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Testing components of Web browsers and other graphical interface software can be extremely 

expensive because of the need for human review of screen appearance and interactive behavior.  

Combinatorial testing has been advocated as a method that provides strong fault detection with a small 

number of tests, although some authors have disputed its effectiveness. This article compares the 

effectiveness of combinatorial test methods with exhaustive testing of discretized inputs for the document 

object model events standard. More than 36,000 tests – all possible combinations of equivalence class 

values – were reduced by more than a factor of 20 with an equivalent level of fault detection, suggesting 

that combinatorial testing is a cost-effective method of assurance for Web-based interactive software.    
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INTRODUCTION 

        Test input selection is a critical task in software testing, because it is generally impossible to 

test all possible combinations of inputs, particularly for continuous-valued variables. 

Representative discrete values for input variables must be chosen using some form of category 

partitioning (Ammann and Offutt 2008). After inputs are discretized, there still remains the task 

of selecting inputs for tests to be applied to the system. Possibilities for input selection include ad 

hoc, random, each-choice, pairwise, and generalized t-way testing. For ad hoc testing, judgment 

may be used to determine test inputs that the tester believes are most critical or likely to detect 



errors. Random testing requires sampling input values according to some distribution and 

sampling level. The other strategies listed previously can be defined for a set of N input 

variables, with v1, v2, …, vN values per variable, by specifying coverage of t-way combinations in 

the full test set as follows: each-choice means that t=1 and every variable value is included in 

some test; for pairwise, every two-way combination is covered, and t-way testing for t > 2 means 

that every t-way combination is covered at least once.  

Combinatorial or t-way testing is among the test approaches that appear to offer good 

fault detection with a small test set (Grindal, Offutt, and Andler 2005), including its simplest 

form, pairwise (t=2) testing (Lei and Tai 1998; Tai and Lei 2002). Because system failures often 

result from the interaction of conditions that might be innocuous individually, this method can be 

effective for domains with many interacting parameters, such as interoperability testing. 

Consider a large example: a manufacturing automation system that has 20 controls, each with 10 

possible settings, has a total of 10
20

 combinations. Surprisingly, one can check all pairs of these 

values with less than 200 tests, if the tests are carefully constructed. Pairwise testing has become 

popular because it can check for problem-causing interactions with relatively few tests. Several 

investigations suggest individual values or a pair of parameters are responsible for roughly 70 

percent to more than 97 percent of faults (Kuhn and Reilly 2002; Kuhn, Wallace, and Gallo 

2004).  

Empirical results suggest that extended forms of combinatorial testing, covering 

combinations beyond simple pairwise, can be as effective as testing all possible combinations 

(Kuhn, Wallace, and Gallo 2004; Bell 2006), because if all faults are triggered by interactions of 

one to six variables, then testing all six-way combinations can provide a high degree of 

confidence. Some authors, however, argue that combinatorial or t-way testing may be no more 



effective than other approaches (Bach and Schroeder 2004; Jorgensen 2008). In this article, the 

authors compare the fault detection effectiveness of t-way testing with full exhaustive testing of 

discretized inputs for implementations of the document object model (DOM) events standard. 

Because testing DOM events requires substantial human involvement, testing can be extremely 

time consuming and expensive. Thus, there is a need for methods to reduce the number of test 

inputs while retaining a high level of fault detection. As described in the next section, the DOM 

test suite had already been applied with exhaustive (with respect to discretized values) tests 

against a variety of commercial DOM implementations, so it provided a valuable opportunity to 

evaluate the hypothesis that combinatorial testing could provide an equal or better level of fault 

detection as exhaustive testing, using fewer tests. If results showed that a much smaller test suite 

could achieve the same level of fault detection as exhaustive tests, then conformance testing 

could be done at a much lower cost in staff time and resources.    

  

THE DOCUMENT OBJECT MODEL 

  The DOM (W3C 2011) is a standardized method for representing and interacting with 

components of XML, HTML, and XHTML documents. DOM lets programs and scripts access 

and update the content, structure, and style of documents dynamically, making it easier to 

produce Web applications in which pages are accessed nonsequentially. DOM is standardized by 

the World Wide Web Consortium (W3C).   

 Since its origination in 1996 as a convention for accessing and modifying parts of 

Javascript Web pages (known now as DOM Level 0), DOM has evolved as a series of standards 

offering progressively greater capabilities. Level 1 introduced a model that allowed changing any 



part of the HTML document, and Level 2 added support for XML namespaces, load and save, 

cascading style sheets (CSS), traversing the document, and working with ranges of content.  

Level 3 brings additional features, including keyboard event handling. 

