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Abstract—Software systems are typically large and exhaus-
tive testing of all possible input parameters is usually not
feasible. Testers select tests that they anticipate may catch
faults, yet many unanticipated faults may be overlooked. This
work complements current testing methodologies by adaptively
dispensing one-test-at-a-time, where each test is as “distant” as
possible from previous tests. Two types of distance measures
are explored: (1) distance defined in relation to combinations
of parameter-values not previously tested together and (2) dis-
tance computed as the maximum minimal Hamming distance
from previous tests. Experiments compare the effectiveness
of these two types of distance-based tests and random tests.
Experiments include simulations, as well as examination of
instrumented data from an actual system, the Traffic Collision
Avoidance System (TCAS). Results demonstrate that the two
instantiations of distance-based tests often find more faults
sooner and in fewer tests than randomly generated tests.

Keywords-Combinatorial testing,
Hamming distance, software testing
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|. INTRODUCTION

NIST last estimated the annual cost of software defects
as approximately $59 billion [1]. They also suggest that ap-
proximately $22 billion can be saved through more effective
testing. Testers need to be more thorough in testing, yet
they need to perform testing within a prescribed budget.
Systematic approaches of combination testing have been
suggested to complement current testing methods in order
to improve rates of fault detection (see [2] and therein).

Category partitioning is a base of systematic approaches
as finite values (options) for parameters are identified for
testing [3]. Each of the finite parameter-values may be tested
at least once, in specified combination together, or in exhaus-
tive combination. The simplest and least-thorough combina-
tion testing approach is to test all values at least once. The
most thorough is to exhaustively test all parameter-value
combinations. However, exhaustive testing of all possible
combinations is too expensive for most systems. Testers
may place constraints to limit tests from category partition-
ing, however, this can be an unsatisfactory solution when
constraints are arbitrarily selected to limit the number of
tests [2]. Combination strategies may be a better solution
to limiting tests as they systematically test combinations of
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parameter-values across a system.

Combination testing has been applied with ad-hoc meth-
ods, stochastic models, and combinatorial designs. Ad-hoc
methods include tests developed by hand in which testers
attempt to create representative tests to catch problems that
they anticipate. Anti-random testing attempts to provide tests
that minimize overlap using cartesian products or Hamming
distance [4]. An example of a stochastic model includes
Markov chains to simulate usage [5]. Combinatorial designs
have been applied to test t-way interactions of parameter-
values [6], [7], [8], [9], [10], [11], [12], [13]. Indeed there
are a number of combination strategies (see [2] for a survey).

Combination strategies that are based on user profiles
(such as those using Markov chains) emphasize a bias
towards trying to predict user behaviors and locating the
most frequently encountered faults first. On the other hand,
many combination strategies based on combinatorial designs
systematically examine systems without attempting to cover
the most frequent usage scenarios. Their goal is to find all
of the faults, not just those most frequently encountered by
users. We identify these two differences because the combi-
nation strategies clearly focus on different goals. We focus
on the second case of a less biased testing strategy. (We later
compare our combination strategies that are not biased by
user profiling to random testing that is also unbiased towards
usage modeling but does not systematically cover a system.)

The success of combination strategies hinge upon cor-
rect identification of parameters and their suitable values
for testing. Indeed, if parameters are missing, or category
partitioning does not select suitable values for parameters,
then any combination strategy may fail. We identify this
threat early on since our work is an extension of combination
testing work. In the remainder of this paper, we use the
assumption that parameters and values have been correctly
identified for testing. Further, we assume that our new
distance-based testing methodology is applied to systems in
which faults arise from interactions of few parameter-value
combinations [10], [11]. We make no assumptions about the
distribution of the faults.

The work that we present here does not propose a static
combination strategy in which a tester necessarily runs an
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Figure 1. An adaptive distance-based testing process.

entire test suite. Instead, we adaptively suggest a “next test”
that maximizes the distance of parameter-value combinations
from previous tests while maintaining flexibility for chang-
ing systems. In §2, we describe the testing methodology at
a high level and introduce specific instantiations of distance.
In §3, we describe an algorithm that generates distance-
based tests. In §4, an empirical study compares rates of fault
detection using distance-based tests in simulations and on
instrumented data from an actual system.

