

A Location-Based Mechanism for Mobile Device Security

Wayne Jansen
The National Institute of Standards and
Technology

Vlad Korolev
Booz-Allen Hamilton

Abstract

While mobile handheld devices, such as cell phones
and PDAs, provide productivity benefits, they also
pose new risks. A vital safeguard against
unauthorized access to a device’s contents is
authentication. This paper describes a location-based
authentication mechanism that employs trusted servers
called policy beacons, which are used to provide
location data and control device behavior. Mobile
devices determine their proximity to available policy
beacons and upon validation assume the designated
organizational policy. The mechanism is designed to
take advantage of Bluetooth functionality built into
many current handheld devices used in organizational
settings.

1. Introduction

With the trend toward a highly mobile workforce,
the use of handheld devices such as smart phones and
Personal Digital Assistants (PDAs) continues to grow.
These devices are relatively inexpensive productivity
tools that have become a part of the computing
infrastructure for many organizations. While such
devices have limitations, they are nonetheless
extremely useful in managing appointments and
contact information, reviewing documents and
spreadsheets, corresponding via electronic mail and
instant messaging, delivering presentations, accessing
remote corporate data, and handling voice calls. Over
the course of use, significant amounts of sensitive
information can accumulate on them. Remote access
to organizational resources via wireless and wired
communications capabilities may also be enabled.
These conditions create a potential target of attack.

One of the most serious security threats to a
computing device is unauthorized use. User
authentication is the first line of defense against this
threat. Authentication using passwords is perhaps the
best-known example of a proof by knowledge
mechanism. Other classes of authentication
mechanisms include proof by possession (e.g., smart
cards) and proof by property (e.g., fingerprints). Two

additional factors that can apply to each class of
authentication mechanism are location and time of day.
They refer respectively to whether the authentication is
being attempted at either an acceptable location or an
acceptable time. The mechanism described in this
paper involves location as a facet of user
authentication. That is, the mechanism is intended to
be used in conjunction with a proof by knowledge,
proof by possession, or proof by property
authentication mechanism.

Establishing location benefits user authentication in
several important ways:
• If a user attempts to authenticate from an

unauthorized location, an authentication
mechanism can reject the attempt.

• If a user attempts to authenticate from a location
outside a defined boundary, the authentication
framework can require that additional
authentication mechanisms are satisfied before
granting access.

• If a user instantiates a new activity, such as
accessing a specialized application, the
authentication framework can require that access
to the functionality and related data be conducted
from within an appropriate location.

• If a user moves within or outside of a defined
boundary, an authentication mechanism can be
triggered automatically to grant or deny access.

This paper provides an overview of a location-
based authentication mechanism involving policy
beacons, which are designed to support handheld
devices. The paper describes how the beacon is used
to authenticate the user of a handheld device and
provides other details of the solutions’ design and
implementation. 1

2. Background

Physical location systems employ various types of
sensors that come in many different shapes and sizes
and use different techniques for determining position.
Physical location systems under consideration

1 Certain commercial products and trade names are identified in this
paper to illustrate technical concepts. However, it does not imply a
recommendation or an endorsement by NIST.

typically have two kinds of components: appliances
and infrastructure. An appliance is the equipment
associated with an entity (e.g., a Global Positioning
System (GPS) receiver or cell phone), while the
infrastructure is the set collection of sensor equipment,
usually fixed, which needs to be in place for the
appliances to function (e.g., GPS satellites or mobile
phone towers) [1]. A communications medium
through which the devices and infrastructure
communicate is also implicitly required. Location
systems do exist in which the user carries no appliance
and the solution relies entirely on infrastructure
components (e.g., infrared cameras or floor sensors),
but they are outside the scope of this paper.

In general, location can be treated in two ways: by
position, where geographical or other physical
coordinates of a unit are resolved to some degree of
accuracy, or by proximity, where a unit’s presence,
relative position, or absence within an area is
determined. Determining positional coordinates
typically requires an extensive sensor infrastructure
able to cooperate with an appliance to estimate
position algorithmically through monitored signals.
Determining proximity, while less precise, typically
requires a less extensive infrastructure.

