SOFTWARE VERIFICATION AND VALIDATION
Evaluation of Fault Detection Effectiveness for Corinatorial and Exhaustive Selection of
Discretized Test Inputs

Carmelo Montanez, D. Richard Kuhn, Mary Brady, RichM. Rivello, Jenise Reyes, and Michael K.
Powers, National Institute of Standards and Teagyol

Testing components of Web browsers and other grapimiterface software can be extremely
expensive because of the need for human reviegvagfrsappearance and interactive behavior.
Combinatorial testing has been advocated as a noethat provides strong fault detection with a small
number of tests, although some authors have didptgeffectiveness. This article compares the
effectiveness of combinatorial test methods wittaestive testing of discretized inputs for the aoent
object model events standard. More than 36,008 tesil possible combinations of equivalence class
values — were reduced by more than a factor of i?d an equivalent level of fault detection, sugoest

that combinatorial testing is a cost-effective noeltlof assurance for Web-based interactive software.

Key words: combinatorial testing, conformance tegtidocument object model, interoperability

testing, World Wide Web standards

INTRODUCTION

Test input selection is a critical tasksoftware testing, because it is generally imposdibl
test all possible combinations of inputs, partidyléor continuous-valued variables.
Representative discrete values for input variablast be chosen using some form of category
partitioning (Ammann and Offutt 2008). After inpwee discretized, there still remains the task
of selecting inputs for tests to be applied todyetem. Possibilities for input selection include a
hoc, random, each-choice, pairwise, and generaliney testing. For ad hoc testing, judgment

may be used to determine test inputs that thertbsteves are most critical or likely to detect

errors. Random testing requires sampling inputeshccording to some distribution and
sampling level. The other strategies listed presipgan be defined for a setfinput
variables, withvy, v, ..., v values per variable, by specifying coveragéwhy combinations in
the full test set as follows: each-choice meansttiiaand every variable value is included in
some test; for pairwise, every two-way combinaigoovered, anttway testing fot > 2 means

that everyt-way combination is covered at least once.

Combinatorial ot-way testing is among the test approaches thateappeffer good
fault detection with a small test set (Grindal, @f and Andler 2005), including its simplest
form, pairwise {=2) testing (Lei and Tai 1998; Tai and Lei 2002¢cBuse system failures often
result from the interaction of conditions that ntigle innocuous individually, this method can be
effective for domains with many interacting paraengt such as interoperability testing.

Consider a large example: a manufacturing automatystem that has 20 controls, each with 10

possible settings, has a total ofolﬁombinations. Surprisingly, one can check allgairthese
values with less than 200 tests, if the tests arefally constructed. Pairwise testing has become
popular because it can check for problem-causitegantions with relatively few tests. Several
investigations suggest individual values or a paparameters are responsible for roughly 70
percent to more than 97 percent of faults (KuhnRailly 2002; Kuhn, Wallace, and Gallo

2004).

Empirical results suggest that extended forms oflmoatorial testing, covering
combinations beyond simple pairwise, can be ast@ffeas testing all possible combinations
(Kuhn, Wallace, and Gallo 2004; Bell 2006), becatiadl faults are triggered by interactions of
one to six variables, then testing all six-way cambons can provide a high degree of

confidence. Some authors, however, argue that caatdoial ort-way testing may be no more

effective than other approaches (Bach and Schr@if®t; Jorgensen 2008). In this article, the
authors compare the fault detection effectivenéssaay testing with full exhaustive testing of
discretized inputs for implementations of the doeuntrobject model (DOM) events standard.
Because testing DOM events requires substantiabhunvolvement, testing can be extremely
time consuming and expensive. Thus, there is a fogadethods to reduce the number of test
inputs while retaining a high level of fault deieat As described in the next section, the DOM
test suite had already been applied with exhauétitd respect to discretized values) tests
against a variety of commercial DOM implementatiswit provided a valuable opportunity to
evaluate the hypothesis that combinatorial testowgd provide an equal or better level of fault
detection as exhaustive testing, using fewer téatssults showed that a much smaller test suite
could achieve the same level of fault detectioexdsustive tests, then conformance testing

could be done at a much lower cost in staff time @sources.