Il. TESTING METHODOLOGY

The input to the distance-based testing process is a list
of system parameters and their associated values (options)
for testing. Previously run tests can also be specified when
available so that future tests are built around such tests.
Figure 1 shows five steps of the testing methodology. The
testing process may halt at any step. Indeed, this is likely as
testers can not typically run an exhaustive set of tests that
include all possible parameter-value combinations.

1. Process seeds and constraints. Tests that have al-
ready been run are processed as seeds so that the next
tests are generated to maximize distance from previously
tested parameter-values. Seeds are important because tests
should be as distant as possible from previously run tests.
Constraints, combinations of parameter-values that are not
valid to test together, can also be specified when applicable.

2. Generate next test(s) that maximize distance. The
distance-based testing strategy systematically generate tests
in a dynamic environment with tests that are as distant as
possible from previous tests. There are multiple ways to
define distance (of how different tests are). Two possible

distance measures are explored in this paper.

First, distance is defined as the number of new t-way
parameter-value combinations in a test that have not pre-
viously been tested. This is similar to previous work to
generate software interaction test suites [14], [15], [16],
[17], [18], [19], [20], [21]. A major difference here is
that tests are adaptive. While all n-way combinations can
ultimately be covered, the goal is not to minimize the size
of a static interaction test suite. Instead, the focus is to
generate a “next” test that covers as many new combinations
of parameter-values that have yet to be covered. If the tester
stops testing at any time, tests dispensed will have been
as broad in variety as possible (in relation to combinations
not previously tested). In addition, since we generate tests
one-test-at-a-time, we can generate a next test adaptively
when system components are added, removed, modified, or
temporarily unavailable. This is opposed to throwing away
a complete test suite and taking time to regenerate a new
one when systems change.

Second, we define distance as the maximum minimal
Hamming distance from previous tests. This is similar to pre-
vious work on anti-random testing that generates static test
suites [4]. However, here we adaptively generate one-test-at-
a-time and adapt as parameter-values are added, modified,
removed, or temporarily unavailable.

3. Evaluate pass/fail status of test. If a test passes, the
process continues to Step 5. If the test fails, it is taken off-
line to be evaluated in Step 4.

4. Process temporary constraints. While a test is taken
off-line, a tester may specify temporary constraints if they
do not want a next test to include the parameter-values in the
test that they have taken off-line for closer evaluation. Once
they identify the problem(s), constraints may change again.
If parameters are modified in an effort to fix a problem, a
tester may specify that combinations involving the modified
parameter-values be retested. For instance, Table Il shows
the parameters and values for our TCAS example. If the code
related to “High_confidence” is temporarily removed, there
may be a constraint that our next test cases will not include
this parameter. Alternatively, if we add a new parameter
called “Confidence_level” that has values H, M, or L, our
next tests would include these.

5. Process new or removed system parameters During
the testing process, systems may change. New features may
be added, removed, or modified at any time. Subsequent
tests adapt to these scenarios.

This process differs from previous methods which use ¢-
way coverage and maximum distance as surrogates for the
ability to find faulty interactions. One significant difference
with our approach is that the metric for quality of the tests
is not their ability to cover ¢t-way interactions; rather it is
their ability to isolate faulty interactions quickly. Therefore,
experiments in Section §4 focus on the rate of fault detection.
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distance
end while

Figure 3. Pseudocode to generate distance-based tests.

I1l. ALGORITHMS

A test consists of assignments to & parameters in a system
where each parameter can take on one of v values. The
algorithms that we implement generate distance-based tests
one-test-at-a-time with a greedy approach (shown at a high-
level in Figure 3). First, the algorithm processes seeds and
constraints. For each test, the algorithm generates a number
of CandidateCount candidate tests and dispenses the can-
didate that is most distant; here we use one candidate. For
each candidate test under construction, each parameter needs
to be assigned a value. The algorithm begins by selecting
a t-tuple of parameter-values with maximum distance. For
remaining parameters, they may be assigned values in any

11 3[4]6

Uncovered combinations distance example

order at all; here we assign values to parameters in random
order. To assign a value to each parameter, the algorithm
selects the value that optimizes the distance from previous
tests. We describe two possible measures of distance next.

