

Frequently Asked Questions
For the

Cryptographic Algorithm Validation Program
Concerning the Validation of Cryptographic

Algorithm Implementations

National Institute of Standards and Technology

Communications Security Establishment of Canada

Initial Release: May 16, 2005

Previous Update: November 30, 2011

Last Update: March 27, 2012

Y T
R
N

E
O I C
N

P E N

I
H
H N I T C A

S G H
A

A T N
O U

T
I

CAVP
A G

N
U I S

GT E
R

M
K Y

E
T.

ENCRYPTION

AUTHENTICATION

HASHING

SIGNATURE

KEY MGT.

 1

New FAQ’s and Modified FAQ’s (Issued within the last 45 days)
New FAQ’s

GEN.21 Can a vendor request that an algorithm implementation be validated but
not posted on the validation list until a later date?

GEN.22 Suppose you have two implementations that you are testing at the same
time and each have their own separate cryptographic algorithm boundaries. Each
is a prerequisite of the other. How do you get the validated since neither is
validated at the time you are testing the other? For example,
You have the following implementations that have their own separate
cryptographic boundaries:
1. An implementation of DRBG
2. An implementation of ECDSA

The prerequisite for DRBG is ECDSA and the prerequisite for ECDSA is DRBG.
If the implementation of DRBG and ECDSA are using each other and neither is
validated yet, how do you get them validated since each one is a prerequisite of
the other?

DRBG.4 We validated our DRBG implementation before NIST SP 800-90A came
out. Do we have to do a new validation?

Modified FAQ’s
GEN.5 Added prerequisites for AES-XTS, SP 800-108 KDFS, and SP 800-135
KDFs.

DRBG.3 Added discussion of CTR_DRBG_Update function.

 2

1 ...4 Introduction

25 General Algorithm FAQs (Can be applied to all algorithms)

3 ..19 AES FAQ

4 ..21 DES FAQ

5 ..22 Triple-DES FAQ

6 ..24 DSA FAQ

7 ..25 SHA FAQ

8 ...26 RNG FAQ

9 ..27 RSA FAQ

10 ...32 HMAC FAQ

11 ...34 CCM FAQ

12 ...36 ECDSA FAQ

13 ...38 CMAC FAQ

14 ..39 KAS FAQ

15 ...40 GCM FAQ

16 ...41 DRBG FAQ

 3

1 Introduction

Below is a compilation of questions received from the Cryptographic Security Testing
(CST) laboratories relating to the validation of cryptographic algorithm implementations.

This is intended for use by the CST laboratories when validating cryptographic
algorithms submitted by vendors. Vendors may find the information useful when
developing implementations and working with the CST laboratories for cryptographic
algorithm implementation validation. This compilation of topics covers issues such as
what information is required when validating an implementation, individual
cryptographic algorithm guidance, how to use the CAVS tool, etc.

Currently the CAVP provides validation testing for the following algorithms:

1. Advanced Encryption Algorithm (AES),
2. Triple Data Encryption Algorithm (Triple-DES),
3. Digital Signature Algorithm (FIPS186-2 and (FIPS186-3 DSA),
4. Secure Hash Algorithm (SHA),
5. Random Number Generator (RNG),
6. Reversible Digital Signature Algorithm ((FIPS186-2 and (FIPS186-3 RSA),
7. Elliptic Curve Digital Signature Algorithm ((FIPS186-2 and (FIPS186-3

ECDSA),
8. Keyed-Hash Message Authentication Code (HMAC),
9. Counter with Cipher-Block Chaining-Message Authentication (CCM)
10. CMAC Algorithm (CMAC)
11. Deterministic Random Bit Generator (DRBG)
12. Galois Counter Mode (GCM) and GMAC Algorithm
13. Key Agreement Schemes and Key Confirmation (NIST SP 800-56A) (KAS)
14. The XTS-AES Mode for Confidentiality on Storage Devices (XTS)
15. Component testing for

a. The NIST SP 800-56A Elliptic Curve Cryptography Cofactor Diffie-
Hellman (ECC CDH) Primitive

b. The testing of “All of NIST SP 800-56A EXCEPT the KDF”

 4

2 General Algorithm FAQs (Can be applied to all
algorithms)

GEN.1 Where is the documentation for each algorithm
validation system found?

Refer to the individual validation system guides for each supported algorithm for an
explanation of the validation tests required for that specific algorithm. These validation
guidelines are located on the main page of the CAVP website. For example, to find the
Galois Counter Mode (GCM) Validation Suite (GCMVS) on this page, select MAC -
includes CMAC, CCM, GCM/GMAC, HMAC in the blue column on the left.
GCM/GMAC is the third algorithm in this section. A link to the GCMVS is in the
Testing Requirements section.

The individual validation guidelines for the currently supported algorithms and testable
algorithm components are:

1. The Advanced Encryption Standard Algorithm Validation Suite (AESAVS),
2. NIST Special Publication 800-20, Modes of Operation Validation System for the

Triple Data Encryption Algorithm (TMOVS): Requirements and Procedures. (An
additional test, the Multi-block Message Text (MMT), is also required.),

3. The Digital Signature Algorithm Validation System for FIPS 186-2 (DSAVS) and
FIPS 186-3 (DSA2VS),

4. The Secure Hash Algorithm Validation System (SHAVS),
5. The Random Number Generator Validation System (RNGVS),
6. The Reversible Digital Signature Algorithm Validation System for FIPS 186-2

(RSAVS) and FIPS 186-3 (RSA2VS),
7. The Elliptic Curve Digital Signature Algorithm Validation System for FIPS 186-2

(ECDSAVS) and FIPS 186-3 (ECDSA2VS),
8. The Keyed-Hash Message Authentication Code Validation System (HMACVS),
9. The Counter with Cipher-Block Chaining-Message Authentication Validation

System (CCMVS)
10. The CMAC Validation System (CMACVS)
11. The Deterministic Random Bit Generator (DRBG) Validation System (DRBGVS)
12. The Galois/Counter Mode (GCM) and GMAC Validation System (GCMVS)
13. The Key Agreement Scheme (KAS) Validation System (KASVS) (Also includes

instructions for testing implementations of “All of SP800-56A EXCEPT KDF”.)
14. The XTS-AES Mode for Confidentiality on Storage Devices (XTS) (XTSVS)
15. The Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH) Primitive

Validation System (ECC_CDHVS).

GEN.2 Is it acceptable if an implementation of an algorithm

 5

http://csrc.nist.gov/groups/STM/cavp/index.html
http://csrc.nist.gov/groups/STM/cavp/index.html#07
http://csrc.nist.gov/groups/STM/cavp/index.html#07

is presented in such a manner that the end user using the
implementation must make calls to several functions in order to
perform a major function of the algorithm (for example,
Signature Generation)?

Generally, no. NIST expects that all the parts of an implementation of an algorithm will
be contained within one executable (or its equivalent in firmware or hardware) and that
one call to the algorithm implementation will determine which of the underlying
functions are executed, how these underlying functions are executed, and in what order
these functions are executed. For example, in a PKCS1.5 implementation, as the PKCS#1
v2.1 document states, we would expect that a call to RSASSA-PKCS1-V1_5_SIGN
would call EMSA_PKCS1_V1_5_ENCODE and RSASP1. The CAVS testing has been
designed to assure that the functionality of the underlying functions within an algorithm
implementation is operating correctly. If all the parts are supplied to an end user with the
ability to put them together any way possible, there is no guarantee that they will be
called in the order specified by the standard for that algorithm. Therefore, we cannot
validate this implementation as a completed implementation.

However, there are cases where two or more distinct entities in a system cooperate to
execute an algorithm, such as the case of a smart card and a smart card reader. In this
case the functions that comprise the digital signature algorithm are divided between the
two parts of the system, card and reader, and the order of operations is fixed so that there
is no way for the component functions of the algorithm to be called out of order.

The testing of individual algorithm components was introduced in 2011. Several
situations have led to this new type of testing. For example, PIV cards have limited
processing space and therefore some parts of the algorithm are performed off card.
Another example involves SP 800-56A which allows for the use of other KDFs not
specified in 56A. In this situation, validation testing of “All of 56A except KDF” is
performed.

(See GEN.18 for a related question.)

GEN.3 How should the algorithm implementation be named?

There are no requirements on the algorithm implementation name. If the algorithm
implementation is a part or component of a cryptographic module, it should not have the
same name as the module itself. If the algorithm implementation is itself a module, then
only one name is needed. There is no requirement to have algorithm names such as
“AES” or “SHA” in the name of the implementation.

GEN.4 If an algorithm implementation performs more than
one algorithm (for example, if an algorithm implementation

 6

named XYZ CryptoLib2000 performs both AES and SHA), can a
different description be given for each algorithm?