Position sensors attempt to provide the coordinates
of an appliance relative to a coordinate system. The
coordinate system may be fixed and global (e.g., the
latitude, longitude and altitude reported by a GPS
receiver), or mobile and local (e.g., “3 meters to my
right”). Proximity sensors are less exact (e.g., within
close or distant range of a sensor) [1]. Proximity
sensors with overlapping detection regions can be used
to calculate position, using triangulation or
trilateration. Different sensors can have different
resolutions and associated errors, ranging from
centimeters to tens of meters [1, 2, 3]. They may also
operate over different ranges and be limited to indoor
or outdoor use.

Two classes of solutions for resolving location
exist. The first is where location information is
initially known only by the appliance, but not the
infrastructure. The second is the opposite by which
location information is initially known only by the
infrastructure, and then furnished to the appliance [4].

The first class of solutions makes the appliance
more independent of infrastructure components and
services. However, it requires the appliance to be
compatible with the infrastructure and powerful
enough to make the needed computations and access
control decisions. The second class of solutions is less
demanding on the appliance, since it does not have to
be powerful enough to perform such computations and
access control decisions, relying instead on
infrastructure components (e.g., RFID or the Active
Bat [5]). Pervasive systems fall into this latter

category, since by their very nature they are context-
aware, with one type of context information being
location information gathered from a variety of
location sources and sensors [4].

The authentication mechanism described in this
paper follows the first class of solutions. Location is
resolved by the appliance through proximity, which is
determined using information from a small number of
policy beacons that make up the infrastructure (i.e., as
few as one). The authentication mechanisms are
organizationally oriented, and require only that
participating handheld devices, which function as the
appliances, support a common personal area network
standard for wireless communications (i.e., Bluetooth).
The mechanism is designed to establish the relative
location of a mobile device with respect to a trusted
beacon that, once discovered, serves as a security
token, which is contacted periodically to reconfirm
presence and to verify authenticity.

3. Overview

The policy beacon is a small device placed in an
area to establish a perimeter where a distinct
organizational policy is in effect. To accomplish this,
the policy beacon offers an area location service for
discovery and use by mobile devices. One or more
policy beacons define the area. Location is determined
relative to a beacon. Mobile devices equipped with the
policy beacon authentication mechanism sense policy
beacons active in the area and, if relevant, adjust their
security policy settings accordingly. A device is either
in or out of the vicinity of a beacon as determined by
the footprint of the beacon’s communications signals.
Policy setting changes may enable or disable
functionality on the mobile device. For example,
certain network applications may be allowed to
execute and protected repositories on the mobile
device may become accessible. Figure 1 illustrates the
policy transition of a device as it moves into the range
of a policy beacon.

Figure 1: Device Entering the Footprint of a Policy

Beacon

The policy beacon authentication mechanism on a
mobile device checks periodically for proximity to a
policy beacon. It reports successful authentication if a
beacon is detected and able to be verified; otherwise, it
reports failure. Multiple organizational beacons can be
used to improve service levels above that of a single
beacon, or arranged to service a larger area. An
organizational beacon provides credential information
for a device to verify using the Transport Layer
Security (TLS) protocol over Bluetooth. Many mobile
devices are manufactured with built-in Bluetooth
radios, which allow short-range communication and
have low power consumption. The solution could also
be adapted for other types of wireless personal area
network communications technologies.

4. Operation

The policy beacon authentication mechanism is
designed as a client-server system. The policy beacon
operates as a server to the client software on the
mobile device, listening to inquiries from the client
and responding as needed. The beacon proves its
identity to mobile devices, but does not require mobile
devices to do the same. The beacon establishes its
identity via TLS using its private key and associated
certificate. The beacon’s server certificate must be
valid and be issued by the organization’s root
certificate authority (CA) or by a CA having a valid
certificate chain from the organization’s root CA.

The mobile device plays an active role in the
authentication mechanism. It must be configured to
run the client software in the manner described below.
The mobile device must also hold the public key of the
organization’s certificate authority to verify the
authenticity of the beacon server certificate.