A. Uncovered combinations distance

Uncovered combinations distance is computed as the
number of t-way parameter-value combinations in a test that
have not been included in previous tests. They may also
include combinations that a tester specifies to be covered
again, perhaps due to modifications to the system under
test. In this instantiation, we give preference to lowest order
remaining combinations. For instance, we give preference
to selections that cover the largest number of untested pairs
of parameter-value combinations, followed by preference for
selections that cover the largest number of 3-way combina-
tions, up to n-way parameter-value combinations. Consider
the example in Figure 2, with input 2* (read as 4 parameters
have 2 possible values each) and two tests that have already
been generated. The two tests cover twelve 2-way, eight 3-
way, and two 4-way combinations.

Assume that the first two tests already exist and we are
generating the 37¢ test shown in Figure 2. To construct a
next test, we begin by randomly selecting a 2-tuple that
has not previously been included in a test. The pair (1,6)
is selected (and labeled as “Step 1” in Figure 2). Random
parameter ordering is used for the remaining parameters
with order: f;, followed by f,. Values are assigned to
parameters by selecting one that covers the largest number
of remaining lowest order combinations (2-tuples in this
example). Secondary preference is given to covering the
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Figure 4.  Maximum minimal Hamming distance example.

next lowest order combinations (3-tuples in this example).
In the case of ties beyond covering combinations, random
tie-breaking is used. For f, values 2 or 3 may be selected.
Selecting either value results in a tie of one new 2-tuple
being covered. A second tie is encountered that one new
3-tuple will be covered when either value is selected. The
tie is broken at random and we select 3. Finally, a value for
fo is selected. Selecting the value 4 covers two new pairs,
while the value 5 covers only one new pair, so the value 4
is selected.

B. Maximum minimal Hamming distance

Maximum minimal Hamming distance is calculated on a
test-by-test basis as the number of different values between
each of the previous tests and the test under construction.
More specifically, Hamming distance between tests is the
number of parameters in the tests for which corresponding
values are different [22]. Minimal Hamming distance is
the minimal number of parameters for which corresponding
values are different among a set of tests. The maximum
minimal Hamming distance is then the maximum of the
minimal Hamming distances. Figure 4 provides an example.

To construct a test, each parameter is assigned a value
based on the maximum minimal Hamming difference among
the tests. In the case of a tie, the total Hamming distance is
used, followed secondarily by random tie-breaking. We only
permit selection of values if doing so results in a partial tuple
of a valid remaining test.

Consider the example for an input 23 (3 parameters have
2 values each) shown in Figure 4. We randomly select each
parameter one-at-a-time to assign values. In this example,
we use the random ordering: fa, fi1, fo. We review the
assignment of values to each of these parameters and label
them as Steps 1, 2, and 3 in Figure 4. Parameter f> has two
values to select from: 4 and 5. Value 4 occurs in the first
test and therefore is a distance of 0 from the first test; but

does not appear in the second test, so the distance is one.
Value 5 has no value in common with the first test, but has
one in common with the second. Since both have the same
maximum minimum Hamming distance we attempt to break
the tie with the total Hamming distance of each. However,
there is a second tie as both have a total Hamming distance
of 1. Therefore, we use random tie breaking and select 5.
Next, a value for f; is selected by calculating the distance
between the partially generated test and the two previous
tests. There are two values for fi: 2 and 3. If 2 is selected
(while fo=5 from the previous step), there is a difference
of one between the partially generated test and test one;
and also a difference of one between the partial test and
the second test. The selection of the value 3 results in two
different values than the first test, but no different values than
the second test. Value 2 is selected as it results in a minimal
distance of 1 which is larger than value 2’s minimal distance
of 0. Finally, a value of either 0 or 1 is selected for parameter
fo. Selecting value 0 results in a distance of 1 from the first
test and a distance of 2 from the second test. Selecting value
1 results in a distance of 2 from the first test and a distance
of 1 from the second test. There is a tie for the maximum
minimal Hamming distance. A primary tie break of selecting
the value with the total maximum Hamming distance results
in a second tie. The tie is then broken randomly and value
0 is selected.