No, the implementation description for an implementation applies to all algorithms
implemented by this implementation. The same description will be displayed on all
algorithm validation lists for this implementation. (In the example above, the same
description will be displayed on the AES and SHA validation lists for this algorithm
implementation.)

GEN.5 Are there prerequisites to having some algorithms
validated?

Yes. Following is an explanation of why. Some cryptographic algorithms make use of
other cryptographic algorithms. For example, DSA Key Generation utilizes a random
number generator. The algorithm validation test suites for each algorithm are designed to
test the algorithm specifications, components, features, and/or functionality of that
algorithm. So the validation tests for DSA Key Generation thoroughly tests the Key
Generation function. But it doesn’t thoroughly test calls to supporting cryptographic
algorithms like the random number generator. Therefore, the random number generator
validation tests need to be performed as a prerequisite to the DSA Key Generation
validation testing to provide this assurance for the random number generator.

For algorithms that require an Approved Random Number or Bit Generator, any of the
algorithms listed in FIPS 140-2, Annex C, may be used. The CAVP uses DRBG to refer
to Approved Deterministic Random Number Generators specified in NIST SP 800-90A
and RNG to refer to the rest of the Approved Deterministic Random Number Generators
in Annex C. Unless explicitly stated otherwise, either RNG or DRBG may be used.

Algorithm Tested Additional Required Test(s)

AES – Counter Mode AES using any mode of operation
that utilizes the forward cipher
function.

CCM

AES using any mode of operation
that utilizes the forward cipher
function.

CMAC

NIST-Approved symmetric key
algorithm (i.e., AES or TDES)
using any mode of operation that
utilizes the forward cipher
function.

DRBG HASH_DRBG SHA

 7

http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexc.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

Algorithm Tested Additional Required Test(s)

HMAC_DRBG HMAC
CTR_DRBG NIST-Approved symmetric key

algorithm (i.e., AES or TDES)
using any mode of operation that
utilizes the forward cipher
function.
ECDSA Key Generation function
(to test the point multiplication
function)

Dual EC_DRBG

SHA

Domain Param Gen

SHA1

Domain Param Ver SHA2
Key Gen RNG or DRBG

SHA Sig Gen
RNG or DRBG (because of per
message secret #)

DSA
(FIPS 186-2 or FIPS 186-3)

Sig Ver SHA
Key Pair RNG or DRBG
PKV None

SHA Sig Gen
RNG or DRBG
(because of per message secret #)

ECDSA
(FIPS 186-2 or FIPS 186-3)

Sig Ver SHA
AES using any mode of operation
that utilizes the forward cipher
function.

GCM

RNG or DRBG, only if IVs
generated internally

HMAC The supported SHA algorithm(s)
KAS (Key Agreement
Scheme)

FFC (Finite Field
Cryptography)

Underlying DSA algorithm.
The table below lists the DSA
prerequisite function required
based on the underlying supported
cryptographic function(s):
Supported
Cryptographic
Function

DSA
Prerequisite

1 Uses SHA-1, but this is not a “hidden” value as when generating the private key, x, or the per message
secret value, k. If this process is done incorrectly, the correct value of Q cannot be determined.
2 same as above.

 8

Algorithm Tested Additional Required Test(s)

Domain
Parameter
Generation

PQG
Generation;
PQG
Verification

Domain
Parameter
Verification

PQG
Verification

Key Pair
Generation

Key Pair

Key
Regeneration

Key Pair

SHA
RNG or DRBG
If Key confirmation is being
tested, all applicable MACs:
CCM
CMAC
HMAC
Underlying ECDSA algorithm
The table below lists the ECDSA
prerequisite function required
based on underlying supported
cryptographic function(s):
Supported
Cryptographic
Function

ECDSA
Prerequisite

Full Public
Key Validation

PKV

Key Pair
Generation

Key Pair

Key
Regeneration

Key Pair;
PKV

SHA
RNG or DRBG

ECC (Elliptic Curve
Cryptography)

If Key confirmation is being
tested, all applicable MACs:
CCM
CMAC
HMAC

KDF
(NIST SP 800-108)

Algorithm used to
generate the key
derivation key

SP800-56A KAS and/or
SP800-90A DRBG and/or
RNG

 9

Algorithm Tested Additional Required Test(s)

MAC algorithm used
by the IUT to
generate the KDF

CMAC and/or
HMAC

IKEv1 KDF HMAC
IKEv2 KDF HMAC
TLS 1.0/1.1 HMAC SHA-1
TLS 1.2 HMAC (SHA-256, 384, 512)
X9.63-2001 SHA
SSH SHA
SRTP AES using any mode of operation

that utilizes the forward cipher
function.

SNMP SHA-1

KDF
(NIST SP 800-135)

TPM HMAC SHA-1
186 RNG DOES NOT REQUIRE

PREREQUISITE TESTING
(Notes: Uses a SHA-like function.
Therefore ECDSA RNG SHA
does not need to be validated. The
DES algorithm is tested
sufficiently by the RNG for use by
the RNG function.)

RNG

ANSI X9.31 DOES NOT REQUIRE
PREREQUISITE TESTING
(Notes: The underlying algorithms
are tested sufficiently by the RNG
for use by the RNG function.)
RNG or DRBG KeyGen9.31
The supported SHA algorithms:
SHA-1, SHA-256, SHA-384, or
SHA-512 (SHA-224 is allowed in
FIPS 186-3 only)

SigGen9.31 The supported SHA algorithms:
SHA-1, SHA-256, SHA-384, or
SHA-512 (SHA-224 is allowed in
FIPS 186-3 only)

SigGenPKCS1.5 The supported SHA algorithms:
SHA-1, SHA-224, SHA-256,
SHA-384, or SHA-512

SigGenPSS The supported SHA algorithms:
SHA-1, SHA-224, SHA-256,
SHA-384, or SHA-512

RSA
(FIPS 186-2 or FIPS 186-3)

SigVer9.31 The supported SHA algorithms:
SHA-1, SHA-256, SHA-384, or

 10

Algorithm Tested Additional Required Test(s)

SHA-512 (SHA-224 is allowed in
FIPS 186-3 only)

SigVerPKCS1.5 The supported SHA algorithms:
SHA-1, SHA-224, SHA-256,
SHA-384, or SHA-512

SigGenPSS The supported SHA algorithms:
SHA-1, SHA-224, SHA-256,
SHA-384, or SHA-512

TDES Counter Mode TDES using any mode of
operation that utilizes the forward
cipher function.

Encrypt AES – any mode of operation that
utilizes the forward cipher
function.

XTS AES
(NIST SP 800-38E) Decrypt AES —any mode of operation that

utilizes the forward and inverse
cipher function (i.e., AES-ECB or
AES-CBC).

GEN.6 An algorithm implementation has restrictions on its
use because of the application that contains it. Can I validate
the algorithm implementation?

In order for a cryptographic algorithm to be validated, the algorithm must be designed in
such a way as to allow for testing by the validation tests. It must also be designed as
specified in the corresponding official algorithm document. If these two conditions are
not met, the cryptographic algorithm implementation cannot be validated. If the
restrictions of the application interfere in testing the algorithm or designing the algorithm
according to the specifications in the standard, this algorithm cannot be validated.

 GEN.7 Guidance on the relationship between the operating
environment for cryptographic algorithm implementation
validations and the operating environment for cryptographic
modules.

Implementation Guidance (IG) 1.4, Binding of Cryptographic Algorithm Validation
Certificates, identifies the configuration control and operational environment
requirements for the cryptographic algorithm implementation(s) embedded within a
cryptographic module when the latter is undergoing testing for compliance to FIPS

 11

 12

140-2. This IG states:

For a validated cryptographic algorithm implementation to be embedded within a software, firmware
or hardware cryptographic module that undergoes testing for compliance to FIPS 140-2, the following
requirements must be met:

1. the implementation of the validated cryptographic algorithm has not been modified upon
integration into the cryptographic module undergoing testing; and

2. the operational environment under which the validated cryptographic algorithm implementation
was tested by CAVS must be identical to the operational environment that the cryptographic
module is being tested under by the CST laboratory.

GEN.8 What should be done if an algorithm implementation
is housed on two different version numbers of a chip?

Generally, any two implementations of an algorithm that have different version numbers
must be validated separately regardless of the physical differences. Two sets of files
must be generated by the CAVS tool to test both operating environments. However, the
vendor is not required to choose a packaged IC as the physical boundary. The CAVP
allows validation of a die, so if a die is validated for an algorithm or algorithms, then any
packaged ICs that contain the die do not need to be validated again for the same
algorithms.

