
SOFTWARE VERIFICATION AND VALIDATION
Evaluation of Fault Detection Effectiveness for Combinatorial and Exhaustive Selection of

Discretized Test Inputs

Carmelo Montanez, D. Richard Kuhn, Mary Brady, Richard M. Rivello, Jenise Reyes, and Michael K.
Powers, National Institute of Standards and Technology

Testing components of Web browsers and other graphical interface software can be extremely

expensive because of the need for human review of screen appearance and interactive behavior.

Combinatorial testing has been advocated as a method that provides strong fault detection with a small

number of tests, although some authors have disputed its effectiveness. This article compares the

effectiveness of combinatorial test methods with exhaustive testing of discretized inputs for the document

object model events standard. More than 36,000 tests – all possible combinations of equivalence class

values – were reduced by more than a factor of 20 with an equivalent level of fault detection, suggesting

that combinatorial testing is a cost-effective method of assurance for Web-based interactive software.

Key words: combinatorial testing, conformance testing, document object model, interoperability

testing, World Wide Web standards

INTRODUCTION

 Test input selection is a critical task in software testing, because it is generally impossible to

test all possible combinations of inputs, particularly for continuous-valued variables.

Representative discrete values for input variables must be chosen using some form of category

partitioning (Ammann and Offutt 2008). After inputs are discretized, there still remains the task

of selecting inputs for tests to be applied to the system. Possibilities for input selection include ad

hoc, random, each-choice, pairwise, and generalized t-way testing. For ad hoc testing, judgment

may be used to determine test inputs that the tester believes are most critical or likely to detect

errors. Random testing requires sampling input values according to some distribution and

sampling level. The other strategies listed previously can be defined for a set of N input

variables, with v1, v2, …, vN values per variable, by specifying coverage of t-way combinations in

the full test set as follows: each-choice means that t=1 and every variable value is included in

some test; for pairwise, every two-way combination is covered, and t-way testing for t > 2 means

that every t-way combination is covered at least once.

Combinatorial or t-way testing is among the test approaches that appear to offer good

fault detection with a small test set (Grindal, Offutt, and Andler 2005), including its simplest

form, pairwise (t=2) testing (Lei and Tai 1998; Tai and Lei 2002). Because system failures often

result from the interaction of conditions that might be innocuous individually, this method can be

effective for domains with many interacting parameters, such as interoperability testing.

Consider a large example: a manufacturing automation system that has 20 controls, each with 10

possible settings, has a total of 10
20

 combinations. Surprisingly, one can check all pairs of these

values with less than 200 tests, if the tests are carefully constructed. Pairwise testing has become

popular because it can check for problem-causing interactions with relatively few tests. Several

investigations suggest individual values or a pair of parameters are responsible for roughly 70

percent to more than 97 percent of faults (Kuhn and Reilly 2002; Kuhn, Wallace, and Gallo

2004).

Empirical results suggest that extended forms of combinatorial testing, covering

combinations beyond simple pairwise, can be as effective as testing all possible combinations

(Kuhn, Wallace, and Gallo 2004; Bell 2006), because if all faults are triggered by interactions of

one to six variables, then testing all six-way combinations can provide a high degree of

confidence. Some authors, however, argue that combinatorial or t-way testing may be no more

effective than other approaches (Bach and Schroeder 2004; Jorgensen 2008). In this article, the

authors compare the fault detection effectiveness of t-way testing with full exhaustive testing of

discretized inputs for implementations of the document object model (DOM) events standard.

Because testing DOM events requires substantial human involvement, testing can be extremely

time consuming and expensive. Thus, there is a need for methods to reduce the number of test

inputs while retaining a high level of fault detection. As described in the next section, the DOM

test suite had already been applied with exhaustive (with respect to discretized values) tests

against a variety of commercial DOM implementations, so it provided a valuable opportunity to

evaluate the hypothesis that combinatorial testing could provide an equal or better level of fault

detection as exhaustive testing, using fewer tests. If results showed that a much smaller test suite

could achieve the same level of fault detection as exhaustive tests, then conformance testing

could be done at a much lower cost in staff time and resources.