C. Random

Random selection simply chooses a test at random that
contains combinations that have not yet been tested. The
random testing does not make any assumptions about the
system under test. Tests are generated uniformly at random.
We do not execute a test configuration more than once.
We include random testing here to evaluate whether random
testing may be as effective as our systematic tests.

IV. EMPIRICAL STUDIES

In many realistic testing environments, testers may not
have time to run entire test suites that cover all possible
parameter-value combinations, or even all lower strength ¢-
way parameter-value combinations. They may also be in an
environment in which partial test suites are run and then
testing needs to adapt. Therefore, the process here changes
the efficacy of “testing interactions” and measures fault
detection directly by assessing the times at which faults
are detected rather than waiting until the end of testing to
analyze all results.

We compare the rate of fault detection for the two
distance-based testing implementations and random testing.
While a large family of empirical studies is indeed necessary
to assess the value of the approaches on different types of
systems, we provide a preliminary measurement of whether
they can be useful and examine whether distance-based test-
ing warrants future study. Two experiments simulate systems



with randomly generated faults. Each of the simulations is
run five times to report the average of the results. A third
experiment examines distance-based testing applied to 41
versions of a Traffic Collision Avoidance System (TCAS)
module developed at Siemens Corporation that has been
used in previous testing studies. We introduce each of these
studies next.

A. Proof-of-concept Study 1: Smulations

In the following set of experiments, we model two systems
with different numbers of parameters, values, and faults.
A number of 2-way through 4-way faults are generated at
random for each simulation. We compare the two different
distance-based testing instantiations and the random testing
by rates of fault detection. We also measure the overlap
in the number of 2-way, 3-way, and 4-way combinations
covered in the respective tests.

We break the studies into two experiments with two goals
in mind. First, combinatorial testing has been criticized as
an ineffective testing method that offers little benefit over
random tests [23], [24]. However, this criticism [23], [24] is
supported only in small study and contradicts other existing
literature that reports on the success of combinatorial testing
(see [17] and therein). Another study [25], [26] reported
better performance for combinatorial testing and suggested
that its advantage over random testing increases with the
number of values per variable and interaction strength.
The high proportion of binary variables in [23] may thus
explain its finding no advantage for combinatorial methods.
Nonetheless, in the first experiment, we examine the points
of criticism, discuss scalability of these points, and show an
example that supports that combination testing can indeed
be useful, especially when higher strength combinations are
inclusive of testing.

A first simulation uses the testing method statically and
only one batch of tests are run. This allows us to more
closely compare our results to previous literature. According
to criticism, we would anticipate that the distance-based tests
and random tests will both cover a large number of ¢-tuples
and have comparable rates of fault detection. For instance,
in [23], two static combinatorial test suites are compared to
random tests. The authors report that between 94.5 to 99%
of 2-way combinations are covered in random tests; 97.66
to 99.99% of 3-way combinations; and 99.07 to 99.99%
of 4-way combinations. Additional work reports an 88%
overlap of pairwise combinations for random tests generated
for a subset of MSWord [24]. However, when compared
to a broader set of data, it is reasonable to anticipate that
distance-based tests will not overlap so substantially with
random tests and will indeed perform better than random
tests. For instance, Dalal et. al. report a smaller overlap
of 68.4 to 99.6% of 2-way combinations in random tests;
41.4 to 94.7% for 3-way combinations; and 10.6 to 88.4%
for 4-way combinations [27]. While criticism reports greater

overlap of combinations covered in random tests, they also
report close overlap in fault detection achieved by combi-
nation testing and random testing, suggesting that random
testing can be as competitive as combination testing [23],
[24]. Due to this controversy, we examine both the overlap
of combinations in the distance-based tests and random tests,
as well as, the rate of fault detection for each.