GEN.9 Suppose an algorithm implementation has been
validated. What happens when a change is made inside the
implementation’s boundary? It is claimed that no cryptographic
functions were changed. Is the algorithm validation still valid?

No. Any change inside the defined boundary of the implementation creates a new
implementation, which must be validated. It does not matter what the change is.

GEN.10 If a vendor claims that their implementation runs on
multiple operating systems, how should this be validated?

CAVP validations list the operating system and processor, known as the operating
environment (OE), on which the testing was conducted. They do not list all OEs on
which the implementation is able to run. Therefore, only one set of tests is required. The
OE used for module validation must match the OE used for algorithm validation.

The above applies to a single implementation, such as a single binary executable file or
dynamic library. The above does not apply to a vendor who has multiple
implementations that use the same name and version number, such as a single source

code base that can be compiled to target different OEs. In this case, each distinct
implementation must be tested separately.

A vendor is allowed to test on more OEs than required if it so chooses.

GEN.11 A vendor has indicated that the version number of a
previously validated algorithm implementation has changed.
They indicate that the version number change is not security
relevant; nothing within the algorithm implementation boundary
has been changed. What should be done?

The laboratory would need to verify through source code review and documentation
review that the version number change definitely is not a security relevant change and
that none of the code within the algorithm boundary has been modified. An official
change request would be submitted to NIST by the laboratory requesting a version
number change indicating that the laboratory has verified that the change does not
constitute a security relevant change.

GEN.12 What information is required in the Operational
Environment field?

When submitting the algorithm test results to the CAVP, the operational environment on
which the testing was performed must be specified. [REF: FIPS 140-2 IG 1.4]

For Software implementations, the following information must be listed:

1. Processor – This field shall identify the vendor and processor family.
Examples that satisfy the requirement for the processor field are Intel Core i5,
ARM 7, and AMD Opteron.

No further specificity is required unless the vendor or the lab knows that the
software implementation executes differently on different processors within
the same family. In this case, the listing must be more specific. AES.2
describes such a case. A vendor may also choose to be more specific than
required, e.g., in order to gain a marketing benefit.

2. Operating system – This field shall identify the vendor and operating system

family, or major version number where more appropriate. Examples that
satisfy the requirement for the OS field are Microsoft Windows Vista, Apple
Mac OS X, Red Hat Enterprise Linux 5, and Wind River VxWorks 6.

No further specificity is required unless the vendor or lab knows that the
software implementation executes differently on different OSes within the

 13

same OS family or major version number. In this case, the listing must be
more specific. A vendor may also choose to be more specific than required if
so desired.

Any virtual machine (VM) used during testing shall be listed in the OS field
of the Operating Environment (OE). If the VM was running between the
software implementation and the OS, as in the case of a Java VM, it should be
listed along with the OS using the same vendor and family/version number
requirements. See GEN.17 for the case of a VM running underneath the
target OS.

For Firmware implementations, the following information must be listed:
1. Processor – This field has the same requirements as the Software Processor

field above.

For Hardware implementations, the environment is the actual hardware device.
Therefore, N/A is indicated in the Operating Environment since the implementation name
and hardware part number indicate the environment on which the IUT was run.

If a cryptographic algorithm implementation can not be tested in its hardware
environment, per FIPS 140-2 IG G11, a simulator may be used to test the algorithm
implementation. The algorithm implementation would be extracted from the rest of the
hardware implementation and tested with a simulator. In this case, the implementation
would be firmware and the operating environment would list the name of the simulator
used to test the implementation. Examples of simulator names include Cadence NC-
Verilog, Mentor Graphics ModelSim 10, and Synopsys VCS.

GEN.13 A vendor implements an algorithm that requires
prerequisite algorithm validations. The prerequisite algorithm
implementation used by the vendor is housed in a validated
cryptographic module. The algorithm was not validated
because, at the time the module was tested, validation testing
for this algorithm did not exist. Can the vendor use this
algorithm implementation as a prerequisite algorithm?

Yes, this implementation of the prerequisite algorithm can be used by another
cryptographic algorithm. Because validation testing for this algorithm did not exist when
its module was validated, the cryptographic algorithms within this module validation will
be grandfathered in. The cover letter should include an explanation of this and the
validation number for the underlying algorithm should list the 140 Module Validation
Certificate number.

 For example, a vendor implements DSA. As a prerequisite, RNG needs to be validated.
The RNG implementation this vendor is using is in a module that was validated prior to

 14

there being RNG testing. It can be used in the DSA implementation. The cover letter
will indicate that the implementation of RNG used by the DSA is grandfathered in
because it was tested under FIPS 140-1. The RNG validation number listed will be the
140-1 Module Certificate number.

GEN.14 Can a vendor still get a hard copy algorithm
validation certificate?

No. Effective January 1, 2008, the Cryptographic Algorithm Validation Program
(CAVP) stopped issuing algorithm validation certificates for cryptographic algorithm
validations. The cryptographic algorithm implementation validation entry (found on the
appropriate CAVP website validation list) will serve as the official posting of the
validation.

GEN.15 Which is the most significant bit and byte in all CAVS
vectors?

The most significant bit in all CAVS vectors is the leftmost bit. The most significant
byte in all CAVS vectors is the leftmost byte.

Some inputs are bit strings – ordered sequences of bits – instead of numbers. For
compactness, CAVS represents each group of 4 (four) bits in a bit string by its
hexadecimal number representation, with the left-most bit as the most significant. For
example, 10010010  1001 0010  92 hex.

GEN.16 One implementation tests multiple algorithms. Can
one algorithm be tested on one version of CAVS and another
algorithm be tested on a different version of CAVS?

Yes, an implementation that tests multiple algorithms may be tested on different versions
of CAVS. This would be recorded in the testing files by the CAVS tool. Some examples
of this situation include

1. A vender has an implementation of AES and SHA. They originally only get
AES validated. At a later date when a later version of CAVS is now active,
they request the testing of SHA. Nothing has changed within the algorithmic
boundary. SHA will be tested under a different version of CAVS.

2. A vendor has an implementation of AES and SHA. They submit both for
testing but have issues with one. So they only get one validated at this time.
At a later date the other algorithm is ready for testing and the current version
of CAVS is different.

 15

GEN.17 Does CAVP allow algorithm tests to be performed on
a target operating system running on top of a virtual machine?
Or must the target OS be the machine’s native OS?

It depends on whether the virtual machine (VM) is part of the operational environment
(OE) listing. For example, suppose an algorithm implementation runs on Windows XP
on top of Parallels Desktop for Mac on top of Mac OS X on an Intel Core 2 Duo
processor. It is acceptable to list the Operating System (OS) in the OE as "Windows XP
on Parallels Desktop for Mac on Mac OS X." It is not acceptable to list the OS as
"Windows XP" only. Remember, of course, that the OE listing on the algorithm
validation must match the OE in the CMVP submission.

At this point in time we do not feel comfortable treating the OS running on top of a
virtual machine as equivalent to the OS running directly on the processor. Probably, for
many crypto algorithm implementations, the behavior and results would be the same.
However, in discussions with one of our local VM experts, we have identified some
differences that might arise. We don't know for certain that these differences would
affect validations, but until we run a significant sample of tests, we want to play it safe.

GEN.18 Does GEN.2 make the allowance for a procedurally
controlled correct implementation of an algorithm? I.e., can one
simply specify in a Security Policy that the calls X, Y, and Z must
be called in a particular sequence and manner for an algorithm
to maintain its validation?

No. In the "However..." part of GEN.2, it mentions that the order of operations is fixed
so there is no way for the component functions to be called out of order. It doesn't get
handled in the Security Policy.

GEN.19 In order to apply GEN.9 to a software algorithm, what
is considered the implementation boundary of the software
algorithm? Is it the source code functions of the algorithm; the
source code files that contain those factions; or the binary
executable or dynamic library that the source code compiles
into?

For a software algorithm, CAVP validates the binary executable or dynamic library that
contains the executable code of the algorithm implementation. The implementation's
boundary is effectively the entire binary file that contains the algorithm implementation.
So to apply GEN.9, if that binary file is different the algorithms in it must be tested again.
It does not matter what the change is or that the algorithm source or compilation result
may not have changed.

 16

GEN.20 Source code for a cryptographic algorithm is
compiled into two separate, non-identical binary files. Can the
two binary (executable) files be considered a single
implementation? (For example, AES is compiled statically into
both an encrypted key storage system and a network encryption
system inside the same product; or DSA verification is compiled
into a pre-boot loader and into the main program that the pre-
boot loader loads.)

No. The CAVP validation for a software or firmware implementation is specific to the
binary executable file that the tested implementation resides in. Compiling the same
source code into two different executables is considered two separate algorithm
implementations and each one needs to be independently tested. It does not matter that
the same source code is used.

