ng Interagency Report 6887 - 2003 Edition

Mational Institute of
Standards and Technology
Technology Administration

.5 Department of Commarce

Government Smart Card
Interoperability Specification

Version 2.1

Teresa Schwarzhoff
Jim Dray

John Wack

Eric Dalci

Alan Goldfine
Michaelalorga

July 16, 2003

NIST Interagency Report 6887 - 2003 Edition Government Smart Card
Interoperability Specification

The National Institute of Standards and
Technology

COMPUTER SECURITY

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation's
measurement and standards infrastructure. 1TL develops tests, test methods, reference data, proof concept
implementations, and technical analysis to advance the development and productive use of information
technology. ITL’sresponsihilitiesinclude the development of technical, physical, administrative, and
management standards and guidelines for the cost-effective security and privacy of sensitive unclassified
information in Federal computer systems. This Interagency Report discusses I TL’ s research, guidance,
and outreach effortsin computer security, and its collaborative activities with industry, government, and
academic organizations.

Natl. Inst. Stand. Technol. Interagency Report 6887 — 2003 Edition, 247 pages (July 2003)

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept
adequately. Such identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor isit
intended to imply that the entities, materials, or equipment are necessarily the
best available for the purpose. |mplementation of this specification or various
aspects of it may be covered by U.S. and foreign patents.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Foreword
@ This section is non-normative and is provided for informational purposes only.

(b) The Government Smart Card Initiative

The Presidential Budget for Fiscal Year 1998 stated: “The Administration wants to adopt ‘ smart card’
technology so that, ultimately, every Federal employee will be able to use one card for a wide range of
purposes, including travel, small purchases, and building access.” The General Services Administration
(GSA) was requested to take the lead in devel oping the Federal business tools of electronic commerce and
smart cards. The Federal Smart Card Implementation Plan was then devel oped, under which GSA
implemented a pilot program to test Government smart cards and related systems. As part of the
implementation plan, GSA formed the Government Smart Card Inter-Agency Advisory Board (GSC-
IAB) to serve as a steering committee for the U.S. Government Smart Card (GSC) program.

In 1999, the National Institute of Standards and Technology (NIST) agreed to lead development of
technical specifications and standards related to the GSC program. NIST represents the GSC programin
industry, government, and formal standards organizations, as appropriate, to promote GSC technology.
NIST is also charged with devel oping a comprehensive GSC conformance test program.

In May 2000, GSA awarded the Smart Access Common ID Card contracts to five prime contractorsto
provide smart card goods and services. Information on the use and applicability of the GSA Contract can
be found at http://www.gsa.gov/smartcard.

The GSC-IAB established the Architecture Working Group (formerly known as the Technical Working
Group), which consists of representatives of the contract awardees and federal agencies. The AWG,
chaired and led by NIST, developed the Government Smart Card I nteroperability Specification (GSC-1S),
version 1.0. This specification defined the Government Smart Card Interoperability Architecture, which
satisfies the core interoperability requirements of the Common Access Smart ID Card contract and the
GSC Program as awhole. The AWG subsequently updated version 1.0 and released 2.0.

(© Change M anagement, Requirements Definition, and I nter pretation of the Specification

The GSC-IAB hasthe overal responsibility to develop the policy and procedures for handling revisions
of the GSC-IS and any other maintenance. These procedures will be posted on the NIST smart card
program web site (see Section (d)).

As additional language bindings to the Basic Services Interface (see Section 1.3) are developed, they will
be added to the GSC-IS.

In the longer term, it is expected that the GSA-IAB will be the governing body for the identification of the
U.S. Government’ srequirements. Major releases of the GSC-1S will be determined by the GSC-1AB.
NISTIR 6887 will be submitted for formal standardization to the ANSI approved formal standards setting
body for smart card technology.

The interpretation of the GSC-1S is the responsibility of the GSC-1AB. Interpretation issues and their
resolutions will be detailed on the NIST program web site (see Section (d)).

(d) Testing for Conformance

NIST is developing a comprehensive conformance test program in support of the GSC program. Products
available will be subject to aformal certification process to validate conformance to the requirements of

http://www.gsa.gov/smartcard

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

the GSC-1S. The goal of the conformance testsis to determine whether or not a given Government Smart
Card product conforms with the GSC Specification. Qualified laboratories will perform operational
conformance testing. The GSC-1AB Conformance Committee is chaired by GSA, with representatives

from the federal agencies and GSA contract awardees.

NIST isworking on user guidance for achieving conformance certification for the various elements of the

GSC-IS framework. This guidance will be posted at http://smartcard.nist.gov

()

NIST maintains a publicly accessible web site at http://smartcard.nist.gov. This page contains

NIST Government Smart Card Program Web Site

information on all aspects of the GSC program related to the GSC-IS, including:

General program descriptions and updates

The current version of the GSC-IS

GSC-IS revision and standardization plans

A list of errataand other changes to the last published version of the GSC-I1S

A ligt of interpretations and clarifications of the GSC-IS, asissued by the GSC-IAB
Details of the GSC-1S interpretation procedures

Details of the GSC-IS conformance-testing program.

http://smartcard.nist.gov/
http://smartcard.nist.gov/
http://smartcard.nist.gov/

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Acknowledgements

The authors would like to acknowledge the efforts of the original Government Smart Card
Interoperability Committee; the Government Smart Card Interagency Advisory Board, composed of
representatives from the public and private sectors; the General Services Administration; the prime
contractors associated with the Smart Access Common ID Card contract; and the NIST smart card team.
Composed of industry and government representatives, the Interoperability Committee devel oped the first
Government Smart Card Interoperability Specification (version 1.0) during the summer of 2000.

The efforts of the GSC Architecture Work Group (formerly known as Technical Working Group) of the
Government Smart Card Interagency Advisory Board are particularly recognized. Chaired by the
National Institute of Standards and Technology, the AWG was responsible for reviewing the original
Government Smart Card Interoperability Specification. The AWG has been amajor contributor to the
development of this new version of the Government Smart Card Interoperability Specification. Special
recognition is extended to the AWG.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table of Contents

O 01 (o Yo 1V To] A o o OO P PP PPPPPTPPPPPPP 1-1
I A - T (o [1 | (o P 1-1
1.2 Scope, Limitations, and Applicability of the Specification..............cccceevvviiiiiiiieeennnnnns 1-1
1.3 Conforming to the SPecCifiCationuuuiiiii i e e 1-2

2. Architectural MOEl.......coo o 2-3
2.1 OVEIVIBW 1uuieeiieeeetiee et ettt e e e e e ettt e e e e e e e e e ee bbb e e e eeeese s s s bt eeeeeeeesss bbb saeeesseesnnes 2-3
2.2 Basic Services INterface OVEIVIEW.........uuuiiiiiieiiieiiiiie e e eeeeetie s e e e e e eearaen e e e e eeenes 2-4
2.3 Extended Service INterfaces OVEIVIEWceiiiiiiiiiiiiiiiiieeeeeeeeeiie s e e e e e eearvnn e e e e eeeens 2-5
2.4 Virtual Card Edge INterface OVEIVIEWciieeeiiieeeiiiieiieeeeeeeeeiiiee e e e e e e e eevriee e e e e eeeeenes 2-5
2.5 Roles of the BSI and VCELcciiiiiiiiiiiiiie ettt eaeeeenes 2-5
2.6 GSC-IS Data MOAEl OVEIVIEW........cceeieeiiiiiieeieeeeeeeitiee e e e e e e eeattaa e s e e e e e e eetraaa e e e easeaeenes 2-6
2.7 Card Capabilities ContaiNer OVEIVIEWceeieeuieeiiiiieeeeeeiieeeeeeie e ee e e e e e e e 2-6
2.8 Service Provider SOftWar€ OVEIVIEWueiieeeeeeeeiiiiieiieeeeeeeesriieeseeeeeeeerraaaeseeeeseeenns 2-6
2.9 Card REAUEI DIIVEIScccoiieiiiiiei e e eeeeeeeie e e e e e et et te s e e e e e e e e e et e e e e e e eesea bt e eeeaeeeennes 2-6

T N o of =YY= @] 411 o) I 1Y/ o =) RPN 3-1
3.1 Available Access CONIOI RUIESooevvuiiiiiieiiieeeee et e e e eeans 3-1
3.2 Determining CONTAINELS........uuuuiiiieeie et e e e e e e eeie e e e e e e e e e et e e e e eeeeeeebbaa e eeeaeeeeenes 3-3
3.3 Establishing a SecUrity CONIEXL......ccccivuuuiiiiiiie e e e e et e e e e ee e e e e eeeenes 3-4

3.3. 1 PIN VErfICALION.....uiiieiie et et et e e eens 3-5
3.3.2 External AUtNENTICATIONuiiiiiii it e e e e eees 3-5
3.3.3 SECUIE MESSAGINGcuttuunieeeeeeieittiaieeeeeeeeettttaaeaeeseeesstnnaasaeeeeeeerrnnaaaaaaaeerenes 3-6

4. BaSiC SerViCesS INtEITACEcouiii i e e e e aaa 4-1
4.1 OVEIVIBW ..eveeeieeeetiee ettt e e e e e ettt e e e e e e e e e e et b e e eeeeeeeeesbb e seeeeeseessbbaansaeeeeeresnees 4-1
4.2 Binary Data ENCOQING........couuuuiiiiiieeieieiiee et e e e e e e e e e ee bt eeeeeeeeeenes 4-2
4.3 Mandatory CryptographiC AIQONtAMSueiiiiiieeeeee e 4-2
4.4 BSIREIUM COUEBS ..vuuniiieiiiieieiie et ee ettt e e e e e et e e e e e e e e e et e e e e e e e e eeebbb e eeeaeseennes 4-3
4.5 Smart Card Utility Provider Module Interface Definitionccoevevviviiiiiiiiieeevinnnnn. 4-4

4.5.1 Pseudo IDL DEfiNtiON........uiiiiieiiiieiiee e 4-4
B.5.2 RUIES .. et 4-5
4.5.3 gSCBSIULIIACQUIrECONTEXL()....evvvrrieiiieeieieiriiee e e et eeeerre e e e e e e e eeaes 4-7
4.5.4 QgSCBSIULICONNECI() .evvuniiiiiiieeiii e et e e e e e e e eeeeaans 4-9
4.5.5 gSCBSIULIDISCONNECE() . cevvvneiiitiieeeeete ettt e e e e e e e 4-10
4.5.6 gscBsiUtIIBEgINTranSacCtioN()ceevevuieeieiiiieeeiiieeeeeeie et e e ee e 4-11
4.5.7 gscBSIULIENATranSaction()oeeevevunieeieiiieeiiiie e ee e e e e e 4-12
4.5.8 (SCBSIULIGEIVEISION() . cevvveeeeieiieeeete et et e e e e 4-13
4.5.9 gscBsiUtIIGetCardProperti@S() .ve. e eeeeeeeeerrruiiiieeeeieeeriiiieieeeeeeeeesiiieeeeeeeeeeeennns 4-14
4.5.10 gscBSIULIGEtCardStatuS().....cuuuuieieeeeiiieiiiiiiieeeeeeeeetiieeee e e e e e e earras e e eeeeeeanens 4-15
4.5.11 gscBsiUtiIGetEXtendedErrorTeXI() ...covvrerrrriiireeereeeeiiiiie e e e e e eeesrie e e e eeeeeeannns 4-16
4.5.12 gsCBSIUtIIGEIREAAEILISI() vvuueeverenieeeiiiiieeieie e 4-17
4.5.13 gSCBSIULIPASSINIU() vvvvieieeiieieiiiiee et e e e e e e eeaaees 4-18
4.5.14 gsScBSIULIREIEASECONEXI() .eerrrrrrrieeereiieriiiiiieeeeeeeeettiiseseeeeereesrnn e eeeeeeennnns 4-19
4.6 Smart Card Generic Container Provider Module Interface Definition..................... 4-20
4.6.1 gSCBSIGCDAtACIEALE() . .ceeiiveeriiiiieeeeeee et e e e e e et e e e eeaaaa 4-20
4.6.2 (gSCBSIGCDAtADEIEIE() .. .ceveeeiiite e 4-21
4.6.3 gscBsiGcGetContaiNerPropertieS()cceevrrrerereeerrreeiiiiieeeeeeeeesiiienseeeeeeeennnns 4-22
4.6.4 (gSCBSIGCREAATAGLISI() «evvvueeieriiieeiiiii it aes 4-24
4.6.5 (gSCBSIGCREAAVAIUE() .. .cevvniiiiiieeiee et eaes 4-25

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.

6.

4.6.6 gSCBSIGCUPAAEVAIUE() ...evvniiiiiiiiiiii et ees 4-26
4.7 Smart Card Cryptographic Provider Module Interface Definitioncccccceeenn.... 4-27
4.7.1 gSCBSIGEIChAllENGE() .cvvriieiiiei e e 4-27
4.7.2 gscBsiSkilnternalAuthenticate()uvveieveiiiiiiii e 4-28
4.7.3 OSCBSIPKICOMPULIE() .euiiivniieiiiiti et e it ettt e e e et e et e e s s st e s et s e saaseenesenns 4-29
4.7.4 QgSCBSIPKIGELCErtfICAIE() ..ovvniirnieieieiee e e e e eaas 4-30
4.7.5 (SCBSIGEtCryPLtOPIOPEITIES() . ccvuiieniieiiieieeeeee et e e e e e e e e e e eans 4-31
Virtual Card EAQe INEITACE ... e r e e eaa e eaas 5-1
5.1 GSC-IS ISO Conformant APDUSoocuuiiiiii i e et e e e e e ee e eeeeeeens 5-1
5.1.1 GeneriC File ACCESS APDUS........iiiiiiiii it 5-2
5.1.2 ACCESS CONIOl APDUSooviiiiiiie e 5-11
5.1.3 Public Key Operations APDUSccuuiiiiiiiiieiie ettt e e e e e eaaeees 5-18
5.2 Mapping Default APDUS to Native APDU SEetS........cceeeiiieeiiiieiiiiie e 5-21
5.2.1 The CCC Command and Response TUPIES........cceeevveviiieiiiiiiiieeieeeeeeiienn, 5-21
5.2.2 Native APDU Mapping and CCC GramMmMarl........cccoveivuieirieiieeeinieesnneesieens 5-21
5.2.3 Detecting Card APDUSt e e e s e e e e ans 5-22
5.2.4 Default Status Code RESPONSES .. ccvuiiiniiiiiiiieieeeeeeee e e e e 5-23
5.3 Card Edge Interface for VM CardS..........uceeiieeiiiieeiiiiiiiieeeeeeeeetie e 5-23
5.3.1 Virtual Machine Card Access Control Rule Configuration..........c.cccoeveevnnees 5-24
5.3.2 Virtual Machine Card Edge General Error ConditionsS..........ccovvvvvvvevvieeennnnns 5-24
5.3.3 Common Virtual Machine Card Edge Interface Methodscccceceeune.... 5-25
5.3.4 Generic Container Provider Virtual Machine Card Edge Interface............. 5-41
5.3.5 Symmetric Key Provider Virtual Machine Card Edge Interface.................. 5-44
5.3.6 Public Key Provider Virtual Machine Card Edge Interfacecc.cccoeeeeenn.n. 5-48
Card CapabilitieS CONLAINMETuuuieieeie et e e e et e e et e e e et e e e et e e s e e ab e e e eabaaaas 6-1
[T A O) V7= Y= R 6-1
6.2 Procedure for ACCESSING the CCCovuiiiiiiiie e 6-2
6.2.1 General CCC Retrieval SEQUENCEoeviiviiiiiiie e e e 6-2
6.2.2 Card CapabilitiesS ContaiNer StTUCIUIEuuiiveeeieee i e e e e e 6-4
[T I O O O i 1= [0 N 6-5
6.3.1 Card Identifier DESCIPLIONcccvveiiiiite e ee e e e e e e s v eeees 6-5
6.3.2 Capability Container Version NUMDBETvviviiiiieiieeeeeee e 6-6
6.3.3 Capability Grammar Version NUMDET.........coiiuiiiiieiie e 6-6
6.3.4 Applications CardURL STrUCLUIEvivvniieiieiieeee e 6-6
(SRR T nd (G111 YT 6-6
6.3.6 Reqgistered Daa Model NUMDBETiiveiiiiiiieee e 6-6
6.3.7 Access Cntrol RUIES TabIeveeeiie e 6-7
(SRR T OF- 1o 72 nd 16 L 6-7
(SIS I =T (=Tt 1o T IF- Vo [P 6-7
6.3.10 Capability and StatusS TUPIESuu i e 6-8
6.3.11 Capability TUPDIESceeeeee et e e e e e e e e e e e e b e eeees 6-8
6.3.12 PrefiX and SUMIX COOESiiveiiiiieie ettt e e e e e e e e e 6-9
(SRS T RS B LY od 1] (o] S @Yo [y 6-9
(SIS I S e (U 1T I o[6-9
6.3.15 NEXt CCC DESCIIPLION .vuuiiieitiiei et et e e e e e s e e e e s e e e eaan s 6-10
6.4 CCC Formal Grammar Definitionuuiiiiiiiiiiiiiiiee e 6-10
6.4.1 Grammar RUIESiieiiiie et e e e e e e e e ea e eas 6-11
6.4.2 Extended FUNCHON COAEScooivuuniiiiiiie et 6-13

Vi

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

7. Container Selection and DISCOVEIYccuuuuuiiiieeeiieeiiiiis e e e eeeeeeeitaas e e e e e e eeerenn s e e e eeeeeeenennnns 7-1
7.1 AID Abstraction: The UnIiVErsal AlDcoiiiiiiiiiiiiiiie et eeeeeeans 7-1

7.2 The CCC Universal AID and CCC APPIEL ..uuneeieiieieieieee e 7-1

7.3 The Applications CardURLciiieeieiiieiiiiiiiieee et e e e e e e e e ettee e s e e e e e e eerbaba e e e eeeeeeeees 7-1

7.4 Using the Applications CardURL Structure for Container Selection.............ccc......... 7-3

7.5 File System Cards: Selecting CONLAINEISccivviiiiiiiiiieeee et e e e e e e earin e e eeeeens 7-3

7.6 VM Cards: Selecting Containers and APPIELScoevveviieiiiiiiieeeiieeeeeeeeeeee e 7-3

7.7 Using the Applications CardURL Structure for Identifying Access Control Rules7-3

F T B - - WY/ (o o [TP PP TP PPPPTPPPPPPP 8-1
8.1 Data MOUAEI OVEIVIEWceeiieeeeiee ettt et e e e et e e e et e e e e et e e e eraannas 8-1

