Vulnerability Hierarchies in Access Control Configurations

D. Richard Kuhn
National Institute of Standards and Technology
Gaithersburg, MD 20899
kuhn@nist.gov

Abstract— This paper applies methods for analyzing fawdtdnichies
to the analysis of relationships among vulnerabdit in
misconfigured access control rule structures. af@ries have been
discovered previously for faults in arbitrary logiformulae
[11,10,9,21], such that a test for one class of fault is guaehto
detect other fault classes subsumed by the onedtebut access
control policies reveal more interesting hierarshieThese policies
are normally composed of a set of rules of the ftifnficonditions]
then [decision]”, where [conditions] may includeeoar more terms
or relational expressions connected by logic opesatand [decision]
is often 2-valued (“grant” or “deny”), but may bevalued. Rule sets
configured for access control policies, while coemploften have
regular structures or patterns that make it posgiblidentify generic
vulnerability hierarchies for various rule struesrsuch that an
exploit for one class of configuration error is targeed to succeed
for others downstream in the hierarchy.

A taxonomy of rule structures is introducedd adetection
conditions computed for nine classes of vulnergbiliadded term,
deleted term, replaced term, stuck-at-true conuitistuck-at-false
condition, negated condition, deleted rule, replagecision, negated
decision. For each configuration rule structuretedtion conditions
were analyzed for the existence of logical implmat relations
between detection conditions. It is shown thatrdrzhies of
detection conditions exist, and that hierarchiesy vamong rule
structures in the taxonomy. Using these resuksist may be
designed to detect configuration errors, and riegpliulnerabilities,
using fewer tests than would be required withoutvidedge of the
hierarchical relationship among common errors. atfdition to
practical applications, these results may help taprove the
understanding of access control policy configuratio
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. INTRODUCTION

Access control is one of the central problémsomputer
security, and many access control models have teéned,
including discretionary access control (DAC), manda
access control (MAC), and role based access cofRBAC)
among the most commonly used types [2],
standardized forms of access control are often isadtwork
appliances such as firewalls. Access control pedicoften
become large and complex, and rule configuratiovnsve
over time as functions are added or changed, oiticuial
systems are connected. It is estimated that corafigum errors
account for up to 80% of network vulnerabilitieg.[4For
defensive purposes, policies must be tested toreniat they

and les

In this paper we show that there is a hieiaath
relationship among vulnerabilities in access cdnsgstems,
such that the conditions that allow the exploitatad one are
sufficient for triggering other vulnerabilities dogtream in
the hierarchy. While the number of potential ffatlat result
in vulnerabilities is vast, the structure of accesstrol rules
results in a hierarchy for certain classes of wahdities.
This paper demonstrates the existence of thesarbiees for
a variety of access control rule configurationg) ahows how
the results may be used to reduce the number tsfrieguired.

The analysis of hierarchies of vulnerabilitiesn be
compared with similar analyses for testing [11,1219 where
a vulnerability corresponds to a fault and a testesponds to
an exploit for that vulnerability. However, forsteng this
analysis is normally applied to arbitrary logic rfarlae while
access control rules are typically implemented émmon
patterns such asf‘A then Grant; else if B then Grant; else ...
; else Deny. Two types of hierarchies can be shown: those
specific to a particular access control policy, ageheric
forms that are determined by the structure of acoestrol
rules. A taxonomy of rule structures is defined & various
possible flaws (e.g., deleted term, added termpditimns
under which these faults can be detected are showarm
mathematical structures in which detection condgidfor
some vulnerabilities subsume those for others.

Avulnerability is defined in the RFC 2828 [15] &4A
flaw or weakness in a system's design, implementatr
operation and management that could be exploitedidtate
the system's security policy"To formalize this definition, we
distinguish the specified policy aB and the policy as
configured by coded rules on an operational systeR That
is, applications that are implemented must confdaomthe
policy, P, but due to human error or system failures, tHepo
as implemented may not be correct with respedtdéadefined

olicy P. The policy as implemented by administrators gisin

ccess control rules is designaidIf R = P, then the policy
has been implemented correctly and by definitieare¢hare no
vulnerabilities with respect to this policy (altlgiuthere may
be problems unanticipated by policy designers #rat later
considered vulnerabilities). IR # P, then one or more
vulnerabilities exist with respect to the policychuthat
unauthorized access or denial of service may loavatl.

