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COMBINATORIAL COVERAGE MEASUREMENT

Abstract. Combinatorial testing applies factor coveringagsr [6, 7] to test alt-way combinations of
input or configuration state space. In some tgstituations, it is not practical to use coveringags, but
any set of tests with parameters covers at least some proportidaaafy combinations up tb<n. This
report describes measures of combinatorial covettzgtecan be used in evaluating the degreevedy
coverage of any test suite, regardless of whetlveas initially constructed for combinatorial coage.

Keywords- combinatorial testing; factor covering array; state-space coverage; verification and
validation (V&V); t-way testing; configuration model; component interaction failure

1 [Introduction

Because testing all possible combinations of inpatues is nearly always intractable,
combinatorial testing using factor covering arr&ysa reasonable alternative [8, 9, 10]. But it @ n
always practical to re-design an organization’siigsprocedures to use tests based on coveringsarra
Testing procedures often develop over time, andl@yeps have extensive experience with a particular
approach. Units of the organization may be stmectiaround established, documented test procedures.
This is particularly true in organizations that mtest according to contractual requirements, Eveant
standards. And because much software assuranagédsvesting applications that have been modified
meet new specifications, an extensive library gatyy tests may exist. The organization can same ti
and money by re-using existing tests, which mayhaoe been developed as factor covering arrays.

Short of creating new test suites from scratch, approach to obtaining the advantages of
combinatorial testing is to measure the combinakatbverage of existing tests, then supplement as
needed. Depending on the budget and criticalitthefsoftware, 2-way through 5-way or 6-way testing
may be appropriate. Building covering arrays fome specified level dfis one way to provideway
coverage. However, many large test suites nayucaler a high percentage wivay combinations. |If
an existing test suite covers almost all 3-way cotions, for example, then it may be sufficient tioe
level of assurance that is required. Determinhmglevel of input or configuration state space cage
can also help in understanding the degree of hiskremains after testing. If 90% - 100% of tHevant
state space has been covered, then risk is likdhe tsmaller than would remain after testing tloaecs a
much smaller portion of the state space. Thisnteg@scribes measures of combinatorial coverage tha
can be helpful in evaluating the degred-afay coverage of any test suite, regardless of hndrat was
initially constructed for combinatorial coverage.

2 SoftwareTest Coverage

Test coverage is one of the most important topicsoftware assurance. Users would like some
guantitative measure to judge the risk associaié less than effectively exhaustive testing. Aiety
of measures have been developed to gauge the degest coverage [2]. The following are somehsf t
better-known coverage metrics:

. Statement coverage: This is the simplest of coverage criteria — tleecpntage of statements
exercised by the test set.

. Decision or branch coverage: The percentage of branches that have been egdlt@bothrue
andfalseby a test set.
. Condition coverage: The percentage of conditions within decision espions that have been

evaluated to both true and false. Note that 100%@lition coverage does not guarantee 100% decision



coverage. For examplg,f (A || B) {do sonething} else {do sonething else}"” is tested
with [0 1], [1 O], then A and B will both have beewmaluated to O and 1, but teksebranch will not be
taken because neither test leaves both A and B.fals

. Modified condition decision coverage (MCDC): This is a strong coverage criterion that is
required by the US Federal Aviation Administratitor Level A (catastrophic failure consequence)
software; i.e., software whose failure could leaddss of function necessary for safe operatioit.
requires that every condition in a decision inpghegram has taken on all possible outcomes at teerst,
and each condition has been shown to independaiffdlgt the decision outcome, and that each enty an
exit point have been invoked at least once [4].

3 Combinatorial Coverage

Note that the coverage measures discussed abovendlepn access to program source code.
Combinatorial testing, in contrast, is a black beshnique. Inputs are specified and expectedtsefr
assessment are determined from some form of spatdifin. The program is then treated as simply a
processor that accepts inputs and produces outputs.

