
  1 

User Guide for ACTS

ACTS is a test generation tool for constructing t-way combinatorial test sets. Currently, it
supports t-way test set generation with t ranging from 1 to 6. Combinatorial testing has
been shown very effective in detecting faults that are caused by unexpected interactions
between different contributing factors. The tool provides both command line and GUI
interfaces.

This document is organized as follows. Section 1 provides an overview of the core
features of ACTS. Section 2 provides information about the command line interface.
Section 3 provides information about the GUI interface.

1 Core Features

1.1 T-Way Test Set Generation
This is the core feature of ACTS. A system is specified by a set of parameters and their
values. A test set is a t-way test set if it satisfies the following property: Given any t
parameters (out of all the parameters) of a system, every combination of values of these t
parameters is covered in at least one test in the test set.

Currently, ACTS supports t-way test set generation for 1 ≤ t ≤ 6. Empirical studies show
that t being up to 6 is sufficient for most practical applications. A special form of 1-way
testing, called base-choice testing, is implemented in ACTS. Base-choice testing requires
that every parameter value be covered at least once and in a test in which all the other
values are base choices. Each parameter has one or more values designated as base
choices. Informally, base choices are “more important” values, e.g., default values, or
values that are used most often in operation.

Several test generation algorithms are implemented in ACTS. These algorithms include
IPOG, IPOG-D, IPOG-F, IPOG-F2, PaintBall. In general, IPOG, IPOG-F, and IPOG-F2
work best for systems of moderate size (less than 20 parameters and 10 values per
parameter on average), while IPOG-D and PaintBall are preferred for larger systems.

ACTS supports two test generation modes, namely, scratch and extend. The former
allows a test set to be built from scratch, whereas the latter allows a test set to be built by
extending an existing test set. In the extend mode, an existing test set can be a test set that
is generated by ACTS, but is incomplete because of some newly added parameters and
values, or a test set that is supplied by the user and imported into ACTS. Extending an
existing test set can save earlier effort that may have already been spent in the testing
process.

  2 

1.2 Mixed Strength
This feature allows different parameter groups to be created and covered with different
strengths. For example, consider a system consisting of 10 parameters, P1, P2, …, and
P10. A default relation can be created that consists of all the parameters with strength 2.
Then, additional relations can be created if some parameters are believed to have a higher
degree of interaction, based on the user’s domain knowledge. For instance, a relation
could be created that consists of P2, P4, P5, P7 with strength 4 if the four parameters are
closely related to each other, and their 4-way interactions could trigger certain software
faults. ACTS allows arbitrary parameter relations to be created, where different relations
may overlap or subsume each other. In the latter case, relations that are subsumed by
other relations will be ignored by the test generation engine.

1.3 Constraint Support
Some combinations are not valid from the domain semantics, and must be excluded from
the resulting test set. For example, when we want to make sure a web application can run
in different Internet browsers and on different operating systems, the configuration of IE
on Mac OS is not a valid combination. A test that contains an invalid combination will be
rejected by the system (if adequate input validation is performed) or may cause the
system to fail. In either case, the test will not be executed properly, which may
compromise test coverage, if some (valid) combinations are only covered by this test.

ACTS allows the user to specify constraints that combinations must satisfy to be valid.
The specified constraints will be taken into account during test generation so that the
resulting test set will cover, and only cover, combinations that satisfy those constraints.
Currently, constraint support is only available for the IPOG algorithm. Constraint support
for other algorithms will be added in a future release.

1.4 Coverage Verification
This feature is used to verify whether a test set satisfies t-way coverage, i.e. whether it
covers all the t-way combinations. A test set to be verified can be a test set generated by
ACTS or a test set supplied by the user (and then imported into ACTS).

1.5 Expected Outcome Specification
This feature allows the user to specify expected outcome, in terms of a number of output
parameters and their values, for each test case. Output parameters are specified in the
same way as input parameters. However, their values are specified manually by the user.
This is in contrast with input parameters whose values are generated by the tool. This
feature is designed to facilitate test automation.