A second simulation moves away from previous literature
by using the testing method adaptively with our distance-
based testing process described earlier in Section §2. More
specifically, after each fault found, it is assumed that the
test is taken off-line to identify the the parameter-value(s)
causing the fault and that the parameter-value(s) are modified
to fix the problem. Combinations involving the modified
parameter-value(s) may be tested again. In the simulation,
after each fault is found with a test, a parameter-value is
randomly selected as the “cause” of the fault, it is “mod-
ified”, and all combinations involving that parameter-value
are added back to the list of combinations to cover in future
tests. In addition, it is possible in practice that modified
parameter-values actually result in new and different faults.
In the simulation, one new fault is injected with random
probability after each fault that is “fixed”.

In both experiments, the rate of fault detection is graphed
for the three testing instantiations. This includes (1) distance
based on combinations not previously covered; (2) distance
based on maximum minimal Hamming distance; and (3)
random tests that include untested combination(s).

1) Smulation 1: A batch of tests with input 352°: Here
we simulate a system with 3°2° parameters and values (read
as five parameters have three values and five parameters have
two values each). The distribution in the number of faults
includes a larger number of lower strength interaction faults
since reports in literature suggest that this is typically the
case [10], [11]. For instance, in [11], several systems are
studied and of the interaction faults reported, 6% to 47%
are 2-way faults, 2% to 19% are 3-way faults, 1% to 7%
are 4-way faults, and even fewer are faults beyond 4-way
interactions. The distribution that we use in this experiment
is: twenty 2-way, ten 3-way, and five 4-way interaction
faults. Since the interaction faults are randomly generated
and all three algorithms that generate tests involve some
randomization, we run the simulation five times for each
experiment and report the average of the runs.

Figures 5-(a-c) show that the rate of fault detection is
better with the distance-based test suites. Uncovered combi-
nations distance tests have the quickest rate of fault detection
for 2-way, 3-way, and 4-way interaction faults, followed by
tests generated with maximum minimal Hamming distance.
Random tests are much less effective. For instance, uncov-
ered combinations distance testing finds all 2-way interaction
faults in 15 tests, maximum minimal Hamming distance
tests in 25 tests, and random tests in 441 tests. The 3-
way interaction faults are found in 35 tests with uncovered
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Figure 5.

combinations distance, 90 tests with maximum minimal
Hamming distance, and in 2,340 tests with random tests.
The difference between the distance-based tests and random
tests further grows when 4-way interactions are considered.
Uncovered combinations distance testing uses 66 tests to find
all 4-way interaction faults, maximum minimal Hamming
distances uses 263, and random testing uses 4,977 tests to
find these same faults.

The overlap of parameter-value combinations in distance-
based tests and random tests is strongest in the earliest tests,
but quickly tapers off as more tests are run. For instance,
we examine one sample test suite for each of the three
types of test suites used. Table | shows the percentage of
t-tuples covered in each type of test suite after 10, 50,
100, 250, 500, 750, and 1,500 tests. The random tests
typically cover many 2-way, 3-way, and 4-way combinations
in the earliest tests, but the coverage slows and ultimately,
more than ten times as many tests are needed to cover all
combinations with random tests as compared to distance-
based tests. In addition, the last row of Table | shows the
number of tests needed to cover each of the ¢={2,3,4}
sized tuples of parameter-value combinations for each of
the three testing strategies. Not surprisingly, the rate of fault
detection is similar to this overlap - distance-based tests
locate faults significantly sooner than random tests. This
discrepancy scales significantly as the strength of parameter-
value combinations increases. The results are similar to
previous literature of combination testing in (see [17], [27],
[11] and therein). We continue with an experiment that
examines the adaptive use of distance-based testing.

Rate of interaction fault detection for two simulations.

2) Smulation 2: Adaptive testing with input 21°: In this
second simulation, we model a system with ten parameters
that can take on one of two possible values each. Thirty-five
interaction faults are initially generated at random: fifteen
2-way faults, ten 3-way faults, and ten 4-way faults. Each
of the three adaptive testing approaches are run. When
any of these tests find an interaction fault, we randomly
select a parameter-value as the “cause” of the fault and
assume that it would be fixed by developers. We inject a
new 2-way fault involving this parameter-value with 10%
probability since modifications sometimes introduce new
faults in practice. We then require that all combinations
involving this parameter-value be tested again. Since this
simulation involves randomization, we run each of the three
algorithms five times and report the average of the results.