Suppose we have a program that accepts two inpatsdy, with 10 values each. Then the input state
space consists of the 28 100 pairs ok andy values, which can be pictured as a checkerboararemf

10 rows by 10 columns. With three inputsy, andz, we would have a cube with %8 1,000 points in
its input state space, and so on. Exhaustive testiould require inputs of all 10combinations, but
combinatorial testing could be used to reduce ihe of the test set while ensuring that alWay
combinations for some specified leveltafre covered.

Looking closely at the nature of combinatorial itggtleads to several measures of state space réhat a
useful. We begin by introducing what will be cdll@variable-value configuration

Definition. Variable-value configuration: For a set of t variables, a variable-value configtion is a
set of t valid values, one for each of the variable

Example. Given four binary variables, b, ¢ andd, for a selection of three variablasc andd the set
a=0, c=1, d=0 is a variable-value configuration, arafl, c=1, d=0 is a different variable-value
configuration.

3.1 Simple t-way combination coverage

Of the total number of-way combinations for a given collection of variedal what percentage will be
covered by the test set? If the test set is arcayarray, then coverage is 100%, by definitiout, tmany

test sets not based on covering arrays may stillige significant-way coverage. If the test set is large,
but not designed as a covering array, it is posshmt it provides 2-way coverage or better. Fangple,
random input generation may have been used to pedtthe tests, and good branch or condition coverage
may have been achieved. In addition to the strattwverage figure, for software assurance it wdnd
helpful to know what percentage of 2-way, 3-wayg, ebverage has been obtained.

Definition. Simple t-way combination coverage: For a given test set for n variables, simple t-way
combination coverage is the proportion of t-way berations of n variables for which all variable-
values configurations are fully covered.



Example. Figure 1 shows an example with four binary vddaba, b, ¢, andd, where each row
represents a test. Of the six possible 2-way bbrieombinationsab, ac, ad, bc, bd, ¢anly bd andcd
have all four binary values covered, so simple 2-waverage for the four tests in Figure 1 is 1/3 =
33.3%. There are four 3-way variable combinatiams;, abd, acd, bgdeach with eight possible
configurations: 000, 001, 010, 011, 100, 101, 1M,. Of the four combinations, none has all eight
configurations covered, so simple 3-way coveragéhis test set is 0%.

O |O0o|D
ROk |O|T
R |O|R|O|0
Rk |O|0|&

Figure 1. An example test array for a system with four binary components
3.2 (t+ k)-way combination coverage

A test set that provides full combinatorial coverdgrt-way combinations will also provide some degree
of coverage fortf1)-way combinations,t{2)-way combinations, etc. This statistic may lseful for
comparing two combinatorial test sets. For exargtiféerent algorithms may be used to generate $-wa
covering arrays. They both achieve 100% 3-way @mes but if one provides better 4-way and 5-way
coverage, then it can be considered to provide saftevare testing assurance.

Definition. (t + K)-way combination coverage: For a given test set that provides 100% t-way
coverage for n variablegt+k)-way combination coverage is the proportion of {ttkay combinations of
n variables for which all variable-values configticns are fully covered.

Example. Suppose the test set in Figure 1 is extendeti@grsin Figure 2 then all four combinations of
pairs of variables are covered, so 2-way coversd®0%. Out of the four 3-way combinaticaisc, abd,
acd, bcdonly the combinatiobcd has all 8 variable value combinations so (2+1y-w&-way coverage
is 25%.

a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1
0 1 0 1
1 0 1 1
1 0 1 0
0 1 0 0
Figure 2. Eight tests for four binary variables.

3.3 Measures of Variable-Value Configuration coverage

So far we have only considered measures of theoptiop of combinations of variables for which all
configurations oft variables are fully covered. But whewariables withv values each are considered,
eacht-tuple has/ possible variable-valusonfigurations. For example, in pairwise (2-wagyerage of
binary variables, every 2-way combination has foanfigurations: 00, 01, 10, 11. We define two
measures with respect to such variable-value cordtgpns:



Definition. Variable-value configuration coverage: For a given combination of t variables, variable-
value configuration coverage is the proportion afigble-value configurations that are covered by at
least one test case in a test set.