behave as expected, and because po"cies may eclud Access control pOliCieS often take the fornadequence of

hundreds or even thousands of rules [13], a largaber of
tests may be needed.

rules composed of conditions that result in a degiso grant
or deny access. For example, where @eontain one or
more conditional expressions:

if (C) then grant;

if (G) then deny;
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if (G) then grant;
deny; /* default */

Conditions in turn include references to the congms of
access control policies: e.g., subjects, resougresips, roles,
attributes, permissions, and access requestsexaonple:

if ((role =teller OR role = supervisor)
AND(request = account_bal ance)) then
grant;

Access control policies may be configured amning
systems with dozens or hundreds of
interacting in ways that are determined dynamicaéipending
on system events. This level of complexity requicaseful
evaluation to ensure that rules are implementedrandified
correctly, and a variety of systems have been deeel to
analyze and test access control policies [5,6,14]Jo enable
this type of analysis, policies must be represefaedally. In
this paper, policies are represented and analyzgidgu

rules, sometimes

rule structures; Sect. Il explains the computatiaf

vulnerability conditions; Sect. IV describes a etyiof flaws

in access control rules that result in vulnerabit and Sect.
V demonstrates how these flaws result in vulneitgbil
hierarchies for the various rule structures in tAgronomy.

We conclude with a discussion of the implicatioristteese

results for testing access control configuratioasd other
application to analyzing configuration changes.

1. TAXONOMY OF RULE STRUCTURES

An access contrgbolicy, P, is implemented by a set of
rules R. A vulnerability will be defined here as a condition
under which the decision from ruleR differs from the
intended result specified by polidy, that is, whereR = P.
Vulnerabilities may be unauthorized access, (pbsgartial)
denial of service, or a combination of the two, eleging on
the conditions under which the decision is grandemy. For

mathematical logic formulae that could be mapped tdules where the decision is Grant, there are thudgerability

representations for tools such as Margrave [5] 868 T [6].
For example,

if (cl) then grant;
else if (c2) then grant;

may be represented g8 — grant)-(c, —» grant) . At first

glance, it may seem that the policy above couldepeesented
with  “OR” operators between the clauses,

is equivalent to(c,c, — grant), i.e., grant only if botte; and
c, are true, which is clearly not what is intended aot the
way that the policy would be processed with theecatove.
The first expression simplifies t@, +c, — grant), which is
the appropriate meaning and consistent with the.cod

While many applications have hard-coded accedss,
frameworks capable of implementing access cont@leh
become available. XACML [1,16] is one of the betaown
examples. XACML supports an approach often desdrias
“attribute-based” access control, where XACML atiites can
be subjects, actions, or resources. An attribDtesluch as
“clearance level” identifies the attribute, and meke on
different attribute values, such as Secret or TopSe
Implementer-defined rules are used to determineddwsion
for access requests that present attributes tordmegsed by
the rule engine. XACML decisions can be permitnyjeor
not applicable, if there is no rule that matchesdttributes in
the request. The option of a “not applicable” idien is
needed for the generic framework approach moréao hard
coded application specific rules because the fraonewnust
be able to accommodate changing, arbitrarily complde
sets. An analysis of vulnerabilities in acces® rsiructures
must therefore consider more than the conventiduahry
decisions of access control.

The organization and main results of this pape as
follows: Section Il introduces a taxonomy of accesntrol

possibilities, whereR. = grant conditions in implemented
policy andP, = grant conditions in correct policy:

R.=P.: a (possibly partial) denial of service (because
Rc P).

