
4th Symposium on Configuration Analytics and Automation, 2011, IEEE
Oct. 31 – Nov. 1, Arlington, Virginia, pp. 1-9; DOI: 10.1109/SafeConfig2011.611679

Vulnerability Hierarchies in Access Control Configurations
D. Richard Kuhn

National Institute of Standards and Technology
Gaithersburg, MD 20899

kuhn@nist.gov

Abstract— This paper applies methods for analyzing fault hierarchies
to the analysis of relationships among vulnerabilities in
misconfigured access control rule structures. Hierarchies have been
discovered previously for faults in arbitrary logic formulae
[11,10,9,21], such that a test for one class of fault is guaranteed to
detect other fault classes subsumed by the one tested, but access
control policies reveal more interesting hierarchies. These policies
are normally composed of a set of rules of the form “if [conditions]
then [decision]”, where [conditions] may include one or more terms
or relational expressions connected by logic operators, and [decision]
is often 2-valued (“grant” or “deny”), but may be n-valued. Rule sets
configured for access control policies, while complex, often have
regular structures or patterns that make it possible to identify generic
vulnerability hierarchies for various rule structures such that an
exploit for one class of configuration error is guaranteed to succeed
for others downstream in the hierarchy.

 A taxonomy of rule structures is introduced and detection
conditions computed for nine classes of vulnerability: added term,
deleted term, replaced term, stuck-at-true condition, stuck-at-false
condition, negated condition, deleted rule, replaced decision, negated
decision. For each configuration rule structure, detection conditions
were analyzed for the existence of logical implication relations
between detection conditions. It is shown that hierarchies of
detection conditions exist, and that hierarchies vary among rule
structures in the taxonomy. Using these results, tests may be
designed to detect configuration errors, and resulting vulnerabilities,
using fewer tests than would be required without knowledge of the
hierarchical relationship among common errors. In addition to
practical applications, these results may help to improve the
understanding of access control policy configurations.

Keywords- access control; change impact analysis;
configuration analysis;

I. INTRODUCTION

 Access control is one of the central problems in computer
security, and many access control models have been defined,
including discretionary access control (DAC), mandatory
access control (MAC), and role based access control (RBAC)
among the most commonly used types [2], and less
standardized forms of access control are often used in network
appliances such as firewalls. Access control policies often
become large and complex, and rule configurations evolve
over time as functions are added or changed, or additional
systems are connected. It is estimated that configuration errors
account for up to 80% of network vulnerabilities [4]. For
defensive purposes, policies must be tested to ensure that they
behave as expected, and because policies may include
hundreds or even thousands of rules [13], a large number of
tests may be needed.

 In this paper we show that there is a hierarchical
relationship among vulnerabilities in access control systems,
such that the conditions that allow the exploitation of one are
sufficient for triggering other vulnerabilities downstream in
the hierarchy. While the number of potential flaws that result
in vulnerabilities is vast, the structure of access control rules
results in a hierarchy for certain classes of vulnerabilities.
This paper demonstrates the existence of these hierarchies for
a variety of access control rule configurations, and shows how
the results may be used to reduce the number of tests required.

 The analysis of hierarchies of vulnerabilities can be
compared with similar analyses for testing [11,10,9,21], where
a vulnerability corresponds to a fault and a test corresponds to
an exploit for that vulnerability. However, for testing this
analysis is normally applied to arbitrary logic formulae while
access control rules are typically implemented in common
patterns such as “if A then Grant; else if B then Grant; else …
; else Deny”. Two types of hierarchies can be shown: those
specific to a particular access control policy, and generic
forms that are determined by the structure of access control
rules. A taxonomy of rule structures is defined and for various
possible flaws (e.g., deleted term, added term), conditions
under which these faults can be detected are shown to form
mathematical structures in which detection conditions for
some vulnerabilities subsume those for others.

 A vulnerability is defined in the RFC 2828 [15] as "A
flaw or weakness in a system's design, implementation, or
operation and management that could be exploited to violate
the system's security policy". To formalize this definition, we
distinguish the specified policy as P and the policy as
configured by coded rules on an operational system as R. That
is, applications that are implemented must conform to the
policy, P, but due to human error or system failures, the policy
as implemented may not be correct with respect to the defined
policy P. The policy as implemented by administrators using
access control rules is designated R. If R = P, then the policy
has been implemented correctly and by definition there are no
vulnerabilities with respect to this policy (although there may
be problems unanticipated by policy designers that are later
considered vulnerabilities). If R ≠ P, then one or more
vulnerabilities exist with respect to the policy such that
unauthorized access or denial of service may be allowed.