8.2 Internal Tag-Length-Value FOrMALceiiiiiiiiiiiiiiiie et eeens 8-1

8.3 Structure and Length Values for Cards Requiring the File System Card Edge........ 8-2

8.4 Structure and Length Values for Cards Requiring the Virtual Machine Card Edge..8-2
LSt R = T (Y 8-2

Vii

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Appendices

O 01 (o Yo 1V To] A o o OO P PP PPPPPTPPPPPPP 1-1
I A - T (o [1 | (o P 1-1
1.2 Scope, Limitations, and Applicability of the Specification..............cccceevvviiiiiiiieeennnnnns 1-1
1.3 Conforming to the SPecCifiCationuuuiiiii i e e 1-2
2. Architectural MOEl.......coo o 2-3
2.1 OVEIVIBW 1uuieeiieeeetiee et ettt e e e e e ettt e e e e e e e e e ee bbb e e e eeeese s s s bt eeeeeeeesss bbb saeeesseesnnes 2-3
2.2 Basic Services INterface OVEIVIEW.........uuuiiiiiieiiieiiiiie e e eeeeetie s e e e e e eearaen e e e e eeenes 2-4
2.3 Extended Service INterfaces OVEIVIEWceiiiiiiiiiiiiiiiiieeeeeeeeeiie s e e e e e eearvnn e e e e eeeens 2-5
2.4 Virtual Card Edge INterface OVEIVIEWciieeeiiieeeiiiieiieeeeeeeeeiiiee e e e e e e e eevriee e e e e eeeeenes 2-5
2.5 Roles of the BSI and VCELcciiiiiiiiiiiiiie ettt eaeeeenes 2-5
2.6 GSC-IS Data MOAEl OVEIVIEW........cceeieeiiiiiieeieeeeeeeitiee e e e e e e eeattaa e s e e e e e e eetraaa e e e easeaeenes 2-6
2.7 Card Capabilities ContaiNer OVEIVIEWceeieeuieeiiiiieeeeeeiieeeeeeie e ee e e e e e e e 2-6
2.8 Service Provider SOftWar€ OVEIVIEWueiieeeeeeeeiiiiieiieeeeeeeesriieeseeeeeeeerraaaeseeeeseeenns 2-6
2.9 Card REAUEI DIIVEIScccoiieiiiiiei e e eeeeeeeie e e e e e et et te s e e e e e e e e e et e e e e e e eesea bt e eeeaeeeennes 2-6
T N o of =YY= @] 411 o) I 1Y/ o =) RPN 3-1
3.1 Available Access CONIOI RUIESooevvuiiiiiieiiieeeee et e e e eeans 3-1
3.2 Determining CONTAINELS........uuuuiiiieeie et e e e e e e eeie e e e e e e e e e et e e e e eeeeeeebbaa e eeeaeeeeenes 3-3
3.3 Establishing a SecUrity CONIEXL......ccccivuuuiiiiiiie e e e e et e e e e ee e e e e eeeenes 3-4
3.3. 1 PIN VErfICALION.....uiiieiie et et et e e eens 3-5
3.3.2 External AUtNENTICATIONuiiiiiii it e e e e eees 3-5
3.3.3 SECUIE MESSAGINGcuttuunieeeeeeieittiaieeeeeeeeettttaaeaeeseeesstnnaasaeeeeeeerrnnaaaaaaaeerenes 3-6

4. BaSiC SerViCesS INtEITACEcouiii i e e e e aaa 4-1
4.1 OVEIVIBW ..eveeeieeeetiee ettt e e e e e ettt e e e e e e e e e e et b e e eeeeeeeeesbb e seeeeeseessbbaansaeeeeeresnees 4-1
4.2 Binary Data ENCOQING........couuuuiiiiiieeieieiiee et e e e e e e e e e ee bt eeeeeeeeeenes 4-2
4.3 Mandatory CryptographiC AIQONtAMSueiiiiiieeeeee e 4-2
4.4 BSIREIUM COUEBS ..vuuniiieiiiieieiie et ee ettt e e e e e et e e e e e e e e e et e e e e e e e e eeebbb e eeeaeseennes 4-3
4.5 Smart Card Utility Provider Module Interface Definitionccoevevviviiiiiiiiieeevinnnnn. 4-4
4.5.1 Pseudo IDL DEfiNtiON........uiiiiieiiiieiiee e 4-4
B.5.2 RUIES .. et 4-5
4.5.3 gSCBSIULIIACQUIrECONTEXL()....evvvrrieiiieeieieiriiee e e et eeeerre e e e e e e e eeaes 4-7
4.5.4 QgSCBSIULICONNECI() .evvuniiiiiiieeiii e et e e e e e e e eeeeaans 4-9
4.5.5 gSCBSIULIDISCONNECE() . cevvvneiiitiieeeeete ettt e e e e e e e 4-10
4.5.6 gscBsiUtIIBEgINTranSacCtioN()ceevevuieeieiiiieeeiiieeeeeeie et e e ee e 4-11
4.5.7 gscBSIULIENATranSaction()oeeevevunieeieiiieeiiiie e ee e e e e e 4-12
4.5.8 (SCBSIULIGEIVEISION() . cevvveeeeieiieeeete et et e e e e 4-13
4.5.9 gscBsiUtIIGetCardProperti@S() .ve. e eeeeeeeeerrruiiiieeeeieeeriiiieieeeeeeeeesiiieeeeeeeeeeeennns 4-14
4.5.10 gscBSIULIGEtCardStatuS().....cuuuuieieeeeiiieiiiiiiieeeeeeeeetiieeee e e e e e e earras e e eeeeeeanens 4-15
4.5.11 gscBsiUtiIGetEXtendedErrorTeXI() ...covvrerrrriiireeereeeeiiiiie e e e e e eeesrie e e e eeeeeeannns 4-16
4.5.12 gsCBSIUtIIGEIREAAEILISI() vvuueeverenieeeiiiiieeieie e 4-17
4.5.13 gSCBSIULIPASSINIU() vvvvieieeiieieiiiiee et e e e e e e eeaaees 4-18
4.5.14 gsScBSIULIREIEASECONEXI() .eerrrrrrrieeereiieriiiiiieeeeeeeeettiiseseeeeereesrnn e eeeeeeennnns 4-19

4.6 Smart Card Generic Container Provider Module Interface Definition..................... 4-20
4.6.1 gSCBSIGCDAtACIEALE() . .ceeiiveeriiiiieeeeeee et e e e e e et e e e eeaaaa 4-20
4.6.2 (gSCBSIGCDAtADEIEIE() .. .ceveeeiiite e 4-21
4.6.3 gscBsiGcGetContaiNerPropertieS()cceevrrrerereeerrreeiiiiieeeeeeeeesiiienseeeeeeeennnns 4-22
4.6.4 (gSCBSIGCREAATAGLISI() «evvvueeieriiieeiiiii it aes 4-24
4.6.5 (gSCBSIGCREAAVAIUE() .. .cevvniiiiiieeiee et eaes 4-25

5.

6.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.6 gSCBSIGCUPAAEVAIUE() ...evvniiiiiiiiiiii et ees 4-26
4.7 Smart Card Cryptographic Provider Module Interface Definitioncccccceeenn.... 4-27
4.7.1 gSCBSIGEIChAllENGE() .cvvriieiiiei e e 4-27
4.7.2 gscBsiSkilnternalAuthenticate()uvveieveiiiiiiii e 4-28
4.7.3 OSCBSIPKICOMPULIE() .euiiivniieiiiiti et e it ettt e e e et e et e e s s st e s et s e saaseenesenns 4-29
4.7.4 QgSCBSIPKIGELCErtfICAIE() ..ovvniirnieieieiee e e e e eaas 4-30
4.7.5 (SCBSIGEtCryPLtOPIOPEITIES() . ccvuiieniieiiieieeeeee et e e e e e e e e e e eans 4-31
Virtual Card EAQe INEITACE ... e r e e eaa e eaas 5-1
5.1 GSC-IS ISO Conformant APDUSoocuuiiiiii i e et e e e e e ee e eeeeeeens 5-1
5.1.1 GeneriC File ACCESS APDUS........iiiiiiiii it 5-2
5.1.2 ACCESS CONIOl APDUSooviiiiiiie e 5-11
5.1.3 Public Key Operations APDUSccuuiiiiiiiiieiie ettt e e e e e eaaeees 5-18
5.2 Mapping Default APDUS to Native APDU SEetS........cceeeiiieeiiiieiiiiie e 5-21
5.2.1 The CCC Command and Response TUPIES........cceeevveviiieiiiiiiiieeieeeeeeiienn, 5-21
5.2.2 Native APDU Mapping and CCC GramMmMarl........cccoveivuieirieiieeeinieesnneesieens 5-21
5.2.3 Detecting Card APDUSt e e e s e e e e ans 5-22
5.2.4 Default Status Code RESPONSES .. ccvuiiiniiiiiiiieieeeeeeee e e e e 5-23
5.3 Card Edge Interface for VM CardS..........uceeiieeiiiieeiiiiiiiieeeeeeeeetie e 5-23
5.3.1 Virtual Machine Card Access Control Rule Configuration..........c.cccoeveevnnees 5-24
5.3.2 Virtual Machine Card Edge General Error ConditionsS..........ccovvvvvvvevvieeennnnns 5-24
5.3.3 Common Virtual Machine Card Edge Interface Methodscccceceeune.... 5-25
5.3.4 Generic Container Provider Virtual Machine Card Edge Interface............. 5-41
5.3.5 Symmetric Key Provider Virtual Machine Card Edge Interface.................. 5-44
5.3.6 Public Key Provider Virtual Machine Card Edge Interfacecc.cccoeeeeenn.n. 5-48
Card CapabilitieS CONLAINMETuuuieieeie et e e e et e e et e e e et e e e et e e s e e ab e e e eabaaaas 6-1
[T A O) V7= Y= R 6-1
6.2 Procedure for ACCESSING the CCCovuiiiiiiiie e 6-2
6.2.1 General CCC Retrieval SEQUENCEoeviiviiiiiiie e e e 6-2
6.2.2 Card CapabilitiesS ContaiNer StTUCIUIEuuiiveeeieee i e e e e e 6-4
[T I O O O i 1= [0 N 6-5
6.3.1 Card Identifier DESCIPLIONcccvveiiiiite e ee e e e e e e s v eeees 6-5
6.3.2 Capability Container Version NUMDBETvviviiiiieiieeeeeee e 6-6
6.3.3 Capability Grammar Version NUMDET.........coiiuiiiiieiie e 6-6
6.3.4 Applications CardURL STrUCLUIEvivvniieiieiieeee e 6-6
(SRR T nd (G111 YT 6-6
6.3.6 Reqgistered Daa Model NUMDBETiiveiiiiiiieee e 6-6
6.3.7 Access Cntrol RUIES TabIeveeeiie e 6-7
(SRR T OF- 1o 72 nd 16 L 6-7
(SIS I =T (=Tt 1o T IF- Vo [P 6-7
6.3.10 Capability and StatusS TUPIESuu i e 6-8
6.3.11 Capability TUPDIESceeeeee et e e e e e e e e e e e e b e eeees 6-8
6.3.12 PrefiX and SUMIX COOESiiveiiiiieie ettt e e e e e e e e e 6-9
(SRS T RS B LY od 1] (o] S @Yo [y 6-9
(SIS I S e (U 1T I o[6-9
6.3.15 NEXt CCC DESCIIPLION .vuuiiieitiiei et et e e e e e s e e e e s e e e eaan s 6-10
6.4 CCC Formal Grammar Definitionuuiiiiiiiiiiiiiiiee e 6-10
6.4.1 Grammar RUIESiieiiiie et e e e e e e e e ea e eas 6-11
6.4.2 Extended FUNCHON COAEScooivuuniiiiiiie et 6-13

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

7. Container Selection and DISCOVEIYccuuuuuiiiieeeiieeiiiiis e e e eeeeeeeitaas e e e e e e eeerenn s e e e eeeeeeenennnns 7-1
7.1 AID Abstraction: The UnIiVErsal AlDcoiiiiiiiiiiiiiiie et eeeeeeans 7-1

7.2 The CCC Universal AID and CCC APPIEL ..uuneeieiieieieieee e 7-1

7.3 The Applications CardURLciiieeieiiieiiiiiiiieee et e e e e e e e e ettee e s e e e e e e eerbaba e e e eeeeeeeees 7-1

7.4 Using the Applications CardURL Structure for Container Selection.............ccc......... 7-3

7.5 File System Cards: Selecting CONLAINEISccivviiiiiiiiiieeee et e e e e e e earin e e eeeeens 7-3

7.6 VM Cards: Selecting Containers and APPIELScoevveviieiiiiiiieeeiieeeeeeeeeeee e 7-3

7.7 Using the Applications CardURL Structure for Identifying Access Control Rules7-3

F T B - - WY/ (o o [TP PP TP PPPPTPPPPPPP 8-1
8.1 Data MOUAEI OVEIVIEWceeiieeeeiee ettt et e e e et e e e et e e e e et e e e eraannas 8-1

8.2 Internal Tag-Length-Value FOrMALceiiiiiiiiiiiiiiiie et eeens 8-1

8.3 Structure and Length Values for Cards Requiring the File System Card Edge........ 8-2

8.4 Structure and Length Values for Cards Requiring the Virtual Machine Card Edge..8-2
LSt R = T (Y 8-2

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

List of Appendices

Appendix A— Normative RefErenCeScoooviiiiiiiii A-1
Appendix B— Informative ReferenCes........cooovviiiiiiii B-1
Appendix C— GSC Data MOUEL.......ccooeiieeei e C-1
Appendix D— DoD Common Access Card (CAC) Data Modelevveeeiieeeiiiiiiiiiiiieeeee e D-1
Appendix E— C Languagde Binding for BSI SEIVICES.........uuiiiiiiiiiiiiiiiiiiieeeeeiiiiieeee e E-1
Appendix F— Java Language Binding for BSI SEIVICESccovvvieeiieeiieeeeeeeeeeeeeeee e, F-1
Appendix G— Contactless Smart Card REQUINEMENTSccoeeeiieeieeeiieeieeeeeeeeeeeeeeeeeeeee e G-1
APPENAIX H— ACTONYIMS ...t e e e e e e e e e e e e e e e e s e e e s e e n e e aa e e e naneas H-1

Xi

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Figures and Tables

Figure 2-1: The GSC-IS Architectural MOdel ..o 2-4
Figure 6-1: The Card Capability CONAINETcooiiiiiiiiieieee e 6-1
Figure 6-2: Location of the CCC Elementary File in a file system cardccceeeeeeeeeeeeneennn. 6-2
Figure 6-3: Shift Tuple Sequence (SL: shiftlevel) ... 6-14
Figure 8-1: T-BUffer FOIMAL ..ot ee e e e e e e e 8-2
Figure 8-2: V-Buffer FOrMatcoooii i 8-2
Table 3-1: BSI ACCESS METNOT TYPES ... i a e e 3-2
Table 3-2: BSI AcCeSS CONIrOl RUIE TYPES . ..uuuuuieieiieeee e e e e e s e e s e n e e s e a e aaaaaa s 3-2
Table 3-3: ACRs for Generic Container Provider Module ServiCesccceeeeeuunmmmnnnnnnnnnnnns 3-4
Table 3-4: ACRs for Cryptographic Provider Module SErVICESccoceiieeiieeiiaae e 3-4
Table 4-1: BSI RELUIMN COUESuuuiiiiieeeiiiiiiiiieieea e e e e s ettt e e e e e s s st e e e e e e e s snnbb e e e eaaeeeeessnnreeees 4-3
Table 4-2: Description Of SYMDOIS ... 4-5
Table 4-3: Mapping PSEUAO IDL 0 JAVA. .. .ccieiaeeaaeeaeee e 4-5
Table 4-4: Mapping PSeUdO IDL 0 C.....ocuuuiiiiiiiee ettt e e e 4-6
TabIE 5-1: GSC-IS APDU Sl ... cees e e e a e e e et e s e st e e s s e e s e e n s e e e s e e n s e e e aaaaaaeeas 5-1
Table 5-2: APDU Command and ReSPONSE SIUCLUIEuuiiiiieieeeeeee e 5-2
Table 5-3: APDU Command and ReSPONSE SIUCLUIE ... 5-2
Table 5-4: GeneriC File ACCESS APDUSuuiiiiiiiiiiiiiiiiiee ettt 5-3
Table 5-5: AcCEeSS CONLIOI APDUS ... 5-11
Table 5-6: Algorithm Identifiers for Authentication APDUSccuuveeiiieeiiiiiiiiiieeee e 5-12
Table 5-7: Public Key Operations APDUSccooiiiiiiei e 5-18
Table 5-8: CARD APDUS VAIUEScouuuiiiii et e et s e e e e e e e ea s e e e aaeeens 5-22
Table 5-9: GSC-IS Status CoUE RESPONSES ... cciieeeeeee e 5-23
Table 5-10: Virtual Machine Card EAge APDUSccoooeiiiiii i 5-23
Table 5-11a: SUucCeSSIUl CONAILIONSeeeiee e 5-24
Table 5-11b: General Error CONAItIONS .. .cccoeeeieee e 5-25
Table 5-12: COMMON VIM APDUScoiiiiiiiiiiiiiitiieee e sttt e e e st e e e e e e s s snibbaeeeeeeeeesaannnens 5-25
Table 5-13: ACRs assigned to the Common VM CEl.....cccoovviiiiiiiie e 5-26
Table 5-14: Applet INFOrmMation SEHNG -« ... 5-33
Table 5-15: ACR TADIE ..coiiiiiiiiiiee ettt e e e e e e e e e e e s s e bbb e e e eeeeeeesaaanes 5-33
Table 5-16: Applet/Object ACR TabI€.... ... 5-34
Table 5-17: Access Method Provider Tableccooooeoiiiiiiieeeeeee e 5-34

Xii

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 5-18: Service APPIEt TADIE.......ccoiiiiiiiiiiiiee e e e 5-36
Table 5-19: Applet/Object ACR table for a Single Objectccooveeveeiiiie, 5-36
Table 5-20: Access Method Provider Tablecccooooiiiiiiiiee e 5-37
Table 5-21: Service APPIEt TaDIE......ccioi it e e e s 5-37
Table 5-22: Generic Container VIV APDUScooiiiiiiei e 5-41
Table 5-23: Symmetric KEY VIM APDUS ... 5-44
Table 6-1: CCC FIEIAS ..oetieeiiiiiiitii ittt e e e e s s e e e e e e e e s ab b e e e e e e e e s s nnneeees 6-5
Table 6-2: Tuple BYte DESCIIPIONSuieeieeeieee e ee e eee e ee e e e e s e n s e e e e e e aaaeeas 6-8
Table 6-3: Parameter and FUNCHON COUBSiiiiiee e 6-9
Table 6-4: STAtUS TUDIESceiiiiiieiieieiie ettt et et e e e e e e e e e e e e e e s e snnbbnreeeeeeeeeaannnes 6-10
Table 6-5: Standard Status Code RESPONSESccceeveeiiiie ittt 6-10
Table 6-6: Default vs. Schlumberger DE APDUL........ccooiiiiiiiii e 6-12
Table 6-7: Tuple Creation SEOUENCE e a e e e e s e e e e e e e e e e e e e aaaeaaaeaaas 6-13
Table 6-8: Derived SeleCt DFE TUDIE. .. .uu e e n e aa e 6-13
Table 6-9: Example of Extended FUNCLiON COdEccooeeeeiieeiieee e 6-14
Table 6-10: DESCHPION COUESuuuuuuie e a e a e aaaeaas 6-15
Table E-1: BSI functions using the discovery Mmethodcooeiiviiiiiiiiee i E-2

Xiii

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

Xiv

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

1. Introduction

1.1 Background

A typical configuration for a smart card system consists of a host computer with one or more smart card
readers attached to hardware communications ports. Smart cards can be inserted into the readers, and
software running on the host computer communi cates with these cards using a protocol defined by SO
7816-4 [1SO4] and 7816-8 [1SO8]. The SO standard smart card communications protocol defines
Application Protocol Data Units (APDU) that are exchanged between smart cards and host computers.
This APDU based interface is referred to as the “virtual card edge” and the two terms are used
interchangeably.