GEN.21 Can a vendor request that an algorithm
implementation be validated but not posted on the validation list
until a later date?

No. When a validation number is assigned to the implementation, it must be posted on
the CAVP algorithm validation list.

If the vendor does not want this algorithm implementation to be publicly recognized until
a later date, the vendor can assign a temporary implementation name when the
implementation is submitted to the CAVP by the testing lab. The fact that a temporary
name has been assigned to this implementation is transparent to the CAVP; the name of
an algorithm implementation is the responsibility of the vendor. The rest of the
implementation information displayed on CAVP web site – the vendor information, the
versioning, Operational Environment and the Description/Notes field- shall represent the
information about what was actually tested,

The vendor may request the lab to submit an official change request to the CAVP if they
wish to post the official implementation name. Please see the CAVP Algorithm
Submission Guidance for more information on submitting a change request for an
existing validation.

An exception to this guidance is ITAR validations. See the CAVP Management Manual
for instructions on processing ITAR requests.

 17

GEN.22 Suppose you have two implementations that you are
testing at the same time and each have their own separate
cryptographic algorithm boundaries. Each is a prerequisite of
the other. How do you get the validated since neither is
validated at the time you are testing the other? For example,

You have the following implementations that have their own
separate cryptographic boundaries:

1. An implementation of DRBG

2. An implementation of ECDSA

The prerequisite for DRBG is ECDSA and the prerequisite for
ECDSA is DRBG.

If 2 algorithmic implementations have separate cryptographic boundaries and each of
these implementations require each other as prerequisites, submit both implementations
simultaneously with "Other Special Requests and Notes for CAVP" checked. Include the
explanation, in each submission, that you are submitting 2 separate implementations for
validation and each is used by the other as prerequisites and therefore the assigned
validation number will need to be supplied by the CAVP at processing time.

 18

3 AES FAQ

AES.1 What is required to get an AES Counter Mode
implementation validated?

The requirements for getting an AES Counter (CTR) Mode implementation validated are
passing the CAVS tests for the underlying forward cipher function used by the CTR
mode and validating the counter implementation as described in the AES Validation
System (AESAVS) documentation, Appendix A: Counter Mode Requirements.

AES.2 A software implementation of AES uses the AES-NI
instruction set. How do I validate it?

There are two separate cases:

1. The implementation relies on the AES-NI instructions and only runs on processors that
support them. One set of AES test vectors is needed to validate this implementation. The
OE listing for the processor must indicate that the processor supports AES-NI, e.g., "Intel
Core i5 with AES-NI w/ Windows 7".

2. The implementation uses AES-NI on processors that support it and does not use AES-
NI (i.e., implements AES entirely in software) on processors that do not support it. Thus,
there are two distinct execution paths in the code for AES depending upon whether or not
the processor supports AES-NI. In this case, two sets of test vectors are needed to
validate the implementation: one runs on a processor with AES-NI that uses the AES
instructions, and one runs on a processor without AES-NI.

The vendor may choose to have one validation listing with two entries in the OE field or
two separate validation listings, each with a different entry in the OE field. An example
of the two OE field entries is: "Intel Core i5 with AES-NI w/ Windows 7" and "Intel Core
i5 w/ Windows 7.”

The above requirements apply to the fundamental (base) modes of operation of AES and
to any algorithm that uses AES, whether extended modes of operation such as CCM,
GCM, and XTS, or other functions such as the CTR_DRBG and CMAC.

AES.3 What fundamental (or base) modes of operation
use the forward cipher function?

ECB in the encrypt state only
CBC in the encrypt state only

 19

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

CFB in both the encrypt and decrypt states
OFB in both the encrypt and decrypt states

 20

4 DES FAQ

NOTE: The CAVP has discontinued the issuance of new DES algorithm validation
certificates as of February 9, 2005. DES implementations under contract with a CST
laboratory prior to February 9, 2005, will be completed. See the DES Transition Plan for
more details.

 21

5 Triple-DES FAQ

TDES.1 What is required to get an TDES Counter Mode
implementation validated?

The requirements for getting a TDES Counter (CTR) Mode implementation validated are
passing the CAVS tests for the underlying forward cipher function used by the CTR
mode and validating the counter implementation as described in the AES Validation
System (AESAVS) documentation, Appendix A: Counter Mode Requirements. The
counter requirements are the same for TDES and AES.

TDES.2 Our TDES implementation does not allow the use of
weak keys, but the Known Answer Tests (KATs) in the validation
suite use weak keys and, therefore, the implementation needs to
be able to accept them. How should we test this?

For validation testing, tighten the algorithmic boundary so that it does not include the
weak key check. Make sure the implementation does not allow weak keys outside the
validation testing.

TDES.3 Why do the TDES Known Answer Tests (KATs) use
weak keys?

The TDES Known Answer Tests (KATs) were based on the DES KATs. Likewise, the
DES KATs were based on the standard DES test set described in NIST SP 500-20,
“Validating the Correctness of Hardware Implementations of the NBS Data Encryption
Standard,” written in 1977. These tests were generated before the realization of the weak
keys. The purpose of this test is to test every element of the DES (TDES) components.
When talking about the key tests, we are referring to the testing of the key permutation
tables PC1 and PC2. As detailed in Section 3.1.1.3, “The Variable Key Known Answer
Test for the Encryption Process” in NIST SP 800-17:

“When this test is performed for an IUT of the DES algorithm, the 56 possible basis
vectors which yield unique keys are presented to PC1 verifying the key permutation,
PC1. Since the key schedule consists of left shifts, as i ranges over the index set, a
complete set of basis vectors is presented to PC2 as well, so this is verified.”

TDES.4 What fundamental modes of operation use the
forward cipher function?

ECB in the encrypt state only

 22

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

CBC in the encrypt state only
CBC-I in the encrypt state only
CFB in both the encrypt and decrypt states
CFB-P in both the encrypt and decrypt states
OFB in both the encrypt and decrypt states
OFB-I in both the encrypt and decrypt states

 23

6 DSA FAQ

DSA.1 If a vendor is having problems getting one of the DSA
functions to work properly, where can a known set of values be
obtained to help in the testing?
Test vectors for all validation tests for every supported algorithm can be found on the
CAVP main page in the appropriate algorithm section. This is where sample known sets
of values can be found.
If the implementation being tested does not compute the same signature or result, then it
can be concluded that there is something wrong with the vendor’s implementation.

DSA.2 In the X186 RNG, does an implementation have to
support the optional seed XSEED?
An implementation does not have to support the optional seed.
In the DSA algorithm, the XSEED value is added to the XKEY value. This value is then
moded 2b to compute the XVAL. In the CAVS tool, the SEED value is set to 0 because it
is only used in an addition function and the purpose of the test is not to check if the
implementation can add two numbers together. Instead the purpose of this validation test
is to assure that the implementation performs the G function correctly.

DSA.3 What random number generators can
implementations of FIPS186-3 DSA use?

Any random number generator (RNG) or random bit generator (RBG) that is approved
for use in FIPS 140-validated modules may be used, subject to the transition schedule
specified in SP 800-131A. Specific references to SP 800-90 should not be considered as
a requirement to use a generator specified in SP 800-90 until such time as the use of the
other generators is no longer allowed.

 24

http://csrc.nist.gov/groups/STM/cavp/index.html

7 SHA FAQ

SHA.1 A vendor wants to test SHA (byte only). The vendor’s
implementation restricts the size of the data string that is
hashed, i.e., For SHA-1, data length is less than or equal to 256
bytes. How is this implementation validated?

Currently the CAVS tool assumes there are no restrictions on the size of the data string
that can be hashed by the implementation being tested. Therefore, the request file
generated by the CAVS tool to test this implementation will contain a wide range of data
string lengths. The tester will evaluate only the data string lengths supported by their
implementation, returning the answers to the CST laboratory. The CST laboratory will
check the response files manually to determine if the data strings supported by the
implementation’s specifications pass successfully.

In the algorithm validation request cover letter (and email request), the CST Lab will
indicate the special case and will explain how the files were verified. The restriction will
be indicated on the algorithm’s validation list website.

 25

8 RNG FAQ

RNG.1 When generating RNG test vectors for the General
Purpose RNG, both the Xorg and Korg generators were
selected. Values for Korg were not generated for General
Purpose RNG. Why?

This confusion is caused by adding the General Purpose RNG to an existing screen in the
CAVS tool. The original RNG uses Xorg, Xchange, Korg and Kchange. But the General
Purpose RNG, as specified in the standard, only uses Xorg and Xchange.