THE DOCUMENT OBJECT MODEL

The DOM (W3C 2011) is a standardized method foreggnting and interacting with
components of XML, HTML, and XHTML documents. DORL$ programs and scripts access
and update the content, structure, and style afments dynamically, making it easier to
produce Web applications in which pages are acdassesequentially. DOM is standardized by

the World Wide Web Consortium (W3C).

Since its origination in 1996 as a conventiondocessing and modifying parts of
Javascript Web pages (known now as DOM Level 0)lOts evolved as a series of standards

offering progressively greater capabilities. LeY@htroduced a model that allowed changing any

part of the HTML document, and Level 2 added supfmorXML namespaces, load and save,
cascading style sheets (CSS), traversing the dattiisued working with ranges of content.

Level 3 brings additional features, including keglibevent handling.

DOM Level 3 Events (W3C 2009) is a W3C standardettgyed by the Web Applications
Working group. Implemented in browsers, it is agyenplatform and language neutral event
system that allows registration of event handléescribes event flow through a tree structure,
and provides basic contextual information for eaednt. This work builds on the previous
DOM Level 2 events specifications. There are twsidbgoals in the design of DOM Level 3
events. The first goal is to design an event systehallows registration of event listeners and
describes an event flow through a tree structune.Second goal is to provide a common subset

of the current event system used on DOM Level 3iesverowsers.

DOM browser implementations typically contain tefishousands of source lines of code.
To help ensure successful implementations of thispdex standard, NIST developed the DOM
conformance test suites, which include tests fanyni2OM components. Early DOM tests were
hand-coded in a test language, then processeddoge ECMAScript and Java. In the current
version of the test suites, tests are specifiethiXML grammar, allowing easy mapping from
specification to a variety of language bindingsc&8ese the grammar is generated automatically
from the DOM specs, tests can be constructed quankdl correctly. Output of the test
generation process includes the following compaemhich implementers can use in testing

their product for DOM interoperability:

e Tests in the XML representation language

e XSLT stylesheets necessary to generate the JavR@NEAScript bindings

e Generated executable code

To reduce the time needed to generate the largb&uof tests required for checking
standards conformance, NIST developed a test aateddool (NIST 2011) that was used to
generate tests for 35 (out of 36) DOM events. Tgeesication defines each event as an
interface definition language (IDL), which in tudefines a number of functions for each event.
A typical function can have anywhere from one topaBameters. Since the IDL definition could
be accessed directly from the specs website, theatldress was given as input to the Java
application. This way the application could read &maverse them extracting just the information
of interest. In this case, the function names &ed tespective parameters, argument names, and
so on, became part of the XML file that was usefibéal the test accelerator to automatically

create the DOM Level 3 tests.

Category partitioning was used to select represigataalues for non-Boolean
parameters. The initial test set was exhaustivesadhe equivalence classes, producing 36,626
tests that exercised all possible combinationgpfasentative parameter values. Three different
implementations were tested. The implementationsessfully executed about 48.49 percent of
the test cases and generated a total of 10 distiessages that indicated a test could not be run
because of a problem such as a nonsupported feahaddOM events and number of tests for
each are shown in Table 1. This set of exhaustists detected a total of 72 failures. Test suites
of this size are not uncommon for significant re@aHd software. For example, the W3C test
suites for XML include 40,000 for XML Schema, 1774&r XML Query, and 3,366 for Core, a
total of more than 60,000 tests for the XML basedidards alone. A survey by the publisher

O'Reilly found that 11 percent of test practitios@rere using test suites exceeding 10,000 tests

(O’Reilly 2008). Thus, the results reported in thiicle may have broad application in practical

software and systems testing.