R <P: unauthorized access (becaBse P.)

otherwise possible combination of unauthorized access or
denial of service

as
(c, > grant) + (c, — grant) . But note that the second expression

In cases where the decision is Deny, the titaas the
mirror image of that for Grant rules:

R =P
R <P

unauthorized access (becaugec P.)
a (possibly partial) denial of service (because

R.>R)-
otherwise possible combination of unauthorized access or
denial of service

Example: Suppose a policy specifies that access is to be
granted only whentlie subject is an employle€lesignated as
e, and either the time is during working hougsh, or [the
subject is a supervisprs, and that the policy is implemented
as ‘if e&h — grant; if e&s — grant; deny’. The Grant
condition is specified ase-h+e.s. If the policy is
implemented incorrectly so that the second ruleni
included, then the Grant condition ise.-h. Thus
e-h=e-h+e-sand there is a denial of service where
e-h-s. (This paper follows conventional practice in gsin
(or juxtaposition) for booleaand, + for or, with® signifying
exclusive-oy.

An access control poliayle structureis defined here as a
configuration of logical operators, policy termadadecisions,
categorized according to how the rules are congtducEach
rule has a condition and a decision. Conditionsy rba
composed of other conditions connected by logigedrators,
often with a standard structure (e.g.AND B AND C; A OR
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B ORC). Decisions are often binary, but may also hhvee
or more values (e.ggrant, deny defe). Methods of rule
combining may also have a pattern. In many casest of
rules that can lead togrant decision are followed by a single
default case élse den¥y Alternatively, rules withgrant or
denydecisions may be intermixed, followed by a defaalte.
Thus one way to categorize access control policle ru
structures is to specify the condition format, nemtof
decision values, and rule combining format. Thisohomy is
introduced solely for the purpose of characterizagess
control structures for which fault hierarchies a®eveloped.
Clearly the set of policies thus defined does nmtec the
universe of possible structures, but a large nuroberactical
policy rule structures can be captured in this neannNote
also that the access control rule structures defireze are not
the same as access control policy models. A patiogel
ensures specific properties are maintained amanglédments
of the model. For example, the multilevel securiylicy
model guarantees that a user cleared only to Semneibt read
data labeled TopSecret. One or more rule strustcoald be
used to implement a particular policy model.

Here we define the following rule structuréribtites and
possible values:

e Condition format:con— conjunction of conditionslis —
disjunction of conditions;nf— conjunctive normal form
of conditions.

e Number of decision valuesinary or n-ary.

e Rule combining:singular (all rule decisions of the same
type, e.g.grantor deny followed by a default), amixed
which refers to mixedrant anddenydecisions in rules.

Structures can then be categorized in the for(oandition
formaf/(number of decision valugéule combining methgd
Some structures that can be defined using thisntaxy are
discussed below.

A. con/2/singular

Decisions are determined by the conjunctiorarfditions
under which access is granted. If no ‘grant’ decisnatches
the input configuration, access is denied.

if (C11 - . . . - c1m) then grant;
if (C21 - . .. - Canz) then grant;
if (Ck1 - . . . - Ckns) then grant;
else deny;

This structure is modeled by:

((c11+... Cim) - grant)
-((ca1 - .. .- Com) - grant)
- ((Cka - - .-+ Ckna) - grant)
. (*(011-...-Cln1)-‘(021-...-Czn2)...- ~(Ckl-..

.+ Ckna) - deny)

B. con/2/mixed

Decisions are determined by the conjunctiorcafditions
under which access is granted or denied. l§ramt decision
matches the input configuration, access is denidt rule set
is as defined for con/2/singular except that deaisiabove the
default may be eithegrant or deny

C. disj/2/singular

Decisions are determined by a disjunction omditions
under which access is granted. If no ‘grant’ deacisnatches
the input configuration, access is denied.

if (c11 + ... + c1n1) then grant;
if (C21 + ...+ C2n) then grant;

if (Cka + . . . + Ckn3) then grant;
else deny;

This structure is modeled by:
((cuat+...+cC1m) - grant)
“((car + ...+ Can2) - grant)

“((Cka * ...+ Ckna) - grant)

. (’*(C11+. ..+C1n1) . ~(C21+.. .+C2n2). - ~(Ck1+. .

.+ Ckna) - deny)
D. disj/2/mixed
Decisions are determined by the disjunctiorcafditions
under which access is granted or denied. l§ramt decision
matches the input configuration, access is denidte rule set
is as defined for disj/2/singular except that decis above the
default may be eithegrant or deny
E. cnf/2/singular
Decisions are determined by conditions in goajive
normal form (CNF) under which access is granted.nd
‘grant’ decision matches the input configuratiocess is
denied. This rule class is included because itelatively
common in real-world access control problems. XA€ML
[16] standard is one such widely used framework for
implementing access control policies. An XACML auset
includes clauses for subjects, resources, and ractiwhere
rules include matching conditions for these thrtdbates.

