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Abstract

Natural language processing (NLP) enables
researchers to extract large quantities of in-
formation from free-text that otherwise could
only be extracted manually. This informa-
tion can then be used to answer clinical re-
search questions via statistical analysis. How-
ever, NLP extracts information with some de-
gree of error – the sensitivity and specificity
of state-of-the-art NLP methods are typically
80-90% – and most statistical methods assume
that the information has been observed “with-
out measurement error”. As we show in this
paper, if an NLP-derived smoking status pre-
dictor is used, for example, to estimate the
risk of smoking-related cancer without any ad-
justment for measurement error, the estimate
is biased. Conversely, if a smaller subset of
manually extracted data is used alone, then
the estimate is unbiased, but imprecise, and
the corresponding inference methods tend to
have low power to detect significant relation-
ships. We propose using a statistical mea-
surement error method – a maximum likeli-
hood (ML) method – that combines informa-
tion from NLP with manually validated data
to produce unbiased estimates that also have
good power to detect a significant signal. This
method has the potential to open-up large free-
text databases to statistical analysis for clinical
research. With a case study using smoking sta-
tus to predict smoking-related cancer and sim-
ulations, we demonstrate that the ML method
performs better under a variety of scenarios
than using either NLP or manually extracted
data alone.

1 Introduction

Free-text fields are common in medical databases,
for example clinical narratives (such as discharge
summaries and progress notes) constitute approxi-
mately 10% of the fields in the database in our study.
The notes often contain valuable information that
may not be captured anywhere else in the structured
part of the database and which may be essential to
answering a research question. Traditionally, med-
ical abstractors manually extract variables from un-
structured text, which is a time- and labor-intensive
process, and prone to subjectivity. Alternatively,
natural language processing (NLP) methods can as-
sist abstractors and greatly improve their efficiency,
even replacing them in some cases. For example,
the SHARPn project combines normalized NLP-
derived observations with structured data for high-
throughput phenotyping (Rea S, Pathak J, Savova
G, Oniki TA, Westberg L, Beebe CE, Tao C, Parker
CG, Haug PJ, Huff SM, Chute CG, 2012). NLP
applications are successful in many tasks, for ex-
ample, assisting medical coding (Crowley RS, Cas-
tine M, Mitchell K, Chavan G, McSherry T, Feld-
man M, 2010), detecting complications (Murff HJ,
FitzHenry F, Matheny ME, Gentry N, Kotter KL,
Crimin K, Dittus RS, Rosen AK, Elkin PL, Brown
SH, Speroff T, 2011; Wang X, Hripcsak G, Marka-
tou M, Friedman C, 2009), and automatically clas-
sifying clinical records (Wilcox AB, Hripcsak G,
2003). The state-of-the-art performance of NLP ap-
plications ranges from high 80s to high 90s for both
recall (sensitivity) and precision (positive predictive
value). Specificity is rarely used for NLP tasks due
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to the fact that it is practically impossible to enu-
merate true negatives. However, it can be used for
classification problems because in such cases, it is
reasonable to expect that we can enumerate true neg-
atives. The levels of recall and precision of current
NLP tools are quite satisfactory for many practical
purposes. Due to the seemingly infinite number of
ways clinicians describe clinical events, attempting
to increase the accuracy measures above 96 or 97%
is possible, but faces the problem of diminishing re-
turns.

NLP extracts information with a degree of error,
and this poses a problem to researchers who wish to
use NLP-derived information as a predictor in a sta-
tistical model, as almost all statistical methods re-
quire that predictors are measured without error. If a
predictor that has been measured with error is used,
for example, in a regression model without adjusting
for the measurement error, the estimates of the out-
come suffer from the “triple whammy” of measure-
ment error: the estimates of the outcome are prone to
bias, the associated statistical hypothesis tests often
suffer from lack of power, and important relation-
ships between the predictors and the outcome are of-
ten obscured by the noise of the measurement error
(Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu
CM, 2006).

Given the challenges of incorporating information
from free-text into a statistical analysis, we are left
with two possible sources of information: informa-
tion extracted via NLP and manually extracted data.
Our previous research has shown, and we demon-
strate again in this study, that if NLP-derived pre-
dictors are used in a statistical model without adjust-
ing for measurement error, the estimates of the out-
come are subject to substantial bias, even when NLP
delivers a sensitivity and specificity of 90%. For
instance, when estimating the odds ratio (OR) risk
of smoking-related cancer for people who smoke
versus those who do not, the estimated increased
of risk of cancer when using NLP-derived predic-
tor of smoking status is between 20-50% less than
the true risk, depending on the level of specificity,
sensitivity, sample size and other factors (Callaghan
FM, Jackson MT, Demner-Fushman D, Abhyankar
S, McDonald CJ, 2012).

