

#### **Example – Enterprise Logging**

Challenge - Develop an enterprise logging solution ensuring network, application and system logs are centrally collected, unaltered and stored.




# **Layer 2 – Integrated Security Overlay**

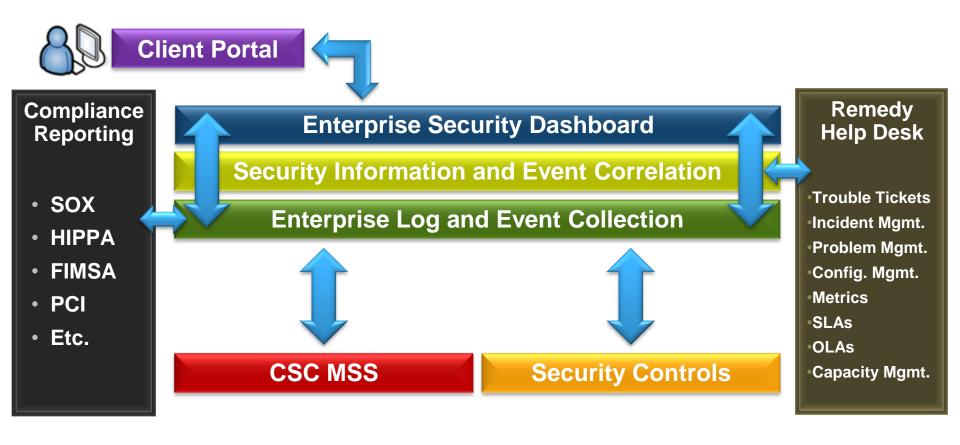


- Layer 2 is the traditional bolt-on "security" layer as we know it today
- It comprises several control planes across both the network and application layers
- It includes Security industry "point solutions," where each vendor's solution independently addresses problems at specific points in the architecture
- Information exchange among these security elements is of key importance, and they are confounded by a lack of interoperability (as in incompatible data formats from different sensors) that ultimately slow the process of correlating information needed in detection efforts

#### **Example – Information & Event Correlation**

Challenge - Gather and correlate information and events across enterprise infrastructure, reducing support costs and improving the ability to identify and respond to the evolving threat landscape including Advanced Persistent Threats




# Layer 3 - Intelligence



- The anonymity of the Internet and certain shortcomings of TCP/IP make it difficult to learn about those who would do harm. This is the problem of attribution
- We need better intelligence regarding what is going on inside the network perimeter and what is taking place outside the network, beyond our immediate control. This, in essence, is situational awareness
- Situational awareness suffers from the multitude of languages and mechanisms used to convey information
  - We need communications mechanisms that allow us to combine data sources easily
- Situational awareness is the first step toward automating defensive systems that will operate in "Internet time."

### **Example – Enterprise Security Dashboard**

Challenge – Provide SOC staff and the client visibility regarding their risk, threat, vulnerability and compliance posture



# **Layer 4 – National Cyber Response**



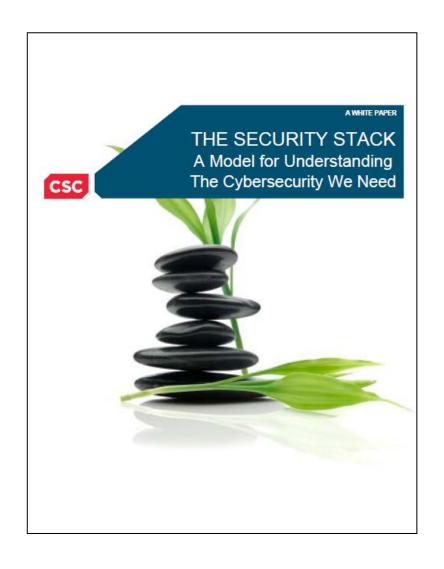
- Layer 4 represents the intersection of national security interests with the interests of the private sector
- Layer 4 is distinct from other layers focusing not on networks, but on a bridge between the private and public sectors for specific functions consistent with the role of government as protector
  - Threats operate in "Internet time"
  - The current means of exchanging threat information between government and critical infrastructures continues to operate in "bureaucratic time"
  - In order to protect National critical infrastructures such as telecommunications networks, the power grid, and air space exchanges of threat information cannot wait for bureaucratic time



#### The Architectural Context for Enterprise Security



- The Security Stack is a part of an architecture ecosystem a collection of architectural views (rules, enterprise architecture, data, metadata and now security) that collectively specify all the elements of a system and its environment
- The security stack elements described above affect architectural elements of other views, and the elements of the other views affect the security stack elements
- This interdependence helps assure that security is built in and not bolted on


### Questions

Paul R. Croll CSC 10721 Combs Drive King George, VA 22485-5824

Phone: +1 540.644.6224

Fax: +1 540.663.0276

e-mail: pcroll@csc.com



http://www.csc.com/cybersecurity/blog/45966/53330-download our new security stack white paper