Client applications have traditionally been designed to communicate with | SO smart cards using the
APDU protocol through low-level software drivers that provide an APDU transport mechanism between
the client application and asmart card. Smart card families can implement the APDU protocol in a
variety of ways, so client applications must have intimate knowledge of the APDU set of the smart card
they are communicating with. Thisis generally accomplished by programming a client application to
work with a specific card, since it would not be practical to design aclient application to accommodate
the different APDU sets of alarge number of smart card families.

The tight coupling between client applications and smart card APDU sets has several drawbacks.
Applications programmers must be thoroughly familiar with smart card technology and the complex
APDU protocol. If the cardsthat an application is hard coded to use become commercially unavailable,
the application must be redesigned to use different cards. Customers also have less freedom to select
different smart card products, since their applications will only work with one or a small number of
similar cards.

This Government Smart Card Interoperability Specification (GSC-1S) provides solutions to a number of
the interoperability challenges associated with smart card technology. The origina version of the GSC-IS
(version 1.0, August 2000) was developed by the GSC Interoperability Committee led by the General
Services Administration (GSA) and the National Institute of Standards and Technology (NIST), in
association with the GSA Smart Access Common Identification Card contract.

1.2 Scope, Limitations, and Applicability of the Specification

The GSC-IS defines an architectural model for interoperable smart card service provider modules,
compatible with both file system cards and virtual machine cards. Smart cards using both the T=0 and
T=1[I1SO3] communications protocols are supported. The GSC-1S includes a Basic Services Interface
(BSI), which addresses interoperability of a core set of smart card services at the interface layer between
client applications and smart card service provider modules. The GSC-1S also defines a mechanism at the
card edge layer for interoperation with smart cards that use awide variety of APDU sets, including both
file system cards and virtual machine cards.

Interoperability is not addressed for the following areas:
m Smart card initialization
m Cryptographic key management

m Communications between smart cards and card readers

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

m Communications between smart card readers and host computer systems.

1.3 Conforming to the Specification

A smart card service provider module implementation that claims conformance to the GSC-IS must
implement each of the following:

m The Architectural Model, as defined in Chapter 2

m The Access Control Model, as defined in Chapter 3

m TheBasic Services Interface, as defined in Chapter 4

m TheVirtual Card Edge Interface, as defined in Chapter 5
m The Card Capabilities Container, as defined in Chapter 6
m Container Naming, as defined in Chapter 7

m Support for both of the Container Data Models defined in Chapter 8 and the appropriate
Appendices

m Atleast onelanguage binding for BSI Services, as defined in the Appendices.

A smart card that claims conformance to the GSC-1S must support each of the following:

m TheArchitectural Model asit relates to smart cards, i.e., as defined in sections 1, 4, 5, and 6 of
Chapter 2

m The Access Control Model, as defined in Chapter 3

m Either thefile system card edge interface or the VM card edge interface, as defined in Chapter 5
m The Card Capabilities Container, as defined in Chapter 6

m Container Naming, as defined in Chapter 7

m One of the Container Data Models defined in Chapter 8 and the appropriate Appendix. The
Access Control File and associated SEIWG string defined in Appendix C are mandatory for
contact-type GSC cards, and the SEIWG container defined in Appendix G is mandatory for
contactless GSC cards.

As used in this document, the conformance keywords “ shall” and “must” (which are interchangeable)
denote mandatory features of the GSC-IS. The keyword “should” denotes a feature that is recommended
but not mandatory, while the keyword “may” denotes a feature whaose presence or absence does not
preclude conformance.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

2. Architectural Model

2.1 Overview

The GSC-IS providesinteroperability at two levels: the service call level and the card command (APDU)
level. A brief explanation of these interoperability levels follows:

m ServiceCall Level: Thislevel isconcerned with functional calls required to obtain various
services from the card (e.g., encryption, authentication, digital signatures, etc.). The GSC-I1S
addresses interoperability at thislevel by defining an Applications Programming Interface (API)
called the Basic Services Interface (BSl) that defines acommon high level model for smart card
services. The module that implements the BSI and provides an interoperable set of smart card
servicesto client applicationsis called the Service Provider Module (SPM). These services are
logically divided into three modules that provide utility, secure data storage, and cryptographic
services. Since an SPM generally will be implemented through a combination of hardware and
software, the software component of the SPM isreferred to as the Service Provider Software
(SPS).

m Card Command Level: Thislevel is concerned with the exact APDUSs (1SO4) that are sent to
the card to obtain the required service. The GSC-IS addresses interoperability at thislevel by
defining the API called the Virtual Card Edge Interface (V CEl) that consists of a card-
independent standard set of APDUSs that support the functions defined in the BSI and
implemented by the SPM.

The SPM is a combination of both these levels and it includes:

m SPS, implementing both BSI and VCEI interfaces
m Smart card reader driver

m Smart card reader

m GSC-IS conformant smart card

Certain data sets need to be available in the card to support the interoperability provided by the BSI and
VCEI. To ensurethat thereis a standard format (or schema) for storing these data sets, and to enable
uniform access and interpretation, the GSC-IS defines Data Models (DM). These Data Models provide
data portability across GSC-IS conformant card implementations, ensuring that a core set of data elements
isavailable on all cards. The storage entities for various categories of data sets are called containers. One
of these containers, the Card Capability Container (CCC), describes the differences between a smart
card’s native APDU set and the standard APDU set defined by the VCEI. An SPS retrieves a smart
card’s CCC and usesit to perform the trandlation between the VCEI and the card’' s native APDU set. The
GSC-IS accommodates any smart card whose APDU set can be mapped to the VCEI viaa CCC
definition.

The components of the GSC-IS architecture are presented in Figure 2-1 and are further described in
Sections 2.2 - 2.8. All abjects below the client application layer are components of the SPM.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Client Application

[Basic Services I nterface (BSI) Extended Service I nterface(s) (XSI)
Host
B _)

Card Reader Driver

/

___ Smart Card

SPM< Card Reader Reader

GSC-IS Compliant Smart Card

e]

Figure 2-1: The GSC-IS Architectural Model

J

2.2 Basic Services Interface Overview

All Smart Card Service Provider Modules shall implement the BSI. The BSI islogically organized into
three provider modules:

m Utility Provider Module: Provides utility services for obtaining alist of available card readers,
establishing and terminating logical connections with a smart card, etc.

m Generic Container Provider Module: Provides a unified abstraction of the storage services of
smart cards, presenting applications with a simple interface for managing generic containers of
data elementsin Tag/Length/Vaue format [1SO4].

m Cryptographic Provider Module: Provides fundamental cryptographic services such as random
number generation, authentication, and digital signature generation.

The capahilities of agiven SPM depend on the smart card available to the SPM when a client application
reguests a service through aBSlI call. In cases where aserviceis not available, the BS| call shall return an
error code indicating that the requested serviceis not available. For example, auser may insert a smart
card that does not have public key cryptographic capabilities and then perform an operation that causes a
client application to request adigital signature calculation from the associated SPM. Since the smart card
cannot provide this service, the BSI shall return a“ service not available” error code to the client
application.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

2.3 Extended Service Interfaces Overview

Because the BSI is not a complete operational interface, real world SPM implementations may support
additional functionality outside the BSI domain. Because the BSI provides an interoperable interface, it is
unable to address the varying operational requirements. Therefore, real world SPM implementations may
support additional functionality outside the BSI domain. An SPM may therefore include an Extended
Service Interface (X Sl) that provides non-interoperable, but operationally required, functions. Since XSls
are implementation and application specific, they are accommodated by the GSC-IS architectural model
but are not defined in the GSC-IS. Card initialization and cryptographic key management are examples
of functions that must currently be implemented in the XSI domain.

2.4 Virtual Card Edge Interface Overview

SO 7816-4 [1SO4] defines ahierarchical file system structure for smart cards. Smart cards that conform
to SO 7816-4 [1SO4] are therefore known as “file system” cards. The Card Operating System program
of afile system card is usually hard coded into the logic of the smart card integrated circuit during the
manufacturing process and cannot be changed thereafter.

In recent years other smart card architectures have been created that allow developers to load executable
programs onto smart cards after the cards have been manufactured. As one example, JavaCard™ [JAVA]
defines a Java Virtual Machine (VM) specification for smart card processors. Developers can load
compiled Java applets onto a smart card containing the JavaCard™ VM, programmatically changing the
behavior of the card.

A virtual machine card is one that can be extended by |oading executable programs after the card has been
manufactured. This Specification uses the term “virtual machine smart card” in the general sense. A
virtual machine smart card can theoretically be programmed to support any communications protocol,
including the APDU based protocols of the SO 7816-4 [1SO4] and 7816-8 [1SO8] standard.

The GSC-IS VCEI defines default sets of interoperable APDU level commands for both virtual machine
and file system smart cards. The SPS of an SPM shall use the information provided by a smart card’s
CCC to map that card' s native APDU set to the VCEI default set. The VCEI shall consist of:

m A card edge definition for file system cards
m A card edge definition for VM cards, composed of three providers:
— A generic container provider
— A symmetric key (SKI) cryptographic service provider
— A public key infrastructure (PKI) cryptographic service provider.
2.5 Roles of the BSI and VCEI

The service provider modules of the BS| are a higher level abstraction of the card level providers.
Standardization at the VCEI layer establishes interoperability between any GSC conformant SPS and any
GSC conformant smart card. Similarly, standardization at the BSI layer establishes interoperability
between any GSC conformant application and any GSC conformant SPS. Vendor neutrality is assured
because GSC smart cards are interchangeable at the VCEI and GSC SPSs are interchangeable at both the
BSI and VCEI.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

2.6 GSC-IS Data Model Overview

Each GSC-IS conformant smart card shall conform to a GSC-1S Data Model. GSC-IS Data Models
define the set of containers and data elements within each container for cards supporting that Data Model.
The GSC-IS defines two Data Models. the GSC Data Model (Appendix C) (formerly referred to asthe
J.8 DataModel in GSC-1Sv1.0) and the U.S. Department of Defense Common Access Card Data Model
(Appendix D). The following containers are mandatory in either Data Model:

m CCCfor contact and contactless cards and
m Access control file with SEIWG [SEIW] string for contact cards or
m SEIWG container and SEIWG [SEIW] string for contactless cards.

The remaining containers and data elements are optional. However, if an implementation requires any of
the containers and data elements defined in the Data Models, the containers and data elements must
conform to the Data Model definitions. Data Model requirements are presented in Chapter 8.

Containers are accessed through the Generic Container Provider Module of the BSI. Accessto the
containers are subject to the Access Control Rules (ACR) defined in Chapter 3.

This document uses the terms “file,” “container,” and “object” synonymoudly.

2.7 Card Capabilities Container Overview

Each GSC-IS conformant card shall carry a Card Capabilities Container. The CCC is one of the
mandatory containers that must be present in all GSC-1S Data Models. The purpose of the CCC isto
describe the differences between a given card’s APDU set and the APDU set defined by the GSC-IS
Virtual Card Edge Interface. The GSC-1S provides standard mechanisms for retrieving a CCC from a
smart card (Section 6.2). Once the CCC for a particular card is obtained, software on the host computer
(specifically, the SPS) uses this information to transate between the V CEI and the card’ s native APDU
set. Deviations from the card’s Data Model structure are represented in a CCC.

The CCC allows each GSC-1S conformant smart card to carry the information needed by the SPS to
communicate with that card. This general mechanism for dynamically translating APDU sets eliminates
the need to distribute, install, and maintain card specific APDU level drivers on host computer systems.

The rulesfor constructing avalid CCC are defined in Section 6.3. All GSC-1S smart cards shall contain a
CCC that conforms to this specification.

2.8 Service Provider Software Overview

The SPS component of an SPM shall implement the BSI and the VCEI. It isresponsible for retrieving
CCCsfrom cards, using this information to translate between the smart card’ s native APDU set and the
VCEl, and for handling the details of APDU level communications with the card. SPS implementations
work with a particular card reader driver layer that transports APDUSs between the SPS and the smart
card.

2.9 Card Reader Drivers

The GSC-IS does not address interoperability between smart card readers and host computer systems.
Severa specifications already exist in this area, including the Personal Computer Smart Card (PC/SC,

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

[PCSC]) specification and the OpenCard Framework (OCF, [OCF]). The choice of card reader driver
software is influenced to some degree by the operating environment, although PC/SC and OCF have been
ported to various operating systems.

Because card reader driver solutions are available and severa of these have been widely adopted, the
GSC-IS allows devel opers the freedom to choose any card reader driver that provides the reader level
services required by the SPSlayer including:

m Transport of “raw” (unprocessed) APDUs between the SPS layer and the smart card,
m Functionsto provide alist of available readers,
m And to establish and terminate logical connectionsto cards inserted into readers.

Proprietary card reader drivers can also be used as long as they provide the raw APDU transport and card
reader management functions required by an SPS. Some applications may have unique requirements that
mandate a special purpose card reader. For example, the configuration required by a physical access
control application may not be able to accommodate a PC/SC or OCF card reader driver layer and would
therefore require a custom card reader driver.

The decision not to include a card reader driver layer specification in the GSC-IS has important
consequences. Thisimplies a pair-wise relationship between an SPS and the card reader driver. An SPS
implementation works with a specific card reader driver and is constrained to operate with the card
readers supported by that driver. The degree of interoperability between card readers and host computer
systemsis entirely determined by the card reader driver component.

In cases where an industry standard card reader driver component is chosen, it is possible to take
advantage of existing conformance test programs and select from arange of commercially available,
conformant card readers. If aspecial purpose (proprietary) card reader driver is chosen, these options
may not be available. In some cases proprietary card reader drivers work only with proprietary card
reader designs, and may therefore require development of special purpose conformance test programs.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

2-8

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

3. Access Control Model

The smart card services and containers provided by a SPM are subject to a set of Access Control Rules
(ACR). ACRs are defined for each card service and default container when a GSC-1S conformant smart
card isinitialized. The card level service providers are responsible for enforcing these ACRs and shall
not provide a given service until the client application has fulfilled the applicable access control
requirements. The GSC-1S specifies a discovery mechanism that allows client applications to determine
the ACRs for a specific service provider or container.

It isimportant to note that an SPS acts as a transport and reformatting mechanism for the exchange of
authentication data, such as PINs and cryptograms, between client applications and smart cards. When a
client application and smart card service provider establish a security context, the primary job of the SPS
isto reformat BSI level authentication structures into APDU level VCEI structures and vice versa. The
current GSC-1S model does not include a mechanism for authenticating an SPS, and the SPSis not
responsible for enforcing ACRs.

3.1 Available Access Control Rules
The ACRs available at the BS| level are as follows:

m Always: The corresponding service can be provided without restrictions.
m Never: The corresponding service can never be provided.

m External Authenticate: The corresponding service can be provided only after aGET
CHALLENGE and subsequent EXTERNAL AUTHENTICATE APDUs.

m PIN Protected: The corresponding serviceis provided if and only if the verification code of the
PIN associated with the service has been provided in the current card session.

m PIN Always. The corresponding service can be provided only if its associated PIN code has
been verified immediately before each unique service request.

m External Authenticate or PIN: Either one of the two controls gives access to the service. This
allows for a cardholder validation when a PIN pad is available and for an external authentication
when no PIN pad isavailable. Or, this provides an authentication method when the application
cannot be trusted to perform an external authentication and to protect the external authentication

key.

m External Authenticatethen PIN: Thetwo methods must be chained successfully before access
to the service is granted. This allows the authentication of both the client application and the
user.

m External Authenticate and PIN: The two methods must be chained successfully before access
to the service is granted. Order of the methods is not important.

m PIN then External Authenticate: The PIN presentation is followed by an External
Authentication.

m Secure Channel (GP): The corresponding service can be provided only through a Secure
Channel managed by a Global Platform [GLOB] Secure Messaging layer.

m Update Once: A target object can only be updated once during its lifetime.

31

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

m Secure Channel (1SO): The corresponding service can be provided through a Secure Channel
managed by an 1SO [ISO4],[1SO8] Secure Messaging layer.

BSI-level ACRs are alogical combination of primitive access methods. The BSI-level access methods
and associated hexadecimal values are summarized in the Table 3-1. Hexadecimal values are assigned to
the unAccessMethodType member of the BS1Authenticator structure defined in Section 4.5.3.