According to our simulations, it appears that, in
almost all cases, neither manually extracted data

alone nor NLP data alone produce estimates of risk
that are both unbiased and yet powerful enough to
detect significant relationships between the predic-
tor and the outcome. Therefore, it would be useful
to have a method that can leverage both the “accu-
racy” of the manually validated data and the power
associated with the large sample size of the NLP-
derived data. Fortunately, there are statistical meth-
ods for handling predictors that are measured with
error, such as the NLP-derived smoking status pre-
dictor, and adjusting for that error. Our hypothe-
sis was that if these methods were adapted to NLP-
derived information and combined with manually
extracted data, we could produce less biased esti-
mates of risk of disease, and more powerful test pro-
cedures (i.e. tests that detect true differences more
often). We propose a validation-adjusted NLP max-
imum likelihood (ML) method, new to the NLP lit-
erature, to control for misclassification rates in the
NLP-derived predictor, and we illustrate the use of
the ML method by using the NLP-derived predictor
of smoking status (smoker/non-smoker) to predict
smoking-related cancer risk (smoking-related can-
cer/no smoking-related cancer). Using this method,
we estimate that the risk of smoking-related can-
cers for smokers compared to non-smokers. We also
demonstrate in various simulation scenarios that the
ML method performs better than methods based on
manually extracted data alone or NLP-derived in-
formation alone, under a range of sensitivities and
specificities for the NLP-derived predictor.

2 Methods

Our overall hypothesis is that using NLP-derived in-
formation via the ML method produces estimates
of the outcome that are superior to estimates based
on the manually extracted subset of the data alone.
We formulated a validation-adjusted NLP maximum
likelihood model to address the problem of misclas-
sification in the predictor, i.e. subjects classified as
being smokers by NLP when in fact they are non-
smokers, and vice versa.

2.1 ML method

When a discrete predictor is measured with error, the
problem is referred to in the statistical literature as
misclassification. The effects of misclassification on
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estimating the risk have been explored by a number
of researchers (Gustafson P, 2004; Buonaccorsi JP,
Laake P, Veirød M, 2005) and several methods have
been proposed to address these problems (Cook JR,
Stefanski LA, 1994; Kuchenhoff H, Mwalili SM,
Lesaffre E, 2006; Carroll RJ, Stefanski LA, 1990;
Gleser LJ, 1990; Stefanski LA, Buzas JS, 1995;
Buzas JS, Stefanski LA, 1996; Stefanski LA, Car-
roll RJ, 1987). Maximum likelihood (ML) methods
are a natural fit for misclassification of a binary pre-
dictor of a binary outcome, because the problem can
be couched in terms of a series of relatively sim-
ple binomial probabilities relating the outcome Y to
the “true” predictor, X , and the true predictor to the
NLP-derived predictor. While some recent progress
has been made in the field of political science to ac-
count for misclassification error in text-based doc-
ument categorization (Hopkins D, King G, 2010;
Benoit K, Laver M, Mikhaylov S, 2009; Grimmer
J, Stewart BM, 2012), to our knowledge, modern
statistical misclassification methods have not been
applied to NLP-derived variables in order to predict
estimates of risk for clinical research.

The ML method uses NLP-derived values of the
predictor variable, W 1 (in our example this is 1
if NLP identifies that the subject is a smoker, and
0 otherwise), the outcome of interest Y (smoking-
related cancer, yes/no), and a small subset is ran-
domly selected to act as a validation sample. The
“true” values of the predictor variable (X) for the
validation sample are abstracted based on manual re-
view of the free-text notes. The main purpose of the
validation sample is to enable estimation of the rela-
tionship between the true predictor (smoking status)
and the NLP-determined value of the predictor.

The primary quantity of interest is the odds ra-
tio (OR) of the outcome. This is a common quan-
tity of interest in epidemiological studies that mea-
sures the extra risk of having the outcome for sub-
jects with a risk factor compared to those without. In
our example, the OR represents the extra risk of hav-
ing smoking-related cancer for smokers compared to
non-smokers.