The policy beacon client on the mobile device
operates in two distinct modes: unauthenticated and
authenticated. In unauthenticated mode, the following
steps occur:
• The mobile device periodically scans for the

available policy beacons in the area.
• When the mobile device finds a potential beacon,

it establishes a Bluetooth connection to it, and
then attempts to set up a secure TLS connection
over that physical channel, using the X.509
certificate supplied by the beacon.

• If the beacon is successfully authenticated and the
TLS connection established, the mobile device
enters a readiness exchange with the beacon to
verify that it is indeed a functional policy beacon.

• Once the mobile device determines that the policy
beacon is functional, the device enables the
associated policy for that location and switches to
authenticated mode.

• Otherwise, the mobile device blacklists the beacon
for a period of time and retries the above steps.

Once in authenticated mode, the following steps
occur:
• The mobile device periodically tries to reestablish

a TLS connection over Bluetooth with the last
beacon it previously used.

• If the beacon is again successfully authenticated
and the TLS connection established, the mobile
device verifies that the beacon is still functional.

• Once the mobile device determines that the
beacon is functional, the device maintains the
associated policy for that location and remains in
authenticated mode.

• Otherwise, the mobile device retries the above
steps, allowing for a momentary out of range
condition.

• If the beacon cannot be authenticated and vetted
within a preset time (approx. 2-3 minutes), the
mobile device switches to unauthenticated mode
and changes policy accordingly.

The Bluetooth device class identifier on the beacon
is set to a specific value defined for beacon class
devices. Using a customized device class improves
performance, since the mobile device client can filter
out other types of devices that may be present in an
area (e.g., access points, or printers) and avoid
unneeded and unwanted interaction.

Beacons support specific policies, denoted by an
identifier in their credentials. A set of beacons may be
configured to support distinct policies for different
areas. A mobile device client for the policy beacon
authentication mechanism is configured to observe a
specific policy in the presence of an associated beacon.
Doing so allows it to disregard beacons that identify
other policies.

5. Mobile Device Implementation

The prototype mobile device authentication
mechanism was implemented in C and C++ on an
iPAQ Personal PDA, running the Familiar distribution
of the Linux operating system and the Open Palmtop
Integrated Environment (OPIE). Since the
authentication mechanism is intended to operate in an
environment that supports multi-mode authentication,
the Familiar distribution was modified with MAF, a
framework for multimode authentication [6]. The
framework includes a policy enforcement engine that
allows the behavior of code modules and device users
to be governed via policy rules, and the facility to add
new authentication mechanisms and have them execute
in a prescribed order [7].

Table 1 illustrates the basic policy schema for MAF
mechanisms. One or more authentication mechanisms
can be configured to execute at levels 1 and above on a

mobile device. Successfully satisfying the mechanism
at any level causes the associated security policy at
that level to come into effect. The authentication
levels are hierarchical, such that a lower-level
mechanism must be satisfied before a higher-level
mechanism can be encountered, while policies
relationships can be independently specified.

Table 1 MAF Policy Schema

Authentication
Level

Required
Authentication

Effective
Policy

Level 3 Zero or More
Mechanisms Policy C

Level 2 Zero or More
Mechanisms Policy B

Level 1 Zero or More
Mechanisms Policy A

Level 0
None—default at

power on and
boot up

Most
Restrictive

A typical configuration corresponding to that on

most devices would be a password mechanism at level
1. For the prototype implementation, the policy
beacon authentication mechanism was configured to
execute at level 2. The level 2 policy enabled more
capabilities than at level 1, to represent entry into a
trusted environment. This setup is characteristic of
organizations, such as medical facilities, which need to
ensure that access to specific applications on the
mobile device and internal resources are limited to
devices that are on-site.

MAF authentication mechanisms consist of two
parts: an authentication handler, which embodies the
procedure that performs the actual authentication, and
a user interface, which performs all necessary
interactions with the user. An authentication handler
can be non-polling or polling to accommodate
mechanisms that respectively grant total acceptance to
the user once they are satisfied or instead require
continual satisfaction to grant and maintain acceptance
to the user.