 Access control policies often take the form of a sequence of
rules composed of conditions that result in a decision to grant
or deny access. For example, where the Ci contain one or
more conditional expressions:

if (C1) then grant;
if (C2) then deny;

4th Symposium on Configuration Analytics and Automation, 2011, IEEE
Oct. 31 – Nov. 1, Arlington, Virginia, pp. 1-9; DOI: 10.1109/SafeConfig2011.611679

if (C3) then grant;
deny; /* default */

Conditions in turn include references to the components of
access control policies: e.g., subjects, resources, groups, roles,
attributes, permissions, and access requests. For example:

if ((role = teller OR role = supervisor)
AND(request = account_balance)) then
grant;

 Access control policies may be configured on running
systems with dozens or hundreds of rules, sometimes
interacting in ways that are determined dynamically depending
on system events. This level of complexity requires careful
evaluation to ensure that rules are implemented and modified
correctly, and a variety of systems have been developed to
analyze and test access control policies [5,6,14]. To enable
this type of analysis, policies must be represented formally. In
this paper, policies are represented and analyzed using
mathematical logic formulae that could be mapped to
representations for tools such as Margrave [5] and ACPT [6].
For example,

 if (c1) then grant;
 else if (c2) then grant;

may be represented as)()(21 grantcgrantc →⋅→ . At first

glance, it may seem that the policy above could be represented
with “OR” operators between the clauses, as

)()(21 grantcgrantc →+→ . But note that the second expression

is equivalent to)(21 grantcc → , i.e., grant only if both c1 and

c2 are true, which is clearly not what is intended and not the
way that the policy would be processed with the code above.
The first expression simplifies to)(21 grantcc →+ , which is

the appropriate meaning and consistent with the code.

 While many applications have hard-coded access rules,
frameworks capable of implementing access control have
become available. XACML [1,16] is one of the better known
examples. XACML supports an approach often described as
“attribute-based” access control, where XACML attributes can
be subjects, actions, or resources. An attribute-ID, such as
“clearance level” identifies the attribute, and may take on
different attribute values, such as Secret or TopSecret.
Implementer-defined rules are used to determine the decision
for access requests that present attributes to be processed by
the rule engine. XACML decisions can be permit, deny, or
not applicable, if there is no rule that matches the attributes in
the request. The option of a “not applicable” decision is
needed for the generic framework approach more so than hard
coded application specific rules because the framework must
be able to accommodate changing, arbitrarily complex rule
sets. An analysis of vulnerabilities in access rule structures
must therefore consider more than the conventional binary
decisions of access control.

 The organization and main results of this paper are as
follows: Section II introduces a taxonomy of access control

rule structures; Sect. III explains the computation of
vulnerability conditions; Sect. IV describes a variety of flaws
in access control rules that result in vulnerabilities; and Sect.
V demonstrates how these flaws result in vulnerability
hierarchies for the various rule structures in the taxonomy.
We conclude with a discussion of the implications of these
results for testing access control configurations, and other
application to analyzing configuration changes.

II. TAXONOMY OF RULE STRUCTURES

 An access control policy, P, is implemented by a set of
rules, R. A vulnerability will be defined here as a condition
under which the decision from rules R differs from the
intended result specified by policy P, that is, where PR≠ .
Vulnerabilities may be unauthorized access, (possibly partial)
denial of service, or a combination of the two, depending on
the conditions under which the decision is grant or deny. For
rules where the decision is Grant, there are three vulnerability
possibilities, where Rc = grant conditions in implemented
policy and Pc = grant conditions in correct policy:

cc PR ⇒ : a (possibly partial) denial of service (because

 Rc ⊂ Pc).

cc PR ⇐ : unauthorized access (because Rc ⊃	Pc)

otherwise: possible combination of unauthorized access or
 denial of service

 In cases where the decision is Deny, the situation is the
mirror image of that for Grant rules:

cc PR ⇒ : unauthorized access (because
cc PR ⊂)

cc PR ⇐ : a (possibly partial) denial of service (because

cc PR ⊃).

otherwise: possible combination of unauthorized access or
 denial of service

Example: Suppose a policy specifies that access is to be
granted only when [the subject is an employee], designated as
e, and either [the time is during working hours], h, or [the
subject is a supervisor], s, and that the policy is implemented
as “if e&h → grant; if e&s → grant; deny;”. The Grant
condition is specified as sehe ⋅+⋅ . If the policy is
implemented incorrectly so that the second rule is not
included, then the Grant condition is .he⋅ Thus

sehehe ⋅+⋅⇒⋅ and there is a denial of service where
she ⋅⋅ . (This paper follows conventional practice in using ·

(or juxtaposition) for boolean and, + for or, with⊕ signifying
exclusive-or).