Figure 5-(d-f) shows the rate of fault detection for each of
the three algorithms. Distance based on uncovered combi-
nations and maximum minimal Hamming distance produce
fairly similar results, sometimes one instantiation working
slightly better than the other. Random testing is less com-
petitive, especially towards the end as a considerable number
of tests are needed to find the last few faults. The difference
between the two distance-based tests and random tests
further magnifies when higher strength faults are considered.
For instance, uncovered combinations distance tests find
all 3-way interaction faults in 25 tests, maximum minimal
Hamming distance tests find all in 27 tests; however random
tests take 336 tests to find the ten 3-way faults. The trend
continues as uncovered combinations distance tests uncover
ten 4-way faults in 46 tests, maximum minimal Hamming



No. of tests | UC HD Random [V[e} HD Random ucC HD Random
t=2 t=2 t=2 t=3 t=3 t=3 t=4 t=4 t=4

10 93% 93% 39% 55% 56% 21% 25% 25% 11%
50 100% | 100% | 64% 100% | 98% 42% 80% 79% 25%
100 100% | 100% | 76% 100% | 100% | 53% 98% 94% 34%
250 100% | 100% | 90% 100% | 100% | 71% 100% | 100% | 51%
500 100% | 100% | 98% 100% | 100% | 84% 100% | 100% | 66%
750 100% | 100% | 99% 100% | 100% | 90% 100% | 100% | 75%
1500 100% | 100% | 100% 100% | 100% | 97% 100% | 100% | 88%
No. tests

for t-way

coverage 15 22 122 52 108 3814 144 554 7305

Table |

THE PERCENTAGE OF T-TUPLES COVERED IN TESTS GENERATED BY UNCOVERED COMBINATIONS DISTANCE, (UC), MAXIMUM MINIMAL HAMMING
DISTANCE TESTS (HD), AND RANDOM TESTS.

distance in 39 tests, and random in 782 tests. Indeed,
distance-based testing has a more effective rate of fault
detection than the random tests in both of our experiments
thus far.

B. Study 2: Traffic Collision Avoidance System

The Traffic Collision Avoidance System (TCAS) module
is a C program with 9 functions, 138 lines of code, and takes
a dozen parameters, each of which can take on numerous
values, shown in Table II. This system has been used in
independent work that studies dataflow and control flow-
based test adequacy criteria [28] and also regression test
selection [29]. We use it as an example here because it is an
actual system with 41 versions that are seeded with faults.
These 41 faulty versions were seeded by researchers at
Siemens Corporation with faults that they felt were realistic.
For instance, most fault seeding was done independently by
10 individuals; the faults reflect their experience with real
software applications.

We use equivalence classes defined in previous work to
partition the parameter-values into discrete options shown
in Table Il [30]. Using these parameters and values, there
are 230,400 possible combinations that can be run as tests
for each of the 41 versions of code, for a total of 9,466,400
possible tests. If all of these tests can not be run, distance-
based testing is a candidate for selecting a limited number
of tests to run.

We compare tests generated with distance measures of
uncovered combinations and maximum minimal Hamming
distance to randomly selected tests. Again, since randomiza-
tion is used to some degree in each of the algorithms that
generate test suites here, we run each five times and report
the averages of the five runs.

To determine whether each tests passes or fails, we
compare the results to an oracle. If a test fails, we examine
the root cause of the fault(s) by hand and also identify the
parameter-value combination(s) that triggered the fault(s).
For each test that we generate from the input parameters,
we compute the expected output with a model checker

[31], [30]. A model checker visits all reachable states in a
formal specification and verifies that requirements expressed
as temporal logic expressions are satisfied. If an expression
is not satisfied, the model checker attempts to generate
a counterexample - as states and variable values - that
prove the existence of the error. Tests can be generated by
negating specifications of result states, causing the model
checker to produce a counterexample. The counterexample,
which demonstrates how the result can be produced, is then
post-processed into executable test code. This procedure
introduces a certain degree of test case optimization. For
example, the model checker automatically filters invalid
combinations of parameter values as a result of constraints
embedded in the formal specification.