THE DOCUMENT OBJECT MODEL

 The DOM (W3C 2011) is a standardized method for representing and interacting with

components of XML, HTML, and XHTML documents. DOM lets programs and scripts access

and update the content, structure, and style of documents dynamically, making it easier to

produce Web applications in which pages are accessed nonsequentially. DOM is standardized by

the World Wide Web Consortium (W3C).

 Since its origination in 1996 as a convention for accessing and modifying parts of

Javascript Web pages (known now as DOM Level 0), DOM has evolved as a series of standards

offering progressively greater capabilities. Level 1 introduced a model that allowed changing any

part of the HTML document, and Level 2 added support for XML namespaces, load and save,

cascading style sheets (CSS), traversing the document, and working with ranges of content.

Level 3 brings additional features, including keyboard event handling.

DOM Level 3 Events (W3C 2009) is a W3C standard developed by the Web Applications

Working group. Implemented in browsers, it is a generic platform and language neutral event

system that allows registration of event handlers, describes event flow through a tree structure,

and provides basic contextual information for each event. This work builds on the previous

DOM Level 2 events specifications. There are two basic goals in the design of DOM Level 3

events. The first goal is to design an event system that allows registration of event listeners and

describes an event flow through a tree structure. The second goal is to provide a common subset

of the current event system used on DOM Level 3 events browsers.

DOM browser implementations typically contain tens of thousands of source lines of code.

To help ensure successful implementations of this complex standard, NIST developed the DOM

conformance test suites, which include tests for many DOM components. Early DOM tests were

hand-coded in a test language, then processed to produce ECMAScript and Java. In the current

version of the test suites, tests are specified in an XML grammar, allowing easy mapping from

specification to a variety of language bindings. Because the grammar is generated automatically

from the DOM specs, tests can be constructed quickly and correctly. Output of the test

generation process includes the following components, which implementers can use in testing

their product for DOM interoperability:

• Tests in the XML representation language

• XSLT stylesheets necessary to generate the Java and ECMAScript bindings

• Generated executable code

To reduce the time needed to generate the large number of tests required for checking

standards conformance, NIST developed a test accelerator tool (NIST 2011) that was used to

generate tests for 35 (out of 36) DOM events. The specification defines each event as an

interface definition language (IDL), which in turn defines a number of functions for each event.

A typical function can have anywhere from one to 15 parameters. Since the IDL definition could

be accessed directly from the specs website, the Web address was given as input to the Java

application. This way the application could read and traverse them extracting just the information

of interest. In this case, the function names and their respective parameters, argument names, and

so on, became part of the XML file that was used to feed the test accelerator to automatically

create the DOM Level 3 tests.

Category partitioning was used to select representative values for non-Boolean

parameters. The initial test set was exhaustive across the equivalence classes, producing 36,626

tests that exercised all possible combinations of representative parameter values. Three different

implementations were tested. The implementations successfully executed about 48.49 percent of

the test cases and generated a total of 10 distinct messages that indicated a test could not be run

because of a problem such as a nonsupported feature. The DOM events and number of tests for

each are shown in Table 1. This set of exhaustive tests detected a total of 72 failures. Test suites

of this size are not uncommon for significant real-world software. For example, the W3C test

suites for XML include 40,000 for XML Schema, 17,487 for XML Query, and 3,366 for Core, a

total of more than 60,000 tests for the XML based standards alone. A survey by the publisher

O’Reilly found that 11 percent of test practitioners were using test suites exceeding 10,000 tests

(O’Reilly 2008). Thus, the results reported in this article may have broad application in practical

software and systems testing.