 An access control policy rule structure is defined here as a
configuration of logical operators, policy terms, and decisions,
categorized according to how the rules are constructed. Each
rule has a condition and a decision. Conditions may be
composed of other conditions connected by logical operators,
often with a standard structure (e.g., A AND B AND C; A OR

4th Symposium on Configuration Analytics and Automation, 2011, IEEE
Oct. 31 – Nov. 1, Arlington, Virginia, pp. 1-9; DOI: 10.1109/SafeConfig2011.611679

B OR C). Decisions are often binary, but may also have three
or more values (e.g., grant, deny, defer). Methods of rule
combining may also have a pattern. In many cases, a set of
rules that can lead to a grant decision are followed by a single
default case “else deny”. Alternatively, rules with grant or
deny decisions may be intermixed, followed by a default case.
Thus one way to categorize access control policy rule
structures is to specify the condition format, number of
decision values, and rule combining format. This taxonomy is
introduced solely for the purpose of characterizing access
control structures for which fault hierarchies are developed.
Clearly the set of policies thus defined does not cover the
universe of possible structures, but a large number of practical
policy rule structures can be captured in this manner. Note
also that the access control rule structures defined here are not
the same as access control policy models. A policy model
ensures specific properties are maintained among the elements
of the model. For example, the multilevel security policy
model guarantees that a user cleared only to Secret cannot read
data labeled TopSecret. One or more rule structures could be
used to implement a particular policy model.

 Here we define the following rule structure attributes and
possible values:
• Condition format: con – conjunction of conditions; dis –

disjunction of conditions; cnf – conjunctive normal form
of conditions.

• Number of decision values: binary or n-ary.
• Rule combining: singular (all rule decisions of the same

type, e.g., grant or deny, followed by a default), or mixed,
which refers to mixed grant and deny decisions in rules.

Structures can then be categorized in the format 〈condition
format〉/〈number of decision values〉/〈rule combining method〉.
Some structures that can be defined using this taxonomy are
discussed below.

A. con/2/singular
 Decisions are determined by the conjunction of conditions
under which access is granted. If no ‘grant’ decision matches
the input configuration, access is denied.

if (c11 · . . . · c1n1) then grant;
if (c21 · . . . · c2n2) then grant;
. . .
if (ck1 · . . . · ckn3) then grant;
else deny;

This structure is modeled by:
((c11 · . . . · c1n1) → grant)

· ((c21 · . . . · c2n2) → grant)
. . .

· ((ck1 · . . . · ckn3) → grant)
· (~(c11 · . . . · c1n1) · ~(c21 · . . . · c2n2) . . . · ~ (ck1 · . .
. · ckn3) → deny)

B. con/2/mixed
 Decisions are determined by the conjunction of conditions
under which access is granted or denied. If no grant decision
matches the input configuration, access is denied. The rule set
is as defined for con/2/singular except that decisions above the
default may be either grant or deny.

C. disj/2/singular
 Decisions are determined by a disjunction of conditions
under which access is granted. If no ‘grant’ decision matches
the input configuration, access is denied.

if (c11 + . . . + c1n1) then grant;
if (c21 + . . . + c2n2) then grant;
. . .
if (ck1 + . . . + ckn3) then grant;
else deny;

This structure is modeled by:

((c11 + . . . + c1n1) → grant)

· ((c21 + . . . + c2n2) → grant)
. . .

· ((ck1 + . . . + ckn3) → grant)
· (~(c11 + . . . + c1n1) · ~(c21 + . . . + c2n2) . . . · ~ (ck1 + . .

. + ckn3) → deny)

D. disj/2/mixed
 Decisions are determined by the disjunction of conditions
under which access is granted or denied. If no grant decision
matches the input configuration, access is denied. The rule set
is as defined for disj/2/singular except that decisions above the
default may be either grant or deny.

E. cnf/2/singular
 Decisions are determined by conditions in conjunctive
normal form (CNF) under which access is granted. If no
‘grant’ decision matches the input configuration, access is
denied. This rule class is included because it is relatively
common in real-world access control problems. The XACML
[16] standard is one such widely used framework for
implementing access control policies. An XACML rule set
includes clauses for subjects, resources, and actions, where
rules include matching conditions for these three attributes.

For example, an XACML rule may specify “if (role =

engineer OR role = technician) AND (database = test_results)
AND (action = append) then GRANT”. (XACML uses an
XML syntax, but for readability, this example is given in
natural language.) Rules may have decisions of grant, deny,
or no match in cases where none of the rule predicates match
the set of attributes presented to the XACML decision system.
In this paper, we consider only XACML rules where a series
of grant rules are offered, with a default deny. In the syntax
below, we use s, r, and a, for subject, resource, and action
terms, but the extension to other CNF rule sets is obvious.

if (s11 + . . . + s1n1) · (r11 + . . . + r1n1) · (a11 + . . . + a1n1)
then grant;

4th Symposium on Configuration Analytics and Automation, 2011, IEEE
Oct. 31 – Nov. 1, Arlington, Virginia, pp. 1-9; DOI: 10.1109/SafeConfig2011.611679

if (s21 + . . . + s2n1) · (r21 + . . . + r1n1) · (a21 + . . . + a2n1)
then grant;
. . .
if (sk1 + . . . + skn1) · (rk1 + . . . + rkn1) · (ak1 + . . . + akn1)
then grant;
else deny;

This structure is modeled by:
((s11 + . . . + s1n1) · (r11 + . . . + r1n1) · (a11 + . . . + a1n1)
→ grant)
· ((s21 + . . . + s2n1) · (r21 + . . . + r1n1) · (a21 + . . . + a2n1)
→ grant)
. . .