For example, an XACML rule may specify “if (role =
engineer OR role = technician) AND (database = tesults)
AND (action = append) then GRANT”. (XACML uses an
XML syntax, but for readability, this example isvgnh in
natural language.) Rules may have decisions aftgceny,
or no match in cases where none of the rule presicaatch
the set of attributes presented to the XACML decisystem.
In this paper, we consider only XACML rules wherseaies
of grant rules are offered, with a default deny the syntax
below, we uses, r, anda, for subject, resource, and action
terms, but the extension to other CNF rule setdigous.

if(Sta+...+Swn) - (fa+...+rmy) - (@Qu+...+am)
then grant;
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if(821+.. -+32n1) . (r21+. . .+r1n1) . (821"'.. .+a2n1)
then grant;

if(Ski+...+Skns) - (Mka+...+Tkn) - (@ka+ ...+ &kny)
then grant;

else deny;

This structure is modeled by:

((su+...+s1) - (ru+...+rm) - (@u+...+aim)
- grant)

“((sar+ ... *+som) - (ran+ ... +rm) - (@ + ...+ az2m)
- grant)

(ke t ..+ Skny) (et ... FTkng) - (Bt ...+ Ak
grant)

(~((s1at+ ... *+s1m) s (ra+ ... +rig) (@t ...+ A1)

~((Sk1+...+Skm)- (rk1+...+rkn1)-(ak1+...+
akn1) - deny)

F. cnf/2/mixed
Decisions are determined by the conjunctiorarfditions
under which access is granted or denied. I§ramt decision
matches the input configuration, access is denidte rule set
is as defined for cnf/2/singular except that decisiabove the
default may be eithegrant or deny
G. (condition)/n/(combining ( n-ary Decision Rulgs
When possible decisions are more theant or deny rule
structures are defined as above with the modificatihat
grant decisions are replaced hypossible decisions other than
deny

[ll.  VULNERABILITY DETECTIONCONDITIONS

As defined above, avulnerability is a faulty
implementation of an access control policy. Théedkon
conditions for a flaw in a polic are given by the boolean
difference,P@ P', whereP’ represents formul® with the
fault inserted. I’ is P with Fault 1, and®” is P with Fault

2, andP® P = P® P'", then a test that detects Fault 1 will

also detect Fault 2 [11]. In this case we say thatlt 1
subsumes Fault 2. Consequently, a test constructeétect
Fault 1 will detect Fault 2 as well, eliminatingetmeed to
construct tests specifically for Fault 2. Depeigdim the form
of boolean expressions in the specification, and fhult
classes defined, a hierarchy may be established that one
or more root nodes subsume other fault classe$d911,12,
21]. Then tests defined for the root fault clas¥(will detect
the other classes subsumed by these, obviatinghé¢ld to
develop additional tests.

Examplel: Consider the policy from the previous example

which specifies that access is to be granted orignathe
subject is an employgelesignated ag, and eitherthe time is
during working hourg h, or [the subject is a supervidors, a
policy specified a® =(eh+es— G)(~ (eh+eg — G). If rule

R is implemented incorrectly ggh— G)(~ (eh) — G), then

eh= eh+eg and there is a denial of service wheren -s.
To detect this vulnerability, compute

(eh+e9 —» G)(~ (eh+e9) > G) ®(eh— G)(~ (eh) - G)
=ehs

That is, a result that differs from the cotrpolicy occurs
where the subject is an employee and supervisoitt@tme
is out of hours. A test input ofhswill detect that the
implemented policy does not behave according tspeeified
policy because the subject is improperly denie¢ssc

A different situation occurs if the implemedtgolicy
allows access that is not authorized by the spetifiolicy.
For example if the implemented policy fails to chdwmurs,
i.e., if (e+es— G)(~(e+e9 —>G) is implemented, then
unauthorized access will be allowed when the stitip@n
employee but not a supervisor and time is out ofking
hours:

(eh+es— G)(~ (eh+e9 - G)
® (e+es— G)(~ (e+e9 —G) = €hs

This type of analysis can be applied to more complées.