For (+k)-way coverage wherk = 1, Chen and Zhan@] have proposed thtiple densitymetric. A
special metric fort¢1)-way coverage is useful because (1) the coeesahpigher strength tuples for>
t+1 is much lower (because the numbett-efay combinations to be covered grows exponentigiti t),
(2) the coverage at1 provides some information for coveragd’'at t+1 becausettl)-way tuples are
subsumed by higher strength tuples, and (3) thebeunof additional faults triggered biway
combinations drops rapidly witt> 2 [10].

Definition. Tuple Density: Sum of t and the fraction of the coveletll)-tuples out of all possible
(t+1)-tuples|3].

Example. As shown in the previous example, the test sé&lignre 2 provides 100% coverage of 2-way
combinations and 25% coverage of 3-way combinatismshe tuple density of this test set is 2.25.

Definition. (p, t)-completeness. For a given set of n variablefp, t)-completeness is the proportion of
the Qn, f) combinations that have configuration coveragetdéast p[11].

Example. For Figure 1 above, there are C(4, 2) = 6 possiateble combinations and C(4, 2) %224
possible variable-value configurations. Of thek@,variable-value configurations are covered ared th
only ones missing arb=11,ac=11,ad=10,bc=01,bc=10. But only twopd andcd, are covered with all

4 value pairs. So for the basic definition of sienpway coverage, we have only 33% (2/6) coverage,
but 79% (19/24) for the variable-value configuratimverage metric. For a better understandindpisf t
test set, we can compute the configuration covei@geach of the six variable combinations, as show
Figure 3. So for this test set, one of the comimna (c) is covered at the 50% level, thred,(ac, ad)

are covered at the 75% level, and twd, (cd) are covered at the 100% level. And, as notexebfor

the whole set of tests, 79% of variable-value gpnfitions are covered. All 2-way combinations hatve
least 50% configuration coverage, so (.50, 2)-cetepless for this set of tests is 100%. Althoughhe t
example in Figure 1 uses variables with the sammbeu of values, this is not essential for the
measurement, and the same approach can be useohpoite coverage for test sets in which parameters
have differing numbers of values.

Vars | Configurations Config
ab | 00,01 10 75
ac 00, 01, 10 .75
ad 00, 01, 11 .75
bc 00, 11 .50
bd 00, 01, 10, 11 1.0
cd 00, 01, 10, 11 1.0
total 2-way coveage = 19/24 =.79167
(.50, 2)-completeness6/6 =1.0
(.75, 2)-completeness5/6 =0.83333
(1.0, 2)-completeness?2/6 =0.33333
Figure 3. The test array covers all possible 2-way combinations

of a, b, ¢, and d to different levels.



The graph in Figure 4 shows a graphical displathefcoverage data for the tests in Figure 3. Gmeer
is given as the Y axis (ordinate), with the peragetof combinations reaching a particular covetegel

as the X axis (abscissa). Note from Fig. 1 th&%4®f the combinations are covered to at least38e
level, 83% are covered to the .75 level or higlerd a third covered 100%. Thus the rightmost
horizontal line on the graph corresponds to thellestecoverage value from the test set, in thig G(%6.
Thus (.50, 2)-completeness = 100%.
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Figure 4. Graph of coverage from Figure 3 test data.

Note that the total 2-way coverage is shown as2).7khis figure corresponds approximately to theaar
under the curve in Figure 4. (The area is not tixagual to the true figure of 0.792 because thweis
plotted in increments of 0.05.) Additional tests1 be added to provide greater coverage. Suose
additional test [1,1,0,1] is appended to figure&Cbverage then increases as shown in Figure 5. \Wew
can see immediately that all combinations are aa/ér at least the 75% level, as shown by themight
horizontal line (in this case there is only oneitmmtal line). The leftmost vertical line reachte 1.0
level of coverage, showing that 50% of combinatiarescovered to the 100% level.