· ((sk1 + . . . + skn1) · (rk1 + . . . + rkn1) · (ak1 + . . . + akn1
→

grant)
· (~((s11 + . . . + s1n1) · (r11 + . . . + r1n1) · (a11 + . . . + a1n1)
. . . · ~ ((sk1 + . . . + skn1) · (rk1 + . . . + rkn1) · (ak1 + . . . +

akn1) → deny)

F. cnf/2/mixed
 Decisions are determined by the conjunction of conditions
under which access is granted or denied. If no grant decision
matches the input configuration, access is denied. The rule set
is as defined for cnf/2/singular except that decisions above the
default may be either grant or deny.

G. 〈condition〉/n/〈combining〉 (n-ary Decision Rules)
 When possible decisions are more than grant or deny, rule
structures are defined as above with the modification that
grant decisions are replaced by n possible decisions other than
deny.

III. VULNERABILITY DETECTION CONDITIONS

 As defined above, a vulnerability is a faulty
implementation of an access control policy. The detection
conditions for a flaw in a policy P are given by the boolean
difference, 'PP⊕ , where P’ represents formula P with the
fault inserted. If P’ is P with Fault 1, and P’’ is P with Fault
2, and 'PP⊕ ⇒ ''PP⊕ , then a test that detects Fault 1 will
also detect Fault 2 [11]. In this case we say that Fault 1
subsumes Fault 2. Consequently, a test constructed to detect
Fault 1 will detect Fault 2 as well, eliminating the need to
construct tests specifically for Fault 2. Depending on the form
of boolean expressions in the specification, and the fault
classes defined, a hierarchy may be established such that one
or more root nodes subsume other fault classes [9, 10, 11,12,
21]. Then tests defined for the root fault class(es) will detect
the other classes subsumed by these, obviating the need to
develop additional tests.

Example1: Consider the policy from the previous example
which specifies that access is to be granted only when [the
subject is an employee], designated as e, and either [the time is
during working hours], h, or [the subject is a supervisor], s, a
policy specified as P =))()(~(GesehGeseh →+→+ . If rule

R is implemented incorrectly as))()(~(GehGeh →→ , then

)eseheh +⇒ and there is a denial of service where she ⋅⋅ .

To detect this vulnerability, compute
)))()(~)(GesehGeseh →+→+))()(~(GehGeh →→⊕

she=

 That is, a result that differs from the correct policy occurs
where the subject is an employee and supervisor and the time
is out of hours. A test input of she will detect that the
implemented policy does not behave according to the specified
policy because the subject is improperly denied access.

 A different situation occurs if the implemented policy
allows access that is not authorized by the specified policy.
For example if the implemented policy fails to check hours,
i.e., if))()(~(GeseGese →+→+ is implemented, then

unauthorized access will be allowed when the subject is an
employee but not a supervisor and time is out of working
hours:

))()(~(GesehGeseh →+→+

))()(~(GeseGese →+→+⊕ she=

This type of analysis can be applied to more complex rules.

Example 2: A policy can be defined as below:

if (a & b & c) then grant; if (d & e) then grant; else deny;
modeled by:
P = ((a b c) → G) ((d e) → G) · (~(a b c) · ~(d e) → ~G)

 Suppose the policy is implemented incorrectly, leaving out
condition a:
Ptc = ((b c) → G) ((d e) → G) · (~(b c) · ~(d e) → ~G)

The detection conditions for this type of flaw in Ptc are:

P ⊕Ptc = a̅ b c d̅ + a̅ b c e̅

That is, for inputs of either a̅ b c d̅ or a̅ b c e̅ , policy
Ptc produces an incorrect result, so a test with either of these
inputs will detect the error. A different faulty policy may
replace the condition in rule 1 with its negation:

Pnc = ((~a b c) → G) ((d e) → G) (~(~ a b c) · ~(d e) → ~G)

For the implementation Pnc, the detection conditions are

P ⊕Pnc = b c d̅ + b c e̅

Thus a test with b c d̅ + b c e̅ (and either a or a̅) would
detect the error. Since P ⊕Ptc = a̅ (P ⊕ Pnc), it is easy to see
that

nctc PPPP ⊕⇒⊕ , i.e., the detection conditions for Ptc

subsume those for Pnc, so a test that detects the faulty policy
Ptc, with the true condition, will also detect policies with the
same condition negated in the same rule. For example, the test

4th Symposium on Configuration Analytics and Automation, 2011, IEEE
Oct. 31 – Nov. 1, Arlington, Virginia, pp. 1-9; DOI: 10.1109/SafeConfig2011.611679

a̅ b c d̅ would detect both vulnerabilities by evaluating to G in
both faulty implementations, instead of the correct result G̅.

 Extreme cases may also be analyzed in this manner: a
faulty policy that should grant access under condition p but
grants access in all cases has vulnerability conditionp :

pGGpGp =→⊕→→)1())((. A faulty policy with the

opposite result, that always denies access, has vulnerability
condition p: pGGpGp =→⊕→→)1())((.