Because of the sharing of this screen in the CAVS tool, if Korg and Kchange are selected
for General Purpose RNG, they are ignored. If the original RNG and General Purpose
RNG are selected and Korg, Kchange, Xorg and Xchange are selected, the tests for the
original RNG using Korg, Kchange, Xorg and Xchange will be generated as well as the
tests for the General Purpose RNG using Xorg and Xchange.

In a later release of the CAVS tool, a separate screen will be developed to clarify this
situation.

RNG.2 A vendor implementing the algorithm in Appendix 3.1
eliminated step 3d which calculates a new XKEY. Instead, a new
random XKEY was created. Is this acceptable?

By eliminating step 3d from the implementation, the algorithm is not implemented
according to the specifications in the standard. An algorithm must be implemented
according to the specifications in the associated standard in order to be recognized as a
NIST-Approved algorithm.

 26

9 RSA FAQ

RSA.1 If a vendor is having problems getting one of the RSA
functions to work properly, where can a known set of values be
obtained to help in the testing?
Test vectors for all validation tests for every supported algorithm can be found on the
CAVP main page in the appropriate algorithm section. This is where sample known
sets of values can be found.

If the implementation being tested does not compute the same signature or result, then it
can be concluded that there is something wrong with the vendor’s implementation.

RSA.2 What should be done in the situation where a vendor
supports a different salt length and value for each SHA
algorithm supported in RSASSA-PSS?

This question arose before 186-3 RSA was available.

When testing implementations of 186-3 RSA, a different salt length (and salt value, if
applicable) can be specified per SHA algorithm/mod size combination supported.

When testing implementations of 186-2 RSA, only one salt length (and salt value, if
applicable) can be specified PER SCREEN. This means the same salt length (and salt
value, if applicable) will be applied to each combination of SHAs and mod sizes selected
on the screen. If different salt lengths (and values) are to be tested for each SHA/mod
size combination, the different combinations must be run as separate tests; as separate
folders or projects.

RSA.3 When generating RSASSA-PSS in the Signature
Verification screen for the SHA-512 implementation with a salt
length of 64 bytes and all mod sizes, CAVS returned a "Fatal
Error" message and indicated that the vectors were generated
but with errors. Why did this happen?

PKCS #1, versions 2.1, contains the statement:

“If emlen < hLen + sLen + 2, output “encoding error” and stop”,

 27

http://csrc.nist.gov/groups/STM/cavp/index.html

where emLen is (modulus _length – 1)/8 , hlen is the length of the output block of a
hash function (in octets), and slen is the length of a salt (in octets). Typical salt lengths in
octets are hLen and 0.

Section 5.5 of FIPS 186-3, item e, contains the statement;

“For RSASSA-PSS, the length of the salt (sLen) shall be: 0  sLen  hlen, where hlen
is the length of the hash function output block (in bytes or octets).”

These statements are appropriate for the 2048 and 3072-bit moduli for all approved hash
functions. However, when a 1024-bit modulus is used with SHA-512 and a salt length
equal to hlen (512 bits = 64 octets, in this case), then:

emLen = (1024 – 1)/8 = 128 octets,

hLen = sLen = 64 octets, and

 hLen + sLen + 2 = 130, which is greater than emLen, so the process produces an
error (see the statement in PKCS #1 that is provided above).

FIPS 186-3 Change Notice modifies item e) of Section 5.5 in FIPS 186-3 accordingly:

“For RSASSA-PSS:

If nlen = 1024 bits, and the output length of the approved hash function output
block is 512 bits, then the length of the salt shall be 0  sLen  hLen – 2.

Otherwise, the length of the salt (sLen) shall be: 0  sLen  hLen

where hlen is the length of the hash function output block (in bytes or octets).”

RSA.4 In the SigVerX.fax files, what does the number in
parentheses after the result = F field mean?

This question is no longer relevant. The error meaning has been added to the fax files.

RSA.5 Is it acceptable to generate primes using the
procedure detailed in Appendix E.4 of the ANSI X9.31 standard
instead of that described in section 4.1.2.1 of the same
standard? Moreover, if this is acceptable, what sort of primality
testing needs to be done? Appendix E.4 is not very clear in this
respect.

The CAVP compared Appendix E.4 of the ANSI X9.31 standard with Section 4.1.2.1 of
the same standard to determine of one could be substituted for the other. We concluded
that Appendix E.4 can be used in addition to, but not in place of Section 4.1.2.1.

Appendix E.4 contains the same calculations for generating the private prime factors that
are found in Section 4.1.2.1. The only difference is that Appendix E.4 explains how to

 28

find the first prime after the first random X is selected by using sieving; it informs the
implementer how to do this. Section 4.1.2.1 does not specify how to select this value.
Therefore, one could add this processing to an implementation.

Appendix E.4 does not specify how to do the primality testing of Y. But since this is a
very important step, it is specified in Section 4.1.2.1. Therefore, it is important that this
part of Section 4.1.2.1 is performed.

Because of these requirements, the informative method described in Appendix E.4 cannot
be substituted for the method described in Section 4.1.2.1. However, it can be used in
addition to Section 4.1.2.1.

Currently, ANSI X9.31 is being updated by American Standards Committee (ASC) X9,
Financial Services. RSA Security is the editor of ANSI X9.31 within ASC X9; the
updated version may allow certain alternative primality tests if they provide an equivalent
threshold of assurance, as specified in ANSI X9.80, Prime Number Generation, Primality
Testing and Primality.

RSA.6 An IUT’s RSA Key Generation function does not
output d, the private signature exponent. This is valid according
to ANSI X9.31 Section 4.1 where the outputs from key generation
are listed. How do I test this IUT?

Both the Key Generation test and the Signature Generation test must be run to test an IUT
that implements RSA Key Generation where d is not output. The Signature generation
function may exist inside or outside the IUT, depending on whether or not the IUT
implements signature generation. If the IUT does not provide signature generation, this
function must be obtained outside the IUT as part of the test code. If it does provide
signature generation, then this function is part of the IUT. In either case, the keys used by
the Signature Generation test must be generated by the IUT's 9.31 Key Generation
implementation.

The Key Generation test will provide proof that the p, q and n values are generated
correctly. The d value will be invalid since it can not be output by the IUT.

The Signature Generation test will provide proof that the keys generated by the IUT
can be used successfully by the IUT to sign messages using d (Signature = min { RR ^ d
mod n, n - (RR ^ d mod n)}) and by CAVS to verify the signature using e. If the signature
fails, the IUT does not pass.

When submitting the IUT to be validated, an explanation of the testing process should be
included.

 29

RSA.7 When implementing the RSA key generation
algorithm according to ANSI X9.31, Digital Signatures Using
Reversible Public Key Cryptography, is it acceptable to generate
primes using the procedure detailed in Appendix E.4 of the ANSI
X9.31 standard instead of the procedure described in section
4.1.2.1 of the same standard. Moreover, if this is acceptable,
what sort of primality testing needs to be done? Appendix E.4 is
not very clear in this respect.

See RSA.5.

RSA.8 From RSA.7 above, it seems that the procedure
outlined in Appendix E.4 simply provides a fast method of
generating the values for p1, p2, q1, and q2 from their respective
X values. As a result, the process of generating p and q from
these values must follow Section 4.1.2.1. Can you confirm this?

Also, would the RSA key generation algorithm testing be
affected if a vendor chooses to use Appendix E.4 to generate p1,
p2, q1 and q2? Appendix E.4 mentions that the sieving method
will remove substantial composite numbers as well as small
primes; however, section 4.1.2.1 mentions that p1, p2, q1, and q2
are the FIRST primes greater than their respective X values.
Since using the sieving method results in some of the smaller
primes being sieved out, is it possible that the values of p1, p2,
q1, and q2 obtained using the sieving method of E.4 will be
different from those values expected by using section 4.1.2.1? If
the values for p1, p2, q1 or q2 are different, the resulting p
and/or q will be different from what is expected by the algorithm
test tool. Will using E.4 affect the key generation algorithm
testing?

Yes, it can be confirmed that the generation of p and q must follow Section 4.1.2.1; in
particular, they must be the first primes after the respective randomly generated values
that satisfy all of the properties listed in that section, including passing the 8 rounds of the
Miller-Rabin test followed by the Lucas test. But that does not preclude sieving the
candidate values of p and q as described in Annex E.4, similar to the sieving of the
candidate values for p1, p2, q1, and q2.

 30

The sieving process should not remove any candidate primes. Because the sieving
primes are all much smaller than the candidate primes, the sieving process should remove
only composites, i.e., non-trivial multiples of the sieving primes.