The handler for the policy beacon is a polling
mechanism, periodically awakening to perform the
necessary operations. In unauthenticated mode, the
handler periodically performs a Bluetooth inquiry to
find potential beacons. If inquiry process results in
finding a Bluetooth device with the beacon class
identifier, the handler attempts to establish a Logical
Link Control and Adaptation Protocol (L2CAP)
connection to the predetermined Protocol Service
Multiplex (i.e., a designator similar to an Internet port
number) [8]. When the L2CAP connection is
established, the handler tries to set up a TLS session
over the connection and verify the server’s X.509
certificate. If the verification succeeds, the handler

switches to authenticated mode, where it periodically
tries to establish a connection with the last known
beacon and authenticate it using the same steps as
above. If the handler eventually is unable to
communicate and verify the last known beacon during
the allotted interval, it switches back to
unauthenticated mode.

The handler maintains a table of potential beacons
to carry out its function. The table contains
information about all Bluetooth devices in the vicinity
of the mobile device. The table has the following
fields: Media Access Control (MAC) Address, Last
Seen, Last Contact and Status, as shown in Table 2.

Table 2: Potential Beacon Table

MAC Address Last
Seen

Last
Contact Status

00:02:92:21:AB:C8 20 20 Beacon
00:22:11:22:33:11 30 30 Not Beacon
00:22:99:11:11:11 20 20 Unknown

The MAC Address field contains the address of the

Bluetooth device, while the fields Last Seen and Last
Contact contain the time value of when the device was
last seen and when the last successful communication
with the device took place. The Status field contains
the handler’s idea of the device’s purpose. The Status
field can be one of the following: ‘Beacon,’ ‘Not
Beacon’ and ‘Unknown.’ When the remote Bluetooth
device is initially entered into the table, it is assigned
the ‘Unknown’ status. Later, when a successful
exchange with the remote device takes place, the
device is assigned the ‘Beacon’ status. If the handler
can establish a connection to the remote device, but the
device does not follow the readiness protocol, the
device is assigned the ‘Not Beacon’ status.

The handler populates the table by performing a
Bluetooth inquiry process every 50 seconds. The
inquiry discovers Bluetooth devices in the vicinity and
returns a list of their MAC addresses. The handler
looks up each MAC address received during the
inquiry process to see if it already exists in the beacon
table. If the address does not exist, it is entered into
the table. For every MAC address received during the
inquiry process, the handler updates the corresponding
Last Seen entry in the handler table.

When the handler is not doing an inquiry, it tries to
contact the devices in the beacon table whose Status
entry contains either ‘Beacon’ or ‘Unknown.’ The
devices with ‘Beacon’ status are contacted before the
devices with ‘Unknown’ status. During the contact,
the handler first tries to establish the L2CAP
connection to the remote device. The Last Contact
value is updated before every attempt to establish an
L2CAP connection is made. If the connection

succeeds, the handler performs a TLS exchange. If a
failure occurs after the L2CAP connection has been
established, the handler sets the Status field of that
beacon to ‘Not Beacon,’ which temporarily blacklists
the beacon. If the TLS exchange results in successful
authentication, the handler sets the Status to ‘Beacon,’
sets the lastAuthentication variable to the current time,
and does not attempt further contact with the other
devices in the table.

The lastAuthentication variable is used to determine
whether the current authentication is still valid. If the
time value stored in this variable is less then 120
seconds before the current time, the handler considers
the state to be unchanged, remaining valid. When the
kernel sends an authentication request to the handler,
the handler checks the current time and the value of the
lastAuthentication variable. It returns a positive
response, if the value is within 120 seconds of the
current time; otherwise it responds with negative
authentication.

The handler periodically sweeps the beacon table
for stale entries. If the handler sees an entry with the
Last Seen value older than 60 seconds, the entry is
removed from the table. The handler uses the Last
Contact column in conjunction with the Status column
to prevent permanent blacklisting of beacons that did
not correctly follow the beacon readiness protocol
previously. For example, it could be the case that the
beacon was just booting up and not all the software
was fully operational and able to complete the
exchange. When the Status column for a particular
entry contains a ‘Not Beacon’ value and the Last
Contact time value is older than 20 seconds, the
handler changes the Status value to ‘Unknown.’