[ Parameter [ Values
Cur_vertical_sep 299, 300, 601
High_confidence true, false
Two_of_three_reports_valid | true, false
Own_tracked_alt 1,2
Other_tracked_alt 1,2
Own_tracked_alt_rate 600, 601
Alt_layer_value 0,123

Up_separation
Down_separation

0, 399, 400, 499, 500, 639, 640, 739, 740, 840
0, 399, 400, 499, 500, 639, 640, 739, 740, 840

Other_RAC no intent, do not climb, do not descend
Other_capability TCAS TA, other
Climb_inhibit true, false

Table 11

TCAS VARIABLES.

We run the TCAS code and find an average of 5.85
faults triggered by 2-way combinations of parameter-values
in each version. However, there is quite a bit of variation
in this number as 22 versions do not have any faults that
are triggered by 2-way interactions of parameters (all faults
in these versions are more complex and involve more than
2-way interactions to trigger faults). In addition, six versions
have only one 2-way interaction fault and one version has
56 2-way interaction faults. Therefore, we examine not only
the average case, but also some of the extreme cases as well
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Figure 6. Average rate of fault detection for the respective TCAS versions.

in regards to number of faults per version.

Figure 6-(a) shows the average rate of fault detection for
the 41 versions of TCAS. When testing actual software here,
random testing is quite competitive in the earliest tests but
is not competitive after approximately 45 to 80 tests are
run. Hamming distance appears to be more effective than
uncovered combinations distance than we have seen in our
previous simulations.

Version 14 of the TCAS code has 56 faults that are
triggered by 2-way interactions. We choose to highlight

this example because it has the largest number of 2-way
interaction faults among the different versions of the TCAS
code. Figure 6-(b) shows the rate of 2-way fault detection.
In the initial tests, random testing has a higher rate of fault
detection, however, it is still not competitive with the other
two distance-based tests when larger numbers of tests are
run.

Six versions of the TCAS module have only one fault
that is triggered by 2-way interactions of parameters. In
Figure 6-(c), we graph the average rate of fault detection
among these six versions. Uncovered combinations distance
and Hamming distance have fairly comparable rates of fault
detection, but that random test case selection is less effective.

While the distance-based testing works well in this ex-
ample to identify 2-way interaction faults, our initial exper-
iments with ¢ = {3,4,5} do not exhibit any clear pattern.
We find that uncovered combinations and Hamming distance
metrics sometimes appear to be more successful at finding
the first fault, however, maximizing distance with either of
these approaches is not particularly effective. We attribute
this to the characteristics of the faults - the numerous
faults injected into the TCAS system cluster around similar
parameter-values. In cases when faults cluster, these notions
of distance may not be adequate. We are currently studying
alternate notions of distance that do not penalize next tests
based on their proximity to a fault. One can expect such
an alternate notion of distance to serve well in locating
clustered faults. Indeed if faults are known a priori to
cluster, the appropriate notion of distance must take this
into account. Our current investigations are exploring such
alternate notions of distance.

V. THREATS TO VALIDITY

The main contribution of this paper is a new testing
approach of adaptive distance-based testing that can localize
interaction faults. Previous work on testing for interaction
faults has focused on constructing “small” test suites that
cover all ¢-way combinations of parameter-values [14], [15],
[16], [17], [32], [33], [19], [20], [21]. Empirical studies then
report the number of interaction faults found with these test
suites on a variety of systems [23], [6], [7], [8], [9], [10],
[11], [12], [24], [13]. The results available in these studies
are invalidated if only part of a test suite is run. No studies
have indicated whether the size of the test suite has an impact
on fault detection, nor what the rate of fault detection is. Our
method does not suffer from these two problems, since it
dispenses one-test-at-a-time, and the metric is not to find all
faults, but rather to find as many as possible in the budget
permitted (which is not known to us in advance). Indeed
the threats to validity that we face are shared by all of the
previous approaches, and we have mitigated some of them
by (1) not fixing a test suite size, and (2) changing the metric
to find faults as quickly as possible.