DOM Level 3 Events (W3C 2009) is a W3C standard developed by the Web Applications 

Working group. Implemented in browsers, it is a generic platform and language neutral event 

system that allows registration of event handlers, describes event flow through a tree structure, 

and provides basic contextual information for each event. This work builds on the previous 

DOM Level 2 events specifications. There are two basic goals in the design of DOM Level 3 

events. The first goal is to design an event system that allows registration of event listeners and 

describes an event flow through a tree structure. The second goal is to provide a common subset 

of the current event system used on DOM Level 3 events browsers.   

DOM browser implementations typically contain tens of thousands of source lines of code.  

To help ensure successful implementations of this complex standard, NIST developed the DOM 

conformance test suites, which include tests for many DOM components. Early DOM tests were 

hand-coded in a test language, then processed to produce ECMAScript and Java. In the current 

version of the test suites, tests are specified in an XML grammar, allowing easy mapping from 

specification to a variety of language bindings. Because the grammar is generated automatically 

from the DOM specs, tests can be constructed quickly and correctly. Output of the test 

generation process includes the following components, which implementers can use in testing 

their product for DOM interoperability: 

• Tests in the XML representation language 

• XSLT stylesheets necessary to generate the Java and ECMAScript bindings 



• Generated executable code 

To reduce the time needed to generate the large number of tests required for checking 

standards conformance, NIST developed a test accelerator tool (NIST 2011) that was used to 

generate tests for 35 (out of 36) DOM events. The specification defines each event as an 

interface definition language (IDL), which in turn defines a number of functions for each event.  

A typical function can have anywhere from one to 15 parameters. Since the IDL definition could 

be accessed directly from the specs website, the Web address was given as input to the Java 

application. This way the application could read and traverse them extracting just the information 

of interest. In this case, the function names and their respective parameters, argument names, and 

so on, became part of the XML file that was used to feed the test accelerator to automatically 

create the DOM Level 3 tests.  

Category partitioning was used to select representative values for non-Boolean 

parameters. The initial test set was exhaustive across the equivalence classes, producing 36,626 

tests that exercised all possible combinations of representative parameter values. Three different 

implementations were tested. The implementations successfully executed about 48.49 percent of 

the test cases and generated a total of 10 distinct messages that indicated a test could not be run 

because of a problem such as a nonsupported feature. The DOM events and number of tests for 

each are shown in Table 1. This set of exhaustive tests detected a total of 72 failures. Test suites 

of this size are not uncommon for significant real-world software. For example, the W3C test 

suites for XML include 40,000 for XML Schema, 17,487 for XML Query, and 3,366 for Core, a 

total of more than 60,000 tests for the XML based standards alone. A survey by the publisher 

O’Reilly found that 11 percent of test practitioners were using test suites exceeding 10,000 tests 



(O’Reilly 2008). Thus, the results reported in this article may have broad application in practical 

software and systems testing.  

 

COMBINATORIAL TESTING OF DOM EVENTS  

To investigate the effectiveness of combinatorial testing, covering arrays of two-way 

through six-way tests were produced.  A covering array defines a set of tests that cover all t-way 

combinations in a highly compact form. A variety of high-quality free tools are available for 

producing covering arrays, including Microsoft PICT and ACTS, developed by the National 

Institute of Standards and Technology and the University of Texas Arlington. Using t-way 

combinations can significantly reduce the number of tests as compared with exhaustive. For 

example, the mousedown event (see Figure 1) requires 4352 tests if all combinations are to be 

realized. Combinatorial testing reduces the set to 86 tests for four-way coverage. An excerpt of 

these tests is shown in Figure 1 (function arguments are: 'type', bubbles, 

cancelable, windowObject, detail, screenX, screenY,  clientX, 

clientY, ctrlKey, altKey, shiftKey, metaKey, button , 

relatedTarget).  Note that the covering array tool is independent of the test accelerator tool 

described in the previous section, and can be used without the test accelerator. A variety of 

studies have investigated the effectiveness of combinatorial testing (Cohen, Snyder, Rothermel 

2004; duBousquet et al. 2004; Kuhn et al. 2009), although none prior to this have compared this 

method with exhaustive testing.  

Table 2 details the number of parameters and number of tests produced for each of the 35 

DOM events, for t = 2 through 6. That is, the tests covered all two-way through six-way 

combinations of values. Note that for events with few parameters, the number of tests is the same 



for the original test suite (see Table 1) and combinatorial for various levels of t. For example, 12 

tests were produced for Abort in the original and also for combinatorial testing at t = 3 to 6. This 

is because producing all n-way combinations for n variables is simply all possible combinations 

of these n variables, and Abort has three variables. This situation is not unusual when testing 

configurations with a limited number of values for each parameter. For nine of the 35 events 

(two click events, six mouse events, and wheel), all combinations are not covered even with six-

way tests. For these events, combinatorial testing provides a significant gain in efficiency (see 

Table 2).  