For the ML method, the user has to supply the fol-
lowing variables in order to estimate the OR: 1) the

1Following the notation of (Carroll RJ, Ruppert D, Stefanski
LA, Crainiceanu CM, 2006)

overall proportion of subjects who are positive for
the predictor (for example, the proportion of smok-
ers); 2) the number of patients whose free-text re-
ports were manually validated; 3) the overall sample
size (N ); and 4) the number of subjects broken down
by outcome (yes/no), predictor (yes/no), and NLP
predictor (yes/no) for the validation sample, and by
outcome (yes/no) and NLP predictor (yes/no) for the
non-validation sample.

We performed several simulations in order to
compare the performance of the ML method to the
estimates based on manually-validated data alone.
We also included the estimates based on NLP data
alone. The non-ML estimates were obtained using
the Woolf large sample method (Woolf B, 1955). We
designed the simulations to investigate how the es-
timates of the risk change with variations in NLP
sensitivity and specificity, the size of the validation
sample, and the magnitude of the odds ratio. The
simulations were repeated for two values of the odds
ratio representing small increased risk (OR=1.2 or
20% increased risk) and large increased risk (OR=2
or 100% increased risk), and three values of sensi-
tivity and specificity (0.6, 0.8, and 0.9). The quanti-
ties that were fixed were the proportion of smokers
(20%), the overall sample size (N = 20, 000), the
size of the validation sample (5% or nv = 1000),
and the baseline proportion of smoking-related can-
cers among the non-smokers (5%). The fixed values
for sample size and prevalence of smoking-related
cancers among non-smokers were based on the esti-
mates from our study data. The proportion of smok-
ers in the case study was approximately 30%, but we
chose a value of 20% for the simulations to reflect
the actual prevalence of smokers in the US, which
was 19.3% in 2010 (Centers for Disease Control and
Prevention, 2011).

A key assumption of our ML model (but not of
ML models in general) is non-differential measure-
ment error: once the true value of the predictor
is known, then the NLP estimate of that predic-
tor is assumed to not contain any extra informa-
tion about the outcome. Non-differential measure-
ment error is a common assumption among mea-
surement error models and is a plausible assump-
tion for our case study. In this setting, the non-
differential measurement error assumption means
that once a given patient’s true smoking status is
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known, their NLP-derived smoking status is irrele-
vant for predicting their risk of developing smoking-
related cancer. Further details about the ML method,
as well as the R macro used to fit the model and esti-
mate the parameters, are available from the first au-
thor.

2.2 NLP methods

We tested the method with a case study that used
NLP-derived patient smoking status to predict the
risk of developing smoking-related cancer. We ap-
plied rule-based NLP methods to the free-text hos-
pital discharge summaries to extract each patient’s
smoking status. Our rule-based smoking extraction
was based on the i2b2 observation that discharge
summaries express smoking status using a limited
number of textual features (e.g., “smok”, “tobac”,
“cigar”) in the Social History section (Uzuner O,
Goldstein I, Luo Y, Kohane I, 2008). We first manu-
ally reviewed a small set of discharge summaries to
put together a dictionary of smoking-related terms.
We included terms that indicated positive smoking
status, such as “smoker” and “pack-years” as well
as those that indicated negative smoking status, such
as “denies smoking” and “no history of tobacco”.
Our data dictionary had a total of 82 positive and 20
negative terms. We also found two pseudo-positive
patterns: “smoker in the household” and “smoking
crack”. We then used regular expressions contain-
ing these terms to search the entire corpus of dis-
charge summaries in order to assign a smoking sta-
tus to each patient. We initially defined a smoker as
someone who currently smoked or had a history of
smoking in the past, a non-smoker as someone with
specific information about having no current or past
smoking history documented in the note, and an un-
known as someone who had no documentation about
smoking, either positive or negative. We made the
assumption that the subjects with unknown smok-
ing status as determined by NLP were non-smokers
because the absence of their smoking status in the
narrative likely implied that smoking was not an is-
sue for that patient. For this reason and for practical
purposes, we created a binary variable (smoker ver-
sus non-smoker) by including the patients with un-
known smoking status in the non-smoker category.
This conversion allowed us to use sensitivity and
specificity as our measures of accuracy.

