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EXECUTIVE SUMMARY 
 

In recent years there has been increased interest in a more thorough understanding and 

accounting of the benefits of conservation practices to fish and wildlife, particularly in 

response to the significant increase in funding for conservation programs that was 

authorized under the 2002 Farm Bill.  In response the Conservation Effects Assessment 

Project (CEAP) was initiated by the NRCS, Agricultural Research Service (ARS), and 

Cooperative State Research, Education, and Extension Service (CSREES) to help better 

inform society of the likely benefits Farm Bill conservation program funding. The 

original goals of CEAP were to establish the scientific understanding of the effects of 

conservation practices at the watershed scale and to estimate conservation impacts and 

benefits for reporting at national and regional levels. Early CEAP investigations revealed 

that the cumulative benefits of NRCS conservation practices to aquatic communities is 

poorly understood and further scientific investigation is needed.  The Great Lakes CEAP 

Project grew out of this realization and seeks to provide the science needed to assess and 

forecast the benefits of NRCS conservation practices to stream fish communities to help 

advance strategic conservation of freshwater biodiversity across the agricultural regions 

of the southern Great Lakes. 

 
The overall goal of our project, which consists of two phases, is to provide decision 

makers with information to determine the limits of ecological improvement across the 

southern Great Lakes and models that use this information to establish realistic desired 

biological conditions.  Phase 1 of our project, which is the focus of this report, is 

concentrating on using the predictive capabilities of SWAT to help generate the 

information needed for developing realistic biological expectations.  Phase 1 consists of 

two primary objectives; 1) develop a fine-resolution SWAT model across the agricultural 

regions of the southern Great Lakes, and 2) develop models that predict fish community 

metrics based on SWAT output variables and other relevant watershed and local 

catchment variables. 

 

Collectively the results our project successfully demonstrated the ability develop fine 

resolution SWAT model predictions across a large geographic area and to quantitatively 

link the resulting water quality and flow variables to fish community indicators to 

generate spatially explicit predictions.  Our ability to, in essence, extend the predictive 

capabilities of SWAT to biological endpoints and also incorporate constraints not 

addressed by SWAT or NRCS conservation practices allowed to begin developing more 

realistic expectations to guide strategic conservation across the project area.  This will 

help us to achieve our objectives in Phase 2 of the Great Lakes which is seeking to 

develop realistic goals (expectations) for fish community conditions in priority 

subwatersheds of the project area and working with partners to develop detailed strategies 

for achieving those goals. 

 

Demonstrating the ability to predict fish community metrics from SWAT model outputs 

has the potential to significantly advance strategic conservation in the Great Lakes and 

beyond.  Our results consistently demonstrated the importance of seasonal water quality 

and flow parameters, particularly the spring rising period, rather than average annual 
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conditions, which are more typically available and thus used by scientist to elucidate 

relations of these parameters to biological endpoints.  The detailed and spatially 

comprehensive data provided by SWAT and the other predictors allowed us to assess and 

map likely fish community conditions and thresholds beyond sampled locations.  Our 

models and maps exhibited extreme spatial heterogeneity in biological expectations under 

both current and historic conditions.  This finding suggests that we should not hold all 

streams to the same standard even within a relatively small watershed or region, which is 

somewhat contrary to certain methods used to establish goals for fish community 

endpoints in streams. 

 

Equally important to the temporal and spatial issues described above is the fact that the 

SWAT model also allows you to assess past, present, and potential future conditions 

based on different land use, land cover and management scenarios.  The demand for 

demonstrating the benefits of conservation, particularly to biological endpoints, has 

increased sharply in recent years.  Monitoring program and the associated retrospective 

analyses are useful for addressing this demand.  However, we argue that equally 

important to these retrospective assessments are modeling efforts that forecast the likely 

benefits of conservation.  The ability of SWAT to forecast future instream habitat and 

biological conditions based on different amounts and configurations of agricultural BMPs 

is very appealing for conservation planning.  These management scenarios provide a 

means of developing management alternatives needed for developing truly realistic 

desired conditions by allowing decision makers to simultaneously evaluate ecological 

benefits relative to funding needs and constraints and potentially other socioeconomic 

costs in terms of agricultural production, farm income, and other valued services.  As 

stated earlier, having the ability to extend such forecasts to biological endpoints, like fish 

communities, provides organizations like The Nature Conservancy the ability to identify 

where we can make meaningful improvements in freshwater biodiversity and help secure 

the necessary resources and attention needed to bring about those improvements.   

 

Despite all of the realized and potential benefits of our project we must also be mindful of 

its limitations.  We address these limitations by offering suggestions on how we might 

address them to significantly improve our ability to develop realistic biological 

expectations (goals) and forecast the likely benefits of future conservation scenarios to 

help develop effective strategies for achieving those goals.  
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INTRODUCTION 

Agriculture, through its production of food, materials for clothing and shelter, and jobs, 

plays an important role in improving the quality of life for people across the United 

States, including those residing in the Great Lakes Region.  In economic terms alone the 

benefits of agriculture to the Great Lakes Region are immense. The 2007 Census of 

Agriculture reported that there were nearly 126,000 farms in the region and that the value 

of agricultural sales was about $14.5 billion with about half of this total generated from 

crop production and the other half from livestock production. About 67 percent of the 

farms in the Great Lakes Region primarily raise crops, about 26 percent are primarily 

livestock operations, and the remaining 7 percent produce a mix of livestock and crops. 