  3 

2. Command Line Interface

There is a separate jar file for the command line version and for the GUI version. In this
section, we assume that the jar file for the command line version is named acts_cmd.jar,
and the jar file for the GUI version is named acts_gui.jar. (The actual jar files names in the
release package are actually longer, and contain the version numbers.)

The command line version can be executed using the following command:

java <options> –jar acts_cmd.jar ActsConsoleManager <input_filename> <output_filename>

The various options are:

-Dmode=scratch|extend

scratch - generate tests from scratch (default)
extend - extend from an existing test set

-Dalgo=ipog|ipog_d|bush|rec|paintball|ipof|ipof2|basechoice
 ipog - use algorithm IPO (default)

ipog_d - use algorithm IPO + Binary Construction (for large systems)
bush - use Bush's method
paintball - use the Paintball method
ipof - use the IPOF method
ipof2 - use the IPOF method
basechoice - use Base Choice method

-DfastMode=on|off
on - enable fast mode
off - disable fast mode

-Ddoi=<int>:
specify the degree of interactions to be covered

-Doutput=numeric|nist|csv|excel
numeric - output test set in numeric format
nist - output test set in NIST format (default)
csv - output test set in CSV format
excel - output test set in EXCEL format -

Dcheck=on|off:
on - verify coverage after test generation
off - do not verify coverage (default)

-Dprogress=on|off:
on - display progress information (default)
off - do not display progress information

-Dhunit=<int>:
the number of tests extended during horizontal extension per progress unit -

Dvunit=<int>:
the number of pairs covered during vertical growth per progress unit

-Ddebug=on|off:
on - display debug info

 off - do not display debug info (default)
-Drandstar=on|off:
 on – randomize don’t care values
 off – do not randomize don’t care values
-Dcombine=<all>:

all - every possible combination of parameters

  4 

The above usage information can be displayed using the following command:

java -jar acts_cmd.jar

In the command line, <input_file> contains the configuration information of the system
to be tested. The format of a configuration file is illustrated using the following example:

[System]
-- specify system name
Name: Test Configuration from Rick

[Parameter]
-- general syntax is parameter_name : value1, value2, ….
-- only compare with MINSEP and MAXALTDIFF general

Cur_Vertical_Sep (int) : 299, 300, 601

High_Confidence (boolean) : TRUE, FALSE
Two_of_Three_Reports_Valid (boolean) : TRUE, FALSE

-- Low and High, only compare with Other_Tracked_Alt
Own_Tracked_Alt (int) : 1, 2
Other_Tracked_Alt (int) : 1, 2

-- only compare with OLEV
Own_Tracked_Alt_Rate (enum) : 600, 601

Alt_Layer_Value (int) : 0, 1, 2, 3

-- compare with each other (also see NOZCROSS) and with ALIM
Up_Separation (int) : 0, 399, 400, 499, 500, 639, 640, 739, 740, 840
Down_Separation (int) : 0, 399, 400, 499, 500, 639, 640, 739, 740, 840
Other_RAC (enum) : NO_INTENT, DO_NOT_CLIMB, DO_NOT_DESCEND
Other_Capability (enum) : TCAS_TA, OTHER
Climb_Inhibit (boolean): TRUE, FALSE

Note that -- represents comments that exist only to improve the readability of the
configuration file.

Also note that the default heap size for the Java Virtual Machine may not be adequate for
large configurations. The user is recommended to change the default heap size, if
necessary, using the following command:

java -Xms <initial heap size> -Xms<max heap size> <options> -jar acts_cmd.jar
ActsConsoleManager <input_file> <output_file>

  5 

3 GUI Interface
There are two ways to launch the GUI front end. One way is to double-click the jar file
for the GUI version, which is an executable jar file. The other way is to execute the jar
file for the GUI version on the command prompt as follows:

java -jar acts_gui.jar FireEyeMainWin

The following command can be used to change the default heap size for java virtual
machine, if necessary:

java -Xms <initial heap size> -Xms<max heap size> <options> -jar acts_gui.jar FireEyeMainWin

Figs. 1 and 2 show the general layout of the ACTS GUI. The System View component is
a tree structure that shows the configurations of the systems that are currently open in the
GUI. In the tree structure, each system is shown as a three-level hierarchy. That is, each
system (top level) consists of a set of parameters (second level), each of which has a set
of values (leaf level). If a system has relations and constraints, they will be shown in the
same level as the parameters.