COMBINATORIAL TESTING OF DOM EVENTS

To investigate the effectiveness of combinatorial testing, covering arrays of two-way

through six-way tests were produced. A covering array defines a set of tests that cover all t-way

combinations in a highly compact form. A variety of high-quality free tools are available for

producing covering arrays, including Microsoft PICT and ACTS, developed by the National

Institute of Standards and Technology and the University of Texas Arlington. Using t-way

combinations can significantly reduce the number of tests as compared with exhaustive. For

example, the mousedown event (see Figure 1) requires 4352 tests if all combinations are to be

realized. Combinatorial testing reduces the set to 86 tests for four-way coverage. An excerpt of

these tests is shown in Figure 1 (function arguments are: 'type', bubbles,

cancelable, windowObject, detail, screenX, screenY, clientX,

clientY, ctrlKey, altKey, shiftKey, metaKey, button ,

relatedTarget). Note that the covering array tool is independent of the test accelerator tool

described in the previous section, and can be used without the test accelerator. A variety of

studies have investigated the effectiveness of combinatorial testing (Cohen, Snyder, Rothermel

2004; duBousquet et al. 2004; Kuhn et al. 2009), although none prior to this have compared this

method with exhaustive testing.

Table 2 details the number of parameters and number of tests produced for each of the 35

DOM events, for t = 2 through 6. That is, the tests covered all two-way through six-way

combinations of values. Note that for events with few parameters, the number of tests is the same

for the original test suite (see Table 1) and combinatorial for various levels of t. For example, 12

tests were produced for Abort in the original and also for combinatorial testing at t = 3 to 6. This

is because producing all n-way combinations for n variables is simply all possible combinations

of these n variables, and Abort has three variables. This situation is not unusual when testing

configurations with a limited number of values for each parameter. For nine of the 35 events

(two click events, six mouse events, and wheel), all combinations are not covered even with six-

way tests. For these events, combinatorial testing provides a significant gain in efficiency (see

Table 2).

1 "mousedown" true true window 5 5 5 5 5 true true true true 5 null
 2 "mousedown" true true window 5 5 5 5 5 true tru e true true 10 null
 3 "mousedown" true true window 5 5 5 5 5 true tru e true false 5 null
 4 "mousedown" true true window 5 5 5 5 5 true tru e false true 5 null
 5 "mousedown" true true window 5 5 5 5 5 true tru e false true 5 null
 6 "mousedown" true true window 5 5 5 5 5 true tru e false true 10 null
 ...
 83 "mousedown" true true window 5 5 5 -5 5 false t rue true false 5 null
 84 "mousedown" true true window 5 5 5 -5 5 false t rue true false 10 null
 86 "mousedown" true true window 5 5 5 -5 5 false t rue false true 5 null
 86 "mousedown" true true window 5 5 5 -5 5 false t rue false true 10 null

Figure 1 Excerpt of 86 combinatorial tests produced for “mousedown” event.

TEST RESULTS

Table 3 shows the faults detected for each event. All conditions flagged by the exhaustive

test suite were also detected by three of the combinatorial testing scenarios (four-, five-, and six-

way testing), which means that the implementation faults were triggered by four-way interactions

or less. Pairwise testing would have been inadequate for the DOM implementations, because

two-way and three-way tests detected only 37.5 percent of the faults. As can be seen in Table 3,

the exhaustive (all possible combinations) and the four-way to six-way combinatorial tests were

equally successful in fault detection, indicating that exhaustive testing added no benefit beyond

four-way tests. These findings are consistent with the studies described earlier in this article,

which showed that software faults tend to be triggered by interactions of no more than six

variables, for the applications studied so far. Using combinatorial methods, one is able to take

advantage of this finding and limit the size of conformance test suites, greatly reducing costs.

DOM testing was somewhat unusual in that exhaustive testing was possible at all. For most

software, too many possible input combinations exist to cover even a tiny fraction of the

exhaustive set, so combinatorial methods may be of greater benefit for these.