The five Great Lakes also moderate the climate of coastal areas, improving production 

and creating microclimates that are ideal for specialty crops such as cherries, asparagus 

and wine grapes. These high-value specialty crops also lead to spin-off industries such as 

culinary festivals and beverage production that provide social benefits and further 

increase economic outputs and jobs related to recreation and tourism.  Unfortunately, the 

collective benefits of agriculture can sometimes have associated costs, particularly with 

regard to alteration of aquatic ecosystems, which also influence people’s quality of life 

and also highly valued by society and organizations like The Nature Conservancy. 

The effects of agriculture on aquatic ecosystems and freshwater biodiversity have been 

extensively studied and documented.  Studies have consistently shown that various 

practices associated with row-crop agriculture and livestock production; including 

vegetative clearing, soil compaction, water withdrawal, channelization, and irrigation can 

significantly alter flow regimes, physical habitat, energy flow, water quality and the plant 

and animal biota (FISRWG 2001; Richter et al. 1997; Waters 1995).  Major agricultural 

stressors include altered flow and thermal regimes and excess nutrients and sediments 

which affect 55% of the impaired waters in the United States (Allan 2004; Wells 1992).  

Collectively these changes in habitat lead to corresponding changes in the biotic 

communities and many recent studies have revealed connections between increased 

nutrients, sediments, and pesticides with changes in biological measures of algae, 

invertebrate, and fish communities (Frey et al. 2011; Hambrook-Berkman et al. 2010; 

Wang et al. 2007; Heiskary and Markus 2003; Cuffney et al. 2000; Rankin et al. 1999).  

Over the years farmers and state and federal governments have developed programs, 

policies, and funding mechanisms, like the Food Security Act of 1985 (aka the 1985 

Farm Bill) to improve the sustainability and profitability of agriculture and to also reduce 

the impacts of agriculture on fish and wildlife habitat. 

Passage of the 1985 Farm Bill authorized billions of dollars (US$17 billion in 2002) for 

private land conservation (Gray and Teels 2006).  Originally, the Farm Bill set out to 

reduce soil erosion from highly erodible sites and attempted to limit excess food 

production by idling marginal croplands (Heard et al. 2000).  Since then, the Farm Bill 
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has evolved to administer, through the United States Department of Agriculture’s Natural 

Resource Conservation Service (NRCS), additional programs (e.g., Wetlands Reserve 

Program and Environmental Quality Incentives Program) intended to improve wildlife 

habitat and environmental conditions in agricultural landscapes (Burger Jr. et al. 2006; 

Gray and Teels 2006; Heard et al. 2000).  The majority of NRCS conservation practices 

do not directly target freshwater biodiversity conservation, but rather are intended to 

indirectly benefit biodiversity by improving water quality and hydrology.  However, in 

recent years there has been increased interest in a more thorough understanding and 

accounting of the benefits of conservation practices to fish and wildlife, particularly in 

response to the significant increase in funding for conservation programs that was 

authorized under the 2002 Farm Bill.  In response the Conservation Effects Assessment 

Project (CEAP) was initiated by the NRCS, Agricultural Research Service (ARS), and 

Cooperative State Research, Education, and Extension Service (CSREES) to help better 

inform society of the likely benefits Farm Bill conservation program funding (Mausbach 

and Dedrick 2004). The original goals of CEAP were to establish the scientific 

understanding of the effects of conservation practices at the watershed scale and to 

estimate conservation impacts and benefits for reporting at national and regional levels.  

 

CEAP projects have mostly investigated the response of terrestrial ecosystems or species 

to a subset of NRCS practices (e.g., Burger Jr. et al. 2006a; Heard et al. 2000), or have 

targeted water quality issues by using hydrological models to assess sediment and 

contaminant loading in streams after conservation practice implementation (Westra et al. 

2005).  However, a pilot study concluded that NRCS conservation practices do have the 

potential to improve stream habitat conditions for a variety of aquatic species by targeting 

specific conservation practices to specific locations using modeled species distributions 

within a geographic information system (GIS) (Comer et al. 2007).  The authors of this 

pilot study also noted that the specific or cumulative benefits of NRCS conservation 

practices to aquatic communities is poorly understood and further scientific investigation 

through a combination of a) localized, field based, watershed studies and b) 

geographically extensive, associative, modeling studies were needed.  The Great Lakes 

CEAP Project grew out of this realization and seeks to provide the science needed to 

assess and forecast the benefits of NRCS conservation practices to stream fish 

communities to help advance strategic conservation of freshwater biodiversity across 

the agricultural regions of the southern Great Lakes. 