Right to the System View is a tabbed pane consisting of two tabs, namely, Test Result,
which is shown in Fig. 1, and Statistics, which is shown in Fig. 2. The Test Result shows
a test set of the currently selected system, where each row represents a test, and each
column represents a parameter. Output parameters are also displayed as columns. The
Statistics tab displays some statistical information about the test set. In particular, it
includes a graph that plots the growth rate of the test coverage with respect to the tests in
the test set displayed in the Test Result tab. Drawing the graph may involve expensive
computations, and thus the graph is shown only on demand, i.e. when the Graph button is
clicked.

3.1 Create New System
To create a new system, select menu System -> New, or the first icon in the toolbar, to
open the New System window. The New System window contains a tabbed pane of three
tabs, namely, Parameters, Relations, and Constraints. The three tabs are shown in Figs.
3, 4, and 5, respectively.

The Parameters tab (Fig. 3) allows the user to specify the parameters, as well as the
values of those parameters, in the new system. Currently, four parameter types are
supported, Boolean, Enum, Number, and Range. Range is a convenience feature that
allows multiple, consecutive integers to be input quickly. Note that parameter names
cannot contain spaces. (The characters that can be contained in a parameter name are the
same as those in a variable name in Java programs.)

  6 

There is a checkbox next to each parameter value in the New System window. If the
checkbox next to a parameter value is checked, this value is designated as a base choice
value. A parameter may have multiple base choice values, meaning that multiple
checkboxes can be checked. Base choice values are only used by the base-choice testing
algorithm. The base choice values will be highlighted after they are added to the system.
As mentioned earlier, base-choice testing is a special form of 1-way testing.

Figure 1 The Main Window – Test Result Tab

A default relation is automatically created that consists of all the parameters that have
been specified in the Parameters tab with the default strength (which is specified in the
Options window, see Section 1.8). This default relation is provided as a convenience
feature (so that the user does not need to do anything in this tab if the user does not want
to specify any relation), and can be removed like other user-defined relations.

The Constraints tab (Fig. 5) allows the user to specify constraints so that invalid
combinations can be excluded from the resulting test set. Generally speaking, a constraint
is specified using a restricted form of first-order logical formulas. In the following, we
give a formal syntax of the expressions that can be used to specify a constraint:

<Constraint>::=<Simple_Constraint>|<Constraint><Boolean_Op><Constraint>
<Simple_Constraint> ::= <Term><Relational_Op><Term>
<Term>:=<Parameter>|<Parameter><Arithmetic_Op><Parameter>

| <Parameter><Arithmetic_Op> <Value>
<Boolean_Op>:=“&&” |“||” |“=>”

  7 

<Relational_Op> := “=” |“!=” | “>” | “<” | “>=” | “<=”
<Arithmetic_Op> := “+” | “-” | “*” | “/” | “%”

Figure 2. The Main Window - Statistics Tab

Figure 3. New System Window – Parameters

There are three types of operators: (1) Boolean operators (Boolean_Op), including &&, ||,
=>; (2) Relational operators (Relational_Op), including =, !=, >, <, >=, <=; and (3)

  8 

Arithmetic operators (Arithmetic_OP), including +, -, *, /, %. Note that arithmetic
operators can appear in a term expression (<Term>) only if the parameters involved in
the term expression are of type Number or Range. Also, four of the relational operators,
namely, >, <, >=, <=, can appear in a simple constraint expression (Simple_Constraint)
only if both of the terms involved in the simple constraint are evaluated to a parameter
value of type Number or Range.