The exhaustive approach used a total of 36,626 tests (see Table 1) for all combinations of

events, but after applying combinatorial testing, the set of tests is dramatically reduced, as shown

in Table 3. The number of tests generated in combinatorial covering arrays is proportional to vt

log n, for t-way interactions where each of n parameters has v values. In cases where most

parameters have a small number of discrete values, such as DOM events, this is less of a

limitation, but it was required for parameters such as screen X and Y values, and must be

considered for most software testing.

Table 3 shows results for two-way through six-way testing. An interesting observation

that can be gathered by examining the data is that although the number of tests that successfully

execute varies from t-way combination to t-way combination, the number of failures remains a

constant at t = 2 and 3, and at t = 4 to 6. The last column shows the tests that did not execute to

completion, in almost all cases due to nonsupport of the feature under test.

DOM results were consistent with previous findings that testing a small number of

interactions (in this case four-way) was sufficient to detect all errors. Comparing results of the

DOM testing with previously reported data on t-way interaction failures, one can see that some

DOM failures were more difficult to detect, in the sense that a smaller percentage of the total

were found by three-way tests than for the other application domains, where testing through

three-way combinations typically detected more than 80 percent of faults (Kuhn, Wallace, and

Gallo 2004). The unusual distribution of fault detection for DOM tests may result from the large

number of parameters for which exhaustive coverage was reached (so the number of tests

remained constant after a certain point). There are thus two sets of events: a large set with few

possible values that could be covered exhaustively with two-way or three-way tests, and a

smaller set with a larger input space (from 1024 to 4352). In particular, nine events (click,

dblClick, mouse events, and wheel) all have the same input space size, with number of tests

increasing at the same rate for each, while for the rest, exhaustive coverage is reached at either

t=2 or t=3. The ability to compare results of previously conducted exhaustive testing with

combinatorial testing provides an added measure of confidence in the applicability of these

methods to this type of interoperability testing.

CONCLUSIONS

The DOM events testing suggests that combinatorial testing can significantly reduce the

cost and time required for conformance testing for Web standards with characteristics similar to

DOM. What is the appropriate interaction strength to use in this type of testing? Intuitively, it

seems that if no additional faults are detected by t-way tests, then it may be reasonable to

conduct additional testing only for t+1 interactions, but no greater if no additional faults are

found at t+1. In empirical studies of software failures, the number of faults detected at t > 2

decreased monotonically with t, and the DOM testing results are consistent with this earlier

finding. Following this strategy for the DOM testing would result in running two-way tests

through five-way, then stopping because no additional faults were detected beyond the four-way

testing. Alternatively, given the apparent insufficient fault detection of pairwise testing, testers

may prefer to standardize on a higher level of interaction coverage, say three-way or four-way.

This option may be particularly attractive for an organization that produces a series of similar

products and has enough experience to identify the most cost-effective level of testing. Even the

relatively strong four-way testing in this example was only 5 percent of the original test set size.

What is the best strategy for applying combinatorial methods to interoperability testing?

This question can be investigated in future applications of combinatorial methods. Results in this

study have been sufficiently promising for combinatorial methods to be applied in testing other

interoperability standards.

REFERENCES

Ammann, P., and J. Offutt. 2008. Introduction to software testing. New York: Cambridge

University Press.

Bach, J., and P. Shroeder. 2004. Pairwise testing - A best practice that isn’t. In Proceedings of

22nd Pacific Northwest Software Quality Conference, 180-196

Bell, K. Z. 2006. Optimizing effectiveness and efficiency of software testing: A hybrid approach.

PhD diss., North Carolina State University.

Cohen, D. M., S. R. Dalal, J. Parelius, and G. C. Patton. 1996. The combinatorial approach to

automatic test generation. IEEE Software 13, no. 5 (September):83-88.

Cohen, M. B., J. Snyder, and G. Rothermel. 2004. Testing across configurations: Implications for

combinatorial testing. In Proceedings of the Workshop on Advances in Model-Based Software

Testing, IEEE Press, 1–9.

du Bousquet, L., Y. Ledru, O. Maury, C. Oriat, and J.-L. Lanet. 2004. A case study in JML-

based software validation. In Proceedings of 19th International IEEE Conference on Automated

Software Engineering, 294-297, Linz.