IV. VULNERABILITY CLASSES

 This section defines classes of vulnerabilities and
determines vulnerability hierarchies for the access control
policy structures defined previously. A large number of
vulnerabilities can be defined for access control rules, but a
reasonable set may include the following (where OP is · or +).
Note that the exact form will vary with the type of structure as
defined in the taxonomy of Section II.

Add Condition: A condition ca that was not specified has
been added to the implementation:

 if (ci1 OP ... OP cij OP...OP cini) then decision;
is replaced with
 if (ci1 OP ... cij OP ca OP cij+1 ...OP cini) then decision;

Delete Condition: A specified condition is missing from the
implementation:

 if (ci1 OP ... OP cij OP...OP cini) then decision;
is replaced with
 if (ci1 OP ... cij-1 OP cij+1 OP...OP cini) then decision;

Replace Condition: A condition is replaced with a different
one, not equivalent:

 if (ci1 OP ... OP cij OP...OP cini) then decision;
is replaced with
 if (ci1 OP ... cij-1 OP cx OP cij+1 OP...OP cini) then decision;

True Condition: A condition is always true:

 if (ci1 OP ... OP cij OP...OP cini) then decision;
is replaced with
 if (ci1 OP ... OP true OP...OP cini) then decision;

False Condition: A condition is always false:

 if (ci1 OP ... OP cij OP...OP cini) then decision;
is replaced with
 if (ci1 OP ... OP false OP...OP cini) then decision;

Negate Condition: A condition is negated:

 if (ci1 OP ... OP cij OP...OP cini) then decision;
is replaced with
 if (ci1 OP ... OP ~cij OP...OP cini) then ~decision;

Negate Decision: The specified result for a condition is the
opposite of intended. This mutation can apply only when there
are two possible decisions, generally Grant or Deny:

 if (condition) then decision;
is replaced with
 if (condition) then ~decision;

Delete Rule: A specified rule has been omitted from the
implementation.

A rule from the policy is deleted:
 if (c11 · . . . · c1n1) then grant;

. . .
 if (ci1 · . . . · cini) then grant;

. . .
 if (ck1 · . . . · ckn3) then grant;
 else deny;
is replaced with:
 if (c11 · . . . · c1n1) then grant;

. . .
 if (ck1 · . . . · ckn3) then grant;
 else deny;

 In practical implementations, some of these vulnerabilities
could arise from administrator error, such as accidentally
deleting or leaving out a condition or rule, and others may
result from software failures, such as a module that is intended
to verify an attribute and return true or false, but always
returns true. Tests can be produced by inserting flaws or
mutations in a policy and then model checking or other
methods to analyze the difference between the mutated and
correct policies [3, 8, 14, 20].

V. VULNERABILITY HIERARCHIES

 For the eight vulnerability classes introduced above,
hierarchical relationships exist for the access control rule
structures in the taxonomy of Sect. III. As can be seen, some
common relationships emerge, but variations occur as a result
of the differences in rule structure, e.g., conjunctions or
disjunctions. In the structures below, vulnerabilities are
abbreviated as follows:

ac: add condition
dc: delete condition
rc: replace condition
tc: true condition
fc: false condition
nc: negate condition
nd: negate decision
dr: delete rule

Note that this set of vulnerabilities is not claimed to be
complete. If could be extended, for example, with
vulnerabilities such as “add rule” or “replace rule”. A more
comprehensive collection will be studied in a future paper.
Hierarchical relationships among detection conditions for n
different vulnerability classes can be determined by checking
for implications between the n(n-1) pairs of detection
conditions. That is, for all pairs of vulnerabilities Pi, Pj, i≠j,

4th Symposium on Configuration Analytics and Automation, 2011, IEEE
Oct. 31 – Nov. 1, Arlington, Virginia, pp. 1-9; DOI: 10.1109/SafeConfig2011.611679

compute
ji PPPP ⊕⇒⊕ , where Pi and Pj are access rules

for particular faults that lead to vulnerabilities. For instance, it
was shown that

nctc PPPP ⊕⇒⊕ for Example 2 above. For

access control rules with a regular structure, such as those
introduced in Section II, generic hierarchies can be
constructed for various vulnerabilities.

 The hierarchies below can be shown for policies with
multiple (two or more) rules with grant decisions, where each
rule contains two or more conditions that can be treated as
boolean terms, and the same condition is affected in the
correct and faulty policy. (Computations not shown due to
space limitation.) The analysis below is for policies containing
a series of rules with grant decisions, followed by a default
deny decision, where each rule has either a conjunction of two
or more conditions (con/2/singular) or disjunction of two or
more conditions (dis/2/singular). Similar hierarchies can be
constructed for other rule patterns in the taxonomy of Sect. II.
Although any propositional expression can be converted to a
different but equivalent formula, the form of expressions must
be considered when analyzing detection conditions because
flaws in practice may not affect all occurrences of a variable.
For example, a + bc = (a+b)(a+c). If a is accidentally negated
in one place on each side of the equation, the results are not
equivalent: a̅ + bc ≠ (a̅ +b)(a+c).

con/2/singular, changes to rules with grant decision

dis/2/singular, changes to rules with grant decision

Note that for con/2/singular policies, dc and tc are equivalent,
because setting one term to true in a set of terms in a
conjunction is equivalent to deleting the term, e.g., setting a to
true, abc = 1bc = bc. Similarly, setting a term to false for this
class of rules is equivalent to deleting the entire rule, e.g.,
setting a to false, abc → G = 0bc → G = 1 + G = 1. Similarly,

for dis/2/singular, dc and fc are equivalent, e.g., setting a to
false, a+b+c = 0+b+c = b+c.