Actually, the opposite problem is theoretically possible, namely, that the probabilistic
primality test in Section 4.1.2.1 will identify some number as prime that the sieving
method in Annex E.4 eliminates as composite. But the same discrepancy is also
theoretically possible for two different implementations of the probabilistic primality test
in Section 4.1.2.1; e.g., using different sets of bases for the Miller-Rabin test. The
probability of such an event in practice, however, is sufficiently small for us to discount
it.

The sieving in Annex E.4 should not affect validation testing, assuming that it is
implemented correctly, of course, and that the remaining candidates are properly tested
for primality. The validation testing does not directly exercise the sieving process, but, as
discussed above, whether or not the sieving process is used, the same answer should be
the achieved with overwhelming probability.

RSA.9 What random number generators can
implementations of FIPS186-3 RSA use?

Any random number generator (RNG) or random bit generator (RBG) that is approved
for use in FIPS 140-validated modules may be used, subject to the transition schedule
specified in SP 800-131A. Specific references to SP 800-90 should not be considered as
a requirement to use a generator specified in SP 800-90 until such time as the use of the
other generators is no longer allowed.

 31

10 HMAC FAQ

HMAC.1 If an implementation supports other MAC sizes than
those supported by the CAVS tool, how are these MACs tested?

The CAVP cannot test every MAC size. Instead, several MAC sizes throughout the valid
range have been selected for testing. At least one of the specified MAC sizes must be
supported by the implementation.

All values on the HMACVS and the CAVS for HMAC are dealing with values in
BYTES. Therefore all values are AUTOMATICALLY divisible by 8 (since 1 byte = 8
bits).

HMAC.2 An implementation supports all 3 ranges of values
(K<B, K>B, and K=B). Does this mean that 3 separate tests
should be run for the same implementation or will the CAVS tool
allow us to choose all 3 ranges?
The CAVS tool will allow for all three ranges to be selected at the same time.
Enter 2 length values for K<B, 2 length values for K>B and check the K=B box.
All these length values will be used in the data that is produced.

HMAC.3 An implementation only supports one K length size <
B. How should this be indicated since the CAVS tool requires
the entry of two values of K < B to be tested?
The CAVS tool requires that two values of K<B to be supplied to provide more testing
for the implementation. But in the case where only one value is supported by the
implementation, simply enter the same value for K<B in both places. The tool will
generate the request file with two sets of data to test the key size allowed.

The same process is applicable to K>B.

HMAC.4 If an HMAC implementation uses a SHA
implementation that cannot be tested separately, does the SHA
algorithm have to be tested? Why?

Yes, when an implementation of the HMAC algorithm is validated, the CAVP requires
that the SHA algorithm used by the HMAC implementation be validated. Even though
the HMAC algorithm relies on the correctness of the SHA algorithm, the HMAC testing
alone does not provide for adequate testing of the SHA algorithm. The HMAC tests

 32

focus on testing the HMAC processing only.

The CAVP requires additional "stress testing" of the underlying SHA algorithm which is
provided in the SHA Validation tests.

This requirement cannot be bypassed.

 33

11 CCM FAQ

CCM.1 A hardware implementation of AES CCM has been
developed to be used for IEEE 802.11i communications. The
CCM implementation cannot perform the validation tests
because of restrictions as specified in 802.11i. Can the CCM
implementation be validated?
To validate the CCM algorithm, the algorithm must be designed in such a way as to allow
for it to be tested. It must also be designed as specified in the latest IEEE 802.11
standard, which is the official CCM document. If these two conditions are not met, the
CCM implementation can not be validated. Any restrictions put on the algorithm as a
result of the IEEE 802.11i protocol is outside the scope of the CCM algorithm validation
testing.

CCM.2 If a CCM implementation only supports specific
lengths for the Associate Data field because of IEEE 802.11i
restrictions, can it be validated?

If a CCM algorithm validation only supports specific byte lengths for the Associate Data
field, a special note would be included on the validation listing indicating the restriction
that only those supported lengths were validated. The fact that the restriction is
associated with the IEEE 802.11i protocol is irrelevant.

CCM.3 Is it possible for an implementation to implement
encrypt only or decrypt and verify only? Is it possible to then
test only that one function?
Yes it is possible for a CCM implementation to only implement the encrypt function or
the decrypt and verify function. In this situation, only that function would be validated
and the algorithm validation will indicate this information. If the implementation only
supports encrypt, the variable associated adata test, the variable payload test, the variable
nonce test, and the variable tag test will be required to validate the implementation. If the
implementation only supports decrypt and verify, the decryption-verification process test
will be required to validate the implementation. Currently, the laboratory generates all 5
files at the same time. The lab would then only forward the appropriate request and
sample files to the vendor for testing.

 34

CCM.4 When testing a CCM implementation, the CAVS
screen only allows the associated data length and payload
lengths to be between 0 and 32 or 2^16. Why does the CAVP
put this restriction on what can be tested?
It is not possible to test every value supported by the IUT for these variables. So instead
we allow the minimum value, a mid value, and a maximum value supported by the IUT
to be tested. This provides good coverage for testing. It does not imply that an
implementation can only implement these lengths.

If the vendor would like to indicate all the actual lengths for associated data and payload
that are supported by the IUT, this information can be listed in the description.

 35

12 ECDSA FAQ

ECDSA.1 For ECDSA PKV validation testing, how are the Qx
and Qy values represented? What is the significance of their
representation?

All values should be thought of as hexadecimal numbers. To determine whether a value
or a point is valid, convert it to a number; do not rely on the format (e.g., leading zeros,
number of hexadecimal symbols, etc.)

ECDSA.2 In the PKVVer.fax files, what does the number in
parentheses after the result =F field mean?
This question is no longer relevant. The error meaning has been added to the fax files.

ECDSA.3 Can an ECDSA implementation be validated if it does
not use any NIST-recommended curves?

No. In order to validate an implementation of ECDSA, the algorithm implementation
must implement at least one NIST-recommended curve. It can have non-recommended
NIST curves as well as long as there is at least one NIST-recommended curve.

Other facts concerning cryptographic modules using ECDSA algorithm
implementations:

1. All FIPS 140-2 validated modules (that implement ECDSA for use in the FIPS
mode) must have an ECDSA algorithm validation.

2. In order to receive an ECDSA algorithm (FIPS 186-2 or FIPS 186-3) validation,
the module must be tested using one of the NIST recommended curves.

3. A FIPS 140-2 module may use non-recommended NIST curves in the FIPS
Approved mode of operation, if the module has successfully received an
algorithm validation.

4. The module itself (without modification) must implement and support testing of
the ECDSA algorithm with a NIST-recommended curve. The validated modules
boundary as specified by the provided version/PN/etc must support and have the
ability to perform ECDSA with a NIST-recommended curve. It cannot be
provided temporarily for testing in an emulator/simulator and then be removed
from the “real” module.

5. If a vendor’s module cannot support algorithm testing by using a NIST
recommended curve, the ECDSA services of this module will be considered non-
compliant.

 36

ECDSA.4 Can an ECDSA implementation that uses SHA2 be
tested?

Yes. FIPS 186-3 ECDSA implementations may use the SHA-2 (i.e., SHA-224, SHA-256,
SHA-384, or SHA-512) algorithms. Any ECDSA implementation that uses one of the
SHA2 algorithms must be validated for conformance to FIPS 186-3. An implementation
that uses SHA-1 may be validated for conformance to either FIPS 186-2 or FIPS 186-3
ECDSA.

ECDSA.5 What random number generators can
implementations of FIPS186-3 ECDSA use?

Any random number generator (RNG) or random bit generator (RBG) that is approved
for use in FIPS 140-validated modules may be used, subject to the transition schedule
specified in SP 800-131A. Specific references to SP 800-90 should not be considered as
a requirement to use a generator specified in SP 800-90 until such time as the use of the
other generators is no longer allowed.

 37

13 CMAC FAQ

CMAC.1 What should be done in the situation where an
implementation only supports one message length for either
case where the message length is divisible by the Blocksize or
the message length is not divisible by the Blocksize?

If the implementation only supports one message length that is divisible by the Blocksize,
enter this length in both fields. The same applies to the situation where an
implementation only supports one message length that is not divisible by the Blocksize.

CMAC.2 Can an implementation that only supports message
lengths divisible by the block size be tested? How about
implementations that only support partial block sizes? How do I
indicate this in the testing? How is it recorded on the AES and
TDES Validation listing?

Yes, an implementation can support full block sizes only, partial block sizes only, or both
full and partial block sizes. To test an implementation that only supports full block sizes,
only provide ‘message lengths divisible by the block size’ leaving the ‘not divisible by
block size’ section blank (or zero). To test an implementation that only supports partial
block sizes, only provide ‘message sizes not divisible by block size’ size’ leaving the
‘divisible by block size’ section blank (or zero). Both sections are filled in if the
implementation supports both full and partial block sizes. On the AES and TDES
Validation List website, a CMAC entry will indicate BlockSize: Full, BlockSize: Partial,
or BlockSize: Full/Partial.