Example 2: A policy can be defined as below:

if (@ & b & c) then grant; if (d & e) then grant; else deny;
modeled by:
P=(@abg—0C)(dg—C) (~@@abg-~dg— ~G)

Suppose the policy is implemented incorreddgying out
conditiona:
Pe=(bc)—G) (dg—0C) (~bg-~deg— ~G)

The detection conditions for this type of flawRp are:
P@®P.=abcd+abce

That is, for inputs of eithex bcd or a b c® policy
P produces an incorrect result, so a test with eitfiéhese
inputs will detect the error. A different faultplcy may
replace the condition in rule 1 with its negation:

Pe=((rabg—G)(dg—G)(~(~abg ~dg— ~G)

For the implementatioR,, the detection conditions are
P®P.,.=bcd +bce

Thus atest witth cd + b ce (and eithera or a) would
detect the error. Sinde@ ®P,.=a(P @ P,), itis easy to see
that P® P, > P® P, i.e., the detection conditions fdp,
subsume those fd?,., so a test that detects the faulty policy

P, with the true condition, will also detect polisigvith the
same condition negated in the same rule. For ebaripe test
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a b ¢ dwould detect both vulnerabilities by evaluating@an
both faulty implementations, instead of the corresultG.

Extreme cases may also be analyzed in thisnarana
faulty policy that should grant access under camdip but
grants access irall cases has vulnerability conditip :

(p>G)(p>G)®(1L—>G)=p. A faulty policy with the
opposite result, that always denies access, haserability
conditionp: (p—>G)(p>G)®1—G)=p.

IV. VULNERABILITY CLASSES

This section defines classes of vulnerabditi@nd
determines vulnerability hierarchies for the accesstrol
policy structures defined previously. A large nuwnhof
vulnerabilities can be defined for access contubés, but a
reasonable set may include the following (wherei©ORor +).
Note that the exact form will vary with the typegifucture as
defined in the taxonomy of Section II.

Add Condition: A conditionc, that was not specified has
been added to the implementation:

if (ciz OP ... OP cj; OP...OP cinj) then decision;
is replaced with
if (Ciz OP ... Cjj OP ca OP cij+1 ...OP cin) then decision;

Delete Condition: A specified condition is missing from the
implementation:

if (ci1 OP ... OP cjj OP...OP cin) then decision;
is replaced with
if (Ciz OP ... cjj1 OP cjr1 OP...OP cin)) then decision;

Replace Condition: A condition is replaced with a different
one, not equivalent:

if (ci1 OP ... OP cjj OP...OP cin) then decision;
is replaced with
if (Ciz OP ... Cij1 OP cx OP cij+1 OP...OP cij) then decision;

True Condition: A condition is always true:

if (ciz OP ... OP cj; OP...OP cinj) then decision;
is replaced with
if (cin OP ... OP true OP...OP ciy) then decision;

False Condition: A condition is always false:

if (ciz OP ... OP cj; OP...OP cinj) then decision;
is replaced with
if (cin OP ... OP false OP...OP ciy) then decision;

Negate Condition: A condition is negated:

if (ciz OP ... OP cj; OP...OP cinj) then decision;
is replaced with
if (ci1 OP ... OP ~c;jj OP...OP cin) then ~decision;

Negate Decision: The specified result for a condition is the
opposite of intended. This mutation can apply amhen there
are two possible decisions, generally Grant or Deny

if (condition) then decision;
is replaced with
if (condition) then ~decision;

Delete Rule: A specified rule has been omitted from the
implementation.

A rule from the policy is deleted:

if (C11 - . . . - C1n1) then grant;
if (i1 -. '. - Cini) then grant;
if (Cia - Ckn3) then grant;
else deny;
is replaced with:

if (C11 - . . . - C1n1) then grant;
if (Ck1 - Ckna) then grant;
else deny;

In practical implementations, some of thesmerabilities
could arise from administrator error, such as attally
deleting or leaving out a condition or rule, andess may
result from software failures, such as a modulé ithatended
to verify an attribute and return true or falset lalways
returns true. Tests can be produced by insertiagsf or
mutations in a policy and then model checking oheot
methods to analyze the difference between the eulitand
correct policies [3, 8, 14, 20].

