Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions About   Site Map   Contact Us
 
Home A service of the U.S. National Library of Medicine®
 
 
Printer-friendly version
APP

APP

Reviewed May 2012

What is the official name of the APP gene?

The official name of this gene is “amyloid beta (A4) precursor protein.”

APP is the gene's official symbol. The APP gene is also known by other names, listed below.

Read more about gene names and symbols on the About page.

What is the normal function of the APP gene?

The APP gene provides instructions for making a protein called amyloid precursor protein. This protein is found in many tissues and organs, including the brain and spinal cord (central nervous system). Little is known about the function of amyloid precursor protein. Researchers speculate that it may bind to other proteins on the surface of cells or help cells attach to one another. Studies suggest that in the brain, it helps direct the movement (migration) of nerve cells (neurons) during early development.

Amyloid precursor protein is cut by enzymes to create smaller fragments (peptides), some of which are released outside the cell. Two of these fragments are called soluble amyloid precursor protein (sAPP) and amyloid beta (β) peptide. Recent evidence suggests that sAPP has growth-promoting properties and may play a role in the formation of nerve cells (neurons) in the brain both before and after birth. The sAPP peptide may also control the function of certain other proteins by turning off (inhibiting) their activity. Amyloid β peptide is likely involved in the ability of neurons to change and adapt over time (plasticity). Other functions of sAPP and amyloid β peptide are under investigation.

How are changes in the APP gene related to health conditions?

Alzheimer disease - caused by mutations in the APP gene

More than 50 different mutations in the APP gene can cause early-onset Alzheimer disease, which begins before age 65. These mutations are responsible for less than 10 percent of all early-onset cases of the disorder.

The most common APP mutation changes one of the protein building blocks (amino acids) in the amyloid precursor protein. This mutation replaces the amino acid valine with the amino acid isoleucine at protein position 717 (written as Val717Ile or V717I). Mutations in the APP gene can lead to an increased amount of the amyloid β peptide or to the production of a slightly longer and stickier form of the peptide. When these protein fragments are released from the cell, they can accumulate in the brain and form clumps called amyloid plaques. These plaques are characteristic of Alzheimer disease. A buildup of toxic amyloid β peptide and amyloid plaques may lead to the death of neurons and the progressive signs and symptoms of this disorder.

hereditary cerebral amyloid angiopathy - caused by mutations in the APP gene

At least six mutations in the APP gene have been found to cause hereditary cerebral amyloid angiopathy, a condition characterized by stroke and a decline in intellectual function (dementia), which begins in mid-adulthood. These mutations change single amino acids in the amyloid precursor protein. All of the APP gene mutations that cause hereditary cerebral amyloid angiopathy lead to changes near the beginning of the protein sequence. Each of these mutations causes a different type of the condition. The Dutch type, the most common of all the types, is caused by the replacement of the amino acid glutamic acid with the amino acid glutamine at position 22 in the protein sequence (written as Glu22Gln or E22Q). The Italian type and Arctic type are also caused by changes to glutamic acid at position 22. In the Italian type, glutamic acid is replaced with the amino acid lysine (written as Glu22Lys or E22K) and in the Arctic type, glutamic acid is replaced with the amino acid glycine (written as Glu22Gly or E22G). The Flemish type is caused by replacement of the amino acid alanine with glycine at position 21 (written as Ala21Gly or A21G). In the Iowa type, the amino acid aspartic acid is switched with the amino acid asparagine at position 23 (written as Asp23Asn or D23N). The Piedmont type of hereditary cerebral amyloid angiopathy is caused by the replacement of the amino acid leucine at position 34 with the amino acid valine (written as Leu34Val or L34V).

The result of all of these mutations is the production of an amyloid β peptide that is more prone to cluster together (aggregate) than the normal peptide. The aggregated protein forms amyloid deposits known as plaques that accumulate in the blood vessels of the brain. The amyloid plaques replace the muscle fibers and elastic fibers that give blood vessels flexibility, causing the blood vessels to become weak and prone to breakage. In the brain, such a break causes bleeding (hemorrhagic stroke), which can lead to brain damage and dementia. Amyloid plaques in specific parts of the brain can interfere with brain function, leading to seizures, movement problems, and other neurological features in some people with hereditary cerebral amyloid angiopathy.

Where is the APP gene located?

Cytogenetic Location: 21q21.3

Molecular Location on chromosome 21: base pairs 27,252,860 to 27,543,445

The APP gene is located on the long (q) arm of chromosome 21 at position 21.3.

The APP gene is located on the long (q) arm of chromosome 21 at position 21.3.

More precisely, the APP gene is located from base pair 27,252,860 to base pair 27,543,445 on chromosome 21.

See How do geneticists indicate the location of a gene? in the Handbook.

Where can I find additional information about APP?

You and your healthcare professional may find the following resources about APP helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the APP gene or gene products?

  • A4_HUMAN
  • AAA
  • ABETA
  • ABPP
  • AD1
  • amyloid beta-peptide
  • amyloid beta-protein precursor
  • amyloid precursor protein
  • APPI
  • cerebral vascular amyloid peptide
  • CVAP
  • PN2
  • PN-II
  • protease nexin 2
  • protease nexin-II

Where can I find general information about genes?

The Handbook provides basic information about genetics in clear language.

These links provide additional genetics resources that may be useful.

What glossary definitions help with understanding APP?

References (19 links)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? in the Handbook.

 
Reviewed: May 2012
Published: March 4, 2013