Table 3-1: BSI Access Method Types

Access Method Type | Value | Meaning ‘
BSI_AM_XAUTH 0x02 External Authentication.
BSI1_AM_SECURE_CHANNEL_GP 0x04 Secure Channel (Global Platform)
BSI_AM_PIN 0x06 PIN code is required
BSI1_AM_SECURE_CHANNEL_1SO 0x0B Secure Channel (ISO 7816-4)

The BSI-level ACRs and associated hexadecimal values are summarized in Table 3-2. Hexadecimal
values are returned in the ACRType member of the BS1Acr structure defined in Section 4.6.3. The
BSIAcr structure is present in the members of the GCacr structure defined in Section 4.6.3 and the
CRYPTOacr strucuture defined in Section 4.7.5.

Table 3-2: BSI Access Control Rule Types

Access Control Rule Logical
Type Access Method List | Relation | vajue Meaning
(ACRType) be:’,:’/lie”
BSI ACR ALWAYS _ - 0x00 No access control rule is
- - required
BS1_ACR_NEVER — - 0x01 | Operation is never possible
BS1_ACR_XAUTH BSI_AM_XAUTH - 0x02 | External Authentication
The object method can be
BS1_AM_XAUTH, accessed either after an External
Bg :NACR—XAUTH—OR BSI1_AM_PIN OR 0x03 | Authentication or after a
— successful PIN presentation
BSI1_SECURE_CHANN | BSI_AM_SECURE_ 0x04 ﬁgct;gfm‘):ha””e' (Global
EL_GP CHANNEL_GP
BSI_ACR_PIN_ALWA | BSI_AM_PIN oxos | PIN must be verified immediately
vs —— ~ — = prior to service request
BSI1_ACR_PIN BSI_AM_PIN - 0x06 | PIN code is required
BS1_AM_XAUTH, External Authentication followed
BSI_ACR_XAUTH_TH BSI_AM_PIN AND 0x07 by a PIN presentation
EN_PIN - =
BSI_ACR_UPDATE_O _ _ 0X08 The target object _can_onl_y b_e
NCE updated once during its lifetime

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Access Control Rule Logical
Type Access Method List | Relation Meaning
(ACRType) be/ivl\vﬂie”
BSI_AM_PIN, PIN presentation followed by
BSI_ACR_PIN_THEN BS1_AM_XAUTH AND 0x09 External Authentication
_XAUTH - =
Reserved for
future use B B Ox0A | RFU
BS1_SECURE_CHANN | BSI_AM_SECURE_ — 0x0B | Secure Channel (ISO 7816-4)
EL_1SO CHANNEL_ISO
PIN presentation AND External
BS1_AM_XAUTH, Authentication in any order are
BS1_ACR_XAUTH_AN BSI AM PIN AND 0x0C required.
D_PIN - =
0x0D-
Reserved for future use — — OXEE RFU

The External Authentication method shall conform with 1SO 7816-4 [1SO4] and 7816-8 [I1SO8]. The
mandated cryptographic algorithm is DES3-ECB [DES], with a double length key-size 16 bytes and a
challenge of 8 bytes. This method is described in Section 3.3.2.

The ACR for the Secure Channel implies cryptographic operations performed at the APDU level. A pass-
through function is provided in the BSI (Section 4.5.13) to alow applications to create a secure channel
and operate inside this channel.

3.2 Determining Containers

Applications can retrieve the ACR that must be fulfilled to access a specific service or container. ACR
retrieval processes are defined for each provider module as follows:

m Utility Service Provider Module: No access control is applied.

m Generic Container Service Provider Module: ACRsfor generic container services are encoded
in the GCacr structure returned by the function gscBsiGcGetContainerProperties().

m Cryptographic Service Provider Module: ACRsfor cryptographic services are encoded in the
CRYPTOacr structure returned by the function gscBsiGetCryptoProperties().

Each of the services associated with a provider module have a different set of allowable ACRs. When a
provider moduleis created (instantiated), the module creator must assign the ACRs for each of the
services provided by the module from the set of supported ACRs, listed in Tables 3-3 and 3-4.

3-3

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 3-3: ACRs for Generic Container Provider Module Services

Service ‘ ACR supported

BSI_ACR_ALWAYS
BSI_ACR_NEVER

gscBsiGceDataCreate() BSI_ACR_PIN
BSI1_ACR_XAUTH
BSI_ACR_ALWAYS

gscBsiGecDataDelete() DRI

BS1_ACR_PIN
BS1_ACR_XAUTH
BS1_ACR_ALWAYS
gscBsiGcReadTagList() BS1_ACR_PIN
BS1_ACR_XAUTH
BS1_ACR_ALWAYS
gscBsiGcReadValue() BSI_ACR_PIN
BS1_ACR_XAUTH
BS1_ACR_ALWAYS
BS1_ACR_NEVER
gscBsiGecUpdateValue() BSI_ACR_PIN
BS1_ACR_XAUTH
BS1_ACR_UPDATE_ONCE
gscBsiGeGetContainerProperties() | BSI_ACR_ALWAYS

Table 3-4: ACRs for Cryptographic Provider Module Services

Service ‘ ACR supported

gscBsiGetChallenge() BSI_ACR_ALWAYS
BSI_ACR_ALWAYS
gscBsiSkilnternalAuthenticate() BSI_ACR_PIN
BSI_ACR_XAUTH
BSI_ACR_ALWAYS
BSI_ACR_PIN

gscBsiPkiCompute() BSI_ACR_PIN_ALWAYS
BS1_ACR_XAUTH
BS1_ACR_ALWAYS

gscBsiPkiGetCertificate() BSI_ACR_PIN
BSI_ACR_XAUTH

gscBsiGetCryptoProperties() BSI_ACR_ALWAYS

Note: When using the gscBsiPkiCompute() function for signature operation, it is highly
recommended that the implementation require BS1_ACR_PIN_ALWAYS for access control.

3.3 Establishing a Security Context
Once a client application has determined the ACR associated with a service or a container, it must
establish a security context with the card. To fulfill the ACR for a container or service, the application

builds aBS1Authenticator data structure and passesit in acall to the
gscBsiUtilAcquireContext() function.

Establishing a security context involves authentication of the partiesinvolved in the service exchange.
These parties include the user executing the client application, the client application itself, and the smart

3-4

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

card. The GSC-1S ACRs are based on three general authentication mechanisms: PIN Verification,
External Authentication, and Secure Messaging.

The External Authentication method assumes that the authentication key has been formerly distributed to
both parties (client application and smart card) in a secure way.

It isimportant to note that at the smart card level, the privileges are granted sequentially. Prior to
acquiring anew privilege, the client application shall release the previously acquired security context, if
any exists, by calling the BSI’ sfunction gscBsiUti IReleaseContext() .

Sections 3.3.1 through 3.3.3 describe typical BSI call sequences that a client application would use for
each of the three authentication mechanisms in order to acquire the context for the desired smart card
service.

3.3.1 PIN Verification

For aPIN Verification known also as Card Holder Verification (CHV), the client application would make
the following calls:

m Establishalogical connection with the card through a call to the BSI’ s function
gscBsiUtiIConnect().

m Retrievethe ACRsfor adesired card service through a call to either
gscBsiGeGetContainerProperties() or gscBsiGetCryptoProperties(). These
interface methods return the ACRs for all services available from the smart card (Sections 4.6.3
or 4.7.5, respectively). If PIN Verification is required for a particular service (e.g.,
gscBsiGcReadValue() or gscBsiPkiCompute()), the ACR returned in the GCacr or
CRYPTOacr structure for this service must be BS1_ACR_PIN.

m Cal gscBsiUtilAcquireContext() with the BS1Authenticator structures required to
satisfy the ACR for the desired smart card service. In this example, for PIN verification, the BS1
Authenticator structure shall contain the PIN value in the authvalue field and
accessMethodType set to BS1_ACR_PIN.

m Accessthe desired smart card service through subsequent BSI calls.
m Cal gscBsiUtilReleaseContext() to release the security context.

3.3.2 External Authentication

A typical BSI sequence of callsfor an External Authentication:

m Establishalogical connection with the card through a call to gscBsiUtilConnect().

m Retrievethe ACRsfor adesired card service provider through a call to either
gscBsiGeGetContainerProperties() or gscBsiGetCryptoProperties(). These
interface methods return the ACRs for all services available from the smart card (Section 4.6.3 or
Section 4.7.5 respectively). If External Authentication is required for a particular service (e.g.,
gscBsiGcReadValue() or gscBsiPkiCompute()), the ACR returned in the GCacr or
CRYPTOacr structure for this service must be BS1_ACR_XAUTH.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

3.3.3

Call gscBsiGetChal lenge() to retrieve arandom challenge from the smart card. The random
challenge is retained by the smart card for use in the subsequent verification step of the External
Authentication protocol. The client application calculates a cryptogram by encrypting the
random challenge using a symmetric External Authentication key. The client application may
need to examine the key 1DOrReference member of the appropriate ACR returned in GCacr or
CRYPTCQacr to determine which External Authentication key it should use to encrypt the random
challenge.

The client application callsthe BSI'sgscBsiUti lAcquireContext() function passing the
cryptogram computed in the previous step.

The smart card decrypts the Authenticator using its External Authentication key, and verifies that
the resulting plaintext value matches the origina random challenge value.

Access the desired smart card service through subsequent BSI calls.
Cdl gscBsiUti IReleaseContext() to release the security context.

Secure Messaging

Secure messaging involves the establishment of a secure channel between the client application and the
smart card at the APDU level. The BSI provides a pass-through call that allows aclient application to
establish adirect APDU level secure channel with a card in accordance with the Global Platform [GLOB]
or 1SO 7816-4 [1SO4]

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4. Basic Services Interface

4.1 Overview

An SPM must provide aBSl. Client applications communicate with the SPM through thisinterface. The
SPS component of the SPM is directly responsible for implementing the BSI.

This chapter defines the BSI services, using notation similar to Interface Definition Language (IDL)
which isreferred to as pseudo IDL throughout this document. The set of services consists of 23 functions
grouped into three functional modules as follows:

A Smart Card Utility Provider Module:

m gscBsiUtilAcquireContext()

m gscBsiUtilConnect()

m gscBsiUtilDisconnect()

m gscBsiUtilBeginTransaction()
m gscBsiUtilEndTransaction()

m gscBsiUtilGetVersion()

m gscBsiUtilGetCardProperties()
m gscBsiUtilGetCardStatus()

m gscBsiUtilGetExtendedErrorText()
m gscBsiUtilGetReaderList()

m gscBsiUtilPassthru(Q)

m gscBsiUtilReleaseContext()

A Smart Card Generic Container Provider Module:
m gscBsiGcDataCreate()
m gscBsiGcDatabDelete()
m gscBsiGcGetContainerProperties()
m gscBsiGcReadTagList()
m gscBsiGcReadValue()
m gscBsiGcUpdatevalue()

A Smart Card Cryptographic Provider Module:

m gscBsiGetChallenge()

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

m gscBsiSkilnternalAuthenticate()
m gscBsiPkiCompute()
m gscBsiPkiGetCertificate()

m gscBsiGetCryptoProperties()

All SPM implementations must provide the full set of 23 functions as specified in this chapter. Based on
the capabilities avail able, a given function call may return aBS1_NO_CARDSERVICE or BS1_NO
SPSSERVICE error message in case the SPM does not provide the requested service. This error message
may be returned by any BSI function that maps directly to a card-level operation, as follows:

m gscBsiUtilGetCardProperties()

m gscBsiGcecDataCreate()

m gscBsiGcecDataDelete()

m gscBsiGcGetContainerProperties()
m gscBsiGcReadTagList()

m gscBsiGcReadValue()

m gscBsiGcUpdatevalue()

m gscBsiGetChallenge()

m gscBsiSkilnternalAuthenticate()
m gscBsiPkiCompute()

m gscBsiPkiGetCertificate()

m gscBsiGetCryptoProperties()

Extensions to the BSI, in the form of an XSl (see Section 2.3), may be present in an implementation to
allow additional functionality. The functionsin an XSl shall not ater the specified behavior or semantics
of the BSI functionsin that implementation.

ACRsfor each provider module are defined in Chapter 3, Table 3-2, Table 3-3, and Table 3-4. Section
4.4 defines BSI return codes and Section 4.5 defines 23 functions of the BSI, using pseudo IDL.

4.2 Binary Data Encoding

BSI functions accept or return binary data, such as cryptograms. However, some of the BS| services may
pass or get some ASCII or ASCII hexadecimal formatted data depending on the usage. In this case, each
of the services involved must explicitly mention this and which of its parameter(s) is/are impacted.

4.3 Mandatory Cryptographic Algorithms

The following cryptographic algorithms and associated algorithm identifiers are mandatory for all GSC
smart cards. These algorithm ID values are used as parameters at the BS| level.

4-2

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

m Algorithm Identifier “Ox81”: DES3-ECB, with adouble length key-size, 16 bytes.

m Algorithm Identifier “OxA3": RSA_NO_PAD, the private key computation, Chinese Remainder.

m Algorithm Identifier “0x82": DES3-CBC, with a double length key-size, 16 bytes.

4.4 BSI| Return Codes

Table 4-1 lists al possible errors that BSI functions could return. For each function description
(Sections 4.5.3 to 4.7.5), return codes are listed in order of precedence, except for the successful return

with BSI_OK.

Label

Table 4-1: BSI Return Codes

Return Code

Hexadecimal Value

Meaning

BSI_OK 0x00 Execution completed successfully.
BS1_ACCESS_DENIED 0x01 The applicable ACR was not fulfilled.
BSI1_ACR_NOT_AVAILABLE 0x02 The specified ACR is incorrect.
BSI BAD AID 0x03 The specified Application Identifiers (AID) does
- - not exist.
BSI BAD ALGO ID 0x04 Thg specified cryptographic algorithm is not
- = - available.
BSI1_BAD_AUTH 0x05 Invalid authentication data.
BSI1_BAD_HANDLE 0x06 The specified card handle is not available.
BSI BAD PARAM 0x07 Qne or more of the specified parameters is
- = incorrect.
BS1_BAD_TAG 0x08 Invalid tag information.
BSI CARD ABSENT 0X09 The sm_art card associated with the specified card
- - handle is not present.
BSI CARD REMOVED OXOA The smart card associated with the specified card
- - handle has been removed.
BSI_NO_SPSSERVICE 0x0B The SPS does not provide the requested service.
BSI 10 ERROR OXOC Error_ _encountered during input/output of the
- - specified data.
- 0x0D RFU
BSI INSUEEICIENT BUEFER OXOE The buffer allocated by the calling application is
- - too small.
BSI NO CARDSERVICE OXOF The smart card assoqiated with the specifieq card
- - handle does not provide the requested service.
BSI NO MORE SPACE ox10 There_ is insufficient space |n the selected
- - - container to store the specified data.
BS1_PIN_BLOCKED 0x11 The PIN is blocked.
- 0x012 RFU
BSI TAG EXISTS 0x13 Th.e tag specified for a C(eate operation already
- - exists in the target container.
BSI_TIMEOUT ERROR ox14 A connection could not be established with the

smart card before the timeout value expired.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Return Code
Hexadecimal Value

Meaning

The card reader has performed a successful
authentication exchange with the smart card.

BS1_NO_TEXT_AVAILABLE 0x16 No extended error text is available.

The requested operation has generated an
unspecified error.

BS1_UNKNOWN_READER 0x18 The specified reader does not exist.

The smart card associated with the specified card
handle is under the exclusive transaction of

BSI_TERMINAL_AUTH 0x15

BS1_UNKNOWN_ERROR 0x17

BS1_SC_LOCKED 0x19 another client application (see blocking mode in
Section 4.5.6)
BS1_NOT_TRANSACTED 0x20 The current transaction has not ended.

4.5 Smart Card Utility Provider Module Interface Definition

Section 4.5.1 presents the pseudo IDL used to define the 23 functions of the BSI services.

4.5.1 Pseudo IDL Definition

Using a modified Backus-Naur notation, a definition for the pseudo IDL is presented as follows:
BSI1_IDL Definition: (BSI _Function_Unit, .)

BS1_Function_Unit:(
Function_Prototype:

(
[Return_Type], // See below for possible values
Function_Name,
[Parameters*: (
Way: {“IN” | “OUT” | “INOUT},
Parameter_Type, // See below for possible values
Parameter_Name
)
1
)
(Return_Type | Paramater_Type) : Type
Type: “unsigned long”
| “string”
| “boolean”
| “short”
| “sequence” +<Type> // represent a sequence of element of type “Type”
| “GCacr” // structure
| “GCContainerSize” // structure
| “CRYPTOacr” // structure
| “BSIAuthenticator” // structure
| “BSI1Acr” // structure

Thetypes GCacr, GCContainerSize, CRYPTOacr and BS1Authenticator are structure. The
definition of a structure is asfollows:

Struct _Definition: (Struct_Definition, .)

4-4

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Struct _Definition: (
“struct” structure_Name “{*
Struct_Parameters*:

(

Parameter_Type, // See above for possible values
Parameter_Name

)
ey

45.2 Rules

A description of the symbolsused isin Table 4-2.

Table 4-2: Description of Symbols

Symbol ‘ Meaning
is composed of
[] optional element
) includes or included in

, separates elements

element repeats unspecified number of times

{} choose one from list

| or, indicates choice of possibilities for element
value

+ element is combined with preceding element

1 remainder of line contains comments

contains a value

* number of elements is zero or several

Tables 4-3 and 4-4 are the pseudo IDL to Java and pseudo IDL to C mappings for the different types
specified above.

Table 4-3: Mapping Pseudo IDL to Java

IDL type Java type

unsigned long int

String byte[] or Java.lang.String (depending on the format : binary,
ASCII or ASCII hex.)