V. VULNERABILITY HIERARCHIES

For the eight vulnerability classes introducatbove,
hierarchical relationships exist for the accesstrobnrule
structures in the taxonomy of Sect. Ill. As canseen, some
common relationships emerge, but variations oceua gesult
of the differences in rule structure, e.g., confioxws or
disjunctions. In the structures below, vulnerdieid are
abbreviated as follows:

ac. add condition
dc: delete condition
rc: replace condition
tc: true condition

fc: false condition
nc. negate condition
nd: negate decision
dr: delete rule

Note that this set of vulnerabilities is not cladnéo be
complete. If could be extended, for example,
vulnerabilities such as “add rule” or “replace fuleA more
comprehensive collection will be studied in a fetyraper.
Hierarchical relationships among detection condgidor n
different vulnerability classes can be determingdcbhecking
for implications between then(n-1) pairs of detection
conditions. That is, for all pairs of vulnerabés P;, P;, i =],
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computeP® R = P® P,, whereP; and P, are access rules

for particular faults that lead to vulnerabilitieBor instance, it
was shown theP® B, = P& PR, for Example 2 above. For

access control rules with a regular structure, sashthose
introduced in Section I,
constructed for various vulnerabilities.

The hierarchies below can be shown for pdicieith
multiple (two or more) rules witgrant decisions, where each
rule contains two or more conditions that can leated as
boolean terms, and the same condition is affectedhe
correct and faulty policy. (Computations not shodue to
space limitation.) The analysis below is for p@iicontaining
a series of rules with grant decisions, followed éylefault
deny decision, where each rule has either a cotigmof two
or more conditionsdpn/2/singular) or disjunction of two or
more conditions dis/2/singular). Similar hierarchies can be
constructed for other rule patterns in the taxonagect. II.
Although any propositional expression can be caedeto a
different but equivalent formula, the form of exgs®mns must
be considered when analyzing detection conditioesabse
flaws in practice may not affect all occurrencesaofariable.
For examplea + bc = (a+b)(a+c). If ais accidentally negated
in one place on each side of the equation, theltseate not
equivalent:a + bc # (a+b)(at+c).

con'2/singular, changes to rules witlrant decision
ac

dc/tc rc dr/fc

nc nd

dis/2/singular, changes to rules witlrant decision

ac dc/fc
tc rc dr
nc nd

Note that forcon/2/singular policies,dc andtc are equivalent,
because setting one term toe in a set of terms in a
conjunction is equivalent to deleting the term, esgtting a to
true, abc = 1bc =bc. Similarly, setting a term tfalsefor this
class of rules is equivalent to deleting the entirke, e.g.,
settingatofalsg abc—> G=0bc— G=1+G=1. Similarly,

for dis/2/singular, dc and fc are equivalent, e.g., settango
false at+b+c = O+b+c = b+c.

Example Policy
To illustrate the utility of the hierarchiegscussed above,

generic hierarchies cae b we define a small policy that could be implementada

variety of frameworks such as XACML. The policy is
summarized below, followed by a pseudo-code
implementation which is then converted to a logimfula for
analysis. Policy: Supervisors may print customer account
information during normal business hours or outsidé
business hours if special access is granted. Atglimay
print customer information during normal businessuts, or

if authorized by a bank supervisor. Customer aotou
information may be updated only by tellers throumheller
terminal, or by accounting clerks if authorized lke
accounting department supervisor.