1 Coverage for file
09 Total 2-way =0.875
- Cov>=000=6%6=100
Cov>=005=6%6=100
0.8 Cov>=0.10=6%6=1.00
- Cov>=015=66=100
Cov>=020-6%-1.00
07 Cov>=025=6/6=1.00
Cov>=030=-6%6=100
Cov>=035=-66=100
0.6 Cov>=040=6%6=1.00
S Cov>=045=66=100
= Cov>=050=6%6=1.00
z 05 Cov>=055=66=1.00
3 Cov >=060=66=100
Cov>=065=-6%6-1.00
04 Cov >=070=66=100
Cov>=075=66=100
03 Cov>=0.80=36=050
- Cov>=0.85=36=050
Cov >=090=26=050
0.2 Cov>=095=36=050
. Cov>=1.00=36=050
— 2way
0.1 way
0

0.00 0.10 0.20 0.30 040 050 0.80 070 0.80 0.80 1.00
0.05 0.15 025 0.35 045 055 0.85 075 0.85 0.85
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Figure 5. Coverage after test [1,1,0,1] is appended.

Note that the upper right corner includes roughysguares, so the area under the curve is 1756200,
87.5%, matching the Total 2-way coverage figureppénding one more test, [1,0,1,1] results in the
coverage shown in Figure 6.
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Figure 6. Coverage after test [1,0,1,1] is appended.

If a test [1,0,1,0] is then appended, 100% covefagall combinations is reached, as shown in Fegur
The graph can thus be thought of as a “coveragagitn meter”, where the red indicator line moves to
the right as higher coverage levels are reachedtov&ring array, which by definition covers 100% of
variable-value configurations will always producefigure as below, with full coverage for all
combinations.

09 Total 2-way =1.000

0g

07

06

05

Coverage

04

03

LLLLLLELERELELTRILELE
888888338888888888888

02

— Jway
Jway

01

0.05 015 025 035 045 055 085 075 0385 0385
Combinations

Figure 7. Appending test [1,0,1,0] provides 100% coverage, i.e., a covering array.

Consider the graph in Figure 8 corresponding td $e$ in figure 1. The symbab indicates the
proportion of combinations with 100% variable-vatt@verage, anM indicates the minimum proportion
of coverage for alt-way variable combinations. In this case 33%) 6f the combinations have full
variable-value coverage, and all variable combametiare covered to at least the 50% leMVel ( So (1.0,
2)-completeness ® and M, 2)-completeness = 100%, but it is helpful to henare intuitive terms for
the points® andM. Note that® is the level of simplé-way coverage. Since all combinations are
covered to at least the level ¥f, we will refer toM as the t-way minimum coveragekeeping in mind
that “coverage” refers to a proportion of variakédue configuration values. Where the value isf not
clear from the context, these measures are desmydaandM,;. Using these terms we can analyze the
relationship between total variable-value configioracoveraget-way minimum coverage and simgle
way coverage.
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Figure 8. Example coverage graph for t = 2.

Let § = total variable-value coverage, the proportibmariable-value configurations that are covered by
at least one test. If the area of the entire giaflii.e., 100% of combinations), then

S >1-(1-2)(1-My
S > O+ M —D M, 1)

If a test suite has only one test, then it covdrs f combinations. The total number of combinations
that must be covered isi€Y) x V!, so the coverage of one test ig.1/Thus,

t-way minimum coverage M; > ? > 0. (2)

Thus, for any non-empty test suitayay minimum coverage 1A". This can be seen in Figure 9, which
shows coverage for a single test with ten binanades, where 2-way minimum coverage is 25%. With
only one test, 2-way full coverage is of coursarfJS = total variable-value coverage (denoted “Total t-
way” on the graph legend) is 25%.