6. Policy Beacon Implementation

The prototype policy beacons were implemented
using Intrinsyc CerfCube, embedded Linux devices.
They come configured with the Familiar Distribution
of Linux, including device drivers for all on-board
peripherals. Peripheral support includes Ethernet and
several serial ports. A Compact Flash slot supports
Type I and II cards, which can be used to add
Bluetooth or other wireless communications support.
Other similarly-configured hardware platforms could
be used in place of CerfCubes.

The policy beacon side of the implementation is
less complicated than the mobile device side. The
beacon software is a basic server that listens to
incoming L2CAP connections. Once a connection
occurs, it establishes a TLS protocol connection and
observes its part of the readiness protocol, which
involves a three-way handshake. The beacon can
accept only one connection at the time. However,
since the TLS exchange takes significantly less time

than the Bluetooth connection time out, at least two
devices can easily connect during that period.

The Bluetooth stack on the beacon is configured to
respond to incoming inquires and connections, known
respectively as inquiry scan and page scan modes.
Both the mobile device and policy beacon manage the
Bluetooth specific aspects of the communication, such
as establishing and tearing down connections,
determining the Message Transmission Unit (MTU)
size, etc., as well as actual data transmission. Both
also use the OpenSSL library to provide the TLS
protocol functionality [9].

7. Safeguards

The authentication mechanism requires that the
beacon is kept both physically and logically secure and
situated at the correct location it identifies. When the
authentication mechanism receives a message from a
beacon, it must ensure that the message was created
recently for the particular purpose intended and by the
beacon claiming to have sent it. The mechanism must
be able to detect when a message has been modified or
forged by an attacker with access to the wireless
network, or when a message issued previously (or for a
different purpose) is being replayed on the network by
an attacker. For these reasons, the organizational
beacon handler uses the TLS protocol to authenticate
potential beacons. The TLS protocol provides
assurance that the beacon is genuine.

Besides the TLS protocol, the authentication
mechanism relies on MAF for its protection. The
substitution or overwrite of the authentication handler
program is prevented by MAF functionality and the
underlying operating system. The policy enforcement
functionality of MAF is used also to protect the
following security-related files and to grant the handler
exclusive access:
• The X.509 certificate of the root CA used to

validate the server’s certificate – installed through
security administration.

• The policy identifier observed by the
authentication handler – installed through security
administration.

Blocking access to the CA’s public key certificate
and the governing policy identifier prevents an attacker
from substituting them with those from a different
organization to gain unauthorized access to the mobile
device.

8. Related Work

Little work on localization-based authentication for
mobile devices appears in the literature. Localization
efforts in sensor networks share some aspects, since
size and cost concerns discourage the use of complex

hardware at the sensor nodes and power concerns limit
transmission range. However, the goals are quite
different with respect to using location for
authentication purposes (e.g., [10]).

ZoneIT is a system designed to selectively control
the functionality of mobile phones, including phone
ringing and audio and visual recording capabilities,
inappropriate for public settings, such as cinemas,
museums, and concert halls [11]. The design relies on
the wireless capabilities built into mobile phones and
the use of a fixed beacon. Users would voluntarily
download the required software to the mobile phone to
communicate with beacon, which would be provided
by the venue operator. The system was not designed
for environments such as hospitals that would typically
need a more robust means to disable functionality and
enforce a broader range of policy controls. In the
prototype implementation, a Bluetooth L2CAP
connection is used to send simple control settings to
mobile phones to disable services. A challenge-
response exchange is used to authenticate a beacon.

SmartProfiles is a software application somewhat
similar to ZoneIT insofar as it controls the ringing of
an enabled smart phone [12]. It does not, however,
control other device capabilities, and the settings are
not determined through exchanges with a beacon, but
instead by a predetermined schedule. The schedule
can be set up by time of day (e.g., silent 11 PM-7 AM
weekdays) and also through calendar entries (e.g.,
silent during 1 PM meeting).

9. Conclusion

Along with the productivity benefits provided by
mobile devices also come new risks. This paper
explains how proximity-based authentication can be
implemented to reduce risks. The approach provides
an organization with the ability to allow device users
to perform their tasks within boundaries defined
through configuration settings and policy controls,
while limiting capabilities outside of those bounds.
The authentication mechanism requires only a simple
support infrastructure comprising one or more policy
beacons. Although the mechanism was intended
primarily for smart phones and PDAs, it would also be

suitable for use with laptop and notebook computers
and other transportable devices.