Grindal, M., J. Offutt, and S. F. Andler. 2005. Combination testing strategies: A survey. Journal

of Software Testing, Verification and Reliability 15, no. 3:167-199.

Jorgensen, P. C. 2008. Software testing: A craftsman’s approach, third edition, Auerbach

Publications.

Kuhn, D. R., and M. J. Reilly. 2002. An investigation of the applicability of design of

experiments to software testing. 27th NASA/IEEE Software Engineering Workshop, IEEE

Computer Society, 91-95, 4-6 December.

Kuhn, D. R., D. Wallace, and A. Gallo. 2004. Software fault interactions and implications for

software testing. IEEE Transactions on Software Engineering 30, no. 6:418-421.

Kuhn, R., R. Kacker, Y. Lei, and J. Hunter. 2009. Combinatorial software testing. IEEE

Computer 42, no. 8 (August).

Lei, Y., and K. C. Tai. 1998. In-parameter order: A test generation strategy for pairwise testing.

In Proceedings of the Third IEEE High Assurance Systems Engineering Symposium, 254-261,

IEEE, November.

National Institute of Standards and Technology (NIST). 2011. Test accelerator.

http://www.itl.nist.gov/div897/docs/testacc.html

O’Reilly. 2008. Survey: About your test suites. Available at:

http://www.perlmonks.org/?displaytype=print;node_id=701817 .

Tai, K. C., and Y. Lei. 2002. A test generation strategy for pairwise testing. IEEE Transactions

on Software Engineering 28, no. 1 (January):109-111.

 W3C. 2009. World Wide Web Consortium. 2009. DOM Level 3 Events Specification. Available

at: http://www.w3.org/TR/DOM-Level-3-Events/ .

W3C. 2011. World Wide Web Consortium. Document object model. Available at:

http://www.w3.org/DOM/ .

BIOGRAPHIES

Carmelo Montanez is a computer scientist at the National Institute of Standards and Technology
(NIST) in Gaithersburg, MD. His main interest is the Conformance Testing area, specifically
generating tests automatically. Carmelo has been involved with many XML technologies
including DOM, XSL Formatting Objects, XSLT, and XML Query. Carmelo is currently
working on developing a schema for Computer Forensics. He received a BS in Mathematics and
Computer Sciences and an AA in Chemistry from the University of Puerto Rico.

Rick Kuhn is a computer scientist in the Computer Security Division of the National Institute of
Standards and Technology. He has authored more than 100 publications on information security,
empirical studies of software failure, and software assurance, currently focusing on
combinatorial testing. He co-developed the role based access control model (RBAC) used
throughout industry and led the effort that established RBAC as an ANSI standard. He received
an MS in computer science from the University of Maryland College Park, and a BA and MBA
from the College of William & Mary.

Mary Brady is the Manager of the Information Systems Group of the National Institute of
Standards and Technology. Over the last decade, she has led multiple XML-based testing efforts,
leading to tens of thousands of conformance tests that resulted from increasing levels of
automatic test generation. She earned a MS in Computer Science from George Washington
University, and a BS in Computer Science and Mathematics from Mary Washington College.

Richard Rivello is a computer scientist in the Software and Systems Division of the National
Institute of Standards and Technology (NIST). One of the Software and Systems Division’s
missions is to advance the state of the art of software testing by developing scientifically

rigorous, breakthrough techniques to automatically generate tests that are cheaper to develop and
more comprehensive. Mr. Rivello has a wide range of experience in testing various W3
standards such as XML, Document Object Model (DOM) Levels 1 and 2 Events. Mr. Rivello
has a Bachelor of Science degree in Computer Science from Youngstown State University
(1984).