2.3 Data

The case study was based on information extracted
from the Multiparameter Intelligent Monitoring in
Intensive Care (MIMIC-II) database (Saeed M, Lieu
C, Raber G, Mark RG, 2002), which is maintained
by the Laboratory for Computational Physiology at
the Massachusetts Institute of Technology (MIT).
MIMIC-II contains de-identified data from patients
hospitalized in the intensive care unit (ICU) at Beth
Israel Deaconess Medical Center from 2001 to 2008.
The database includes clinical information in both
structured and unstructured formats. Structured
data include patients’ discharge ICD-9 codes. Un-
structured data include physician narrative discharge
summaries containing a wealth of information, in-
cluding the patient’s smoking status. There were a
total of 18207 subjects in the database, and 739 of
those had their smoking status manually validated.

We used data from the National Cancer Institute
to define smoking-related cancers (National Cancer
Institute, National Institutes of Health, 2012): lung,
esophagus, larynx, floor of mouth, mouth (other),
oropharynx, hypopharynx, kidney, bladder, pan-
creas, stomach, cervix, and acute myeloid leukemia.
We classified patients having any of these codes in
their list of discharge diagnoses as having smoking-
related cancer.

3 Results

3.1 Case Study

What is the added value of incorporating the NLP
information (W ), once we have information on the
cancer-status Y and the subset of the predictor that
has been validated X , smoking-status? It may be
reasonable to think that all the useful information
about the risk is contained in the variables that we
know “without error” (Y and X), and adding the
NLP-derived information only adds “noise” to our
estimates. However, this is not the case: the NLP
information greatly improves the accuracy of the es-
timates (see Figure 1). When we calculated the esti-
mates of risks using only the 739 validation sam-
ple values (that we know without error), the esti-
mate of the odds ratio was 2.67 (very similar to the
ML estimate of 2.65). This means that under ei-
ther method smokers are estimated to have approxi-
mately 2.7 times the risk of having smoking-related

21



●

● ●

1
2

3
4

5

O
dd

s 
R

at
io

●

● ●

Confidence intervals for odds ratio of smoking−related cancer

2.17

2.67 2.65

NLP data only Validation alone ML

O
dd

s 
R

at
io

N = 18207 N = 739 N = 18207

Figure 1: Results from the analysis where smoking sta-
tus was used to predict smoking-related cancer. We com-
pare 3 different methods to predict smoking-related can-
cer: 1) NLP-derived smoking status only, 2) smoking sta-
tus taken from the validation sample only, and 3) the ML
method that use the validation and NLP information. The
non-ML estimates are estimated using Woolf’s method
(Woolf B, 1955).

cancer compared to non-smokers.

However, the confidence interval based on the val-
idation sample ranges from 1.4 to 5.0, which is sub-
stantially wider than the confidence interval gen-
erated using the ML method (95% CI 2.2 to 3.1).
In other words, based only on the manually ex-
tracted data, the range of plausible values for risk of
smoking-related cancer for smokers is 1.4 to 5 times
the risk of non-smokers, whereas the ML method es-
timates the additional risk of smoking to be between
2.2 to 3.1 times the risk of a non-smoker. Conse-
quently, we can conclude that the NLP-derived vari-
able contains information that is essential to incor-
porate into the estimate. Without it, we lose power
and the resulting confidence interval is very wide.
Although we may get a “good” (unbiased) estimate
for the odds ratio itself, if we were to only use the
subset of the data that has been manually-validated,
we may lose significance and accuracy. Note that,
based on the validation sample, the sensitivity and
specificity for the NLP smoking predictor were good
(0.84 and 0.95, respectively), and similar to values
reported in the literature.

3.2 Simulations

The results for the simulations are given in Table 1.
In general, the estimate of the odds ratio (ÔR) based
on the validation sample was similar to the ML es-
timate in most cases. For instance, when the sensi-
tivity and specificity are high (0.9) and the true odds
ratio is 2, the mean estimate of the OR across 1000
replications using the ML method, is 2.00. The cor-
responding mean estimate using only the data from
the validation sample is 2.05. The mean estimate of
the odds ratio based on NLP data alone is the most
biased (1.64) and this is the case in all the simu-
lation scenarios. Based on the goal of minimizing
bias alone, there is little difference between the ML
and validation-data estimates. However, the stan-
dard deviation of the estimate of the odds ratio or
“standard error” (SE) is much higher for the valida-
tion estimates than for ML (0.30 versus 0.09). Con-
sequently, the ML method detects significant differ-
ences more often than validation alone: again, for
high sensitivity and specificity and OR=2, the ML
method is able to detect the difference in risk be-
tween the smokers and non-smokers 100% of the
time, whereas the validation data estimates only de-
tect a difference 62% of the time. The coverage
percentage (the percent of times that the 95% con-
fidence interval includes the true value) should be
close to 95, and we see that this is true for both meth-
ods. In short, for high sensitivity and specificity, the
ML method achieves about the same or better bias
than the validation-only method, but, because it has
lower variability, the ML method detects significant
differences far more often than estimates based on
manually validated data alone. Estimates based on
NLP alone, are clearly the most biased.