COMBINATORIAL TESTING OF DOM EVENTS

To investigate the effectiveness of combinatogatihg,covering arraysof two-way
through six-way tests were produced. A coveringyadefines a set of tests that covet-alay
combinations in a highly compact form. A varietyhagh-quality free tools are available for
producing covering arrays, including Microsoft Pl1&id ACTS, developed by the National
Institute of Standards and Technology and the Usitseof Texas Arlington. Usingway
combinations can significantly reduce the numbeesfs as compared with exhaustive. For
example, thenousedowrvent (see Figure 1) requires 4352 tests if afiwoations are to be
realized. Combinatorial testing reduces the s86ttests for four-way coverage. An excerpt of
these tests is shown in Figure 1 (function argusiarg:type’, bubbles,
cancelable, windowObiject, detail, screenX, screeny, clientX,
clienty, ctrlKey, altkey, shiftkey, metaKey, button :
relatedTarget). Note that the covering array tool is independénhe test accelerator tool
described in the previous section, and can be wgbdut the test accelerator. A variety of
studies have investigated the effectiveness of awaidirial testing (Cohen, Snyder, Rothermel
2004; duBousquet et al. 2004; Kuhn et al. 20090algh none prior to this have compared this

method with exhaustive testing.

Table 2 details the number of parameters and nupfliests produced for each of the 35
DOM events, fot = 2 through 6. That is, the tests covered all way-through six-way

combinations of values. Note that for events welv parameters, the number of tests is the same

for the original test suite (see Table 1) and caoratarial for various levels of t. For example, 12
tests were produced for Abort in the original afsb &r combinatorial testing &&= 3 to 6. This

is because producing away combinations fon variables is simply all possible combinations
of thesen variables, and Abort has three variables. Thigasibn is not unusual when testing
configurations with a limited number of values &ach parameter. For nine of the 35 events
(two click events, six mouse events, and whedlgahbinations are not covered even with six-

way tests. For these events, combinatorial tegtiogides a significant gain in efficiency (see

Table 2).
1 "mousedown" true true window 555 5 5 true true true true 5 null

2 "mousedown" true true window 555 5 5 true tru e true true 10 null

3 "mousedown" true true window 555 5 5 true tru e true false 5 null

4 "mousedown" true true window 55 5 5 5 true tru e false true 5 null

5 "mousedown" true true window 555 5 5 true tru e false true 5 null

6 "mousedown" true true window 555 5 5 true tru e false true 10 null
83 "mousedown" true true window 555 -5 5 false t rue true false 5 null
84 "mousedown" true true window 555 -5 5 false t rue true false 10 null
86 "mousedown" true true window 555 -5 5 false t rue false true 5 null
86 "mousedown" true true window 555 -5 5 false t rue false true 10 null

Figure 1 Excerpt of 86 combinatorial tests producedor “mousedown” event.

TEST RESULTS

Table 3 shows the faults detected for each evdhtofditions flagged by the exhaustive
test suite were also detected by three of the coandmial testing scenarios (four-, five-, and six-
way testing), which means that the implementataarit$ were triggered by four-way interactions
or less. Pairwise testing would have been inadedoathe DOM implementations, because
two-way and three-way tests detected only 37.5gueraf the faults. As can be seen in Table 3,
the exhaustive (all possible combinations) anddlieway to six-way combinatorial tests were

equally successful in fault detection, indicatihgttexhaustive testing added no benefit beyond

four-way tests. These findings are consistent téhstudies described earlier in this article,
which showed that software faults tend to be tnigddy interactions of no more than six
variables, for the applications studied so farngstombinatorial methods, one is able to take
advantage of this finding and limit the size of fmmance test suites, greatly reducing costs.
DOM testing was somewhat unusual in that exhaustiseng was possible at all. For most
software, too many possible input combinationstdrigover even a tiny fraction of the

exhaustive set, so combinatorial methods may hgeztter benefit for these.