Example Policy

 To illustrate the utility of the hierarchies discussed above,
we define a small policy that could be implemented in a
variety of frameworks such as XACML. The policy is
summarized below, followed by a pseudo-code
implementation which is then converted to a logic formula for
analysis. Policy: Supervisors may print customer account
information during normal business hours or outside of
business hours if special access is granted. Auditors may
print customer information during normal business hours, or
if authorized by a bank supervisor. Customer account
information may be updated only by tellers through a teller
terminal, or by accounting clerks if authorized by the
accounting department supervisor.

Implementation: This policy may be coded as follows:

if role = spvsr & busn_hrs & req = print → grant;
else if role = spvsr & !busn_hrs & spec_access & req = print
→ grant;
else if role = auditor & busn_hrs & req = print → grant;
else if role = auditor & !busn_hrs & spvsr_auth & req =
print → grant;
else if role = teller & node = teller_term & req = updat) →
grant;
else if role = acct & acct_spvsr_auth & req = update →
grant;
else deny;

Abbreviations for the terms in the policy are:
s: role = spvsr
b: busn_hrs
a: spec_access
p: req = print
d: role = auditor
h: spvsr_auth
t: role = teller
n: node = teller_term
u: req = update
c: role = acct
r: acct_spvsr_auth

Writing the policy as formula P for manipulation:

P = (sbp →G)(sb̅ap→G)(dbp → G)(db̅hp → G)(tnu →G)(cru
→G)(~(sbp) ~(sb̅ap) ~(dbp) ~(db̅hp) ~(tnu) ~(cru) → G̅);

 According to the taxonomy defined previously, this policy
may be categorized as con/2/singular . Thus, as shown above,
the relationships dr/fc → nc and dr/fc → nd must hold. That
is, a test for either delete rule or false condition will detect
both negate condition errors and negate decision errors.

ac

nd

rc

nc

dr/fc dc/tc

ac

nd

rc

nc

dc/fc

tc dr

4th Symposium on Configuration Analytics and Automation, 2011, IEEE
Oct. 31 – Nov. 1, Arlington, Virginia, pp. 1-9; DOI: 10.1109/SafeConfig2011.611679

 A negated condition faulty policy occurs where the
condition is negated. That is, if an administrator mistakenly
codes the rule to specify the condition “req ≠ update” instead
of “req = update”, the policy is as follows:
nc = (sbp →G)(sb̅ap →G)(dbp →G)(db̅hp → G)(tnu̅ →
G)(cru →G)(~(sbp) ~(sb̅ap) ~(dbp) ~(db̅hp) ~(tnu̅) ~(cru) →
G̅);
 A negate decision error can occur in practice if a rule that
should have a Grant decision is accidentally entered as Deny.
nd = (sbp →G)(sb̅ap →G)(dbp →G)(db̅hp→G)(tnu →→→→G̅)(cru
→G)(~(sbp) ~(sb̅ap) ~(dbp) ~(db̅hp) ~(tnu) ~(cru) → G̅);

In practice, a delete rule error may occur easily when a rule is
accidentally removed or left out, particularly when policies
contain dozens or hundreds of rules. As modeled, this would
be written as:
dr = (sbp →G)(sb̅ap →G) (dbp →G) (db̅hp → G) /*deleted
rule*/ (cru →G) (~(sbp) ~(sb̅ap) ~(dbp) ~(db̅hp) ~(cru) → G̅);

Detection conditions for each of these errors are as follows:
Detection conditions, negated condition: dnc =
n & t & ~c & ~p +
n & t & ~p & ~r +
n & t & ~p & ~u +
n & t & ~c & ~d & ~s +
n & t & ~d & ~r & ~s +
n & t & ~d & ~s & ~u +
n & t & ~a & ~b & ~c & ~d +
n & t & ~a & ~b & ~c & ~h +
n & t & ~a & ~b & ~d & ~r +
n & t & ~a & ~b & ~d & ~u +
n & t & ~a & ~b & ~h & ~r +
n & t & ~a & ~b & ~h & ~u +
n & t & ~b & ~c & ~h & ~s +
n & t & ~b & ~h & ~r & ~s +
n & t & ~b & ~h & ~s & ~u