Boolean boolean

octet (unsigned 8 bits type) short

sequence + <Type> <Type>[] or Vector of Type

Gceacr class Gcacr

GCContainerSize class GCContainerSize

CRYPTOacr class CRYPTOacr

BSIAcr Class BSIAcr

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 4-4: Mapping Pseudo IDL to C

IDL type C type

unsigned long

unsigned long

String

unsigned char *

Boolean

boolean

octet (unsigned 8 bits type)

unsigned char

sequence + <Type>

<Type>[] (for byte see below)

sequence<byte> unsigned char *

Gceacr struct Gceacr

Gctag unsigned char
GCContainerSize struct GCContainerSize
CRYPTOacr struct CRYPTOacr
BSIAcr struct BSIAcr

String (with n characters max, null terminated) char[n]

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.3 gscBsiUtilAcquireContext()

Pur pose:

Prototype:

Parameters:

This function shall establish a session with atarget container on the smart card by
submitting the appropriate Authenticator in the BS1Authenticator structure. For
ACRs requiring external authentication (XAUTH), the authvalue field of the
BSI1Authenticator structure must contain a cryptogram calculated by encrypting a
random challenge from gscBsiGetChal lenge(). In cases where the card
acceptance device authenticates the smart card, this function returns a
BSI_TERMINAL_AUTH return code and the cryptogram is ignored.

For ACRs that require chained authentication such asBS1_ACR_PIN_AND_XAUTH,
the calling application passes in the required authenticators in multiple
BSIAuthenticator structures. Inthisexample the calling application passes a
PIN and the appropriate External Authentication cryptogram in two
BSIAuthenticator structures. The client application must set the
accessMethodType field of each BS1Authenticator structure to match the type
of authenticator contained in the structure. To satisfy an ACR of
BSI_ACR_PIN_AND_XAUTH, the application would construct a sequence of two
BS1Authenticators: one containing a PIN and one containing an External
Authentication cryptogram. The BS1Authenticator structure containing the PIN
would have an accessMethodType of BS1_AM_PIN, and the BS1Authenticator
structure containing the External Authentication cryptogram would have an
accessMethodType of BS1_AM_XAUTH.

unsigned long gscBsiUtilAcquireContext(

IN unsigned long hCard,

IN string AID,

IN sequence<BSlAuthenticator> strctAuthenticator,

IN unsigned long authNb
E
hCard: Card connection handle from gscBsiUtiIConnect().
AID: Target container AID value. The parameter shall bein

ASCII| hexadecimal format.

strctAuthenticator: A sequence of structures containing the authenticator(s)
specified by the ACR required to access avaluein the
container. Therequired list of authenticatorsis returned
by gscBsiGcGetContainerProperties(). The
calling application is responsible for alocating this
structure.

authNb: Number of authenticator structures contained in
strctAuthenticator.

The BSI1Authenticator structure is defined as follows:

struct BSIAuthenticator {
unsigned long accessMethodType;
unsigned long keylDOrReference;

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

sequence<byte> authValue;
};
Variables associated with the BS1Authenticator structure:

accessMethodType: Access Method Type (see Table 3-1 in Section 3.1).
This function does not support secure channel and will
return aBsS1_BAD_PARAM if thisfield is set to one of the
secure channel authentication methods.

keyIDOrReference: Key identifier or reference of the authenticator. Thisis
used to distinguish between multiple authenticators with
the same Access Method Type.

authValue: Authenticator, can be an external authentication

cryptogram or PIN. If the authenticator valueis NULL,
then the SPSisin charge of gathering authentication
information and authenticating to the card.

Return Codes: BS1_OK
BSI_BAD_HANDLE
BS1_BAD_AID
BS1_ACR_NOT_AVAILABLE
BSI_BAD_AUTH
BSI_CARD_REMOVED
BSI_PIN_BLOCKED
BS1_UNKNOWN_ERROR
BS1_TERMINAL_AUTH
BS1_BAD_PARAM
BS1_SC_LOCKED

4-8

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.4 gscBsiUtilConnect()

Purpose: Establish alogical connection with the smart card in a specified reader.
BSI_TIMEOUT_ERROR will be returned if a connection cannot be established within a
specified time. The timeout value is implementation dependent.

Prototype: unsigned long gscBsiUtilConnect(
IN string readerName,
OUT unsigned long hCard
)
Parameters: hCard: Card connection handle.
readerName: Name of the reader that the smart card isinserted into. If

thisfieldisaNULL pointer, the SPS shall attempt to
connect to the smart card in the first available reader, as
returned by acall to the BSI’ s function
gscBsiUtilGetReaderList(). Thereader name string
shall be stored as ASCII encoded String. (See Section 4.2)

Return Codes: BS1_OK
BS1_BAD_PARAM
BS1_UNKNOWN_READER
BS1_CARD_ABSENT
BSI_TIMEOUT_ERROR
BSI_UNKNOWN_ERROR

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

455 gscBsiUtilDisconnect()

Purpose: Terminate alogical connection to a smart card.
Prototype: unsigned long gscBsiUtilDisconnect(
IN unsigned long hCard
):
Parameters: hCard: Card connection handle from gscBsiUti IConnect().

Return Codes: BS1_OK
BS1_BAD_HANDLE
BS1_CARD_REMOVED
BS1_UNKNOWN_ERROR

4-10

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.6 gscBsiUtilIBeginTransaction()

Pur pose:

Prototype:

Parameters:

Return Codes:

This function starts an exclusive transaction with the smart card referenced by
hCard. When the transaction starts, all other applications are precluded from
accessing the smart card while the transaction is in progress. Two types of calls can
be made: a blocking transaction call and a non-blocking transaction call, with a
boolean type parameter identifying which modeis called. In the non-blocking mode,
the call will return immediately if another client has an active transaction lock. The
returned error code will be BS1_SC_LOCKED. In the blocking mode, the call will
wait indefinitely for any active transaction locks to be released. A transaction must
be completed by acall to gscBsiUtilEndTransaction().

For single-threaded BSI implementations, it can be assumed that each application
will be associated with a separate process. The same process that starts a transaction
must also complete the transaction. For multi-threaded BS| implementations, it can
be assumed that each application will be associated with a separate thread and/or
process. The same thread that starts a transaction must al'so compl ete the transaction.

If this function is called by athread that has already called
gscBsiUtilBeginTransaction() but hasnot yet called
gscBsiUtilEndTransaction(), it will return the error BS1_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should
return the error code BS1_NO_SPSSERVICE in response to acall to
gscBsiUtilBeginTransaction().

unsigned long gscBsiUtilBeginTransaction(

IN unsigned long hCard
IN boolean bIType
);
hCard: Card communication handle returned from
gscBsiUtilConnect()
bIType: Boolean specifying the type of transaction call (bI1Type
set to “true” in blocking mode. bIType set to “false” in
non-blocking mode).
BS1_OK

BSI1_BAD_HANDLE
BS1_UNKNOWN_ERROR
BSI_SC_LOCKED
BS1_NOT_TRANSACTED
BS1_NO_SPSSERVICE

4-11

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.7 gscBsiUtiIEndTransaction()

Pur pose:

Prototype:

Parameters:

Return Codes:

This function ends a previously started transaction, allowing other blocked
applications to begin or resume interactions with the card.

If thisfunction is called by athread that has not yet called
gscBsiUtilBeginTransaction(), it will return the error
BSI_NOT_TRANSACTED.

If the SPS does not support transaction locking, it should return the error code
BSI_NO_SPSSERVICE inresponse to acall to gscBsiUti lEndTransaction().

unsigned long gscBsiUtilEndTransaction(

IN unsigned long hCard
R
hCard: Card communication handle returned from
gscBsiUtilConnect().-
BSI_OK

BS1_BAD_HANDLE
BS1_UNKNOWN_ERROR
BSI1_NOT_TRANSACTED
BS1_NO_SPSSERVICE

4-12

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.8 gscBsiUtilGetVersion()

Purpose: Returns the BSI implementation version.
Prototype: unsigned long gscBsiUtilGetVersion(
INOUT string version
):
Parameters: version: The BSI and SPS version formatted as

“major,minor,revision,build_number”. The valuefor an
SPS conformant with this version of the GSC-ISis
“2,1,0,<build number>". The build number field is
vendor/implementation dependent. The version name
string shall be stored as ASCII encoded String. (See
Section 4.2)

Return Codes: BS1 _OK
BS1_INSUFFICIENT_BUFFER
BSI1_UNKNOWN_ERROR

4-13

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.9 gscBsiUtilGetCardProperties()

Pur pose:

Prototype:

Parameters:

Return Codes:

Retrieves Card Capability Container ID and capability information for the smart card.

unsigned long gscBsiUtilGetCardProperties(
IN unsigned long hCard,
INOUT sequence<byte> CCCUniquelD,
OUT unsigned long cardCapability

E
hCard: Card connection handle from gscBsiUti IConnect().
CCCUniquelD: Buffer for the Card Capability Container ID.
cardCapability: Bit mask value defining the providers supported by the
smart card. The bit masks represent the Generic
Container Data Model, the Symmetric Key Interface,
and the Public Key Interface providers respectively:
#define BSI1_GCCDM 0x00000001
#define BSI1_SKI 0x00000002
#define BSI1_PKI 0x00000004
BSI1_OK

BS1_BAD_HANDLE
BS1_CARD_REMOVED
BSI_INSUFFICIENT_BUFFER
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR
BS1_SC_LOCKED

4-14

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.10 gscBsiUtilGetCardStatus()

Purpose: Checks whether a given card handle is associated with a smart card that is inserted
into a powered up reader.

Prototype: unsigned long gscBsiUtilGetCardStatus(
IN unsigned long hCard
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().

Return Codes: BS1 _OK
BSI_BAD_HANDLE
BS1_CARD_REMOVED
BSI_UNKNOWN_ERROR

4-15

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.11 gscBsiUtilGetExtendedErrorText()

Pur pose:

Prototype:

Parameters:

Return Codes:

When aBSlI function call returns an error, an application can make a subsequent call
gscBsiUti IGetExtendedErrorText to receive additional error information
from the card reader driver layer, if available. Since the GSC-IS architecture
accommodates different card reader driver layers, the error text information will be
dependent on the card reader driver layer used in a particular implementation. This
function must be called immediately after the error has occurred.

unsigned long gscBsiUtilGetExtendedErrorText(

IN unsigned long hCard,
OUT string errorText
)
hCard: Card connection handle from gscBsiUti IConnect() .
errorText: A fixed length buffer containing an implementation
specific error text string. The text string has a maximum
length of 255 characters. The calling application must
alocate a buffer of 255 bytes. If an extended error text
string is not available, thisfunction returnsa NULL
string and the return code BS1_NO_TEXT_AVAILABLE.
The error text string shall be stored as ASCII encoded
String. (See Section 4.2)
BSI_OK

BS1_BAD_HANDLE
BSI_NO_TEXT_AVAILABLE
BS1_UNKNOWN_ERROR

4-16

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.12 gscBsiUtilGetReaderList()

Purpose: Retrieves thelist of available readers.
Prototype: unsigned long gscBsiUtilGetReaderList(
INOUT sequence<string> readerList
):
Parameters: readerlList: Reader list buffer. Thereader list isreturned as a multi-

string. Thelist of available readers shall be stored as
ASCII encoded String. (See Section 4.2)

Return Codes: BS1 _OK
BSI_INSUFFICIENT_BUFFER
BSI1_UNKNOWN_ERROR

4-17

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.13 gscBsiUtilPassthru()

Pur pose:

Prototype:

Parameters:

Return Codes:

Allows aclient application to send a“raw” 1SO 7816-4 [1SO4] APDU through the
BSI directly to the smart card and receive the APDU-level response.

unsigned long gscBsiUtilPassthru(

IN unsigned long hCard,
IN sequence<byte> cardCommand,
INOUT sequence<byte> cardResponse
E
hCard: Card connection handle from gscBsiUti IConnect().
cardCommand: The APDU to be sent to the smart card. That parameter
must bein ASCII hexadecimal format.
cardResponse: Pre-allocated buffer for the APDU response from the
smart card. The response must include the status bytes
SW1 and SW2 returned by the smart card. If the size of
the buffer isinsufficient, the SPS shall return truncated
response data and the return code
BSI_INSUFFICIENT_BUFFER. That parameter must
bein ASCII hexadecimal format.
BSI_OK

BS1_BAD_HANDLE
BS1_BAD_PARAM
BSI_INSUFFICIENT BUFFER
BS1_CARD_REMOVED
BS1_UNKNOWN_ERROR
BSI_SC_LOCKED

4-18

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.14 gscBsiUtilIReleaseContext()

Purpose: Terminate a session with the target container on the smart card.
Prototype: unsigned long gscBsiUtilReleaseContext(
IN unsigned long hCard,
IN sequence<byte> AID
R
Parameters: hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The AID shall be stored as

an ASCII hexadecimal string.

Return Codes: BS1_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BSI1_CARD_REMOVED
BSI1_UNKNOWN_ERROR
BS1_SC_LOCKED

4-19

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6 Smart Card Generic Container Provider Module Interface Definition

4.6.1 gscBsiGcDataCreate()

Purpose: Create anew dataitemin {Tag, Length, Value} format in the selected container.
Prototype: unsigned long gscBsiGcDataCreate(
IN unsigned long hCard,
IN string AID,
IN octet tag,
IN sequence<byte> value
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.
tag: Tag of dataitem to store.
value: Data valueto store.

Return Codes: BS1_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_PARAM
BSI1_CARD_REMOVED
BSI1_NO_CARDSERVICE
BSI_ACCESS_DENIED
BSI_NO_MORE_SPACE
BS1_TAG_EXISTS
BS1_10_ERROR
BSI1_UNKNOWN_ERROR
BSI_SC_LOCKED

4-20

4.6.2 gscBsiGcDataDelete()

Pur pose:

Prototype:

Parameters:

Return Codes:

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Delete the data item associated with the tag value in the specified container.

unsigned long gscBsiGcDataDelete(

IN unsigned long

IN string
IN octet

):
hCard:

AlD:

tag:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_TAG
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BSI_SC_LOCKED
BSI1_ACCESS_DENIED
BSI1_10_ERROR
BS1_UNKNOWN_ERROR

hCard,
AID,
tag

Card connection handle from gscBsiUti IConnect().

Target container AID value. The parameter shall bein
ASCII hexadecimal format.

Tag of dataitem to delete.

4-21

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.3 gscBsiGcGetContainerProperties()

Purpose: Retrieves the properties of the specified container.
Prototype: unsigned long gscBsiGcGetContainerProperties(
IN unsigned long hCard,
IN string AlD,
OUT GCacr strctGCacr,
OUT GCContainerSize strctContainerSizes,
OUT string containerVersion
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.
strctGCacr: Structure indicating access control conditions for all

struct GCacr {
BSIAcr
BSIAcr
BSI1Acr
BSIAcr
BSIAcr

3

struct BSIAcr {
unsigned long
unsigned long
unsigned long
unsigned long

¥

strctContainerSizes:

operations. The range of possible values for the
members of this structure is defined in Table 3-2
(Section 3.1). The allowable ACRs for each function are
listed in Table 3-3 (Section 3.2). keyl DOr Ref er ence
contains the key identifier or reference for each access
method contained in the ACR in order of appearance.
aut hNo isthe number of access methods logically
combined inthe ACR. ACRID is RFU and must be
NULL (0x00).

createACR;
deleteACR;
readTagListACR;
readValueACR;
updateValueACR;

ACRType;
keylDOrReference[MaxNbAM] ;
AuthNb;

ACRID;

For Virtual Machine cards, the size (in bytes) of the
container specified by AID. maxNbDataltems isthe
size of the T-Buffer, and maxvValueStorageSize isthe
size of the V-Buffer. For file system cards than cannot
calculate these values, both fields of this structure will

be set to 0.

struct GCContainerSize {

unsigned long
unsigned long

maxNbDatal tems;
maxValueStorageSize;

4-22

Return Codes:

}

containerVersion:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Version of the container. The format of thisvalueis
application dependent. In cases where the smart card
cannot return a container version, this byte sequence will
be empty.

4-23

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.4 gscBsiGcReadTagList()

Pur pose:

Prototype:

Parameters:

Return Codes:

Return the list of tags in the selected container.

unsigned long gscBsiGcReadTaglList(

IN unsigned long hCard,
IN string AlD,
INOUT sequence<octet> tagArray
)
hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.
tagArray: An array containing the list of tags for the selected
container.
BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID

BS1_CARD_REMOVED
BSI1_SC_LOCKED
BS1_NO_CARDSERVICE
BS1_ACCESS_DENIED
BSI_INSUFFICIENT BUFFER
BS1_UNKNOWN_ERROR

4-24

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.5 gscBsiGcReadValue()

Purpose: Returns the Value associated with the specified Tag.
Prototype: unsigned long gscBsiGcReadValue(
IN unsigned long hCard,
IN string AlD,
IN octet tag,
INOUT sequence<byte> value
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.
tag: Tag value of data item to read.
value: Value associated with the specified tag. The client

application must allocate the buffer.

Return Codes: BS1_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_TAG
BSI1_CARD_REMOVED
BSI_SC_LOCKED
BSI1_NO_CARDSERVICE
BSI_ACCESS_DENIED
BS1_INSUFFICIENT_BUFFER
BS1_10_ERROR
BSI1_UNKNOWN_ERROR

4-25

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.6 gscBsiGcUpdateValue()

Pur pose:

Prototype:

Parameters:

Return Codes:

Updates the Value associated with the specified Tag.

unsigned long gscBsiGcUpdateValue(

IN unsigned long
IN string
IN octet

)

hCard:

IN sequence<byte>

AlD:

tag:
value:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_PARAM
BS1_BAD_TAG
BSI1_CARD_REMOVED
BSI_SC_LOCKED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI1_NO_MORE_SPACE
BSI1_10_ERROR
BS1_UNKNOWN_ERROR

hCard,
AID,
tag,
value

Card connection handle from gscBsiUti IConnect().

Target container AID value. The parameter shall bein
ASCII hexadecimal format.

Tag of dataitem to update.

New Value of the data item.