1 Coverage for fie
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09 Total 2-way =0250
Cov >=0.00= 4545 = 1.000

Cov >=0.05=45/45 = 1.000
0 Cov >=0.10=45/45 = 1.000
Cov >=0.15=4545=1.000

Cov >=020= 4545 =1.000
07 Cov >=025=45/45 = 1.000
Cov >=0.30=0/45=0000

Cov >=0.35= 045 = 0.000
06 Cov >=040= 045 = 0,000
Cov >=0.45= 145 - 0.000

Cov >=0.50-045-0.000
05 Cov >=055= 045 - 0.000
Cov >=0.60 = 045 = 0.000

Cov >=0 65= 0450000
0.4 Cov >=0.70-0/45 - 0.000
Cov >=0.75=045=0.000
03 Cov >=0.80 = 045 = 0.000
Cov >=085=045= 0000

Cov >=090- 0450000
02 Cov >=0.95-045-0.000
Cov >=1.00= 0450000

Coverage

0.1 — Bumy

0.05 0.15 025 035 045 055 085 075 0385 085
Combinations

Figure 9. Coverage for one test, 10 binary variables.



3.4 Example Application

The methods described in this report were origindveloped to analyze the state space coverage of
spacecraft software [11]. A very thorough set wéro7,000 tests had been developed for each of thre
systems. At that time combinatorial coverage waistime goal. With such a large test suite, it ssm
likely that a huge number of combinations had bemrered, but how many? Did these tests provide 2-
way, 3-way, or even higher degree coverage? K»asting test suite is relatively thorough, it masy
practical to supplement it with a few additionatteto bring coverage up to the desired level.

() 1)

|

09 \ \ Total 4-way 0,679
I av >— 0,00~ 1749060/1749060 - 1.000
‘Cav 5= 0.05=1749060/1749060 - 1.000
0 Cav 5= 0.10=17490601749060 - 1.000
1 l Cov >=0.15=1749037/1749060 = 1.000
Cov >=0.20=1748107/1749060 = 0.999
Cov >=0.25="1743806749060 = 0.997
07 | | ]
L Cov >=0.30=1729877/1749060 = 0.989
Cov>=0.35= 1711197.'174m 0.978
06 1 L Cov >=0.40="16671631749060 =0 953
] Cov >=045= 1snmlsn74atm 0919
g 1 Cov >=0.50=1581686/1749060 = 0.904
£ os l] v im0 20 | nai i ra0eD 0T
a OV >=
Cav 5= 0.65-112538411749060 - 0.643
Cov >=0.70=100065711749060 = 0.572
04
Cov >=0.75=982472/1749060 = 0.562
oV >=
03 C 0.80=782417/1749060 = 0.447
L Cov >=0.85=623655/1749060 = 0.357
Cov >=0.90=447504/1749060 = 0.256
02 Cov >=0.95=344887/1749060 = 0.197
Cov >=1.00= 3445981749060 = 0.197
— 2way
01 = Jway
— vy
0
0.00 010 020 0.30 040 0.50 060 070 0.80 090 1.00
0.05 015 02s 035 045 055 0.85 075 085 0485
Combinations
Fi 10 Confi ti for 1°27°4%6% input
Igure . onftiguration coverage 1or Inputs.

The original test suites had been developed tifyvesrrect system behavior in hormal operation
as well as a variety of fault scenarios, and peréorce tests were also included. Careful analysis a
engineering judgment were used to prepare thenaligests, but the test suite was not designedaiocp
to criteria such as statement or branch coverdge system was relatively large, with the 82 vdeab
configuration $27°4°6? (three 1-value, 72 binary, two 4-value, and twwaBie). Figure 10 shows
combinatorial coverage for this system (red = 2-waye = 3-way, green = 4-way). This particulastte
set was not a covering array, but pairwise coveiagdll relatively good, with about 99% of thenzy
combinations having at least 75% of possible végighlue configurations covered (1), and 82% have
100% of possible variable-value configurations cedd?2).

3.5 Analysis of Test Strategies

These coverage metrics can be used to analyze usatiesting strategies by measuring the
combinatorial coverage they provide. To illustrttis type of analysis, some examples are discussed
this section.

