

Overcoming Impediments to Cell Phone Forensics

Wayne Jansen
NIST
100 Bureau Dr., STOP 8930
Gaithersburg, MD 20899

Aurélien Delaitre
NIST
100 Bureau Dr., STOP 8930
Gaithersburg, MD 20899

Ludovic Moenner
NIST
100 Bureau Dr., STOP 8930
Gaithersburg, MD 20899

Abstract:
Cell phones are an emerging but rapidly growing area of
computer forensics. While cell phones are becoming
more like desktop computers functionally, their
organization and operation are quite different in certain
areas. For example, most cell phones do not contain a
hard drive and rely instead on flash memory for persistent
storage. Cell phones are also designed more as special-
purpose appliances that perform a set of predefined tasks
using proprietary embedded software, rather than
general-purpose extensible systems that run common
operating system software. Such differences make the
application of classical computer forensic techniques
difficult. Also complicating the situation is the state of the
art of present day cell phone forensic tools themselves
and the way in which tools are applied. This paper
identifies factors that impede cell phone forensics and
describes techniques to address two resulting problems in
particular: the limited coverage of available phone
models by forensic tools, and the inadequate means for
validating the correct functioning of forensic tools.1

1. Introduction

Nearly a billion cell phones were sold worldwide in
2006 and projections for 2007 and beyond continue to
rise. Over the last decade the capabilities and features of
cell phones, such as increases in performance and storage
capacity, and additions of document and multimedia
handling functionality, have also continued to improve
rapidly, turning cell phones into data reservoirs that can
hold a broad range of personal and organizational
information.

From an investigative perspective, digital evidence
recovered from a cell phone can provide a wealth of
information about the user, and each technical advance in
capabilities offers greater opportunity for recovery of
additional information. While the outlook should be

1 Certain commercial products and trade names are identified in this
paper to illustrate technical concepts. However, it does not imply a
recommendation or an endorsement by NIST.

positive, a number of factors conspire to impede progress
in cell phone forensics.

1.1 Current Conditions

Forensic software tools are a primary means for
recovering digital evidence from cell phones. Unlike the
situation with personal computers, mobile phone
manufacturers employ many different proprietary
operating systems and storage structures. Data recovery
is usually carried out through logical instead of physical
acquisition, using one or more protocols supported by the
device. The protocols include standardized and
proprietary device synchronization protocols, command
interface protocols, and diagnostic protocols.

Six manufacturers control about 80 percent of the cell
phone market at any one time; the top two, Nokia and
Motorola, led the group in 2006 with more than 50
percent [1, 2]. Approximately fifty other manufacturers
hold the remaining 20 percent share of the market. New
manufacturers occasionally enter the marketplace
replacing others that leave. For example, the widely
advertised iPhone from Apple is a new entrant this year.
The number of models of phones that appear on the world
market each year is considerable, with new releases from
major manufacturers continually appearing throughout the
year. Models of older functioning phones, though out of
date, can remain in use for years after their initial release.
Phone models introduced into one national market can
also be used in other market areas by replacing the
identity module of a phone (e.g., a GSM subscriber
identity module) with one from another carrier or through
roaming features.

New phone models often have functional differences
from previous models that a forensic phone tool needs to
take into account to recover and report data properly.
When a new phone appears, a tool manufacturer must
decide whether to adapt its tool for the phone, purchase
exemplars for study, create and test an update containing
support for the phone, and finally distribute the tool
update to the user. Tool updates need to be issued
periodically to minimize this latency period and keep the
software current with the latest available phone models.
Complicating things further, variations in data storage

location assignments can occur in a specific model of
phone that is subsidized and supplied by different
network carriers, due to adaptations made for the carriers
by the manufacturer. Firmware updates sent out by a
network carrier can also affect data locations [3].

The time required for needed tool updates to become
available, therefore, can be lengthy, putting forensic
specialists constantly behind the power curve. At times
the situation may necessitate turning to alternative means
to acquire data from a recently released model of phone.
Most cell phone forensic specialists use a collection of
both forensic and non-forensic tools along with other
accessories to form their “toolbox.” Tools not designed
specifically for forensic purposes are questionable,
however [4]. Some contend that the current situation is
likely to continue, keeping the cost of examination
significantly higher than if a few standard operating
systems prevailed [5].