Three major threats remain in our work. A major threat to
internal validity is that only two proof-of-concept instantia-
tions of distance are used - uncovered combinations distance
and maximum minimal Hamming distance. Distance may be
defined in a number of other ways. For instance, distance
may be based on complexity (ie: select a ‘next’ test that
covers more complex parts of a system) or based on cost (ie:
select a “next’ test that incurs the lowest cost). This threat is
particularly raised in the TCAS example where we observe
sensitivity in our distance metric when faults cluster around
a small number of parameter-values. Therefore, our future
work clearly needs to address distance metrics for cases
in which interaction faults are typically clustered around
a small distribution of parameter-values. A major threat to
external validity is that a large family of empirical studies
is needed to further validate adaptive distance-based testing.
Our simulation injects faults with random probability after
each fault is fixed and may not be representative of other
systems. The TCAS example is also only one example.
Indeed, we conduct only a small initial set of experiments
here and a larger family of empirical studies would help
us to better understand the relationship of characteristics of
applications and distance metrics. A larger study would also
allow us to study the scalability of the distance approaches,
especially in comparison to random testing and with systems
that have larger input spaces. Further, if parameters are not
correctly identified for a system, or category partitioning
does not select appropriate values for parameters, then the
testing may not be effective. Based on the findings of these
studies, we believe that it is worthwhile to expand the scope
and study of adaptive distance-based testing to a broader
variety of actual systems and distance measures.

V1. CONCLUSIONS

Distance-based testing is a systematic testing technique
that may be used to augment current testing practices.
The methodology is an abstraction of static combination
strategies that have been proposed in the past. Instead of
generating test suites that are run as a whole, an adap-
tive one-test-at-a-time process is more flexible. Tests are
adaptively generated as systems can undergo modifications.
System components may be added, removed, modified or
temporarily unavailable and tests will adapt. The effective-
ness of the strategy is examined for an actual system and
in simulation by measuring the rate of fault detection of
dispensed tests.

As distance-based testing can be instantiated using a num-
ber of different combination strategies, we considered recent
controversy on combination strategies when conducting our
experiments. For instance, a specific example of distance-
based testing, implemented with “uncovered combinations”
has been reported with mixed reviews. The majority of
empirical studies report that it is a useful approach, while
other work suggests that it offers little benefit over random

testing. In addition, previous work only reports the number
of faults found with test suites of specific sizes that cover
all t-way interactions; they do not report how fast the test
suites localize faults, nor what happens if a tester can not
run an entire test suite. Therefore, the work here on distance-
based testing closely examines the overlap of combinations
covered by distance-based tests and random tests and also
compares their rates of fault detection. Two instantiations
of distance are studied as a proof-of-concept - “uncovered
combinations distance” and “maximum minimal Hamming
distance”. Our simulation results indicate that random testing
is effective only when one runs far too many tests, and
hence a comparison of random and structured schemes can
be misleading when one fixes a large number of tests in
advance to be run. For instance, our simulations indicate
that distance-based tests can be more effective in locating
faults sooner and in fewer tests than random tests, especially
when faults are more complex (ie: more parameter-values
interact to cause faults) and faults do not cluster around only
few parameter-values. In our experiments, the overlap of
combinations covered in the distance-based tests and random
tests is quite high in the earliest tests, but this finding does
not scale; more than 10 times as many random tests are
needed to cover all 2-way, 3-way, and 4-way combinations
in our experiments. In the TCAS experiment, distance-based
tests work well in finding 2-way interaction faults, but mixed
results are observed for 3-way, 4-way, 5-way testing. Indeed,
a closer look at the tests and data observe that the 3-way, 4-
way, and 5-way interaction faults involve many of the same
parameter-values. This suggests that further exploration of
distance metrics are needed for systems in which interaction
faults cluster around a smaller number of parameter-values.
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