4-26

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.7 Smart Card Cryptographic Provider Module Interface Definition

4.7.1 gscBsiGetChallenge()

Purpose:

Prototype:

Parameters:

Return Codes:

Retrieves arandomly generated challenge from the smart card as the first step of a
challenge-response authentication protocol between the client application and the
smart card. The client subsequently encrypts the challenge using a symmetric key
and returns the encrypted random challenge to the smart card through a call to
gscBsiUtilAcquireContext() inthe authvalue field of a
BSI1Authenticator structure.

unsigned long gscBsiGetChallenge(

IN unsigned long hCard,
IN string AID,
INOUT sequence<byte> challenge
):
hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.
challenge: Random challenge returned from the smart card.
BS1_OK
BS1_BAD_HANDLE
BSI_BAD_AID

BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_NO_CARDSERVICE
BSI_INSUFFICIENT BUFFER
BS1_UNKNOWN_ERROR

4-27

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.7.2 gscBsiSkilnternalAuthenticate()

Pur pose:

Prototype:

Parameters:

Return Codes:

Computes a symmetric key cryptogram in response to a challenge. In cases where
the card reader authenticates the smart card, this function does not return a
cryptogram. Inthese casesaBS1_TERMINAL_AUTH will be returned if the card
reader successfully authenticates the smart card. BS1_ACCESS_DENIED isreturned
if the card reader fails to authenticate the smart card.

unsigned long gscBsiSkilnternalAuthenticate(

IN unsigned long
IN string

IN octet

IN sequence<byte>

hCard,
AID,
algolD,
challenge,

INOUT sequence<byte> cryptogram

)
hCard:

AlD:

algolD:

challenge:

cryptogram:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_PARAM
BS1_BAD_ALGO_ID
BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BS1_TERMINAL_AUTH

Card connection handle from gscBsiUti IConnect().

SKI provider module AID value. The parameter shall be
in ASCII hexadecimal format.

| dentifies the cryptographic algorithm that the smart card
must use to encrypt the challenge. All conformant
implementations shall, at a minimum, support DES3-
ECB (Algorithm Identifier Ox81) and DES3-CBC
(Algorithm Identifier 0x82). Implementations may
optionally support other cryptographic algorithms.

Challenge generated by the client application and
submitted to the smart card.

The cryptogram computed by the smart card.

BSI_INSUFFICIENT_BUFFER

BS1_UNKNOWN_ERROR

4-28

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.7.3 gscBsiPkiCompute()

Purpose: Performs a private key computation on the message digest using the private key
associated with the specified AID.
Prototype: unsigned long gscBsiPkiCompute(
IN unsigned long hCard,
IN string AID,
IN octet algolD,
IN sequence<byte> message,
INOUT sequence<byte> result
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().
AID: PKI provider module AID value. The parameter shall be
in ASCII hexadecimal format.
algolD: I dentifies the cryptographic algorithm that will be used
to generate the signature. All conformant
implementations shall, at a minimum, support
RSA_NO_PAD (Algorithm Identifier OXA3).
Implementations may optionally support other
agorithms.
message: The message digest to be signed.
result: Buffer containing the signature.

Return Codes: BS1 _OK
BSI_BAD_HANDLE
BSI_BAD_AID
BS1_BAD_PARAM
BS1_BAD_ALGO_ID
BSI_CARD_REMOVED
BSI_SC_LOCKED
BSI_ACCESS_DENIED
BSI1_NO_CARDSERVICE
BS1_INSUFFICIENT_BUFFER
BSI_UNKNOWN_ERROR

4-29

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.7.4 gscBsiPkiGetCertificate()

Pur pose:

Prototype:

Parameters:

Return Codes:

Reads the certificate from the smart card.

unsigned long gscBsiPkiGetCertificate(

IN unsigned long hCard,
IN string AlD,
INOUT sequence<byte> Certificate
)
hCard: Card connection handle from gscBsiUti IConnect().
AID: PKI provider module AID value. The parameter shall be
in ASCII hexadecimal format.
certificate: Buffer containing the certificate.
BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID

BS1_CARD_REMOVED
BSI_SC_LOCKED
BSI1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI1_10_ERROR
BSI_INSUFFICIENT BUFFER
BS1_UNKNOWN_ERROR

4-30

4.7.5 gscBsiGetCryptoProperties()

Pur pose:

Prototype:

Parameters:

Return Codes:

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Retrieves the Access Control Rules associated with the PKI provider module.

unsigned long gscBsiGetCryptoProperties(

IN unsigned long

IN string
OUT CRYPTOacr

)

hCard:

OUT unsigned long

AlD:

strctCRYPTOacr:

struct CRYPTOacr {
BSIAcr
BSIAcr
BSIAcr
BSIAcr
BSIAcr
BSIAcr
BSIAcr
BSIAcr

};
keylLen:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

hCard,

AID,
strctCRYPTOacr,
keyLen

Card connection handle from gscBsiUti IConnect().

AID of the PKI provider. The parameter shall bein
ASCII hexadecimal format.

Structure indicating access control conditions for all
operations. The BSI Acr structure is defined in Section
4.6.3. Therange of possible values for the members of
this structure are defined in Table 3-2 (Section 3.1), and
the allowable ACRs for each function in Table 3-4
(Section 3.2). keyl DOr Ref er ence contains the key
identifier or reference for each access method contained
inthe ACR in order of appearance. aut hNb isthe
number of access methods logically combined in the
ACR. ACRID isRFU and must be NULL (0x00) in this
version. Note that ther eadVal ue ACR member maps to
thegscBsi Pki Get Certificate() function.

getChallengeACR;
internalAuthenticateACR;
pkiComputeACR;
createACR;

deleteACR;
readTagListACR;
readValueACR;
updateValueACR;

Length in bits of the private key managed by the PK
provider.

4-31

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

4-32

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5. Virtual Card Edge Interface

The Virtual Card Edge Interface includes two sets of APDU commands: (1) an SO 7816-4 [ISO4] and
7816-8 [1SO8] conformant GSC-1S APDU set for use in conformant file system cards, and (2) a set of
VM APDUsfor usein VM cards. The card edge also consists of the CCC, which isafile located on each
conformant smart card, and the GSC-I1S APDU mapping mechanism.

The GSC-IS I SO-conformant APDU set can be implemented directly by conformant cards (such asin a
conformant file system card or asaVM card applet). It isexpected that some file system smart cards may
use native APDU instruction sets that will differ from the GSC-IS APDU set. In those cases, an SPS
must modify the ADPU set such that it conforms to the smart card’s native APDU set. Thisis done using
the GSC-1S APDU mapping mechanism described in Section 5.2 and in Chapter 6.

Sections 5.1 through 5.3 describe the GSC-1S APDU set, overview information on the procedures for
mapping this APDU set to smart card-specific APDU sets, and the APDUs for VM cards only. Chapter 6
provides details on the rules and procedures for APDU trand ations according to the CCC grammar.

5.1 GSC-IS ISO Conformant APDUs

Table 5-1 shows the GSC-I1S APDU set for file system and VM cards. The APDUSs are conformant with
SO 7816-4 [1SO4] and 7816-8 [I SO8], however some values have been defined for cryptogram lengths
and cryptographic algorithm identifiers. Additional behavior for the APDUs would be described in a
smart card’s CCC tuples using the descriptor code mechanisms. Support for secure messaging is not
provided in this APDU set; as described in Section 3.3.3, secure messaging is implemented viathe
gscBsiUti IPassthru() mechanism in accordance with the Global Platform [GLOB] or SO 7816-4
[1SO4].

Table 5-1: GSC-IS APDU Set

GSC-IS APDU Set

GET RESPONSE

READ BINARY

SELECT DF

Generic File Access

APDUSs SELECT EF UNDER SELECTED DF

SELECT FILE

SELECT MASTER FILE (Root)

UPDATE BINARY

EXTERNAL AUTHENTICATE

GET CHALLENGE
Access Control APDUs

INTERNAL AUTHENTICATE

VERIFY

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

GSC-IS APDU Set

MANAGE SECURITY ENVIRONMENT

Public Key Operations
APDUs

PERFORM SECURITY OPERATION

The APDUs are divided into three categories: Generic File Access, Access Control, and Public Key
Operations. The ADPU commands and responses are structured as follows:

Table 5-2: APDU Command and Response Structure

Command APDU

CLA INS P1 P2 L¢ Data Field Le

Response APDU

Response Swi SwW2

The terms described in Table 5-3 are used throughout this section.

Table 5-3: APDU Command and Response Structure

CLA Class byte
Data Field String of bytes sent in the data field of the command
FC Function code, used in the CCC grammar to identify the

default APDU that is being mapped (see Chapter 6 for
detailed information)

L¢ Number of bytes present in data field of the command

Le Maximum number of bytes expected in the data field of the
response to the command

INS Instruction byte; ISO 7816 defines a set of common
commands, e.g., ‘B0’ is Read Binary

P1-P2 Instruction parameter 1 and 2

Response String of bytes received in the data field of the response

SW1 Command processing status, i.e., the return code from the
smart card

SW2 Command processing qualifier, supplies further information on
SW1

5.1.1 Generic File Access APDUs

The APDUs in Table 5-4 are used to perform basic file access functions.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 5-4. Generic File Access APDUs

Generic File Access APDUs

Card Function

0x07 | GET RESPONSE | 0x00 | 0xCO | 0x00 | ox00 | - - Le
0x02 | READ BINARY 0x00 | oxBO | OffH | offiL | - - Le
0x00
0x01 | SELECT DF 0x00 | OxA4 | 0x01 | or | Ox02 | FilelD 2bytes) | -
0x0C
SELECT EF FILE 0x00
0xOD | UNDER 0x00 | OxA4 | 0x02 | or | 0x02 | FileID (2bytes) | -
SELECTED DF 0x0C
ox00. | 0X00
O0XOC | SELECT FILE 0X00 | OxA4 or | 0x02 | FilelD 2bytes) | -
0x03
0x0C
0x00
oxoE | SELECTMASTER | 5,00 | oxa4 | 0x03 | or | 0x02 | FileID 2 bytes) | -
FILE (Root)
0x0C
0x03 | UPDATE BINARY | Ox00 | OxD6 | OfffH | OffiL | L. | DatatoUpdate | -

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.1 Get Response APDU

This APDU is used to read smart card results available from the completion of the previously executed
APDU.

Command Message

Function Code 0x07

CLA 0x00

INS 0xC0

P1 0x00

P2 0x00

L¢ Empty

Data Field Empty

Le Number of bytes to read in response

Response Message

Data Field returned in the Response M essage

If theimmediately preceding APDU has indicated that additional data is available, the data field
of animmediately following Get Response APDU will contain this data.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning
61 XX Normal processing, XX still available to read with subsequent Get
Response
62 81 Part of returned data may be corrupted
67 00 Wrong length (incorrect L. field)
6A 86 Incorrect parameters P1-P2
6C XX Wrong length (wrong L. field; XX indicates the exact length)
90 00 Successful execution

5-4

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.2 Read Binary APDU

This APDU is used to read the currently selected transparent file. All access control operations necessary
for reading the file must be completed before using this APDU.

Command Message

Function Code 0x02

CLA 0x00

INS 0xBO

P1 High-order byte of 2-byte offset
P2 Low-order byte of 2-byte offset
L¢ Empty

Data Field Empty

Le Number of bytes to read

Response Message

Data Field returned in the Response M essage

L. number of bytes followed by the two-byte processing state.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning
62 81 Part of returned data may be corrupted
62 82 End of file reached before reading L. bytes
67 00 Wrong length (wrong L. field)
69 81 Command incompatible with file structure
69 82 Security status not satisfied
69 86 Command not allowed (no current EF)
6A 81 Function not supported
6A 82 File not found
6B 00 Wrong parameters (offset outside the EF)
6C XX Wrong length (wrong L field; XX indicates the exact length)
90 00 Successful execution

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.3 SELECT DF APDU

Sets the currently selected dedicated file to a dedicated file contained in the currently selected dedicated
file.

Command Message

Function Code 0x01

CLA 0x00

INS 0xA4

P1 0x01 - Select child DF of current DF

P2 0x00 for response required, 0x0C for no response required
Lc 0x02

Data Field 2-byte File Identifier

Le Number of bytes returned

Response Message

Data Field returned in the Response M essage

If P2 isset to 0x00, dataiis returned as per 1SO 7816-4 [ISO4]. If P2 is set to 0xOC, no datais
returned.

Processing State returned in the Response M essage

Swi SW2 Meaning
62 83 Selected file deactivated
62 84 File control information not formatted according to ISO 7816-4.
6A 81 Function not supported
6A 82 File not found
6A 86 Incorrect parameters P1-P2
6A 87 L. inconsistent with P1-P2
90 00 Successful execution

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.3.1 Select EF Under Selected DF APDU
This APDU selects an Elementary File under the currently selected DF.

Command Message

Function Code 0x0D

CLA 0x00

INS 0xA4

P1 0x02 - Select child EF of current DF

P2 0x00 for response required, 0xOC for no response required
Lc 0x02

Data Field 2-byte File Identifier

Le Number of bytes returned

Response Message
Data Field returned in the Response M essage

If P2is set to 0x00, datais returned as per SO 7816-4 [ISO4]. If P2isset to OxOC, no datais
returned.

Processing State returned in the Response M essage

Swi ‘ SwW2 ‘ Meaning

62 83 Selected file deactivated

62 84 File (_:ontrol information not formatted according to 1ISO 7816-4,
Section 5.1.5

6A 81 Function not supported

6A 82 File not found

6A 86 Incorrect parameters P1-P2

6A 87 L¢ inconsistent with P1-P2

90 00 Successful execution

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.4 Select File APDU
This APDU works as described in 1SO 7816-4 [1SO4] to select the master file, a DF, or an EF.

Command Message

Function Code 0x0C

CLA 0x00

INS 0xA4

P1 See below

P2 0x00 for response required, 0xOC for no response required

L¢ Number of bytes in File Identifier, i.e., 2

Data Field File Identifier

Le Empty

P1: 0x00 Explicit selection with Data Field; Datafield must contain

avalid File Identifier

0x01 Select child DF of current DF; Data Field must contain
avalid File Identifier

0x02 Select child EF of current DF; Data Field must contain
avalid File |dentifier

0x03 Select parent DF of current DF; empty Data Field

Response Message
Data Field returned in the Response M essage

If P2is set to 0x00, dataiis returned as per SO 7816-4 [ISO4]. If P2 isset to OxOC, no datais
returned.

Processing State returned in the Response M essage

Swi ‘ SwW2 ‘ Meaning
62 83 Selected file deactivated
62 84 FCI not formatted according to ISO 7816-4 Section 5.1.5
6A 81 Function not supported
6A 82 File not found
6A 86 Incorrect parameters P1-P2
6A 87 L¢ inconsistent with P1-P2
90 00 Successful execution

5-8

5.1.1.5 Select Master File APDU

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

This APDU selects the Master File or the root of afile system card directory structure.

Command Message

Function Code O0xO0E

CLA 0x00

INS 0xA4

P1 0x03 - Select MF

P2 0x00 for response required, 0xOC for no response required
Lc 0x02

Data Field File Identifier

Le Empty

Response Message

Data Field returned in the Response M essage

If P2is set to 0x00, datais returned as per SO 7816-4 [ISO4]. If P2isset to OxOC, no datais

returned.

Processing State returned in the Response M essage

Swi ‘ SwW2 ‘ Meaning
62 83 Selected file deactivated
62 84 FCI not formatted according to ISO 7816-4 Section 5.1.5
6A 81 Function not supported
6A 82 File not found
6A 86 Incorrect parameters P1-P2
6A 87 L¢ inconsistent with P1-P2
90 00 Successful execution

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.6 Update Binary APDU

This APDU is used to update the currently selected transparent file. All access control operations
necessary for writing to the selected file must be completed before using this APDU.

Command Message

Function Code 0x03

CLA 0x00

INS 0xD6

P1 High-order byte of 2-byte offset

P2 Low-order byte of 2-byte offset

Lc Number of bytes to update

Data Field New data to be used to replace existing data
Le Empty

Response Message
Data Field returned in the Response M essage
Empty.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning
63 CX Successful updating after X retries, X=0 means no counter provided
65 81 Memory failure (unsuccessful updating)
67 00 Wrong length (wrong Lc field)

69 81 Command incompatible with file structure
69 82 Security status not satisfied

69 86 Command not allowed (no current EF)
6A 81 Function not supported

6A 82 File not found

6B 00 Wrong parameters (offset outside the EF)
90 00 Successful execution

5-10

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.2 Access Control APDUs
Table 5-5 shows the Access Control APDU set for file system and VM cards. The Access Control

APDUs assume that the default cryptographic agorithm is DES3-ECB, with a double length key-size, 16
bytes.

Table 5-5: Access Control APDUs

Access Control APDUs

Card Function

EXTERNAL
Ox0A AUTHENTICATE 0x00 0x82 | AlgID | Key# Lc Cryptogram -
0x05 | GET CHALLENGE 0x00 0x84 0x00 0x00 — — Le
INTERNAL
0x09 AUTHENTICATE 0x00 0x88 | AlgID | Key # Lc Challenge Le
0x08 | VERIFY 0x00 | 0x20 | O0x00 | CHV | Le A”thfjr:t';a“o” -

Various smart cards perform external and internal authentication in similar but slightly different ways.
The general methods used by the default GSC-1S APDU set are described below. To change the syntax
and behavior of the default APDUS, the appropriate descriptor codes can be used in conjunction with
command and response code tuplesin the CCC as described in Chapter 6.

External Authentication Method:

1. Theclient application and the smart card share a secret key; the smart card may storethe key in a
key file.

2. The SPSinstructs the smart card to issue an 8-byte challenge viathe GET CHALLENGE APDU;
the smart card returns the challenge to the SPS.

3. Theclient application encrypts the challenge with its secret key to produce a cryptogram.

4. The SPS sends the cryptogram to the smart card and possibly the key number viathe EXTERNAL
AUTHENTICATE APDU.

5. The smart card accesses the specified secret key, its saved copy of the challenge, and computes
the same cryptogram and returns a status code to the SPS.

6. If the status code indicates that the cryptograms match, external authentication is successful.
Internal Authentication Method:
Step 1: PIN authentication

1. Theclient application and the smart card share a PIN; the smart card may storethe PIN in a
PIN file.

2. The SPS sends the PIN and the PIN number to the smart card viathe VERIFY APDU.

5-11

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

3. Thesmart card accesses the specified PIN, comparesit to the client application’s PIN, and
returns a status code to the SPS.

4. If the status code indicates that the PINs match, the smart card will permit the internal
authentication to proceed.

Step 2: Internal Authentication

1. Theclient application and the smart card share a secret key; the smart card may store the
key in akey file.

2. Theclient application computes an 8-byte challenge and sends this to the smart card along
with the key number viathe INTERNAL AUTHENTICATION APDU.