Phone managers are sometimes turned to as a way to
recover data automatically when no suitable forensic tool
is available. Phone managers are often available directly
from the manufacturer of the phone and kept up to date
with support for newly released models. The software
allows user data to be synchronized with a desktop
computer and changes to be made through the user
interface. Since phone managers have the ability to both
read and write data to a phone, they can be problematic
from a forensic perspective, if used without applying
proper testing and procedural controls. Many anecdotes
abound of a practitioner accidentally or unknowingly
writing data to a phone using such a tool. In one case, a
forensic specialist, managing his personal phone using a
non-forensic tool, was assigned an urgent task to examine
a seized phone that required the same tool, and in the
process accidentally merged his personal data with that
recovered from the seized phone.

Forensic tools are also imperfect. In the rush to apply
a tool, proper validation procedures may be overlooked.
This is particularly true of updates to or new versions of a
tool that has been validated earlier. Product training more
often than not neglects tool validation, emphasizing
instead tool functionality and use. Yet subtle and
debilitating regression errors have occurred occasionally
with software tool updates or new versions of tools, and
are likely to continue to happen in the future.

Tool validation can be time consuming and
complicated. It requires the population of data onto a
device, followed by the manual comparison between what
was populated and what the tool recovered. As device
capacities and functional capabilities improve, the task
also becomes more substantial. Furthermore,
constructing test data that reflects important but
troublesome areas and affects significant portions of
memory adds to the burden.

1.2 Plausible Improvements

When taken together, all of the aforementioned
factors significantly impede the practice of cell phone
forensics. Many of the prevailing conditions are not
readily resolved or likely to be changed. Nevertheless, it
raises the question “How can the situation be improved?”
In considering possible improvements, two solutions
surfaced. The first is to develop a forensically sound way
to address the problem of latency in coverage of newly
available phone models by forensic tools. The approach,
called phone manager protocol filtering, builds on the
functionality of phone managers available from device
manufacturers. The second solution is to provide a means
to establish a baseline for validating the correct
functioning of forensic tools. The approach, called
identity module programming, populates the identity
modules of certain classes of phones with reference test
data, which can be used as a baseline for validation of
forensic tools that recover evidence from these devices.
The remainder of this paper outlines both solutions.

2. Phone Manager Protocol Filtering

As mentioned earlier, phone managers are a potential
tool for automated data recovery of common types of core
user data, such as phonebook entries and photos. A
phone manager available from the cell phone’s
manufacturer is often kept up to date for the phone and
also other phone models in the product line. For example,
both Nokia and Motorola follow this approach for their
cell phones. However, phone managers are not forensic
tools. Additional steps must be taken to safeguard against
altering data on the phone, including validating the phone
manager’s operation, producing a cryptographic hash of
the acquired data, and testing and verifying the
procedures to be followed. Even an experienced forensic
specialist taking all available precautions could
accidentally write data to a phone using such a tool.

Phone managers typically use the same protocols as
forensic tools to recover data. Forensic cell phone tools
avoid the problem of altering data on a phone by
restricting the command options of the protocol used to
communicate with the device to only those that are either
known to be safe or involve very minor forensic issues.
An obvious way to gain the same advantage for phone
managers is to apply a filter somewhere between the
phone manager application and the device being
managed, which blocks harmful protocol commands from
propagating. Filtering is an often used technique in
computer forensics, commonly implemented in hardware
or software write blockers for disk and USB device
interfaces.

Most phone managers run under the Windows
operating system and are distributed in binary form for

installation. Figure 1 gives a general overview of the
possible locations to implement a phone manager filter –
at the programming interfaces between phone manager
code and the communication library files, between the
library files and the communication stack, within the
communication stack, and between the communication
stack and the device. After reviewing the alternatives, the
approach selected was to avoid interception at the
communications stack or at the device interface and
instead move further upstream and target the software
programming interface to the library.