The exhaustive approach used a total of 36,626 (ese Table 1) for all combinations of
events, but after applying combinatorial testimg, $et of tests is dramatically reduced, as shown
in Table 3. The number of tests generated in coatbiial covering arrays is proportionalvo
log n, for t-way interactions where eachmparameters hasvalues. In cases where most
parameters have a small number of discrete vadueb, as DOM events, this is less of a
limitation, but it was required for parameters sashscreen X and Y values, and must be

considered for most software testing.

Table 3 shows results for two-way through six-westing. An interesting observation
that can be gathered by examining the data isaltfatugh the number of tests that successfully
execute varies froriway combination t¢-way combination, the number of failures remains a
constant at = 2 and 3, and &t= 4 to 6. The last column shows the tests thahdicexecute to

completion, in almost all cases due to nonsuppdhefeature under test.

DOM results were consistent with previous finditlgat testing a small number of
interactions (in this case four-way) was sufficiemtletect all errors. Comparing results of the

DOM testing with previously reported datateway interaction failures, one can see that some

DOM failures were more difficult to detect, in thense that a smaller percentage of the total
were found by three-way tests than for the otheliegtion domains, where testing through
three-way combinations typically detected more tB@mpercent of faults (Kuhn, Wallace, and
Gallo 2004). The unusual distribution of fault deien for DOM tests may result from the large
number of parameters for which exhaustive coveveagereached (so the number of tests
remained constant after a certain point). Therdhare two sets of events: a large set with few
possible values that could be covered exhaustivelytwo-way or three-way tests, and a
smaller set with a larger input space (from 1024362). In particular, nine events (click,
dblClick, mouse events, and wheel) all have thees@mut space size, with number of tests
increasing at the same rate for each, while foré¢isg exhaustive coverage is reached at either
t=2 ort=3. The ability to compare results of previouslydocted exhaustive testing with
combinatorial testing provides an added measucemidence in the applicability of these

methods to this type of interoperability testing.

CONCLUSIONS

The DOM events testing suggests that combinattasing can significantly reduce the
cost and time required for conformance testingNeb standards with characteristics similar to
DOM. What is the appropriate interaction strengtlige in this type of testing? Intuitively, it
seems that if no additional faults are detectethlgy tests, then it may be reasonable to
conduct additional testing only forl interactions, but no greater if no additionailfaare
found att+1. In empirical studies of software failures, thenber of faults detected tat 2

decreased monotonically withand the DOM testing results are consistent vk ¢arlier

finding. Following this strategy for the DOM tesgimould result in running two-way tests
through five-way, then stopping because no addititaults were detected beyond the four-way
testing. Alternatively, given the apparent insuéfitt fault detection of pairwise testing, testers
may prefer to standardize on a higher level ofrattdon coverage, say three-way or four-way.
This option may be particularly attractive for aiganization that produces a series of similar
products and has enough experience to identifynib&t cost-effective level of testing. Even the

relatively strong four-way testing in this examplas only 5 percent of the original test set size.

What is the best strategy for applying combinatariathods to interoperability testing?
This question can be investigated in future appboas of combinatorial methods. Results in this
study have been sufficiently promising for combanati methods to be applied in testing other

interoperability standards.

REFERENCES

Ammann, P., and J. Offutt. 200Btroduction to software testingdNew York: Cambridge

University Press.

Bach, J., and P. Shroeder. 2004. Pairwise testingest practice that isn’t. IRroceedings of

22nd Pacific Northwest Software Quality Confereri&9-196

Bell, K. Z. 2006. Optimizing effectiveness and ency of software testing: A hybrid approach.

PhD diss., North Carolina State University.

Cohen, D. M., S. R. Dalal, J. Parelius, and G. &tdn. 1996. The combinatorial approach to

automatic test generatiolicEE Softwarel3, no. 5 (September):83-88.