 38

14 KAS FAQ

KAS.1 For KAS implementations with no key confirmation, is
the vendor expected to actually implement and separately test a
supporting MAC (e.g., HMAC-SHA-512 for KAS ECC Ephemeral
Unified parameter set EE), or would default MAC values of some
sort be used only for the purposes of KAS validation testing?
No, for KAS implementations with no key confirmation, the vendor needs a MAC
implementation but it doesn’t have to be part of the KAS implementation. A MAC
implementation is just needed for purposes of KAS validation testing.

KAS.2 If no MAC is actually required to be implemented in
cases where key confirmation is not supported, and the MAC is
only being specified in the tool for the purposes of KAS testing,
which MAC should be selected for parameter sets with multiple
options? Are there default values that should be entered for
whichever MAC is selected since this is a mandatory field?
No, It doesn’t matter. If you have parameter sets with multiple options, this will be
reflected in the shared secret value z and the derived keying material. The CAVS tool
just needs a MAC to use the key to see if it gets the correct answer.
For example, if ECC Ephemeral Unified NOKC with parameter set EC supported both P-
521 and B-571 curves and SHAs 256 and 512, you can select only one MAC to be used
for testing all of these options to assure that the derived keying material is correct.

KAS.3 Where can definitions be found of the variable names
in the testing files?
All the variables in the KAS testing files are defined in the KASVS document.

 39

15 GCM FAQ

GCM.1 What do I need to do to validate an AES-GCM (NIST
SP 800-38D) algorithm implementation?

All GCM implementations must pass the CAVS tests. GCM implementations that use an
externally-generated initialization vector (IV) have no other requirements. GCM
implementations that use an internally-generated IV have one additional requirement: the
CST lab must verify that the IV is generated using either the method of Section 8.2.1 or
the method of Section 8.2.2 of NIST SP 800-38D.

GCM.2 How should I verify that the IV is generated using the
method of Section 8.2.1 or Section 8.2.2?

The lab can use any technique that it deems suitable. The CAVP leaves the decision up
to the CST laboratory.

GCM.3 Why does CAVS allow testing for an externally
generated IV when Section 9.1 of NIST SP 800-38D says the
module must generate IVs within the module boundary? (FIPS
140-2 IG 1.14 has a similar statement).

The CAVP validates cryptographic algorithm implementations, not cryptographic
modules. The cryptographic algorithm boundary does not have to be the same as the
cryptographic module boundary. In many cases the cryptographic algorithm
implementation is itself a module, but in other cases it is part of (i.e., a component of) a
cryptographic module. Thus, for example, a validated AES GCM implementation could
be combined with a validated Approved RBG (e.g., a NIST SP 800-90 DRBG or a FIPS
186-2 RNG) implementation that will generate IVs in a crypto module. The requirements
in Section 9.1 of NIST SP 800-38D apply to a cryptographic module and module
validation under FIPS 140-2, as does the similar text in FIPS 140-2 IG 1.14.

GCM.4 Are there any prerequisites for validating a GCM
implementation?

Please refer to GEN.5 where the prerequisites for all algorithms are listed.

 40

16 DRBG FAQ

DRBG.1 Is ANSI X9.62-2005 DRBG the same as NIST SP 800-
90A HMAC_DRBG?

Yes, they are the same. NIST SP 800-90A has a nonce as one of the inputs to the
instantiate function, which is not in ANSI X9.62-2005. However, NIST SP 800-90A
Section 8.6.7 specifies that additional entropy input can be used in place of a nonce,
making it the same as ANSI X9.62-2005.

DRBG.2 How does an implementation of ANSI X9.62-2005
DRBG get validated?

It gets validated by passing the NIST SP 800-90A HMAC_DRGB tests. It would be
issued an NIST SP 800-90A validation and be listed as HMAC_DRBG.

DRBG.3 Does CTR_DRBG use AES (or TDES) in counter mode
or, as NIST SP 800-90A Sections 10.2.1 and 10.4.3 seem to
indicate, in ECB mode?

In AES counter mode (or TDES counter mode), the forward cipher function (sometimes
called the encrypt function) has a counter value as the input instead of plaintext (ECB
mode), a chained ciphertext value (CBC mode), or some other value. The counter has an
initial value, not necessarily 0, and is incremented between calls to the forward cipher
function. NIST SP 800-90A Section 10.2.1.5.1 Step 4 implements the counter mode. V
is the counter; it is incremented at the beginning of each pass through the loop. The
Block_Encrypt (forward cipher function) operation is performed on the counter and
the result is appended to the end of the temp bitstring.

The only difference between how counter mode is used here and how it is used for
encryption is that when used for encryption, the result of the "encrypt counter" operation
is XOR'ed with the plaintext. Here, inside the DRBG, we are not encrypting anything, so
result is returned as pseudorandom bits and there is no XOR step. The Update function
in NIST SP 800-90A 10.2.1.2 (CTR_DRBG_Update), Step 2 implements a counter in
the same way and does include an XOR of the result with provided_data to produce
an updated internal state (Key and V).

DRBG.4 We validated our DRBG implementation before NIST
SP 800-90A came out. Do we have to do a new validation?

 41

 42

No. NIST SP 800-90A is a revision of NIST SP 800-90. The DRBG mechanisms have
not changed. The CAVS tests have not changed. SP 800-90A does allow use of the two
new SHA functions from FIPS 180-4 (SHA-512/224 and SHA-512/256). When CAVS
SHA and HMAC testing is available for the new SHA functions, they will be added as
options for DRBG testing as well.

DRBG implementations validated against NIST SP 800-90 are considered validated
against NIST SP 800-90A as well. There is no change in the testing. The same
validation list (i.e., DRBG Validation List) is used, and no distinction is made between
implementations validated before and after NIST SP 800-90A was published.

There was one minor change in the CAVS DRBG tests in the first release following the
publication of NIST SP 800-90A. The number of returned bits in the call to generate was
changed from a fixed value, equal to one output block, to a test parameter ranging from 1
to 32 (default 4) output blocks. This was not a result of any new requirements in NIST
SP 800-90A.

	GEN.21 Can a vendor request that an algorithm implementation be validated but not posted on the validation list until a later date?
	1 Introduction
	2 General Algorithm FAQs (Can be applied to all algorithms)
	GEN.1 Where is the documentation for each algorithm validation system found?
	GEN.2 Is it acceptable if an implementation of an algorithm is presented in such a manner that the end user using the implementation must make calls to several functions in order to perform a major function of the algorithm (for example, Signature Generation)?
	GEN.3 How should the algorithm implementation be named?
	GEN.4 If an algorithm implementation performs more than one algorithm (for example, if an algorithm implementation named XYZ CryptoLib2000 performs both AES and SHA), can a different description be given for each algorithm?
	GEN.5 Are there prerequisites to having some algorithms validated?
	GEN.6 An algorithm implementation has restrictions on its use because of the application that contains it. Can I validate the algorithm implementation?
	In order for a cryptographic algorithm to be validated, the algorithm must be designed in such a way as to allow for testing by the validation tests. It must also be designed as specified in the corresponding official algorithm document. If these two conditions are not met, the cryptographic algorithm implementation cannot be validated. If the restrictions of the application interfere in testing the algorithm or designing the algorithm according to the specifications in the standard, this algorithm cannot be validated. GEN.7 Guidance on the relationship between the operating environment for cryptographic algorithm implementation validations and the operating environment for cryptographic modules.
	GEN.8 What should be done if an algorithm implementation is housed on two different version numbers of a chip?
	GEN.9 Suppose an algorithm implementation has been validated. What happens when a change is made inside the implementation’s boundary? It is claimed that no cryptographic functions were changed. Is the algorithm validation still valid?
	GEN.10 If a vendor claims that their implementation runs on multiple operating systems, how should this be validated?
	GEN.11 A vendor has indicated that the version number of a previously validated algorithm implementation has changed. They indicate that the version number change is not security relevant; nothing within the algorithm implementation boundary has been changed. What should be done?
	GEN.12 What information is required in the Operational Environment field?
	GEN.13 A vendor implements an algorithm that requires prerequisite algorithm validations. The prerequisite algorithm implementation used by the vendor is housed in a validated cryptographic module. The algorithm was not validated because, at the time the module was tested, validation testing for this algorithm did not exist. Can the vendor use this algorithm implementation as a prerequisite algorithm?
	GEN.14 Can a vendor still get a hard copy algorithm validation certificate?
	GEN.15 Which is the most significant bit and byte in all CAVS vectors?
	GEN.16 One implementation tests multiple algorithms. Can one algorithm be tested on one version of CAVS and another algorithm be tested on a different version of CAVS?
	GEN.17 Does CAVP allow algorithm tests to be performed on a target operating system running on top of a virtual machine? Or must the target OS be the machine’s native OS?
	GEN.18 Does GEN.2 make the allowance for a procedurally controlled correct implementation of an algorithm? I.e., can one simply specify in a Security Policy that the calls X, Y, and Z must be called in a particular sequence and manner for an algorithm to maintain its validation?
	GEN.19 In order to apply GEN.9 to a software algorithm, what is considered the implementation boundary of the software algorithm? Is it the source code functions of the algorithm; the source code files that contain those factions; or the binary executable or dynamic library that the source code compiles into?
	GEN.20 Source code for a cryptographic algorithm is compiled into two separate, non-identical binary files. Can the two binary (executable) files be considered a single implementation? (For example, AES is compiled statically into both an encrypted key storage system and a network encryption system inside the same product; or DSA verification is compiled into a pre-boot loader and into the main program that the pre-boot loader loads.)
	GEN.21 Can a vendor request that an algorithm implementation be validated but not posted on the validation list until a later date?
	GEN.22 Suppose you have two implementations that you are testing at the same time and each have their own separate cryptographic algorithm boundaries. Each is a prerequisite of the other. How do you get the validated since neither is validated at the time you are testing the other? For example,
	You have the following implementations that have their own separate cryptographic boundaries:
	1. An implementation of DRBG
	2. An implementation of ECDSA
	The prerequisite for DRBG is ECDSA and the prerequisite for ECDSA is DRBG.