Figure 1: Filter Placement

Communications with cell phones occurs over a
serial COM or USB port. Most serial port data
transmission for Windows systems is done the same way
as writing to a file. For example, the WriteFile function
can be used to send data via a serial COM port. The same
function also works with virtual serial ports established
over USB, infrared, or Bluetooth communications. The
filter could intercept the call to the application
programming interface (API) for this function to capture
the data, interpret the content, and return an appropriate
response to the phone manager. Similarly, calls to other
related functions, such as CreateFile and ReadFile, would
need to be intercepted for the filter to work overall. The
techniques used to insert code that can intercept
commands at an API are the focus of the remainder of this
section.

2.1 API Interception

API hooking is a term used to describe intercepting
calls to a function for some purpose, usually to customize
and extend its functionality and also to monitor aspects of
an application. The target function may be in an
executable application, a library, or a system DLL. In the
case of Windows operating systems, the functions of
interest are part of the so-called Win32 API. Hooking
Win32 APIs is not new; security add-ons, such as
personal firewalls and anti-virus applications, as well as

malicious code, such as rootkits, have used these
techniques to insert themselves seamlessly into an
operating system. The interception process is performed
at run time against a running process rather than
modifying static binary images at rest.

Several different techniques have been used to hook
Windows APIs. A common way is to alter the import
address table (IAT) of a given module and replace the
target function with the substitute function. The IAT
contains the address of each imported function and used
by the loader to map function calls to entry points of
loaded routines. Alternatively, an unconditional jump can
be inserted in the first few bytes of a target function to
change the flow of execution to the substitute function.
When the substitute function completes its task, control is
returned to the modified function or, optionally, back to
the calling program.

The approach being used for the phone manager filter
is to have the substitute function serve as a wrapper for
the target function, as illustrated in Figure 2 [6]. The first
few instructions of the target function are replaced with a
jump to the filter function, and the replaced instructions
from the target function are preserved in a so-called
trampoline function. The trampoline function acts like a
relay, ending with a jump back to the target function to
complete processing after the preserved instructions are
executed. The filter function can either call the
trampoline function to invoke the target function, or
return directly to the calling program and bypass the
target function altogether. The target function is also
adjusted to return control to the filter function upon
completion to allow the filter to perform any needed post
function operations.

Figure 2: API Interception

2.2 Protocol Considerations

The Nokia PC Suite provides a good example of a
candidate phone manager for protocol filtering. The
current version for the U.S. market supports

Byte 0 1 2 3 4 - 5 6 - n n+1 - n+2
Contents Frame ID Destination Source Command Length Data Checksum

Figure 3: FBUS Frame

approximately 75 models, including the very latest. The
versions for other countries support about the same
number of models, some of which are different from the
models in the U.S. version. PC Suite can be used for a
number of things, including copying personal data (e.g.,
phonebook entries) to a computer for safekeeping,
transferring images, video clips, and other files from the
phone to a computer, and viewing contacts and messages
on a device. Certain features work only when used with
those models of Nokia phone that embody compatible
functionality. Various types of communications with the
phone are supported, including serial COM and USB
cables. Wireless options also exist.

The Nokia PC Suite uses a proprietary protocol
called the FBUS protocol to perform its functions. The
FBUS protocol is used to extract the phone book, call
logs, SMS messages and calendar entries from the phone.
Another protocol, OBEX, which rides over the FBUS
frames, is also used to extract media files, ring tones and
downloaded applications that are present. The physical
interface is a bidirectional serial communication bus that
runs at 115,200 bps [7].

The FBUS frame is byte oriented. Figure 3 illustrates
its composition. The first byte of the frame, byte 0, holds
the hexadecimal value of the identifier for the FBUS
protocol. The value 1E is the frame identifier for cable.
Bytes 1 and 2 respectively contain the destination and
source addresses [7, 8]. For data sent to the phone, the
destination address is 00. The source address for the
personal computer is 10 or 0C. Byte 3 contains the
command identifier, which potentially supports up to 256
(i.e., 28) commands. Bytes 4 and 5 hold the length of the
data that follows. The bytes following byte 5 convey the
data segment of the frame. The last byte of the data
segment contains a 3-bit sequence number. The last two
bytes of the frame contain a checksum [7, 8]. Only
frames of an even length are transmitted. A byte of all

zeros is inserted before the checksum, if needed, to make
the total length of the frame even.