Figure 4. New System Window – Relations

The following are examples of various constraints that can be specified:

Constraint 1: (OS = “Windows”) => (Browser = “IE” || Browser = “FireFox” || Browser
= “Netscape”), where OS and Browser are two parameters of type Enum. This constraint
specifies that if OS is Windows, then Browser has to be IE, FireFox, or Netscape.

Constraint 2: (P1 > 100) || (P2 > 100), where P1 and P2 are two parameters of type
Number or Range. This constraint specifies that P1 or P2 must be greater than 100.

Constraint 3: (P1 > P2) => (P3 > P4), where P1, P2, P3, and P4 are parameters of type
Number or Range. This constraint specifies that if P1 is greater than P2, then P3 must be
greater than P4.

Constraint 4: (P1 = true || P2 >= 100) => (P3 = “ABC”), where P1 is a Boolean
parameter, P2 is a parameter of type Number or Ranger, and P3 is of type Enum. This
constraint specifies that if P1 is true and P2 is greater than or equal to 100, then P3 must
be “ABC”.

  9 

A constraint can be directly typed in the Constraint Editor. The user is provided with the
system configuration and the operators that can be used. The left hand side of the
Constraint window displays the system configuration in a table format and the operators
on the top of the system configuration table. Note that parameter values that are strings
must be quoted in double quotes; otherwise, they will be considered as parameter names.

An existing constraint can be removed by selecting the constraint in the Added Constraint
table and then clicking on the Remove button. Currently, ACTS does not allow an
existing constraint to be directly edited. In order to edit an existing constraint, the user
needs to remove the constraint first and then add the desired constraint as a new
constraint.

3.2 Build Test Set
To build a test set for a system that is currently open, select the system in the System
View, and then select menu Operations -> Build. The latter selection brings up the
Options window, as shown in Fig. 6, which allows the following options to be specified
for the build operation:

• Algorithm: This option decides which algorithm to be used for test generation. As
mentioned in Section 1.1, IPOG, IPOG-F, IPOG-F2 and work best for systems of
moderate size, while IPOG-D and PaintBall are preferred for larger systems. Note
that relations and constraints are only supported for IPOG. By default, the IPOG
algorithm is selected.

• Max Tries: This option is used by algorithm PaintBall, and it specifies the number
of candidates to be generated randomly at each step.

• Randomize Don’t Care Values: If this option is checked, then all the don’t care
values in the resulting test set will be replaced with a random value. By default
this check box is unchecked.

• Strength: This option specifies the default strength of the test set. This strength is
used for the default relation. (Recall that the default relation consists of all the
parameters.) The user selects the strength from a drop-down list. Currently, ACTS
supports a strength value ranging from 2 to 6. Also note that the user may create
relations other than the default relation. Different strengths can be specified for
those relations during their creation (in the Relation tab as discussed in Section
1.7.) For Base Choice algorithm the strength will be set to 1.

• Mode: This option can be Scratch or Extend. The former specifies that a test set
should be built from scratch; the latter specifies that a test set should be built by
extending an existing test set (shown in the Test Result tab). Recall that the
current test set in the system may not be complete as the system configuration
may have changed after the last build or the test set may be imported from
outside.

  10 

• Progress: If this option is turned on, progress information will be displayed in the
console. Note that in order to obtain the console, the GUI must be started from a
command prompt instead of by double-clicking the executable jar file.

After the build operation is completed, the resulting test set will be displayed in the Test
Result tab of the Main window.

Figure 5. New System Window – Constraints

 
Figure 6. Build Options Window

3.3 Modify System
To modify an existing system, select the system in the tree view, and then select menu
Edit -> Modify. The Modify System window is the same as the New System window

  11 

except that the name of the system cannot be changed. A parameter cannot be removed if
it is involved in a relation other than the default relation or constraint. In this case, the
parameter must be removed from the relation or constraint first.