3. Thesmart card accesses the specified secret key, the challenge, and computes the same
cryptogram.

4. The SPSretrieves the cryptogram in the response to the INTERNAL AUTHENTICATION
APDU.

5. If the cryptograms match, internal authentication is successful.
Algorithm Identifiers for EXTERNAL and INTERNAL AUTHENTICATE APDUs:

SO 7816-4 [1SO4] does not define algorithm identifiers for EXTERNAL and INTERNAL AUTHENTICATE,
therefore this specification defines them in Table 5-6. If asmart card does not use the algorithm
identifiers defined in Table 5-6, then the appropriate definitions of the EXTERNAL and INTERNAL
AUTHENTICATE APDUsin the CCC command tupleswill be required. If the smart card supports
multiple cryptographic algorithms for this command, then successive tuples can be used to identify all the
possible cryptographic algorithms and their corresponding P1 values.

Table 5-6: Algorithm Identifiers for Authentication APDUs

Algorithm Identifier ‘ Algorithm-Mode ‘ Key Length in Bits
0x00 Triple DES-ECB 128
0x01 Triple DES-CBC 128
0x02 DES-ECB 64
0x03 DES-CBC 64
0x04 RSA 512
0x05 RSA 768
0x06 RSA 1024
0x07 (Reserved for RSA 2048) (2048)
0x08 AES-ECB 128
0x09 AES-CBC 128
O0x0A AES-ECB 192
0x0B AES-CBC 192
0x0C AES-ECB 256
0x0D AES-CBC 256

5-12

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Algorithm Identifier ‘ Algorithm-Mode ‘ Key Length in Bits
O0xO0E RFU -
OxOF RFU -

NOTE: High nibble of the Algorithm Identifier shall be zero.

5-13

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.2.1 External Authenticate APDU

This APDU is used in conjunction with the GET CHALLENGE APDU to authenticate a client application
to the smart card. GET CHALLENGE would be issued first to cause the smart card to issue arandom
number, i.e., the challenge. The client application would encrypt the challenge and send the resultant
cryptogram to the smart card viathe EXTERNAL AUTHENTICATE APDU. The smart card would then
decrypt it using the same algorithm as the client application and compare it to itsinternally stored copy of
the challenge. If the cryptograms match, the client application is authenticated to the smart card. If the
cryptograms do not match, the challenge is no longer valid.

Command Message

Function Code 0x0A

CLA 0x00

INS 0x82

P1 Algorithm Identifier — see Table 5-6

P2 0x00 for default key, 0x01 to 0x30 for key number
Lc Length of data field

Data Field Cryptogram

Le Empty

Response Message
Data Field returned in the Response M essage
Empty.

Processing State returned in the Response M essage

Swi ‘ SwW2 ‘ Meaning
63 00 No information given (Authentication failed)
63 CX Authentication failed; X indicated number of further allowed retries
67 00 Wrong length (the Lc field is incorrect)
69 83 Authentication method blocked
69 84 Referenced data deactivated
69 85 Conditions of use not satisfied (the command is not allowed in this
context)
6A 86 Incorrect parameters P1-P2
6A 88 Referenced data not found
90 00 Successful execution

5-14

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.2.2 Get Challenge APDU

This APDU is used to cause the smart card to generate a cryptographic challenge, e.g., arandom number,
for use in the subsequent security related procedure such as EXTERNAL AUTHENTICATE. The smart card
saves a copy of the challenge internally until the completion of the security related procedure or an error
occurs.

The challengeisvalid only for the next APDU in the same card session.

Command Message

Function Code 0x05

CLA 0x00

INS 0x84

P1 0x00

P2 0x00

L¢ Empty

Data Field Empty

Le Length in bytes of expected random challenge

Response Message

Data Field returned in the Response M essage

If the APDU result indicates success, L, number of bytes will be available to read from the smart
card, i.e., the 8-byte challenge.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning
6A 81 Function not supported
6A 86 Incorrect parameters P1-P2
90 00 Successful execution

5-15

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.2.3 Internal Authenticate APDU

This APDU is used to authenticate the smart card to the client application. An 8-byte challengeis
computed by the client application and then passed to the smart card viathis command. Also passed are a
key number and the cryptographic algorithm the smart card uses when encrypting the challenge. The
smart card takes this information and encrypts the challenge according to the algorithm specified and the
specified key and returns the resultant cryptogram. |If the decrypted cryptogram from the smart card
matches the initial challenge computed by the client application, the smart card is authenticated to the
client application.

Command Message

Function Code 0x09
CLA 0x00
INS 0x88
P1 Algorithm Identifier — see Table 5-6
P2 0x00 for default key, 0x01 to 0x30 for key number
Lc Length of data field
Data Field Challenge
Le Length of expected cryptogram
Response M essage

Data Field returned in the Response M essage
The cryptogram.

Processing State returned in the Response M essage

Swi SW2 Meaning
69 84 Referenced data deactivated
69 85 Conditions of use not satisfied
6A 86 Incorrect parameters P1-P2
6A 88 Reference data not found
90 00 Successful execution

5-16

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.2.4 Verify APDU

This APDU is used to compare authentication data such as a password, key or PIN with corresponding
authentication data on the smart card. The SPS sends the authentication datain this APDU and directs the
smart card to compare it with authentication data on the smart card. The authentication datais passed
unencrypted.

Command Message

Function Code 0x08

CLA 0x00

INS 0x20

P1 0x00

P2 0x00 for default key, 0x01 to 0x30 for key number
Lc Length of data field

Data Field Authentication data (i.e., password or PIN)

Le Empty

Note: If the Lcis0x00 and the Data Field is empty, VERIFY returns the number of tries
remaining on the referenced PIN.

Response Message
Data Field returned in the Response M essage
Empty.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning
63 00 Verification failed
63 CX Verification failed, X indicates the number of further allowed retries
69 83 Authentication method blocked
69 84 Referenced data deactivated
6A 86 Incorrect parameters P1-P2
6A 88 Reference data not found
90 00 Successful execution

5-17

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.3 Public Key Operations APDUs

Table 5-7 shows the public key operations APDUs for file system and VM cards. The default padding
scheme for RSA is assumed to be RSA_NO_PAD. The computation is performed with the private key.

Table 5-7: Public Key Operations APDUs

Public Key Operations APDU

Card Function

MANAGE Key Reference

0x05 | SECURITY 0x00 | O0x22 | Ox41 | OxB6 Lc information -
ENVIRONMENT
PERFORM Message digest

0x0OB | SECURITY 0x00 | Ox2A | Ox9E | Ox9A Lc 0 sign Le
OPERATION

5-18

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.3.1 Manage Security Environment APDU

This APDU is used to initiate the computation of a digital signature on a message by setting adigital
signature template to be used by a subsequent PERFORM SECURITY OPERATION APDU.

Command Message

Function Code 0x05

CLA 0x00

INS 0x22

P1 0x41

P2 0xB6

Lc L. = Message length in bytes
Data Field Key Reference information

Le Empty

Data Field: Key reference information, formatted as per 1SO 7816-8 [1SO8].
Response M essage

Data Field returned in the Response M essage

Empty.

Processing State returned in the Response M essage

Swi ‘ SW2 ‘ Meaning
66 00 The Security Environment cannot be set
67 00 Wrong length (the Lc field incorrect)
6A 80 Inv_alid or missing tag, length or value in a Control Reference Data
Object (CRDO)
6A 86 Incorrect parameters P1-P2
90 00 Successful execution

5-19

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.3.2 Perform Security Operation APDU

This APDU is used to initiate the computation of adigital signature on a message digest. This APDU
responds with the computed signature.

Command Message

Function Code 0x0B
CLA 0x00
INS 0x2A
P1 O0x9E
P2 0x9A
Lc Length in bytes of message digest
Data Field Message digest to sign
Le Length of response
Response M essage

Data Field returned in the Response M essage
The signed message digest.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning

67 00 Wrong length (the Lc field is incorrect)

69 81 Invalid file type

69 85 No preceding MSE-Set or previously specified key file is missing
69 87 Missing Secure Messaging Data Object

69 88 Incorrect Secure Message Data Object

6A 86 Incorrect parameters P1-P2

90 00 Successful execution

6C XX Wrong length (wrong L field; XX indicates the exact length)

5-20

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.2 Mapping Default APDUs to Native APDU Sets

For file system cards that contain a native APDU instruction set that differs from the GSC-IS default set,
the SPS must implement a mapping mechanism to trand ate the default APDUs into the native APDUSsIin
accordance with the information obtained from the CCC.

5.2.1 The CCC Command and Response Tuples

The CCC is afile that must be present on each conformant GSC-1S smart card. The CCC includes a set
of tuples, which are 2-byte values that describe the differences in syntax between afile system card’s
native APDU set and the GSC-I1S APDU set. Chapter 6 describes the contents of the CCC in more detail.
Besides syntactical differences, the tuples also describe differencesin APDU execution and data format.
The codes used in the tuples to describe these differences are called Descriptor Codes.

As an example, Descriptor Codes can be used to indicate that a smart card’ s native READ BINARY APDU
requires that offsets be on word boundaries as opposed to byte boundaries. Or, asmart card’s native
EXTERNAL AUTHENTICATE APDU may require 4 bytes of a cryptographic challenge whereas the default
APDU requires 8 bytes. A descriptor code can be used to indicate that the SPS must build and send an
APDU using a4-byte cryptographic challenge.

A smart card with a native APDU instruction set identical to the GSC-1S APDU set would still contain a
CCC, however the CCC would contain no tuples (and descriptor codes), since no APDU mapping would
be necessary.

5.2.2 Native APDU Mapping and CCC Grammar

Each conformant SPS for file system cards must implement the trandlation or mapping mechanism to
tranglate the default GSC-I1S APDU set into a smart card’ s native APDU set both in syntax and in
operation. The SPS performs this trandlation according to the rules of a CCC grammar associated with
the set of tupleslocated in the smart card’s CCC, described in more detail in Chapter 6.

The card edge interface for file system cards operates as follows:

1. A smart card vendor creates a CCC and loads it onto a smart card.

2. The SPS has knowledge of the default GSC-1S APDUs and how to trandate them into a
conformant card’ s native APDU set using the CCC grammar.

3. The smart card, when ready for use, is inserted into a reader.
4. The SPS's card edge locates and reads the contents of the CCC.

5. The SPS's card edge maps the default APDU set into the card’ s native set using the tuplesin the
CCC and the associated CCC grammar.

6. The SPS, when sending APDUSs to the smart card, then uses the smart card’ s native ADPU set
according to its rules of operation.

5-21

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.2.3 Detecting Card APDUs

The SPS can detect which of the default GSC-IS APDUs are available on a smart card according to the
following rules:

1. If the APDU isdefined in acapability tuple as not implemented (via Descriptor Code OxFE, see
Table 6-10), then the APDU is not available.

2. If the APDU is defined otherwise in one or more capability tuples, the APDU is available as
defined.

3. If the APDU isnot defined in any capability tuple, the APDU is assumed to be available and
operates as described in this specification and in 1SO 7816-4 [I1SO4] and 7816-8 [1SO8].

The CCC optionally may contain a six-byte CARD APDUSs bit-string for the purposes of informing the
SPS which 1SO 7816-4 [1SO4] and 7816-8 [1SO8] APDUs are available on the smart card. Each bitin
the string, if set to 1, would indicate the presence of a corresponding APDU; a‘0’ would indicate the
corresponding APDU is not present or is not to be used. The CARD APDUSs string does not override any
command tuples; however, if an APDU is described in command tuples but not in the CARD APDUs
field, the command tuples are to be used. Table 5-8 shows bit positions and corresponding APDUSs.

Table 5-8: CARD APDUs Values

Egsition 7816-4 APDU
0 Reserved, Used for Shift Operation (see Section 6.4.2)
1 Select DF

2 Transparent Read (Binary)

3 Update Binary File

4 RFU

5 Manage Security Environment

6 Get Challenge

7 Get Response

8 Verify (CHV)

9 Internal Authenticate

10 External Authenticate

11 Perform Security Operation

12 Select File

13 Select EF (under current DF)

14 Select MF (root)

15 RFU

5-22

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.2.4 Default Status Code Responses

The default APDUSs return status codes according to 1SO 7816-4 [1SO4]. Non-1SO card-specific status
codes can be mapped into a GSC-IS set of status code responses, shown in Table 5-9. Asdescribed in
Chapter 6, the status codes can be mapped using the CCC grammar and status code tuples.

Table 5-9: GSC-IS Status Code Responses

Status Conditions ‘

0x00 | Successful Completion

0x01 | Successful Completion — Warning 1

0x02 Successful Completion — Warning 2
0x03 Reserved

0x04 Reserved

0x05 | Reserved

0x06 | Reserved

0x07 Reserved

0x08 | Access Condition not Satisfied

0x09 Function not Allowed

Ox0A Inconsistent Parameter

0x0B Data Error

0x0C | Wrong Length

0x0D | Function not compatible with file structure
OxOE | File/Record not Found

OxOF | Function Not Supported

5.3 Card Edge Interface for VM Cards

The Card Edge Interface for VM Cardsis made up of provider modules that provide three classes of
services. generic container management services, symmetric key cryptographic services, and public
(asymmetric) key cryptographic services. Each provider module may provide one or more class of
service. These provider modules are implemented as on-card applets. For virtual machine cards, the
terms “provider” and “applet” are synonymous.

Common interface methods that must be implemented by all providers are described first. The six
APDUslisted in Table 5-12 must be implemented by all providers. The methods unique to each provider
class are described in subsequent sections. Table 5-10 provides a summary of the APDUs implemented
for the virtual machine card edge.

Table 5-10: Virtual Machine Card Edge APDUs

Virtual Machine APDU Set

Common Interface Methods
VM APDUs

SELECT APPLET

‘ SELECT OBJECT

5-23

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Virtual Machine APDU Set

GET PROPERTIES

GET ACR

GET RESPONSE

VERIFY PIN

Generic Container Provider READ BUFFER

VM APDUs

UPDATE BUFFER

GET CHALLENGE

Symmetric Key Provider

VM APDUs EXTERNAL AUTHENTICATE

INTERNAL AUTHENTICATE

READ BUFFER

Public Key Provider VM

APDUS UPDATE BUFFER

PRIVATE SIGN/DECRYPT

5.3.1 Virtual Machine Card Access Control Rule Configuration

Each smart card service provider shall present its services through a set of APDUs implemented and
managed by the provider. The ACRs associated with card level services vary depending on the
application.

ACRs shall be coded as a single byte value (range 0x00 - OxFF) as defined in Table 3-2.

5.3.2 Virtual Machine Card Edge General Error Conditions

Tables 5-11aand 5-11b apply to all virtual machine card edge APDUs:

Table 5-11a: Successful Conditions

Status bytes Meaning
SW1 Sw2
61LL SW2 indicates the number of response bytes available
90 00 Normal ending of the command

5-24

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 5-11b: General Error Conditions

Status bytes ‘ Meaning
SW1 Sw2

62 00 Applet or instance logically deleted
63 CX Authentication failed, X indicates the remaining tries
65 81 Memory failure
67 00 Incorrect parameter Lc
6C XX Wrong length in Le parameter, SW2 indicates the exact length
69 82 Security status not satisfied
69 83 Authentication method blocked (ie. PIN code blocked)
69 85 Conditions of use not satisfied
69 99 Applet select failed
6A 80 Invalid parameters in command Data Field
6A 82 Applet or file not found
6A 84 Insufficient memory space to complete command
6A 86 Incorrect P1 or P2 parameter
6A 88 Referenced data not found
6D 00 Unknown instruction given in the command
6E 00 Wrong class given in the command
6F 00 Technical problem with no diagnostic given

5.3.3 Common Virtual Machine Card Edge Interface Methods

The common virtual machine APDUs are shown in Table 5-12.

Table 5-12: Common VM APDUs

SELECT APPLET 0x00 | OxA4 | 0x04 | 0x00
SELECT OBJECT 0x00 | OxA4 | 0x02 | 0x00 LC File ID -
GET PROPERTIES | 0x00 0x56 P1 0x00 L¢ Requested Tags -

GET ACR 0x80 | 0x4C P1 0x00 Lc AID or Object ID
GET RESPONSE 0x00 | OxCO | 0x00 0x00 - - Le
VERIFY PIN 0x00 0x20 0x00 0x00 Lc PIN -

5.3.3.1 Access Control

A fixed set of Access Control Rules (ACR) are assigned to the Common Virtual Machine Card Edge
Interface APDU commands as defined in Table 5-13:

5-25

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 5-13: ACRs assigned to the Common VM CEl

APDU

Get Properties

ACR
BSI_ACR_ALWAYS

Get ACR

BSI_ACR_ALWAYS

Get Challenge

BSI_ACR_ALWAYS

External Authenticate

BSI_ACR_ALWAYS

Get Response

Verify PIN

BSI_ACR_ALWAYS

5-26

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.2 Select Applet APDU
The command is used to select the instance of an applet using its AID.

Command Message

CLA 0x00
INS 0xA4
P1 0x04
P2 0x00
Lc Length of the applet AID
Data Field Applet AID (between 5 and 16 bytes in length).
Le Empty
Response M essage

Datafield returned in the response message
Empty.
Processing statereturned in the response message

If the applet is not found on the smart card, the SO 7816-4 [SO4] status condition: ‘6A82" is
returned (status bytes SW1,SW2=0x6A,0x82). For other status conditions see section General
Error Conditionsin Section 5.3.2.

5-27

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.3 Select Object APDU
The command is used to select a container managed by an applet.

Command Message

CLA 0x00
INS 0xA4
P1 0x02
P2 0x00
Lc Length of the object ID, 2 bytes.
Data Field Object ID.
Le Empty
Response M essage

Datafield returned in the response message
Empty.
Status bytesreturned in the response message

If the object is not found, the |SO 7816-4 [1SO4] status condition: ‘6A82’ isreturned (status bytes
SW1=0x6A, SW2=0x82). For other status conditions see section General Error Conditionsin
Section 5.3.2.

5-28

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.4 Get Properties APDU

This command is used to retrieve applet instance properties of a currently selected applet.

Command Message

CLA 0x00

INS 0x56

P1 Requested properties information type

P2 0x00

Lc If P1=0x02 then length of list of requested tags, else empty.
Data Field If P1=0x02 then list of requested tags, else empty.

Le Expected applet instance properties length

Reference control parameter P1

The reference control parameter P1 shall be used to indicate the type of requested properties
information. The following P1 values are possible:

0x00: Get a GSC-1S v2.0 compatible properties response message. If this response cannot be
supported by the smart card then an error (0x6A86) shall be returned.

Ox01: Get al the properties.

0x02: Get the properties of the tags provided in list of tagsin the command data field.