The FBUS protocol is an acknowledged request-
response protocol, with the phone manager issuing
command requests and the phone answering [7, 8].
Responses use the same command identifier as the
request being answered, but reverse the source and
destination address. Every request or response, except for
the first request, is prepended with an acknowledgment
frame indicating receipt of the last protocol element sent
by the other party, as illustrated in Figure 4. This
convention means that the filter needs to send a properly
constructed receipt acknowledgment for any blocked
command, in addition to providing an appropriate
response. Otherwise, the phone manager will resend the
disallowed frame.

Figure 4: FBUS Communication

Table 1 illustrates the FBUS protocol exchanges used
by two different forensic tools to acquire the identifier of
the handset, known as the International Mobile
Equipment Identifier (IMEI) from the same Nokia 6101

Table 1: IMEI Recovery

 (Hex) Request
/ Response

(ASCII) Request
/ Response

1E 00 10 1B 00 07 00 01 00 00
41 01 41 00 0E 1C

. A . A . . .

PhoneBase
1E 10 00 7F 00 02 1B 01 05 6C
1E 10 00 1B 00 1C 01 39 00 01
00 01 41 14 00 10 33 35 36 36
36 31 30 30 35 37 30 34 30 39
32 00 01 42 5B 50

�. l
9 A . . . 3 5 6 6 6
1 0 0 5 7 0 4 0 9 2 . .
B [P

 (Hex) Request
/ Response

(ASCII) Request
/ Response

55 55 55 55 55 55 55 55 55 55
55 55 55 55 55 55 55 55 55 55
55 55 55 55 55 55 55 55 55 55
 … (9 more rows)
1E 00 10 1B 00 07 00 04 00 00
41 01 60 00 2F 19

U U U U U U U U U U
U U U U U U U U U U
U U U U U U U U U U
 …
. A . ` . / .

Secure View
1E 10 00 7F 00 02 1B 00 05 6D
1E 10 00 1B 00 1C 04 39 00 01
00 01 41 14 00 10 33 35 36 36
36 31 30 30 35 37 30 34 30 39
32 00 01 45 5E 57

�. m
. 9 A . . . 3 5 6 6
6 1 0 0 5 7 0 4 0 9 2 .
. E ^ W

cell phone. The value of the IMEI is 356661005704092,
highlighted in bold within the response entry. Both
forensic tools send a request with the command of 1B to
recover the IMEI. The second tool listed prefixes the
request with a series of synchronization characters of 55
hexadecimal. Receipt of the request is acknowledged by
the phone with an acknowledgment (i.e., command value
of 7F hexadecimal), immediately followed by the
response containing the value of the IMEI.

Because the FBUS protocol is proprietary, the
function of all command identifiers is not known.
However, over the years many of the commands have
been determined through experimentation by various
parties. Furthermore, the communications of forensic
tools, such as the ones mentioned above, can be
monitored to identify commands considered safe by tool
manufacturers. To avoid propagating frames containing
unsafe commands to a phone, the phone manager filter
incorporates a white list of known commands considered
safe; all other command frames are blocked.

Initial testing of the prototype implementation
indicates that the approach could provide a practical and
effective solution for addressing the latency in forensic
tool coverage of available phones. Intercepting low-level
Windows APIs, as opposed to higher-level internal APIs
in the application, should also allow the solution to be
used with phone managers from other cell phone
manufacturers. Reprogramming the filter for the different
protocols involved would, needless to say, be required.
As with any forensic tool, the resulting filtered phone
manager program requires validation before its use. The
next section, though not pertaining directly to validation
of forensic tools for handsets, gives an idea of the rigor
needed.