1  "mousedown" true true window 5 5 5 5 5 true true  true true 5 null 
 2  "mousedown" true true window 5 5 5 5 5 true tru e true true 10 null 
 3  "mousedown" true true window 5 5 5 5 5 true tru e true false 5 null 
 4  "mousedown" true true window 5 5 5 5 5 true tru e false true 5 null 
 5  "mousedown" true true window 5 5 5 5 5 true tru e false true 5 null 
 6  "mousedown" true true window 5 5 5 5 5 true tru e false true 10 null 
  ... 
 83 "mousedown" true true window 5 5 5 -5 5 false t rue true false 5 null 
 84 "mousedown" true true window 5 5 5 -5 5 false t rue true false 10 null
 86 "mousedown" true true window 5 5 5 -5 5 false t rue false true 5 null 
 86 "mousedown" true true window 5 5 5 -5 5 false t rue false true 10 null 
 

Figure 1 Excerpt of 86 combinatorial tests produced for “mousedown” event. 

 

TEST RESULTS 

Table 3 shows the faults detected for each event. All conditions flagged by the exhaustive 

test suite were also detected by three of the combinatorial testing scenarios (four-, five-, and six-

way testing), which means that the implementation faults were triggered by four-way interactions 

or less. Pairwise testing would have been inadequate for the DOM implementations, because 

two-way and three-way tests detected only 37.5 percent of the faults. As can be seen in Table 3, 

the exhaustive (all possible combinations) and the four-way to six-way combinatorial tests were 

equally successful in fault detection, indicating that exhaustive testing added no benefit beyond 



four-way tests. These findings are consistent with the studies described earlier in this article, 

which showed that software faults tend to be triggered by interactions of no more than six 

variables, for the applications studied so far. Using combinatorial methods, one is able to take 

advantage of this finding and limit the size of conformance test suites, greatly reducing costs.  

DOM testing was somewhat unusual in that exhaustive testing was possible at all. For most 

software, too many possible input combinations exist to cover even a tiny fraction of the 

exhaustive set, so combinatorial methods may be of greater benefit for these.  

The exhaustive approach used a total of 36,626 tests (see Table 1) for all combinations of 

events, but after applying combinatorial testing, the set of tests is dramatically reduced, as shown 

in Table 3. The number of tests generated in combinatorial covering arrays is proportional to vt 

log n, for t-way interactions where each of n parameters has v values. In cases where most 

parameters have a small number of discrete values, such as DOM events, this is less of a 

limitation, but it was required for parameters such as screen X and Y values, and must be 

considered for most software testing.  

Table 3 shows results for two-way through six-way testing. An interesting observation 

that can be gathered by examining the data is that although the number of tests that successfully 

execute varies from t-way combination to t-way combination, the number of failures remains a 

constant at t = 2 and 3, and at t = 4 to 6. The last column shows the tests that did not execute to 

completion, in almost all cases due to nonsupport of the feature under test. 

DOM results were consistent with previous findings that testing a small number of 

interactions (in this case four-way) was sufficient to detect all errors. Comparing results of the 

DOM testing with previously reported data on t-way interaction failures, one can see that some 



DOM failures were more difficult to detect, in the sense that a smaller percentage of the total 

were found by three-way tests than for the other application domains, where testing through 

three-way combinations typically detected more than 80 percent of faults (Kuhn, Wallace, and 

Gallo 2004). The unusual distribution of fault detection for DOM tests may result from the large 

number of parameters for which exhaustive coverage was reached (so the number of tests 

remained constant after a certain point). There are thus two sets of events: a large set with few 

possible values that could be covered exhaustively with two-way or three-way tests, and a 

smaller set with a larger input space (from 1024 to 4352). In particular, nine events (click, 

dblClick, mouse events, and wheel) all have the same input space size, with number of tests 

increasing at the same rate for each, while for the rest, exhaustive coverage is reached at either 

t=2 or t=3. The ability to compare results of previously conducted exhaustive testing with 

combinatorial testing provides an added measure of confidence in the applicability of these 

methods to this type of interoperability testing.   