All-values Consider thd-way coverage from one of the most basic testraitall-values, also called
“each-choice” ]. This strategy requires that every parameteuesdle covered at least once. If all
parameters have the same number of valyethen onlyv tests are needed to cover all. Test 1 has all
parameters set g, Test 2 tov,, and so on. If parameters have different numbexalues, wherg; ..

p. havev; values each, the number of tests required is atNd@x-; ,V;.

Example If there are three values, 0, 1, and 2, for fieeameters, then 0,0,0,0,0; 1,1,1,1,1; and 2,2,2,2
will test all values once. As shown above, eashdevers 3 of the variable-value configurations, and
no combination appears in more than one test, gowvialues per parameter and thgsts, we have



1

-1

v 3)

M, (all-valueg > Vv =

Therefore, for the all-values criterion, wherewallues are covered at least once, minimum covévage
1M, We can also reach this result by noting thahéast covers @ t) combinations, so withk values
the proportion of combinations covered/@(n,t)/C(n,H)v' = 1A%, This relationship can be seen in Figure
11, which shows coverage for two tests with terabyirvariables; 2-way minimum coverage = .5, and 3-
way coverage = .25.

1 Coverage for fie
Jvaksosv
Total Jway -0.250
09 Cov >=0.00= 120120 = 1.000
Cov >=005= 120120 = 1000
08 Cov >=0.10- 1201120 - 1.000

0.7 Cov >=0.25= 120120 =1.000

06 Cov >=0.40= 0120 = 0.000

Coverage

05 Cov >=0.

04 Cov>=0.

03 Cov>=0280

02 Cov >=0.95= 0120 = 0.000

0.1

0

0.00 0.0 0.20 030 0.40 050 080 070 080 0.80 100
0.05 015 025 03s 045 055 0865 075 085 085

Combinations

Figure 11. t-way coverage for two tests with binary values.

Base choice Base-choice testind] requires that every parameter value be coverézhat once and in a
test in which all the other values are held cortstgach parameter has one or more values desigaated
base choices. The base choices can be arbitrargahwalso be selected as “special interest” valelgs,
default values, or values that are used most dft@peration. If parameters have different numimdrs
values, wher@; .. p, havev; values each, the number of tests required is st leaX i, , (v, -1), or where
all n parameters have the same number of valudee number of tests is ffv-1). An example is shown
below in0, with four binary parameters.

base:
test 2
test 3
test 4
test 5

oO|Oo|r|O|o|T

R|O|O|lO|0|a

OO0 |O|D
(e}l lellellelle]

Figure 12. Base choice test suite for a 2* configuration

The base choice strategy can be highly effectiespite its simplicity. In one study of five progra
seeded with 128 fault8], it was found that “although the Base Choicetstyg requires fewer test cases
than Orthogonal Arrays and AETG, it found as maaylté B].” In that study, AETG %] was used to
generate 2-way (pairwise) test arrays. We can amabinatorial coverage measurement to help
understand this finding. For this example of analy base choice, we will consideiparameters with 2
values each. First, note that the base test ichwbach parameter takes its base choice coverst)C(
combinations, so for pairwise testing this i) =n(n-1)/2. Changing a single value of the base test to
something else will covar-1 new pairs (in our examplab, ac, andad have new values in test 2, while



bc andbd are unchanged). This must be done for each paeans® we will have the original base test
combinations plusi(n-1) additional combinations. The total number aff@y combinations is @( 2) x
2%, so forn binary parameters:
n(n-1/2+n(n-1)

C(n,2)2°
_ C(n,2)+2C(n,2)

C(n,2)2?

= 3/4.

M, (2-way binary base-choige=

Cow

Figure 13. Graph of 2-way coverage for test set in 0.

This can be seen in the graph in Figure 13 of @merfor0. Note that the 75% coverage level is
independent ofi. Forv> 2, the analysis is a little more complicatedhe Dase choice test coveri(X)
combinations, and each new test covedsnew combinations, but we need additional tests beyond
the base choice for values. So the proportion of 2-way combinationseced by the base choice
strategy in general is:
M, (base-choice= C(n,2) + (v—=1)2C(n,2)

C(n,2v?