3. Identity Module Programming

Subscriber Identity Modules (SIMs) are synonymous
with mobile phones and devices that interoperate with
GSM cellular networks. Under the GSM framework, a
cellular phone is referred to as a Mobile Station and is
partitioned into two distinct components: the Subscriber

Identity Module (SIM) and the Mobile Equipment (ME).
As the name implies, a SIM is a removable component
that contains essential information about the subscriber.
The ME, the remaining radio handset portion, cannot
function fully without one. The SIM’s main function
entails authenticating the user of the cell phone to the
network to gain access to subscribed services. The SIM
also provides a store for personal information as well as
operational information. Another class of SIMs being
deployed in third generation (3G) Universal Mobile
Telecommunications Service (UMTS) networks is UMTS
SIMs (USIMs). USIMs are enhanced versions of present-
day SIMs, containing backward-compatible information.

At its core, a SIM is a special type of smart card that
typically contains a processor and between 16 and 256
KB of persistent electronically erasable, programmable
read only memory (EEPROM). It also includes random
access memory (RAM) for program execution, and read
only memory (ROM) for the operating system, user
authentication and data encryption algorithms, and other
applications. The hierarchically organized file system of
a SIM resides in persistent memory and stores such things
as names and phone number entries, text messages, and
network service settings. Depending on the phone used,
some information on the SIM may coexist in the memory
of the phone or reside entirely in the memory of the phone
instead of available memory on the SIM.

Some of the earliest general-purpose forensic tools
for mobile phones targeted SIMs, not only because of
detailed specifications available for them, but also
because of the highly relevant and useful digital evidence
that could be recovered. A recent assessment of the
capabilities of present day forensic tools to recover
evidence from SIMs, however, noted discrepancies
between the test data placed on a SIM and that recovered
and reported in every tool [9]. They include the inability
to recover any data from certain SIMs, inconsistencies
between the data displayed on screen to the user and that
generated in the output reports, missing truncated data in
reported or displayed output, errors in the decoding and
translation of recovered data, and the inability to recover
all relevant data. Moreover, updates or new versions of a

tool, on occasion, were less capable than a previous
version

Validating each version of a forensic SIM tool is an
essential quality assurance measure. The results aid in
deciding how to compensate for any noted shortcomings
or whether to switch to a new version or update of the
tool that may be available. Validation should be carried
out when first choosing a forensic tool to ensure its
acceptability and redone when updates or new versions of
the tool become available to maintain consistency of
results. Validating a tool entails defining a
comprehensive set of test data, loading it onto the device,
and following defined procedures to acquire and recover
the test data for comparison [10].

While tool validation is essential, building reference
SIMs that contain comprehensive test data can be time
consuming and difficult to carry out, normally requiring
the use of various SIM editing tools and handsets to
populate the data. For example, variances exist between
SIMs from different manufacturers, such as dissimilar file
capacities allocated for the same set of entries (e.g.,
phonebook list) and diverse sizes for the same data fields
(e.g., name). Different character encodings may also
apply for various languages of interest (e.g., English
versus Asian characters). For many, a comprehensive
validation effort is beyond their means and a lesser tack is
taken. The focus of the remainder of this section is an
approach for automating the population of reference test
data onto the file system of a SIM, which attempts to
address those differences and simplify the process.

3.1 File System Considerations

The file system of a SIM is organized as a
hierarchical tree structure, composed of three types of
elements: the root of the file system (MF), subordinate

directory files (DF), and files containing elementary data
(EF) [11]. Figure 5 illustrates the structure of the file
system. The EFs under DFGSM and DFDCS1800 contain
mainly network-related information for different
frequency bands of operation. The EFs under DFTELECOM
contain service-related information.

Each element of the file system has a unique numeric
identifier assigned. The identifier can be used to
reference an element when performing an operation, such
as reading the contents of an EF, in the case of a forensic
tool [12]. Operations are accomplished through
command directives called Application Protocol Data
Units (APDUs). A phone handset uses APDUs when
communicating with a SIM [11]. The APDU protocol is a
simple command-response exchange, with a single
response to each command issued. The APDU protocol
must be used to convey commands to perform update
operations on a referenced EF to populate it with test data.

SIMs use three structures for EFs: transparent files,
linear fixed files, and cyclic files. Transparent files are a
sequence of bytes that can be accessed via an offset.
Linear fixed files are a list of records of the same length
that can be accessed by absolute record number, via a
record pointer, or by seeking a record by pattern. Cyclic
files comprise a circular queue of records maintained in
chronological order, which are accessible the same as
with linear fixed records, with the oldest overwritten if
storage is full.