10. References

[1] J. Indulska, P. Sutton, “Location management in
Pervasive Systems,” Workshop on Wearable, Invisible,
Context-Aware, Ambient, Pervasive and Ubiquitous
Computing, Adelaide, Australia, February 2003.
[2] J. Hightower, G. Borriello, “Location Systems for
Ubiquitous Computing,” IEEE Computer, 34, 8, August
2001.
[3] M. Hazas, H.Scott, J. Krumm, “Location-Aware
Computing Comes of Age,” IEEE Computer, 37, 2, February
2004.
[4] M. Gruteser, G. Schelle, A. Jain, R. Han, D. Grunwald,
“Privacy-Aware Location Sensor Networks,” USENIX 9th
Workshop on Hot Topics in Operating Systems (HOTOS
IX), Lihue Hawaii, May 2003, pp. 163-167.
[5] A. Ward, A. Jones, A. Hopper, “A New Location
Technique for the Active Office,” IEEE Personal
Communications, Vol. 4 (5), October 1997, pp 42-47.
[6] W. Jansen, V. Korolev, S. Gavrila, T. Heute, C.
Séveillac, “A Framework for Multimode Authentication:
Overview and Implementation Guide,” NISTIR 7046, The
National Institute of Standards and Technology, August
2003, http://csrc.nist.gov/publications/nistir/nistir-7046.pdf
[7] W. Jansen, V. Korolev, S. Gavrila, C. Séveillac, “A
Unified Framework for Mobile Device Security,” The
International Conference on Security and Management
(SAM’04), Las Vegas, USA, June 2004,
http://csrc.nist.gov/groups/SNS/mobile_security/documents/
mobile_devices/PP-UNIsecFramework-fin.pdf
[8] Bluetooth Core Specifications, Version 2.1 + EDR,
Volume 3, Bluetooth SIG, Inc., July 26, 2007,
http://www.bluetooth.com/NR/rdonlyres/F8E8276A-3898-
4EC6-B7DA-E5535258B056/6545/Core_V21__EDR.zip
[9] “OpenSSL SSL/TLS Library,” manual page, OpenSSL
Project, http://www.openssl.org/docs/ssl/ssl.html
[10] N. Lane, H. Lu, A. Campbell, “Ambient Beacon
Localization: Using Sensed Characteristics of the Physical
World to Localize Mobile Sensors,” ACM, Workshop on
Embedded Networked Sensors, Cork, Ireland, June 2007.
[11] T. Moors, M. Mei. A. Salim, “Using Short-range
Communication to Control Mobile Device Functionality,”
Personal and Ubiquitous Computing, Springer-Verlag, Vol.
12, Issue 1, January 2008.
[12] “SmartProfiles,” SymbianWare, November 20002,
http://www.symbianware.com/product.php?id=sprofiles&am
p;lang=en&pl=all&s=0

http://csrc.nist.gov/publications/nistir/nistir-7046.pdf
http://csrc.nist.gov/groups/SNS/mobile_security/documents/mobile_devices/PP-UNIsecFramework-fin.pdf
http://csrc.nist.gov/groups/SNS/mobile_security/documents/mobile_devices/PP-UNIsecFramework-fin.pdf
http://www.bluetooth.com/NR/rdonlyres/F8E8276A-3898-4EC6-B7DA-E5535258B056/6545/Core_V21__EDR.zip
http://www.bluetooth.com/NR/rdonlyres/F8E8276A-3898-4EC6-B7DA-E5535258B056/6545/Core_V21__EDR.zip
http://www.openssl.org/docs/ssl/ssl.html
http://www.symbianware.com/product.php?id=sprofiles&lang=en&pl=all&s=0
http://www.symbianware.com/product.php?id=sprofiles&lang=en&pl=all&s=0

	1. Introduction
	2. Background
	3. Overview
	4. Operation
	5. Mobile Device Implementation
	6. Policy Beacon Implementation
	7. Safeguards
	8. Related Work
	9. Conclusion
	10. References