 

CONCLUSIONS 

The DOM events testing suggests that combinatorial testing can significantly reduce the 

cost and time required for conformance testing for Web standards with characteristics similar to 

DOM. What is the appropriate interaction strength to use in this type of testing? Intuitively, it 

seems that if no additional faults are detected by t-way tests, then it may be reasonable to 

conduct additional testing only for t+1 interactions, but no greater if no additional faults are 

found at t+1. In empirical studies of software failures, the number of faults detected at t > 2 

decreased monotonically with t, and the DOM testing results are consistent with this earlier 



finding. Following this strategy for the DOM testing would result in running two-way tests 

through five-way, then stopping because no additional faults were detected beyond the four-way 

testing. Alternatively, given the apparent insufficient fault detection of pairwise testing, testers 

may prefer to standardize on a higher level of interaction coverage, say three-way or four-way. 

This option may be particularly attractive for an organization that produces a series of similar 

products and has enough experience to identify the most cost-effective level of testing. Even the 

relatively strong four-way testing in this example was only 5 percent of the original test set size.   

What is the best strategy for applying combinatorial methods to interoperability testing?  

This question can be investigated in future applications of combinatorial methods. Results in this 

study have been sufficiently promising for combinatorial methods to be applied in testing other 

interoperability standards.  
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Event name Number of 
parameters 

    Number of 
     tests 

Abort   3 12 
Blur 5               24 
Click 15 4352 
Change 3 12 
dblClick 15 4352 
DOMActivate 5 24 
DOMAttrModified 8 16 
DOMCharacterDataModified 8 64 
DOMElementNameChanged 6 8 
DOMFocusIn 5 24 
DOMFocusOut 5 24 
DOMNodeInserted 8 128 
DOMNodeInsertedIntoDocument 8 128 
DOMNodeRemoved 8 128 
DOMNodeRemovedFromDocument        8 128 
DOMSubTreeModified 8 64 
Error 3 12 
Focus 5 24 
KeyDown 1 17 
KeyUp 1 17 
Load 3 24 
MouseDown 15 4352 
MouseMove 15 4352 
MouseOut 15 4352 
MouseOver 15 4352 
MouseUp 15 4352 
MouseWheel 14 1024 
Reset 3 12 
Resize 5 48 
Scroll 5 48 
Select 3 12 
Submit 3 12 
TextInput 5 8 
Unload 3 24 
Wheel 15 4096 
Total Tests  36626 

Table 1 DOM Level 3 events tests – exhaustive 

 

 



Event name 
Num 
para

m 

2-way 
tests 

3-way 
tests 

4-way 
tests 

5-way 
tests 

6-way 
tests 

Abort 3          8        12 12 12 12 
Blur 5        10        16 24 24 24 
Click 15        18        40 86 188 353 
Change 3          8         12 

2 
12 12 12 

dblClick 15        18        40 86 188 353 
DOMActivate 5        10  

110 
       16 24 24 24 

DOMAttrModified 8          8       
88888 

       16 16 16 16 
DOMCharacterDataModified 8        32         

33323232   
       62 
2 

64 64 64 
DOMElementNameChanged 6          8          8 8 8 8 
DOMFocusIn 5        10        16 24 24 24 
DOMFocusOut 5        10        16 24 24 24 
DOMNodeInserted 8        64      128 128 128 128 
DOMNodeInsertedIntoDocument 8        64 

  
     128 128 128 128 

DOMNodeRemoved 8        64      128 128 128 128 
DOMNodeRemovedFromDocume
nt 

8        64     
128 

     128 128 128 128 
DOMSubTreeModified 8        32         64 64 64 64 
Error 3          8         12 12 12 12 
Focus 5        10         16 24 24 24 
KeyDown 1          9        17 17 17 17 
KeyUp 1          9        17 17 17 17 
Load 3        16        24 24 24 24 
MouseDown 15        18        40 86 188 353 
MouseMove 15        18         

18        18 
       40 86 188 353 

MouseOut 15        18        40 86 188 353 
MouseOver 15        18        40 86 188 353 
MouseUp 15        18        40 86 188 353 
MouseWheel 14        16        40 82 170 308  

4096  Reset 3          8        12 12 12 12 
Resize 5        20        32 48 48 48 
Scroll 5        20        32 48 48 48 
Select 3          8        12 12 12 12 
Submit 3          8        12 12 12 12 
TextInput 5          8          8 8 8 8 
Unload 3        16        12 24 24 24 
Wheel 15        20        44 92 214 406 
Total Tests     702  1342 1818 2742 4227 

Table 2 DOM 3 level tests - combinatorial 

 

 



 

t-way combinations Number of 
tests 

Pct of  
exhaustive Passed Failed Not  

executed 
2 Way 702 1.92% 202 27 473 
3 Way 1342 3.66% 786 27 529 
4 Way 1818 4.96% 437 72 1309 
5 Way 2742 7.49% 908 72 1762 
6 Way 4227 11.54% 1803 72 2352 

      Exhaustive 36,626  29,218 72 7336 
Table 3 Results for all t-way combinations 

 