The various types of digital evidence of interest to a
forensic specialist exist in EFs scattered throughout the
file system. Besides the standard files defined in the
GSM specifications, a SIM may contain non-standard
files established by the network operator [12]. The
following general categories of evidence in standard
elementary data files have importance [9]:

Figure 5: SIM File System

• Phonebook and Call Information, known

respectively as the Abbreviated Dialling
Numbers (ADN) and Last Numbers Dialled
(LND).

• Messaging Information, including both Short
Message Service (SMS) text messages and
Enhanced Messaging Service (EMS) multimedia
messages.

• Location Information, including Location Area
Information (LAI) for voice communications and
Routing Area Information (RAI) for data
communications.

News articles of high profile cases occasionally

contain illustrative examples where such recovered
evidence was used successfully in an investigation. The
following are two examples:

• Text Message and Call Data [13] – “A pastor of

the Pentecostal congregation in the small
community of Knutby was sentenced to life in
prison for persuading one of his lovers (the au
pair) to shoot and kill his wife and trying to kill
the husband of another mistress. Two days after
the murder, the pastor’s au pair Sarah S. claimed
that she did it. Despite her claims … the police
believed she had an accomplice.”
“The strongest evidence against the pastor was
the extensive communication through text
messages and voice calls between him and the au
pair on the day of the murder and just before
that. What they did not know was that their
(anonymously sent and) carefully deleted text
messages were possible to recover.”

• Location Data [14] – “Mr Bristowe told BBC
News Online: ‘It was mobile phone evidence
which made the police look more closely at
Huntley. He had been Mr. Useful, helping them
to search the college grounds, but when they
checked Jessica's phone and discovered when
and where it had been switched off alarm bells
began to ring… (Jessica's phone) disengaged
itself from the network, in effect it says
goodbye’ at 1846 BST on the Sunday when the
girls disappeared. Jessica's phone contacted the
Burwell mast when it was turned off.”
"’The police provided us with a map of the route
they thought the girls would have taken, and the
only place on that route where the phone could
have logged on to Burwell (and disengaged
itself) was inside or just outside Huntley's
house.’ It is believed to be that crumb of crucial
evidence which forced Huntley to change his

story earlier this year and suddenly admit the
girls died in his bathroom.”

The failure of a forensic tool to correctly recover and
report such relevant SIM data greatly impedes the ability
of the forensics specialist and jeopardizes the credibility
of the overall results.

3.2 Design and Implementation

The overall data flow of the identity module
programmer (IMP) is given in Figure 6. Conceptually the
process is straightforward. Reference data is read by the
program and used to populate the SIM shown at the right.
Any errors are logged and a summary of the results is
reported, once the appropriate access conditions for the
SIM (i.e., defined in Card Data) are enabled. The
reference test data could be generated manually or
automatically using a preprocessor.

Figure 6: IMP Overview

For IMP to communicate with a SIM, the SIM must
be removed from a phone and placed into an appropriate
reader. Either a specialized reader that accepts a SIM
directly or a general-purpose reader for a full-size smart
card can be used, provided that it is compatible with the
PC/SC (Personal Computer/Smart Card) specification, a
popular general-purpose architecture for smart cards [15].
For full-size card readers, a standard-size smart card
adapter is needed to house the SIM for insertion into the
reader.

Reference data can be populated on a SIM only when
the correct access conditions for an EF are satisfied to
enable update (i.e., write) operations to be performed.
However, different access conditions prevail for the
various EFs of interest needing to be populated. Common
access conditions include Personal Identification Number
(PIN) verified and administrator code verified access.
While PINs are usually available for most production
SIMs, administrator codes are normally kept by the
network carrier and not made available. One exception is

test SIMs, which are available from most SIM
manufacturers for development purposes. The PIN values
and administrator access codes are usually provided by
the manufacturers together with the test SIMs. As one
might expect, test SIMs allow a greater range of reference
data to be populated. Nevertheless, production SIMs can
still form a useful baseline for validation, as long as EFs
not populated by the tool are noted and taken into account
during tool validation. Both types of SIMs can be used
with IMP.