When the specificity of the NLP process is low
(0.6), the ML method underestimates the true OR
even when the sensitivity is high (0.9): for OR = 2,
the mean values of ÔR are 2.05 and 1.81 for the
validation sample and ML methods, respectively.
This is unsurprising, since with low specificity, the
ML method must allow for large numbers of non-
smokers being misclassified as smokers; In fact,
with low specificity, the majority of subjects clas-
sified as smokers by the NLP method will be non-
smokers. This effect generates a “bias towards the
null”, which translates into a tendency to systemati-
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cally underestimate the odds ratio. However, the ef-
fect seems modest in these cases. Estimates based
only on the manually extracted values do not ex-
perience such an effect; again, this is unsurprising,
since this method is independent of the NLP pro-
cess. However, the ML method generally produces
estimates that are known with greater accuracy, in a
familiar phenomenon of the bias-variance trade-off:
sometimes a small amount of bias is a good price
to pay for knowing an estimate with much greater
accuracy. Therefore, again for specificity=0.6 and
sensitivity=0.9, the method based on the manually
extracted data detected a significant difference 64%
of the time whereas the ML method detected a sig-
nificant difference 100% of the time. Generally, the
advantage in power of the ML method has over the
method based only on the manually extracted data
should be worth the price of the small bias in the
estimate of the risk. By contrast, NLP-method alone
produces an estimate that is highly biased (for exam-
ple, for sensitivity=0.9, specificity=0.6, ÔR = 1.30
where OR = 2) and seldom includes the correct
odds ratio in the confidence interval (in our simu-
lations the coverage percentage is often zero).

We see similar results for OR = 1.2, except that,
as expected, the ML method detects a significant dif-
ference less often when the true effect size is smaller.
However, the ML method still performs better than
the other approaches.

In summary, regardless of sensitivity and speci-
ficity, the ML method achieves about the same level
of bias as the method based on the validation sam-
ple. However, because the ML method is based on a
large sample size and has lower variability, the ML
method detects significant differences far more of-
ten than estimates based on manually validated data
alone.

4 Discussion and Conclusion

Extraction of data from free-text notes in a large
dataset can be limited by the time- and labor-
intensive nature of data abstraction; it is frequently
only practical to manually abstract data from a small
fraction of the dataset. In such a case, statistical
techniques suffer from the small sample size, lead-
ing to underpowered tests and imprecise estimates.
However, when such data are used in conjunction

with an NLP algorithm applied to the entire dataset,
the statistical tests become considerably more pow-
erful, although at the cost of possibly introducing a
small amount of bias.

Patients’ smoking status was a good candidate for
this method as it is an essential variable in analyses
of many diseases, and is usually recorded only in
the patients’ admission and discharge summaries. In
most epidemiological studies, adjusting for smoking
status is considered a prerequisite for the analysis to
be considered plausible. This variable is so impor-
tant that one of the first tasks in the i2b2 NLP chal-
lenges was extraction of the patients’ smoking sta-
tus from discharge summaries (Uzuner O, Goldstein
I, Luo Y, Kohane I, 2008). The best systems in the
i2b2 evaluation achieved microaveraged F-measures
(a harmonic mean of recall and precision) above
0.84. Subsequent studies report improvements in
smoking status detection up to almost 90% F-score
(Sohn S, Savova GK, 2009).

We made the assumption that the NLP-derived
smoking predictor was binary, i.e. patients were
classified as being either smokers or non-smokers,
and any patients categorized as “unknown” were in-
cluded in the non-smoker category. This assump-
tion is reasonable since absence of information in
the clinical narrative about smoking status is likely
to signal that smoking is not an issue for that pa-
tient. However, we are looking to extend this
method to handle multinomial predictors: for ex-
ample, smoker, non-smoker, and unknown smoking
status.

In summary, using the ML misclassification
method will enable researchers to incorporate NLP-
derived variables into their analysis and thereby
largely avoiding the problems of bias and loss of
power. Our method provides a new source of pre-
dictors for research by accounting for the error in
NLP variable extraction.
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