Jenise Reyes-Rodriguez is a computer scientist at the National Institute of Standard and
Technology in Gaithersburg, MD. Her previous work was in the area of Conformance Testing,
which included the DOM Level 3, XQuery and Mobile Web standards from the W3C. She is
currently working in Computer Forensics. She has a BS in Mathematics and Computer Sciences
from the University of Puerto Rico.

Michael Kishi Powers is a junior at the University of Maryland, College Park. He is majoring in
Electrical Engineering and is minoring in Astronomy. He has been an intern at the National
Institute of Standards and Technology since 2008.

Event name Number of
parameters

 Number of
 tests

Abort 3 12
Blur 5 24
Click 15 4352
Change 3 12
dblClick 15 4352
DOMActivate 5 24
DOMAttrModified 8 16
DOMCharacterDataModified 8 64
DOMElementNameChanged 6 8
DOMFocusIn 5 24
DOMFocusOut 5 24
DOMNodeInserted 8 128
DOMNodeInsertedIntoDocument 8 128
DOMNodeRemoved 8 128
DOMNodeRemovedFromDocument 8 128
DOMSubTreeModified 8 64
Error 3 12
Focus 5 24
KeyDown 1 17
KeyUp 1 17
Load 3 24
MouseDown 15 4352
MouseMove 15 4352
MouseOut 15 4352
MouseOver 15 4352
MouseUp 15 4352
MouseWheel 14 1024
Reset 3 12
Resize 5 48
Scroll 5 48
Select 3 12
Submit 3 12
TextInput 5 8
Unload 3 24
Wheel 15 4096
Total Tests 36626

Table 1 DOM Level 3 events tests – exhaustive

Event name
Num
para

m

2-way
tests

3-way
tests

4-way
tests

5-way
tests

6-way
tests

Abort 3 8 12 12 12 12
Blur 5 10 16 24 24 24
Click 15 18 40 86 188 353
Change 3 8 12

2
12 12 12

dblClick 15 18 40 86 188 353
DOMActivate 5 10

110
 16 24 24 24

DOMAttrModified 8 8
88888

 16 16 16 16
DOMCharacterDataModified 8 32

33323232
 62
2

64 64 64
DOMElementNameChanged 6 8 8 8 8 8
DOMFocusIn 5 10 16 24 24 24
DOMFocusOut 5 10 16 24 24 24
DOMNodeInserted 8 64 128 128 128 128
DOMNodeInsertedIntoDocument 8 64

 128 128 128 128

DOMNodeRemoved 8 64 128 128 128 128
DOMNodeRemovedFromDocume
nt

8 64
128

 128 128 128 128
DOMSubTreeModified 8 32 64 64 64 64
Error 3 8 12 12 12 12
Focus 5 10 16 24 24 24
KeyDown 1 9 17 17 17 17
KeyUp 1 9 17 17 17 17
Load 3 16 24 24 24 24
MouseDown 15 18 40 86 188 353
MouseMove 15 18

18 18
 40 86 188 353

MouseOut 15 18 40 86 188 353
MouseOver 15 18 40 86 188 353
MouseUp 15 18 40 86 188 353
MouseWheel 14 16 40 82 170 308

4096 Reset 3 8 12 12 12 12
Resize 5 20 32 48 48 48
Scroll 5 20 32 48 48 48
Select 3 8 12 12 12 12
Submit 3 8 12 12 12 12
TextInput 5 8 8 8 8 8
Unload 3 16 12 24 24 24
Wheel 15 20 44 92 214 406
Total Tests 702 1342 1818 2742 4227

Table 2 DOM 3 level tests - combinatorial

t-way combinations Number of
tests

Pct of
exhaustive Passed Failed Not

executed
2 Way 702 1.92% 202 27 473
3 Way 1342 3.66% 786 27 529
4 Way 1818 4.96% 437 72 1309
5 Way 2742 7.49% 908 72 1762
6 Way 4227 11.54% 1803 72 2352

 Exhaustive 36,626 29,218 72 7336
Table 3 Results for all t-way combinations