Because of the variation possible between SIMs, the
defined reference test data may exceed the capacity of an
EF or the size of the field. Attempts to exceed either type
of limit are detected and processed by the SIM itself. Out
of bounds references are denied and overly long data are
truncated to the space available. IMP logs any deviations
between the populated data and reference data as they
occur. A summary of all reference test data populated by
IMP appears in the output report, as well as the contents
of certain EFs that could not be populated, which together
provide a known definitive baseline for validation.

The initial set of reference data was drawn from test
scenarios recently used in assessments of forensic SIM
tools involving basic, location, EMS, and foreign
language data. Basic data includes subscriber (e.g., the
IMSI and ICCID elementary files), phonebook (i.e., the
ADN elementary file), recent call (i.e., the LND
elementary file), and SMS message related information.
Besides common input data, known problematic input,
such as the use of a special character for a phonebook
name entry, were included. Foreign language data
involves text messages and phonebook data that are
expressed in a language other than English. EMS data
consist of text messages more than 160 characters in
length and containing black and white bitmap images or
monophonic melodies. EMS messages can also contain
formatted text with different font styles and fonts.
Location data includes location-related information, such
as the last location area or routing area where the phone
disengaged from the network (i.e., the LOCI and
LOCIGPRS elementary files).

Figure 7: Example XML Phonebook Entry

XML is used to represent test data for input to IMP.
XML is a popular syntax, able to be processed by
computers and, with some effort, also understood by

humans. Many XML editors exist, as well as tools for
defining data type descriptions and schemas against
which data representations can be constructed and
automatically verified. These characteristics motivated its
choice. Figure 7 shows an example phonebook entry for
an Asian name and an international telephone number
encoded in XML.

One consideration in constructing the XML schema
is defining ways to represent deleted entries in the test
data. No delete operation exists for SIMs. Instead,
deletion is accomplished by updating information in an
elementary file with strings of hexadecimal “FF.” The
one exception involves SMS message content, by which a
status flag is used to indicate a deleted entry instead of
“FF” overwrite, allowing the content to be recovered.
The structure of an elementary file affects the way deleted
information is represented. For example, for linear fixed
files, a record number could be used to specify the content
of the indicated record, whereby a deleted entry is simply
never referenced. However, that choice might induce
errors in the reference data set, such as duplicate entries,
which would not be automatically detectable by an XML
validation tool. Instead of record numbers, however, data
for such record entries could be listed sequentially and
populated in the order of appearance. Delete entries can
then be designated by a special tag, which results in the
creation of a gap in the file structure.

Most forensic SIM tools run under the Windows
operating system, making it a logical platform for
implementing IMP. To allow other operating systems
besides Windows to be supported, IMP was written in the
Java programming language. IMP uses and extends an
open source programming interface called Java Card
Communication Access Library (JACCAL) to exchange
APDUs with the SIM. A SAX parser is also used to
interpret the reference test data represented in XML.

4. Conclusions

Cell phone forensics is an emerging discipline.
Various impediments exist that create problems for
forensic specialists working in this area, and need to be
overcome for the discipline to flourish. The two
techniques presented in this paper attempt to resolve two
problems: the latency in coverage of newly available
phone models by forensic tools, and the lack of readily
available reference material to use as a comprehensive
baseline for validating the correct functioning of forensic
SIM tools.

The basic techniques described in the paper are
extendable beyond the specific examples given. In the
case of phone manager protocol filtering, the technique
could be applied to phone managers from cell phone
manufacturers other than Nokia, albeit with a filter
programmed for the different protocols that may be

<phonebookentry>
 <description enc="ucs2">阿家里面于</description>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>
 <number>1444412345678</number>
 </address>
</phonebookentry>

involved. Similarly, the technique for populating SIMs
could be applied to other types of identity modules in the
marketplace, with the appropriate modifications applied.
More important, the discussion will hopefully inspire
others to step back and take a broader look at existing
problems in this discipline, and consider better solutions
than those given or address the other outstanding
problems that remain.