Detection conditions, negated decision: dnd =
G & n & t & u +
G & n & t & u & ~p +
n & t & u & ~c & ~p +
n & t & u & ~p & ~r +
G & n & t & u & ~d & ~s +
n & t & u & ~c & ~d & ~s +
n & t & u & ~d & ~r & ~s +
n & t & u & ~a & ~b & ~c & ~d +
n & t & u & ~a & ~b & ~c & ~h +
n & t & u & ~a & ~b & ~d & ~r +
n & t & u & ~b & ~c & ~h & ~s +
G & n & r & t & u & ~a & ~b & ~h +
n & t & u & ~G & ~a & ~b & ~h & ~r +
n & t & u & ~G & ~b & ~h & ~r & ~s

Detection conditions, deleted rule: ddr =
n & t & u & ~c & ~p +
n & t & u & ~p & ~r +

n & t & u & ~c & ~d & ~s +
n & t & u & ~d & ~r & ~s +
n & t & u & ~a & ~b & ~c & ~d +
n & t & u & ~a & ~b & ~c & ~h +
n & t & u & ~a & ~b & ~d & ~r +
n & t & u & ~a & ~b & ~h & ~r +
n & t & u & ~b & ~c & ~h & ~s +
n & t & u & ~b & ~h & ~r & ~s
 In other words, conditions that trigger a deleted rule
vulnerability for the rule in the rule tnu →grant will also
trigger a negated condition or a negated decision vulnerability.
Because this implication relationship holds, a test for
vulnerability dr will also detect vulnerability nc. Note that
several tests occur in all three sets of detection conditions. For
example n & t & u & ~c & ~d & ~s is a single test that will
detect policies that have been incorrectly containing a negated
condition fault for u in the rule tnu →grant, a negated decision
fault for this rule, or if the rule has been left out completely.

 Similarly, tests for add condition faults will detect four
fault classes: rc, dr, fc, or nd. Thus tests must be generated for
only two of the eight fault classes, because the other five types
of faults will be detected by the generated tests as well. Note
that this optimization works for policy specifications that fall
into the con/2/singular category. For other configuration
structures, different relationships hold, thus it is important to
understand the type of configuration defined for a particular
system. The analysis method described in Sect. V may be
applied to any rule configuration structure, and is not confined
to those specified in this paper.

 Considering vulnerability hierarchies in test design can
increase test efficiency by reducing the number of tests
required to detect common errors, without reducing fault
detection effectiveness, as can occur with other test
minimization procedures [19]. Access control policy
configuration is a problem that is particularly well suited to
this type of analysis. Policies typically have a well-defined
structure. Consequently, the set of common errors may be
more restricted than, for example, may occur in ordinary
programming. Conditions in rules may be omitted
accidentally, placed in the wrong rule (added accidentally to
one rule and left out of the other), the wrong decision may be
specified for a particular set of conditions, coded as variable
= value when variable != value was intended, and so
forth. Using the hierarchies shown above, tests may be
designed to detect common errors using fewer tests than
would be required without knowledge of the hierarchical
relationship among common errors. For example, if the
policy includes n rules with k conditions each in the
con/2/singular pattern, then no more than n tests for the
deleted rule fault class will be needed to detect a deleted rule,
negated decision, or if any of the nk conditions have been
accidentally negated.

4th Symposium on Configuration Analytics and Automation, 2011, IEEE
Oct. 31 – Nov. 1, Arlington, Virginia, pp. 1-9; DOI: 10.1109/SafeConfig2011.611679

VI. RELATED WORK

 A key aspect of methods described here is the use of fault
model for common errors in access control policies. A number
of authors have reviewed access control policy faults for use in
mutation testing, including [5,7,14,18,20]. Some of the
vulnerability classes detailed in Sect. IV can be mapped to
faults from fault models in these papers. This paper applies the
methods for fault hierarchy construction developed for logic
faults in boolean expressions to the problem of analyzing
access control vulnerabilities introduced by configuration
errors. Fault hierarchies in logic specifications were
introduced in [11], and subsequently extended by others,
including [9, 10, 12,17, 21]. These methods have not been
previously applied to analysis of access control configurations.
Several of the fault classes for boolean expressions apply also
to vulnerability hierarchies, such as stuck at true or stuck at
false faults, or literal insertion faults, which correspond to the
added condition faults of Section IV, but others are unique to
access control rules as a result of their structure. The deleted
rule and negated decision faults discussed in this paper are
two examples, and others could be developed as well. Early
work on fault hierarchies assumed specifications were in
disjunctive normal form, but hierarchies can still be shown
after removing this assumption [17]. The DNF assumption is
significant because DNF expressions are not commonly used
in programming conditionals, and a fault in a general boolean
expression can result in multiple faults when the expression is
converted to DNF. Unlike conventional programming practice,
access control system rules tend to be highly structured. This
paper explicitly takes the form of various rule logic structures
into account in computing vulnerability class hierarchies.