A parameter or an output parameter can be added in the same way as during the New
System operation. A parameter can be removed by selecting the parameter in the Saved
Parameters table on the right hand side, and then clicking on the Remove button under
the table. The values of a parameter can be modified by selecting the parameter on the
Saved Parameters table on the right hand side, and by clicking on the Modify button
under the table.

A system can also be modified through the tree view. For example, a parameter, or value,
or relation, or constraint can be removed by first selecting the parameter, or value, or
relation, or constraint, and then selecting menu Edit -> Delete.

Figure 7. Modify System Window

  12 

Figure 8. Parameter modification window.

3.4 Save/Save As/Open System
To save an existing system, select the system in the tree view, and then select menu
System -> Save or Save As. When a newly created system is saved for the first time, or
when Save As is select, a standard file dialog will be brought up, where the user can
specify the name of the file to be saved, as shown in Fig. 9. The system will display a
confirmation window if the file to be saved already exists.

Figure 9. Save As Window

3.5 Import/Export Test Set
To import a test set of a system, the user must first create the system, in terms of adding
its parameters and values into ACTS, as described in Section 3.1. Then, select menu
Operations -> Import, as shown in Fig. 10, and select the format of the file containing the
test set. Currently, two file formats are supported: CSV-R, which stands for Comma
Separated Values with Row headers, and CSV-RC, which stands for Comma Separated

  13 

Values with Row and Column headers. (CSV-RC is mainly used to facilitate integration
with Excel.) The following are two example files, one for each format:

CSV-R format:

P1,P2,P3,P4,P5
0,2,2,3,6
3,2,4,2,2
2,1,2,1,3
3,2,5,0,5

CSV-RC format:

,P1,P2,P3,P4,P5
Test1,0,2,2,3,6
Test2,3,2,4,2,2
Test3,2,1,2,1,3
Test4,3,2,5,0,5

The parameter values in each row must be separated by “,”. There can be arbitrary space
between two values. After the file format is selected, a standard file selection window
appears through which the user can browse through the system and select the file
containing the test set to be imported.

Figure 10 : Import test set window

To export a test set that exists in the GUI, first select the corresponding system so that the
test set is displayed in the Test Result tab of the Main window, and then select Operations
-> Export. Currently, three formats are supported, namely, NIST Format, Excel Format
and CSV Format. A snippet of an exported test set in the NIST format is shown below:

  14 

Default degree of interaction coverage: 2
Number of parameters: 4
Number of configurations: 6

Parameters:
P1:[true, false]
P2:[true, false]
P3:[true, false]
P4:[true, false]

Relations :
[2,(P1, P2, P3, P4)]

------------Test Cases--------------

Configuration #1:

1 = P1=true
2 = P2=true
3 = P3=true
4 = P4=true

Configuration #2:

….

A snippet of an exported test set in the CSV Format is shown below:

ACTS Test Suite Generation: Wed Jun 10 02:24:23 CDT 2009
* represents don't care value
Parameters:
P1:[true, false]
P2:[true, false]
P3:[true, false]
P4:[true, false]

Relations :
[2,(P1, P2, P3, P4)]

Tests
P1,P2,P3,P4
true,true,true,true
true,false,false,false

:

  15 

A snippet of an exported test set in the Excel Format is shown below:

Parameters:
P1 [true, false]
P2 [true, false]
P3 [true, false]
P4 [true, false]

Relations:
[2,(P1, P2, P3, P4)]

Test Case# P1 P2 P3 P4

0 true true true True
1 true false false false

3.6 Verify T-Way Coverage
To verify the t-way coverage of a test set, the user can select menu Operations ->
Options, and specify a desired strength in the Options window. Then, select menu
Operations -> Verify. If the test set achieves the coverage for the specified strength,
the message window in Fig. 11 will be displayed; otherwise, the message window in
Fig. 12 will be displayed.

Note that this operation is typically used to verify the coverage of a test set that is
imported from outside of ACTS.

Figure 11. Coverage Achieved Window

Figure 12. Coverage Not Achieved Window