5. References

[1] Nokia and Motorola Gain Market Share as Arena Grows,
International Herald Tribune, Tech/Media November 22,
2006, <URL:
http://www.iht.com/articles/2006/11/22/yourmoney/mob
ile.php>.

[2] Nokia and Motorola Account for Nearly 50% of
Worldwide Sales, Mobiledia, August 25, 2005, <URL:
http://www.mobiledia.com/news/35125.html>.

[3] Robert Vamosi, Cell Phone ‘CSI,’ CNET Reviews, May
25, 2007, <URL: http://reviews.cnet.com/4520-3513_7-
6737586-1.htm>.

[4] Annalee Newitz, Courts Cast Wary Eye on Evidence
Gleaned From Cell Phones, WIRED, May 10, 2007,
<URL:
http://www.wired.com/politics/law/news/2007/05/cellph
one_forensics>.

[5] Tyler Moore, The Economics of Digital Forensics, Fifth
Annual Workshop on the Economics of Information
Security, June 2006, <URL:
http://www.cl.cam.ac.uk/~twm29/weis06-moore.pdf>.

[6] Galen Hunt, Doug Brubacher, Detours: Binary
Interception of Win32 Functions, 3rd USENIX Windows
NT Symposium, Seattle, WA, July 1999, <URL:
research.microsoft.com/~galenh/Publications/HuntUseni
xNt99.pdf>.

[7] Wayne Peacock, An Introduction to Nokia F-Bus,
Embedtronics, April 2005, <URL:
http://www.embedtronics.com/nokia/fbus.html>.

[8] Paul McCarthy, Forensic Analysis of Mobile Phones, BS
CIS Thesis, University of South Australia, School of

Computer and Information Science, Mawson Lakes,
October 2005, <URL:
http://esm.cis.unisa.edu.au/new_esml/resources/publicati
ons/forensic%20analysis%20of%20mobile%20phones.p
df>.

[9] Wayne Jansen, Rick Ayers, Forensic Software Tools for
Cell Phone Subscriber Identity Modules, Conference on
Digital Forensics, Association of Digital Forensics,
Security, and Law (ADFSL), April 2006, <URL:
http://csrc.nist.gov/mobilesecurity/publication/pp-
SIM%20tools-final.pdf>.

[10] Amanda Goode, Forensic Extraction of Electronic
Evidence from GSM Mobile Phones, IEE Seminar on
Secure GSM & Beyond, Digest No. 2003/10059,
February 11, 2003.

[11] Specification of the Subscriber Identity Module - Mobile
Equipment (SIM - ME) interface, 3rd Generation
Partnership Project (3GPP), TS 11.11 V8.13.0 (Release
1999), Technical Specification, June 2005.

[12] Casadei, F. et al., Forensics and SIM cards: an
Overview, International Journal of Digital Evidence,
Volume 5, Issue 1, Fall 2006, <URL:
http://ieeexplore.ieee.org/iel5/10612/33521/01592525.pd
f?isnumber=&arnumber=1592525>.

[13] Robert Burnett, Ylva Hård af Segerstad, The SMS
Murder Mystery: the dark side of technology, Safety &
Security in a Networked World: Balancing Cyber-Rights
& Responsibilities, September 2005, <URL:
http://www.oii.ox.ac.uk/microsites/cybersafety/extension
s/pdfs/papers/robert_burnett.pdf>.

[14] Chris Summers, Mobile phones - the new fingerprints,
BBC News Online, December 18, 2003, <URL:
http://newsvote.bbc.co.uk/mpapps/pagetools/print/news.
bbc.co.uk/1/hi/uk/3303637.stm>.

[15] PC/SC Workgroup (2005) Interoperability Specification
for ICCs and Personal Computer Systems, Part 1 -
Introduction and Architecture Overview, Revision
2.01.00, June 2005, <URL:
http://www.pcscworkgroup.com/specifications/files/pcsc
1_v2.01.0.pdf>.

	1. Introduction
	1.1 Current Conditions
	1.2 Plausible Improvements
	2. Phone Manager Protocol Filtering
	2.1 API Interception
	2.2 Protocol Considerations

	3. Identity Module Programming
	3.1 File System Considerations
	3.2 Design and Implementation

	4. Conclusions
	5. References