	3 AES FAQ
	AES.1 What is required to get an AES Counter Mode implementation validated?
	AES.2 A software implementation of AES uses the AES-NI instruction set. How do I validate it?

	AES.3 What fundamental (or base) modes of operation use the forward cipher function?
	4 DES FAQ
	TDES.1 What is required to get an TDES Counter Mode implementation validated?
	TDES.2 Our TDES implementation does not allow the use of weak keys, but the Known Answer Tests (KATs) in the validation suite use weak keys and, therefore, the implementation needs to be able to accept them. How should we test this?
	TDES.3 Why do the TDES Known Answer Tests (KATs) use weak keys?

	TDES.4 What fundamental modes of operation use the forward cipher function?
	DSA.1 If a vendor is having problems getting one of the DSA functions to work properly, where can a known set of values be obtained to help in the testing?
	DSA.2 In the X186 RNG, does an implementation have to support the optional seed XSEED?
	DSA.3 What random number generators can implementations of FIPS186-3 DSA use?

	7 SHA FAQ
	SHA.1 A vendor wants to test SHA (byte only). The vendor’s implementation restricts the size of the data string that is hashed, i.e., For SHA-1, data length is less than or equal to 256 bytes. How is this implementation validated?

	8 RNG FAQ
	RNG.1 When generating RNG test vectors for the General Purpose RNG, both the Xorg and Korg generators were selected. Values for Korg were not generated for General Purpose RNG. Why?
	RNG.2 A vendor implementing the algorithm in Appendix 3.1 eliminated step 3d which calculates a new XKEY. Instead, a new random XKEY was created. Is this acceptable?

	9 RSA FAQ
	RSA.1 If a vendor is having problems getting one of the RSA functions to work properly, where can a known set of values be obtained to help in the testing?
	RSA.2 What should be done in the situation where a vendor supports a different salt length and value for each SHA algorithm supported in RSASSA-PSS?
	RSA.3 When generating RSASSA-PSS in the Signature Verification screen for the SHA-512 implementation with a salt length of 64 bytes and all mod sizes, CAVS returned a "Fatal Error" message and indicated that the vectors were generated but with errors. Why did this happen?
	RSA.4 In the SigVerX.fax files, what does the number in parentheses after the result = F field mean?
	RSA.5 Is it acceptable to generate primes using the procedure detailed in Appendix E.4 of the ANSI X9.31 standard instead of that described in section 4.1.2.1 of the same standard? Moreover, if this is acceptable, what sort of primality testing needs to be done? Appendix E.4 is not very clear in this respect.
	RSA.6 An IUT’s RSA Key Generation function does not output d, the private signature exponent. This is valid according to ANSI X9.31 Section 4.1 where the outputs from key generation are listed. How do I test this IUT?
	RSA.7 When implementing the RSA key generation algorithm according to ANSI X9.31, Digital Signatures Using Reversible Public Key Cryptography, is it acceptable to generate primes using the procedure detailed in Appendix E.4 of the ANSI X9.31 standard instead of the procedure described in section 4.1.2.1 of the same standard. Moreover, if this is acceptable, what sort of primality testing needs to be done? Appendix E.4 is not very clear in this respect.
	RSA.8 From RSA.7 above, it seems that the procedure outlined in Appendix E.4 simply provides a fast method of generating the values for p1, p2, q1, and q2 from their respective X values. As a result, the process of generating p and q from these values must follow Section 4.1.2.1. Can you confirm this? Also, would the RSA key generation algorithm testing be affected if a vendor chooses to use Appendix E.4 to generate p1, p2, q1 and q2? Appendix E.4 mentions that the sieving method will remove substantial composite numbers as well as small primes; however, section 4.1.2.1 mentions that p1, p2, q1, and q2 are the FIRST primes greater than their respective X values. Since using the sieving method results in some of the smaller primes being sieved out, is it possible that the values of p1, p2, q1, and q2 obtained using the sieving method of E.4 will be different from those values expected by using section 4.1.2.1? If the values for p1, p2, q1 or q2 are different, the resulting p and/or q will be different from what is expected by the algorithm test tool. Will using E.4 affect the key generation algorithm testing?
	RSA.9 What random number generators can implementations of FIPS186-3 RSA use?

	Any random number generator (RNG) or random bit generator (RBG) that is approved for use in FIPS 140-validated modules may be used, subject to the transition schedule specified in SP 800-131A. Specific references to SP 800-90 should not be considered as a requirement to use a generator specified in SP 800-90 until such time as the use of the other generators is no longer allowed.10 HMAC FAQ
	HMAC.1 If an implementation supports other MAC sizes than those supported by the CAVS tool, how are these MACs tested?
	HMAC.2 An implementation supports all 3 ranges of values (K<B, K>B, and K=B). Does this mean that 3 separate tests should be run for the same implementation or will the CAVS tool allow us to choose all 3 ranges?
	HMAC.3 An implementation only supports one K length size < B. How should this be indicated since the CAVS tool requires the entry of two values of K < B to be tested?
	HMAC.4 If an HMAC implementation uses a SHA implementation that cannot be tested separately, does the SHA algorithm have to be tested? Why?

	11 CCM FAQ
	CCM.1 A hardware implementation of AES CCM has been developed to be used for IEEE 802.11i communications. The CCM implementation cannot perform the validation tests because of restrictions as specified in 802.11i. Can the CCM implementation be validated?
	CCM.3 Is it possible for an implementation to implement encrypt only or decrypt and verify only? Is it possible to then test only that one function?
	CCM.4 When testing a CCM implementation, the CAVS screen only allows the associated data length and payload lengths to be between 0 and 32 or 2^16. Why does the CAVP put this restriction on what can be tested?

	12 ECDSA FAQ
	ECDSA.2 In the PKVVer.fax files, what does the number in parentheses after the result =F field mean?
	ECDSA.3 Can an ECDSA implementation be validated if it does not use any NIST-recommended curves?
	ECDSA.4 Can an ECDSA implementation that uses SHA2 be tested?
	ECDSA.5 What random number generators can implementations of FIPS186-3 ECDSA use?

	13 CMAC FAQ
	CMAC.1 What should be done in the situation where an implementation only supports one message length for either case where the message length is divisible by the Blocksize or the message length is not divisible by the Blocksize?
	CMAC.2 Can an implementation that only supports message lengths divisible by the block size be tested? How about implementations that only support partial block sizes? How do I indicate this in the testing? How is it recorded on the AES and TDES Validation listing?

	14 KAS FAQ
	KAS.1 For KAS implementations with no key confirmation, is the vendor expected to actually implement and separately test a supporting MAC (e.g., HMAC-SHA-512 for KAS ECC Ephemeral Unified parameter set EE), or would default MAC values of some sort be used only for the purposes of KAS validation testing?
	KAS.2 If no MAC is actually required to be implemented in cases where key confirmation is not supported, and the MAC is only being specified in the tool for the purposes of KAS testing, which MAC should be selected for parameter sets with multiple options? Are there default values that should be entered for whichever MAC is selected since this is a mandatory field?

	15 GCM FAQ
	16 DRBG FAQ