Cohen, M. B., J. Snyder, and G. Rothermel. 2004tifig across configurations: Implications for
combinatorial testing. IRroceedings of the Workshop on Advances in Modsé@&oftware
Testing IEEE Press, 1-9.

du Bousquet, L., Y. Ledru, O. Maury, C. Oriat, ahd.. Lanet. 2004. A case study in JML-
based software validation. Rroceedings of 19th International IEEE Conferenne®aitomated
Software Engineering294-297, Linz.

Grindal, M., J. Offutt, and S. F. Andler. 2005. Gammnation testing strategies: A survépurnal

of Software Testing, Verification and Reliabilit§y, no. 3:167-199.

Jorgensen, P. C. 200Boftware testing: A craftsman’s approach, thirdtiedi, Auerbach

Publications.

Kuhn, D. R., and M. J. Reilly. 2002. An investigatiof the applicability of design of
experiments to software testiryth NASA/IEEE Software Engineering WorksHggE

Computer Society, 91-95, 4-6 December.

Kuhn, D. R., D. Wallace, and A. Gallo. 2004. Softevéault interactions and implications for
software testingEEE Transactions on Software EngineerB@ no. 6:418-421.

Kuhn, R., R. Kacker, Y. Lei, and J. Hunter. 2008ntbinatorial software testindEEE
Computerd2, no. 8 (August).

Lei, Y., and K. C. Tai. 1998. In-parameter orderteAt generation strategy for pairwise testing.
In Proceedings of the Third IEEE High Assurance Systéngineering Symposiy@54-261,

IEEE, November.

National Institute of Standards and Technology (NI2011. Test accelerator.

http:/Avww.itl.nist.gov/div897/docs/testacc.html

O’Reilly. 2008. Survey: About your test suites. Ashle at:

http:/Avww.perlmonks.org/?displaytype=print;node_id=701817

Tai, K. C., and Y. Lei. 2002. A test generatiorattgy for pairwise testingEEE Transactions

on Software Engineering8, no. 1 (January):109-111.

W3C. 2009. World Wide Web Consortium. 2009. DOM/&le3 Events Specification. Available

at: http:/ivww.w3.org/TR/DOM-Level-3-Events/

W3C. 2011. World Wide Web Consortium. Document obpaodel. Available at:

http:/Avww.w3.0rg/DOM/.

BIOGRAPHIES

Carmelo Montanezis a computer scientist at the National InstitutSm@andards and Technology
(NIST) in Gaithersburg, MD. His main interesth&tConformance Testing area, specifically
generating tests automatically. Carmelo has baearived with many XML technologies
including DOM, XSL Formatting Objects, XSLT, and XMQuery. Carmelo is currently

working on developing a schema for Computer Foosnsie received a BS in Mathematics and
Computer Sciences and an AA in Chemistry from theséfsity of Puerto Rico.

Rick Kuhn is a computer scientist in the Computer Securitydibn of the National Institute of
Standards and Technology. He has authored morel@tapublications on information security,
empirical studies of software failure, and softwassurance, currently focusing on
combinatorial testing. He co-developed the rokgeblaaccess control model (RBAC) used
throughout industry and led the effort that es&id@d RBAC as an ANSI standard. He received
an MS in computer science from the University ofriMliand College Park, and a BA and MBA
from the College of William & Mary.

Mary Brady is the Manager of the Information Systems GroughefNational Institute of
Standards and Technology. Over the last decaddyahled multiple XML-based testing efforts,
leading to tens of thousands of conformance tasisrésulted from increasing levels of
automatic test generation. She earned a MS in @tan@cience from George Washington
University, and a BS in Computer Science and Mattas from Mary Washington College.

Richard Rivello is a computer scientist in the Software and SystBmision of the National
Institute of Standards and Technology (NIST). ©hthe Software and Systems Division’s
missions is to advance the state of the art ohvswé testing by developing scientifically

rigorous, breakthrough techniques to automatiggdiyerate tests that are cheaper to develop and
more comprehensive. Mr. Rivello has a wide rarfgexperience in testing various W3

standards such as XML, Document Object Model (D@BWels 1 and 2 Events. Mr. Rivello

has a Bachelor of Science degree in Computer Seigom Youngstown State University

(1984).