Implementation: This policy may be coded as follows:

if role = spvsr & busn_hrs & req = print - grant;

else if role = spvsr & !busn_hrs & spec_access & req = print
- grant;

else if role = auditor & busn_hrs & req = print = grant;

else if role = auditor & !busn_hrs & spvsr_auth & req =
print - grant;

else if role = teller & node = teller_term & req = updat) >
grant;

else if role = acct & acct_spvsr_auth & req = update =
grant;

else deny;

Abbreviations for the terms in the policy are:
s: role = spvsr

: busn_hrs

spec_access

req = print

: role = auditor

: spvsr_auth

role = teller

node = teller_term

req = update

s role = acct

acct_spvsr_auth

30 cSc D FT QT 0T

Writing the policy as formul® for manipulation:

P = (sbp—G)(sbap—G)(dbp — G)(dbhp — G)(tnu —G)(cru
—G)(~(shp ~(sbap) ~(dbp) ~(dbhp) ~(tnu) ~(cru) — G);

According to the taxonomy defined previoughis policy
may be categorized asn'2/singular. Thus, as shown above,
the relationshipslr/fc — nc anddr/fc — nd must hold. That
is, a test for eithedelete ruleor false conditionwill detect
bothnegate conditiorerrors andhegate decisioerrors.
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A negated conditionfaulty policy occurs where the
condition is negated. That is, if an administratustakenly
codes the rule to specify the conditiord # update” instead
of “req = update”, the policy is as follows:
nc = (sbp —G)(sbap — G)(dbp — G)(dbhp — G)(tnT —
G)(cru —~G)(~(sbp ~(sbap) ~(dbp) ~(dbhp) ~( tnd) ~(cru) —
G);
> Anegate decisioerror can occur in practice if a rule that
should have a Grant decision is accidentally edtaseDeny.
nd = (sbp—G)(sbap —G)(dbp —G)(dbhp—G)(tnu =G)(cru
—G)(~(sbp ~(shap) ~(dbp) ~(dbhp) ~(tnu) ~(cru) - G);

In practice, alelete ruleerror may occur easily when a rule is
accidentally removed or left out, particularly whenlicies
contain dozens or hundreds of rules. As modelgd,would
be written as:

dr = (sbp—G)(sbap —G) (dbp —G) (dbhp — G) /*deleted
rule*/ (cru —G) (~(sbp ~(sbap) ~(dbp) ~(dbhp) ~(cru) — G);

Detection conditions for each of these errors arfolows:
Detection conditions, negated condition:dnc =
n&t&~c&~p+

nN&t&~p&-~r+

n&t&~p&~u+

N&t&~c&~d &~s+

N&t&~d &~r&~s+
N&t&~d&~s&~u+
n&t&~-a&-~-b&~c&~d+
n&t&~-a&-~-b&~c&~h+
nN&t&~-a&~b&~dé&-~r+
nN&t&~a&~b&~d&~u+
n&t&~a&~b&~hé&-~r+
n&t&~a&~b&~h&~u+
N&t&~-b&~c&~h&-~s+
N&t&~-b&~h&~r&~s+
N&t&~b&~h&~s &~u

Detection conditions, negated decisiondnd =
G&né&t&u+

G&n&t&ué&~p+
nN&t&ué&~c&~p+
N&t&u&~p&~r+
G&né&t&u&~d&~s+
N&t&ué&~Cc&~d &~s+
N&t&ué&~d&~r&~s+
n&t&ué&~-a&~b&~c&~d+
n&t&ué&~a&~b&~c&~h+
N&t&u&~-a&~b&~d&-~r+
N&t&u&~-b&~c&~h&~s+
G&né&ré&t&ué&-~-a&-~b&~h+
N&t&u&~-G&~a&~b&~h&~r+
N&t&u&~-G&~b&~h&~r&-s

Detection conditions, deleted rule:ddr =
n&t&ué&~c&~p+
N&t&u&~p&~r+

N&t&ué&~c&~d&~s+
N&t&ué&~d&~r&-~s+
n&t&ué&~a&~b&~c&~d+
n&t&ué&~a&~b&~c&~h+
n&t&ué&~a&~b&~d&~r+
n&t&ué&~a&~b&~h&~r+
n&t&ué&~b&~c&~h&-~s+
nN&t&u&~b&~h&~ré&-~s

In other words, conditions that trigger deeleted rule
vulnerability for the rule in the rulénu — grant will also
trigger anegated conditiolor anegateddecisionvulnerability.
Because this implication relationship holds, a tdst
vulnerability dr will also detect vulnerabilitync. Note that
several tests occur in all three sets of deteactmmditions. For
examplen & t & u & ~¢c & ~d & ~sis a single test that will
detect policies that have been incorrectly contgjra negated
condition fault for u in the rulenu —grant, a negated decision
fault for this rule, or if the rule has been lefit aompletely.