Data field sent in the command message

Thisfield is present only when P1is 0x02. In that case, this datafield is composed of thelist of
tags to be requested from the appl et instance (the tag values, 1 byte each, are chained).

Response M essage

Data field returned in the response message when P1 is 0x00

The Data field returned in the response message contains the values of the following properties:

Applet family (1 byte)

Applet version (4 bytes)

RFU byte

RFU byte

ID/CHV -applet AID length (1 byte)

ID/CHV-applet AID (always 16 bytes padded with O if necessary) — AID of the ID/CHV
applet instance that shall be used for Card Holder Verification (CHV)

5-29

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Key Set Version (1 byte)1

Key Set Id (1 byte) 2

T-Buffer length (2 bytes)

V-Buffer length (2 bytes)

X bytes of applet specific information and RFU to complement to 64 bytes.

Datafield returned in the response message when P1is 0x01 or 0x02

The data field returned in the response message contains the current value of all the properties
when P1 is 0x01 or the current value of the requested properties when P1 is 0x02. The properties
are returned in asingle buffer containing alist of TLV's packed end-to-end according to the table
below. The scope of these tags is specific to the properties object and should not be confused
with the GSC and CAC data model tags.

Tag Length Value
Applet Information
0x01 5 Applet Family (1 byte)
Applet version (4 bytes)
0x40 1 Number of objects managed by this instance
0x50 11 First TV-Buffer Object
0x41 2 ObjectID (2 bytes)
Buffer Properties (5 bytes)
Type of Tag Supported (1 byte)
0x42 5 T-Buffer length (2 bytes): LSB, MSB
V-Buffer length (2 bytes): LSB, MSB
(Next TV-Buffer Object...)
0x50 11 Last TV-Buffer Object
0x41 2 ObijectID (2 bytes)
Buffer Properties (5 bytes)
0x42 5 Type of Tag Supported (1 byte)
T-Buffer length (2 bytes): LSB, MSB
V-Buffer length (2 bytes): LSB, MSB
0x51 17 First PKI Object
0x41 2 ObjectID (2 bytes)
Buffer Properties
0x42 5 Type of Tag Supported (1 byte)
T-Buffer length (2 bytes): LSB, MSB
V-Buffer length (2 bytes): LSB, MSB
0x43 4 PKI Properties

Algorithm ID (1 byte)

! Key Set and Key Levels are applicable to v2.0 for backward compatibility.
2 Key Set ID refersto the key number and the Key Level is used to indicate whether the referenced key is part of the READ or

WRITE Key Set.

5-30

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Key Length Bytes / 8 (1024 bits -> 128 bytes-> 0x10) (1 byte)

Private Key Initialized (1 byte)
Public Key Initialized (1 byte)

Processing statereturned in the response message

If the properties retrieval succeeds, SW1 = 0x61 and SW2 = size of next block of data available

to read.

If P1 = 0x00 cannot be supported by the smart card, SW1 = Ox6A and SW2 = 86.

SW1 ‘ SW2 ‘

Meaning
61 LL More data available, OXLL specifying the size of next block to read.
6A 86 P1 or P2 parameter not supported.

For other status conditions see Table 5-11b.

5-31

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.5 Get ACR APDU
This command is used to retrieve Access Control Rule properties.

Command Message

CLA 0x80

INS 0x4C

P1 Reference Control Parameter P1

P2 0x00

Lc If P1=0x00, 0x10, 0x20, or 0x21 then empty. If P1=0x01 then the

length of the ACRID (0x01). If P1=0x11 then the length of the AID
(<=0x10). If P1=0x12 then the length of object ID (0x02)

Data Field If P1 = 0x00, 0x10, 0x20, 0x21 then empty. If P1=0x01 then the
value of the ACRID. If P1=0x11 then the value of the AID. If
P1=0x12 then the value of the object ID.

Le Empty.

Refer ence control parameter P1

The reference control parameter P1 shall be used to indicate the type of requested ACR properties
information. The following P1 values are possible:

0x00: All ACR table entries are to be extracted.
0x01: Only one entry of the ACR tableis extracted based on ACRID.
0x10: All Applet/Object ACR table entries are to be extracted.

0x11: Only the entries of the Applet/Object ACR table for one applet are extracted based on
applet AID.

0x12: Only one entry of the Applet/Object ACR table for an object is extracted based on object
ID.

0x20: The Access Method Provider table is extracted.
0x21: The Service Applet table is extracted.

Data field sent in the command message

Thisfield is present only when P1is 0x11 or 0x12. If P1 equalsOx11, it containsthe AID vaue
of the applet for which the Applet/Object ACR table isto be extracted. If P1 equals 0x12, it
contains the Object 1D value of the object for which the Applet/Object ACR tableisto be
extracted.

Response M essage

Datafield returned in the response message

The following tables may be retrieved:

5-32

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

m ACRtable: Thistable mapsthe Access Control Rule Type (ACRType) and Access Method
information to the Access Control Rule Identifier (ACRID) for each Access Control Rule.

m Applet/Object ACR table: This table maps the service (INS code/P1 byte/P2 byte/1% data
byte) to the ACRID for each container.

m AccessMethod Provider table: This table maps the Access Method Provider 1D to the full
AI1D for each Access Method Provider.

m Service Applet table: Thistable mapsthe Service Applet ID to the full AI1D for each
Service Applet.

The data fields returned in the response message may contain all the entries for atable or only the
requested ones depending on the command parameters.

The following entry is always returned and precedes any ACR table, Applet/Object ACR table or
Authentication Method Provider table.

Table 5-14: Applet Information String

0x01 5 Applet Family of Access Control Applet (ACA) (1 byte)

Applet version of ACA (4 bytes)

In addition to the common Applet Information entry the following entries are conditionally
returned depending on the reference control parameter P1.

Data field returned in the response message when P1 is 0x00

The data field returned in the response message contains al the entries of the ACR table.

Table 5-15: ACR Table

Tag Length Value
0xAl 1 Number of ACR entries (unique ACRID)
First ACR entry (structured as follows)
ACRID of ACR entry (1 byte)
ACRType (as defined in Table 3-2) (1 byte)
Number of AccessMethods in this ACR (1 byte)
First AccessMethodProviderID (1 byte)
OxAO * First keylDOrReference (1 byte)
(Next AccessMethod...)
Last AccessMethodProviderID (1 byte)
Last keylDOrReference (1 byte)
0xAQ * (Next ACR entry ...)
* Denotes Variable length field

5-33

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Data field returned in the response message when P1 is 0x01
The data field returned in the response message a single entry of the ACR table based on ACRID.

Table 5-16: Applet/Object ACR Table

Tag Length Value
ACR entry corresponding to ACRID sent
ACRID of ACR entry (1 byte)
ACRTYype (as defined in Table 3-2) (1 byte)
Number of AccessMethods in this ACR (1 byte)
OxAO * First AccessMethodProviderID (1 byte)
First keylDOrReference (1 byte)
(Next AccessMethod...)
Last AccessMethodProviderID (1 byte)
Last keylDOrReference (1 byte)
* Denotes Variable length field

Data field returned in the response message when P1is 0x10

The datafield returned in the response message contains al entries of the Applet/Object ACR

table.
Table 5-17: Access Method Provider Table

Tag Length Value
0x81 1 Number of applets managed by this ACA
0x80 Lengthis 2 | Card Applet ACR structured as follows

plus length

of nested Applet ID (1 byte)

TLV fields . :

0x82 Number of objects managed by this applet (1 byte)

Card Object ACR structured as follows
Card Object ID (2 bytes)
INS1 Code (1 byte)
INS1 Configuration Definition - 0000 0 b,b;bg(1 byte)
If bo=1 then P1 byte is present.
If b;=1 then P2 byte is present.
If b,=1 then first data field byte is present.
P1 Value — OPTIONAL (1 byte)
0x82 * P2 Value — OPTIONAL (1 byte)
First Data Byte Value — OPTIONAL (1 byte)
ACRID (1 byte)

INSX ...
0x82 * (Next Card Object ACR...)
0x80 * (Next Card Applet ACR...)

5-34

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

* Denotes Variable length field

Data field returned in the response message when P1is0x11

The data field returned in the response message contains the entries of the Applet/Object ACR
table for asingle applet based on AID.

5-35

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 5-18: Service Applet Table

Ta Length Value
Lengthis 2 | Applet ACR table based on applet AID entered
plus length

0x80 of nested Applet ID (1 byte)
TLV fields

Ox82 Number of objects managed by this applet (1 byte)

Card Object ACR structured as follows
Card Object ID (2 bytes)
INS1 Code (1 byte)
INS1 Configuration Definition - 0000 0 b,b;iby(1 byte)
If bg=1 then P1 byte is present.
If b;=1 then P2 byte is present.
If b,=1 then first data field byte is present.
P1 Value — OPTIONAL (1 byte)
0x82 * P2 Value — OPTIONAL (1 byte)
First Data Byte Value — OPTIONAL (1 byte)
ACRID (1 byte)
(INSx ...)
0x82 * (Next Card Object ACR...)
* Denotes Variable length field

Data field returned in the response message when P1is 0x12

The data field returned in the response message contains the entry of the Applet/Object ACR
table for a single object based on OID.

Table 5-19: Applet/Object ACR table for a Single Object

Tag Length Value
Card Object ACR (structured as follows)
Card Object ID (2 bytes)
INS1 Code (1 byte)
INS1 Configuration Definition - 0000 0 b,b;ibg(1 byte)
If bp=1 then P1 byte is present.

If b;=1 then P2 byte is present.

If b,=1 then first data field byte is present.
P1 Value — OPTIONAL (1 byte)

0x82 * P2 Value — OPTIONAL (1 byte)

First Data Byte Value — OPTIONAL (1 byte)
ACRID (1 byte)

(INSx ...)

* Denotes Variable length field

5-36

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Data field returned in the response message when P1 is 0x20

The data field returned in the response message contains al the entries of the Access Method
Provider table.

Table 5-20: Access Method Provider Table

Tag Length Value
0x91 1 Number of AMP entries

Length AMP entry (structured as follows)
o0 | cludes

structure
0x92
Access Method provider ID (short form) (1 byte)

0x92 * Access Method provider AID
0x90 * (Next AMP entry...)

Datafield returned in the response message when P1 is 0x21

The data field returned in the response message contains al the entries of the Service Applet
table.

Table 5-21: Service Applet Table

Tag Length Value
0x94 1 Number of Applet entries
0x93 * Applet entry (structured as follows)
Applet ID (short form) (1 byte)
0x92 * Applet AID
0x93 * (Next Applet entry)

* Denotes Variable length field

Processing statereturned in the response message

If properties retrieval succeeds, SW1 = 0x61 and SW2 = size of next block of data available to
read.

SW1 ‘ SW2 ‘ Meaning

61 LL More data available, OXLL specifying the size of next block to read.

For other status conditions see Table 5-11b.

5-37

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.6 Get Response APDU

The GET RESPONSE APDU isused to retrieve from the smart card the response message of the
immediately preceding APDU in the case that this APDU has returned a processing state of 61xx
indicating that a response message of xx bytesis available.

Command Message

CLA 0x00

INS 0xCO0

P1 0x00

P2 0x00

L¢ Empty

Data Field Empty

Le Number of bytes to read in response

Response M essage

Datafield returned in the response message

If the APDU result indicates success, L. number of bytes will be available to read from the smart
card.

Processing state returned in the response message

See Table 5-11b.

5-38

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.7 Verify PIN APDU

The VERIFY command is used to verify the global PIN code, or to check if the PIN code verification is
required, or to check whether or not the PIN code has been aready verified. The global PIN isaroot
level key.

Command Message

CLA 0x00

INS 0x20

P1 0x00

P2 0x00

Lc OxNN (Effective PIN length, Ox00 indicates no PIN present)
Data Field PIN code to be verified

Le Empty

Note: The maximum effective PIN length is dependent on the card platform.

Data field sent in the command message

If the datalength and the data field sent in the command message are empty (datafield does not
include a PIN code), the command corresponds to a PIN verify check command, and it is used to
determineif the PIN code verification is necessary and whether or not the PIN code has been
aready verified.

If the verification fails, the PIN-tries-remaining flag is decremented, and the PIN-verified flag
value does not change. The PIN-always flag valueis set to 0x00. If the PIN-tries-remaining flag
value is 0x00, the PIN code is considered blocked. If the verification succeeds, the PIN-verified
flag value and the PIN-always flag value are both set to 0x01.

Response M essage
Datafield returned in the response message
The datafield in the response message is always empty.
Processing statereturned in the response message

If PIN verification succeeds, SW1=0x90 and SW2=0x00.

If PIN verification fails, the status returned is SW1=0x63, SW2=0xCX where X is number of
remaining PIN tries.

If PIN verify check command is submitted and PIN is aready verified, SW1=0x90 and
SW2=0x00, otherwise SW1 = 0x63, SW2 = 0xCX, where X = number of remaining PIN tries.

5-39

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

SW1 ‘ SW2 ‘ Meaning
90 00 PIN verification succeeds
63 CX PIN not verified and X indicates the remaining tries
69 83 PIN code blocked
6A 88 No PIN code defined

5-40

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.4 Generic Container Provider Virtual Machine Card Edge Interface

Table 5-22 shows the Generic Container Provider VM APDUSs. Asdescribed in Chapter 8, containers
accessed by these APDUs are split into two buffers: a TL buffer containing Tag and associated Length
values, and aV buffer containing the values identified by the corresponding Tags and Lengths.

Table 5-22: Generic Container VM APDUs

Card Function CLA INS P1 P2 L¢ Data Le
Buffer and
READ BUFFER 0x80 0x52 | Off/H | Off/L 0x02 number bytes to -
read
uPDATE BUFFER | 280 | oxsg | offiH | offiL | L Buffer and data -
0x84 to update

5-41

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.4.1 Update Buffer APDU
This command allows updating all or part of a buffer.

Command Message

CLA 0x80

INS 0x58

P1 Reference Control Parameter P1
P2 Reference Control Parameter P2

Lc 1+ Length of data to be updated
Data Field Buffer (1 byte) + data to be updated
Le Empty

Reference control parameter P1/P2

The reference control parameters P1 and P2 shall be used to store the offset from which data are
to be written. Thisoffset is calculated by concatenating the P1 and P2 parameters (P1 = MSB, P2
=LSB).

Data field sent in the command message

Thefirst byte of the datafield shall be used to indicate which buffer is to be updated.

The possible values are:

Ox01: T-buffer
0x02: V-buffer

The other bytes correspond to the data to be updated.
Response M essage

Datafield returned in the response message

The datafield in the response message is always empty.

Processing statereturned in the response message

Swi ‘ SW2 ‘ Meaning
67 00 Invalid command data length
6A 86 Wrong P1/P2 (Try to update data out of the buffer)
6A 88 No corresponding buffer (invalid Buffer Type)

5-42

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.4.2 Read Buffer APDU
This command allows reading all or part of abuffer.

Command Message

CLA 0x80

INS 0x52

P1 Reference Control Parameter P1

P2 Reference Control Parameter P2

Lc 0x01 + 0x01 = 0x02

Data Field Buffer type (1 byte value) followed by the data length to read (1 byte
value)

Le Empty

Reference control parameter P1/P2

The reference control parameters P1 and P2 shall be used to store the offset from which data are
to beread. Thisoffset is calculated by concatenating the P1 and P2 parameters (P1 = MSB, P2 =
LSB).

Data field sent in the command message

The datafield shall be used to indicate which buffer isto be read.
The possible values are:

0x01: T-buffer
0x02: V-buffer

Response M essage

Datafield returned in the response message

The datafield in the response message corresponds to the data read from the smart card,
according to the P1, P2 parameters (offset indicating from where to read data) or empty if GET
RESPONSE command is required to receive data read from the smart card.

Processing statereturned in the response message

If READ BUFFER command was successful, SW1=0x90 and SW2=0x00, any available datais
returned in the data field of the response message. If command is successful and SW1=0x61,
SW?2 contains bytes remaining to be read from the smart card with subsequent GET RESPONSE

commands.
Swi1 ‘ SwW2 ‘ Meaning
67 00 Invalid command data length
6A 86 Wrong P1/P2 (Try to update data out of the buffer)
6A 88 No corresponding buffer (invalid Buffer Type)

5-43

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.5 Symmetric Key Provider Virtual Machine Card Edge Interface

Table 5-23 shows the Symmetric Key Provider VM APDUSs.

5.35.1

Table 5-23: Symmetric Key VM APDUs

Card Function CLA INS P1 P2 L Data Le
GET CHALLENGE | 0x00 0x84 0x00 0x00 - - Le
EXTERNAL
AUTHENTICATE 0x00 0x82 | AlgID | Key# Lc Cryptogram -
INTERNAL
AUTHENTICATE 0x00 | 0x88 | AlgID | Key # Lc Challenge Le

Get Challenge APDU

The GET CHALLENGE command isthefirst step of the host authentication process and is followed
immediately by the EXTERNAL AUTHENT ICATE command. The computed chalengeisvalid only for the
following EXTERNAL AUTHENTICATE APDU.

Command Message

CLA 0x00

INS 0x84

P1 0x00

P2 0x00

Lc Empty

Data Field Empty

Le Challenge length

Response M essage

Datafield returned in the response message

The response message contains the challenge used later for authentication.

Processing state returned in the response message

See Table 5-11b.

Note: The computed challenge must be stored within the appl et instance in order to evaluate the
expected EXTERNAL AUTHENTICATE command. The client application shall encrypt the
challenge received from the smart card using a cryptographic algorithm known by the smart card
and the corresponding shared key. The cryptographic algorithm is DES3-ECB with a 16-byte key.
The encrypted challenge shall then be submitted to the smart card using the EXTERNAL

AUTHENT ICATE command.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.5.2 External Authenticate APDU

ThisEXTERNAL AUTHENTICATE command is asubset of the ISO 7816-4 [1SO4] standard command.
The default cryptographic algorithm is DES3-ECB with double length key size (16 bytes) and an 8-byte
challenge requested from the smart card using the GET CHALLENGE command just before the
authentication command is submitted. This command isintroduced to allow external authentication with
different cryptographic agorithms selected through the P1 parameter and multiple key setsif same datais
updated by different applications that do not desire to share their keys.

Command Message

CLA 0x00

INS 0x82

P1 Algorithm identifier and security level

P2 0x00 for default key, 0x01 to 0x30 for ke