Jenise Reyes-Rodrigueis a computer scientist at the National Instinft&tandard and
Technology in Gaithersburg, MD. Her previous worksan the area of Conformance Testing,
which included the DOM Level 3, XQuery and MobileeW/standards from the W3C. She is
currently working in Computer Forensics. She hBSan Mathematics and Computer Sciences
from the University of Puerto Rico.

Michael Kishi Powersis a junior at the University of Maryland, ColleBark. He is majoring in
Electrical Engineering and is minoring in Astronorkle has been an intern at the National
Institute of Standards and Technology since 2008.

Event name

Abort

Blur

Click

Change

dblClick

DOMActivate
DOMALttrModified
DOMCharacterDataModified
DOMElementNameChanged
DOMFocusin

DOMFocusOut
DOMNodelnserted
DOMNodelnsertedintoDocument
DOMNodeRemoved
DOMNodeRemovedFromDocument
DOMSubTreeModified

Error

Focus

KeyDown

KeyUp

Load

MouseDown

MouseMove

MouseOut

MouseOver

MouseUp

MouseWheel

Reset

Resize

Scroll

Select

Submit

Textinput

Unload

Wheel

Total Tests

Number of
parameters

3
5
15

=
o W

W Rk R, 0 WwWoo P o L1 ® 0 W

L
v »nnow»n

15

Number of
tests

12
24
4352
12
4352
24
16
64
8
24
24
128
128
128
128
64
12
24
17
17
24
4352
4352
4352
4352
4352
1024
12
48
48
12
12
8
24
4096

36626

Table 1 DOM Level 3 events tests — exhaustive

Event name

Abort

Blur

Click

Change

dblClick

DOMActivate
DOMAttrModified
DOMCharacterDataModified
DOMElementNameChanged
DOMFocusin

DOMFocusOut
DOMNodelnserted
DOMNodelnsertedintoDocument
DOMNodeRemoved
DOMNodeRemovedFromDocume
DOMSubTreeModified

Error

Focus

KeyDown

KeyUp

Load

MouseDown

MouseMove

MouseOut

MouseOver

MouseUp

MouseWheel

Reset

Resize

Scroll

Select

Submit

Textlnput

Unload

Whee

Total Tests

Num
para
m

3

15
3

[EEN
W P B U1 W 0 0 0 6 00 U1 UT O 0 0 U1 U

e = =
A UL L Ll »n

w U1 W W Ul U1 W

15

2-way
tests

8
10
18

8
18
10

8
32

8
10
10
64
64
64
64
32

8
10

9

9
16
18
18
18
18
18
16

8
20
20

8

8

8
16
20

702

3-way 4-way 5-way

tests

12
16
40
12
40
16
16
62
8
16
16
128
128
128
128
64
12
16
17
17
24
40
40
40
40
40
40
12
32
32
12
12
8
12
44

1342

tests

12
24
86
12
86
24
16
64
8
24
24
128
128
128
128
64
12
24
17
17
24
86
86
86
86
86
82
12
48
48
12
12
8
24
92

1818

Table 2 DOM 3 level tests - combinatorial

tests

12
24
188
12
188
24
16
64
8
24
24
128
128
128
128
64
12
24
17
17
24
188
188
188
188
188
170
12
48
48
12
12

24
214

2742

6-way
tests

12

24

353

12

353

24

16

64

24
24
128
128
128
128
64
12
24
17
17
24
353
353
353
353
353
308
12
48
48
12
12

24
406

4227

Number of

Pct of

Not

t-way combinations tests exhaustive Passed Failed executed
2 Way 702 1.92% 202 27 473
3 Way 1342 3.66% 786 27 529
4 Way 1818 4.96% 437 72 1309
5 Way 2742 7.49% 908 72 1762
6 Way 4227 11.54% 1803 72 2352
Exhaustive 36,626 29,218 72 7336

Table 3 Results for all t-way combinations