VII. CONCLUSIONS

 This paper has demonstrated the application of methods for
analyzing fault hierarchies to understanding relationships
among vulnerabilities in access control rule structures. A
taxonomy of rule structures was introduced and detection
conditions computed for each class of vulnerability in the
different structures. For two configuration structures,
detection conditions were analyzed for the existence of logical
implication relations between conditions. It was shown that
hierarchies of detection conditions exist, and that hierarchies
vary among rule structures. The existence of such hierarchies
can be used to reduce the number of tests required to detect the
presence of fault classes in access control rules as
implemented. Other structures in the taxonomy will be
analyzed in a forthcoming paper.

Acknowledgments: I am grateful to Lee Badger, Vincent Hu, and the
Safeconfig reviewers for many helpful recommendations.
Certain software products are identified in this document, but such
identification does not imply recommendation by NIST, or that the
products identified are necessarily the best available for the purpose.

References

1 A. Anderson, Evaluating XACML as a Policy Language, OASIS
Tech. Rpt. March, 2003.

2 R. Anderson, Security Engineering, a Guide to Building
Dependable Distributed Systems, Wiley, 2001.

3 Paul E. Black, Vadim Okun, Yaacov Yesha, "Mutation
Operators for Specifications," 15th IEEE International Conf.
Automated Software Engineering (ASE'00), 2000, pp.81.

4 Center for Strategic and Intl Studies, “Securing Cyberspace for
the 44th Presidency”, Dec. 2008.

5 K. Fisler, S. Krishnamurthi, L.A. Meyerovich, M.C. Tschantz,
Verification and Change Impact Analysis of Access Control
Policies, ACM, Proc. 27th Intl Conf Software engineering 2005,
St. Louis, MO. pp. 196 – 205. ISBN:1-59593-963-2

6 V. Hu, D.R. Kuhn, T. Xie, J. Hwang, “Model Checking for
Verification of Mandatory Access Control Models and
Properties”, Int'l Journal of Software Engineering and
Knowledge Engineering (IJSEKE), vol. 21, no. 1, pp. 103-127.

7 Hongxin Hu and GailJoon Ahn. Enabling verification and
conformance testing for access control model. Proc. 13th ACM
Symposium on Access control Models and Technologies, pages
195–204, Estes Park, CO,USA, June 2008.

8 J.H. Hwang, T. Xie, V.C. Hu, “Detection of Multiple-Duty-
Related Security Leakage in Access Control Policies”, 3rd IEEE
International Conference on Secure Software Integration and
Reliability Improvement, Shanghai, China, pp. 59-68, July 2009.

9 G. Kaminski, G. Williams, P. Ammann, “Reconciling
Perspectives of Software Logic Testing”, Software Testing,
Verification, and Reliability, vol. 18, pp. 149-188, 2008.

10 G. Kaminski, P. Ammann, Using a Fault Hierarchy to Improve
the Efficiency of DNF Logic Mutation Testing, Intl Conf
Software Testing Verification and Validation, 2009, 386-395.

11 D.R. Kuhn, "Fault Classes and Error Detection Capability of
Specification Based Testing," ACM Transactions on Software
Engineering and Methodology, Vol. 8, No. 4 (October, 1999)

12 M.F. Lau, Y.T. Yu, An extended fault class hierarchy for
specification-based testing, ACM Trans on Software
Engineering and Methodology 14;3 (July 2005), pp. 247 – 276.

13 A.X. Liu, M.G. Gouda, Firewall Policy Queries, IEEE Tran.
Parallel and Distributed Sys, v. 20 n. 6, June 2009, pp. 766-777.

14 E. Martin, T. Xie, and T. Yu. Defining and Measuring Policy
Coverage in Testing Access Control Policies. 8th Int Conf Inf
and Communications Security, Raleigh, pp. 139-158, 2006.

15 Internet Engineering Task Force, Internet Security Glossary,
RFC 2828, May, 2000. http://www.ietf.org/rfc/rfc2828.txt

16 OASIS-Open. XACML v3.0 Hierarchical Resource Profile,
Version 1.0, Working Draft 7, 1 April 2009.

17 V. Okun, P.E. Black, Y. Yesha, “Comparison of Fault Classes in
Specification Based Testing”, Information and Software
Technology, Elsevier, 46(8):525-533, 15 June 2004.

18 A. Pretschner, T. Mouelhi, and Y. Le Traon, “Model-Based
Tests for Access Control Policies,” in Proc., 1st Intl Conf
Software Testing, Verification, and Validation (ICST ’08).
Lillehammer, Norway: IEEE, 9-11 April 2008, pp. 338–347.

19 G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An
empirical study of the effects of minimization on the fault
detection capabilities of test suites. In Proc. Intl Conf Software
Maintenance, pp. 34–43, 1998.

20 Y. L. Traon, T. Mouelhi, and B. Baudry. Testing security
policies: Going beyond functional testing. ISSRE '07. The 18th
IEEE In. Symp. Software Reliability.

21 T. Tsuchiya, T. Kikuno, On fault classes and error detection
capability of specification-based testing, ACM Trans Software
Engineering and Methodology (TOSEM), v.11, n. 1, pp. 58 – 62.