_1+2(v-1)

V2

For example, withy = 3 values per parameter, we still cover 55.6%ahbinations, and with = 4,
coverage is 43.75%. This analysis helps explaip thk base choice strategy can be effective evin if
does not achieve full 2-way coverage.

This equation can be generalized to higher intemacstrengths. The base test covera,t(
combinations, and each new test covers-Ti1) new combinations, since the parameter valuagoei
varied can be combined withl other parameters for eatlway combination. Base choice testing
requiresn(v-1) additional tests beyond the initial one, sodoyn, t with n>t

Cnt)+n(v-)HC(n-1t -1
C(n,t)V'

_C(n,t) +t(v-)C(n,t)

C(n,t)V'

M, (base-choicg=




_1+t(v-3
t

v (4)
3.6 Analysis oft+1)-way Coverage

A t-way covering array by definition provides 100% emge at strength but it also covers somet(Q)-
way combinations (assumimg> t+1). Using the concepts introduced previously ae investigate
minimal coverage levels fot#1)-way combinations in covering arrays. Giveway covering array,

for any set of+1 parameters, we know that any combinatiohpErameters is fully covered in some set
of tests. Joining any other parameter with anylmoation oft parameters in the tests will givetaX)-
way combination, which has™ possible settings. For any set of tests coveriingveay combinations,
the proportion oftf-1)-way combinations covered is thds*, so if we designate+1)-way variable-
value configuration coverage 8s;, then

S>> 1 for anyt-way covering array with > t+1. (5)
\%

Note that variable-value configuration coveragedsthe same as simplevay coverage, which gives the
proportion oft-way configurations that are 100% covered. Cleadset of {+1)-way combinations will
be fully covered with &way covering array iN < V', whereN = number of tests. For most levelst of
andv encountered in practical testing, this conditiofi aeld. For example, i#=3, then a 2-way
covering array with less thari=27 tests can be computed (using IPOG-F) for astyp@blem with less
than 60 parameters. So the proportion of combinatwaith full variable-value coverage, designaied

will be zero for 3-way coverage for this examphnd in general, designating+l)-way full variable-
value configuration coverage @s.1, if N <V*!, then® .., = 0, for anyt-way covering array witm> t+1.

As an additional illustration, we show that expi@sg5) can also be reached by noting that witlway
covering array, uniqué{1)-way combinations can be identified as follovisaversing the covering
array, for the first appearance of eaelay combination, append each of theparameters not contained
in thet-way combination to create &()-way combination. This procedure counts e&th){way
combination C1,t) = t+1 times. The covering array containsif)¢/' t-way combinations, so the
proportion of {+1)-way combinationsS., in thet-way array is at least

C(nvi(n-t)/t+1) 1
Cint+Dv" v

In most practical cases, tha1)-way coverage of away array will be higher than 1/v .
3.7 Summary

1. Many coverage measures have been devised for cmekrage, including statement, branch or

decision, condition, and modified condition deamsapverage. These measures are based on aspects

of source code and are not suitable for combirgtodverage measurement.

2. Combinatorial coverage measurements may be usefutderstanding test set thoroughness and for
analyzing test strategies. Measures include simylay coverage, tuple density, variable-value
configuration coveragd;way minimum coverage, ang,()-completeness. Test strategies differ in
the level of coverage they provide as measurethéset concepts.



3. The following properties hold:

1
MtZ—t>O
vV

S > O+ M;— D M,
Su> 1 for anyt-way covering array witim> t+1

Vv
if N<V*! then® ., = 0, for anyt-way covering array with > t+1

where
M; = minimum proportion of coverage for &llvay variable combinations;
@, = proportion ot-way combinations with 100% variable-value coverage
S = proportion of total-way variable-value coverage;
N = number of tests.
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