Similarly, tests foradd conditionfaults will detect four
fault classesrc, dr, f¢ ornd. Thus tests must be generated for
only two of the eight fault classes, because therofive types
of faults will be detected by the generated testsvell. Note
that this optimization works for policy specifioatis that fall
into the con/2/singular category. For other configuration
structures, different relationships hold, thussitimportant to
understand the type of configuration defined fopaaticular
system. The analysis method described in Sect.ay be
applied to any rule configuration structure, andas confined
to those specified in this paper.

Considering vulnerability hierarchies in ted#sign can
increase test efficiency by reducing the number tedts
required to detect common errors, without reducfaglt
detection effectiveness, as can occur with othest te
minimization procedures [19]. Access control policy
configuration is a problem that is particularly velited to
this type of analysis. Policies typically have ellvdefined
structure. Consequently, the set of common ermoay be
more restricted than, for example, may occur inirang
programming. Conditions in rules may be omitted
accidentally, placed in the wrong rule (added amuidlly to
one rule and left out of the other), the wrong dieci may be
specified for a particular set of conditions, codsdar i abl e
= val ue whenvari abl e ! = val ue was intended, and so
forth. Using the hierarchies shown above, testy rha
designed to detect common errors using fewer tHdws
would be required without knowledge of the hierdzah
relationship among common errors.  For examplethé
policy includes n rules with k conditions each in the
con2/singular pattern, then no more tham tests for the
deleted rule fault class will be needed to detecteleted rule,
negated decision, or if any of the conditions have been
accidentally negated.
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VI.  RELATED WORK

A key aspect of methods described here isuigeof fault
model for common errors in access control polickesumber
of authors have reviewed access control policytéafok use in
mutation testing, including [5,7,14,18,20]. Some ftife
vulnerability classes detailed in Sect. IV can bapped to
faults from fault models in these papers. This papplies the
methods for fault hierarchy construction developed logic
faults in boolean expressions to the problem oflyaiagy
access control vulnerabilities introduced by comfadion
errors. Fault hierarchies in logic specificationgere
introduced in [11], and subsequently extended byenst,
including [9, 10, 12,17, 21]. These methods hawe been
previously applied to analysis of access controffigurations.
Several of the fault classes for boolean expressigply also
to vulnerability hierarchies, such atuck at trueor stuck at
falsefaults, orliteral insertion faults which correspond to the

added conditiorfaults of Section IV, but others are unique to8

access control rules as a result of their structdrkedeleted

rule and negated decisiodaults discussed in this paper are

two examples, and others could be developed as virly
work on fault hierarchies assumed specificationgewm
disjunctive normal form, but hierarchies can sti# shown
after removing this assumption [17]. The DNF asgstionm is
significant because DNF expressions are not comynosgd
in programming conditionals, and a fault in a gah&oolean
expression can result in multiple faults when tkpression is
converted to DNF. Unlike conventional programmimgqtice,
access control system rules tend to be highly tstred. This
paper explicitly takes the form of various ruleitogtructures
into account in computing vulnerability class hietaes.

VIl

This paper has demonstrated the applicationathods for
analyzing fault hierarchies to understanding ret&hips
among vulnerabilities in access control rule suies. A
taxonomy of rule structures was introduced and diiete
conditions computed for each class of vulnerabilitythe
different structures. For two configuration stwes,
detection conditions were analyzed for the existerfclogical
implication relations between conditions. It wdswn that
hierarchies of detection conditions exist, and thiatarchies
vary among rule structures. The existence of suerarchies
can be used to reduce the number of tests requaréetect the
presence of fault classes in access control rules
implemented. Other structures in the taxonomyl i
analyzed in a forthcoming paper.

CONCLUSIONS

Acknowledgments: | am grateful to Lee Badger, \éimtcHu, and the
Safeconfig reviewers for many helpful recommendgwtio

Certain software products are identified in thiswloent, but such
identification does not imply recommendation by W|®r that the
products identified are necessarily the best abtgléor the purpose.
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