 

Strategic conservation involves getting the right conservation practices to the right places 

in the right amount to achieve a set of realistic desired ecological and related 

socioeconomic conditions.  There is an extensive body of science dedicated to help with 

identifying the right practices and places (watersheds and fields) for improving water 

quality conditions in agricultural landscapes (Richardson and Gatti 1999; Mishra and 

Singh 2007; Maringanti et al. 2009; Schilling and Wolter 2009).  However, explicit, 

informed and realistic goals for how much conservation is needed have generally been 

lacking.  This largely results from our inability to develop spatially-explicit linkages 

between biological endpoints, water quality and conservation practices.   
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As a result most goals focus on improvements in water quality, which are often expressed 

as nutrient or sediment reduction goals that are not informed by biological endpoints, or 

desired funding levels for specific practices or locations that are not informed by any 

ecological endpoints.  Without these key linkages, we have lacked studies to evaluate the 

costs of restoration and whether our goals are even realistic.   Such goals are a critical 

first step toward strategic conservation.  However, for conservation organizations, like 

The Nature Conservancy with a mission to conserve biodiversity, it is difficult and often 

impossible to translate these goals into improvements to freshwater biodiversity. 

Our project begins to develop the linkages between biological endpoints, water quality, 

and conservation practices, so that we can develop realistic desired conditions and begin 

to answer the question, “how much is enough.”  These linkages will provide the 

foundation for making these decisions, but will necessarily need to be combined with 

socio-economic factors to determine whether biological endpoints are realistic.  As a 

result, the primary goal of our project is to provide decision makers with information 

to determine the limits of ecological improvement across the southern Great Lakes 

and models that use this information to establish realistic desired biological 

conditions.   

Specifically, our project seeks to help answer five key questions that guide strategic 

conservation, yet remain unanswered for much of the Great Lakes: 

1. What are the realistic desired biological conditions for a given waterbody?  

2. What are the current biological conditions? 

3. Can we achieve the desired biological conditions given the existing suite of 

available conservation practices?, If yes, then; 

4. How much of an investment will it take? And finally, 

5. Which suite of conservation practices should we use and where should they be 

placed on the landscape in order to maximize the ecological return on our 

investments? 

 

Answering these questions is fundamental to conservation efforts in agricultural 

landscapes.  Yet, answering these questions is difficult because the return on investment 

differs among; a) the parameters of interest (e.g., physical, chemical, biological), 

conservation practices (e.g., grassed waterway vs. constructed wetland), and location 

(e.g., spatial variation in soil erosion potential).  Fortunately, advancements in GIS 

technology and modeling have allowed for the development of various models and 

decision tools like the Soil and Water Assessment Tool (SWAT) that account for these 

and other interrelated factors and forecast the benefits of conservation actions on physical 

and chemical parameters.  However, there has been very little effort to extend these 

modeling capabilities to biological endpoints and thus capitalize on the many benefits 

that model, like SWAT, offer to conservation planning by developing realistic 

expectations or goals and strategies for achieving those goals.   
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Phase 1 of the Great Lakes CEAP Project, which is the focus of this report, is 

concentrating on using the predictive capabilities of SWAT to help generate the 

information needed for developing realistic biological expectations.  Phase 2 of our 

project is focused on using the information from Phase 1 and the scenario development 

and forecasting capabilities of SWAT, to develop realistic biological goals and also first 

cut strategies for achieving them.  The specific objectives of Phase 1 of our project are: 

Objective 1:  

Develop a fine-resolution SWAT model across the agricultural regions of the southern 

Great Lakes to provide predicted values for water quality and flow variables that can be 

linked to existing biological sampling data of the region. 

Objective 2:  

Develop models that predict selected riverine biological endpoints based on 

SWAT output variables and other relevant watershed and local catchment 

variables. 

STUDY AREA  

The study area for this project focuses on the predominantly agricultural regions of 

southern Michigan and Wisconsin (Figure 1).  Most of the study area falls within 4 level 

III ecoregions; 1) Driftless Area, 2) Southeastern Wisconsin Tills Plains, 3) Southern 

Michigan/Northern Indiana Drift Plains, and 4) Huron/Erie Lake Plains (USEPA 2003; 

Omernik 1987).  For the sake of brevity these four ecoregions will be referred to as the 

Driftless Area, Till Plains, Drift Plains, and Lake Plains for the remainder of the report. 



5 
 

Figure 1.  Study area for the Great Lakes CEAP Project showing the current land use, 

USEPA Level III ecoregions and the 1022 community fish samples with corresponding 

index of biotic integrity scores used for analysis and modeling. 

Climate 

The climate of the entire project area is typical of the upper Midwest with large annual 

and daily fluctuations.  However, the climate of the Drift Plains and Lake Plains are 

much more strongly influenced by a Maritime Tropical air mass, with lake-effect snows 

and year-long moderation of temperatures from Lake Michigan and Lake Huron (Albert 

et al. 1986, Denton 1985, Eichenlaub 1979, Eichenlaub et al. 1990). The growing season 

is relatively similar across all four ecoregions, ranging from 142 to 184 days (Hole and 

Germain 1994).  Compared to the Driftless Area and Till Plains, both the Drift and Lake 

Plains have more warm humid air masses from the Gulf of Mexico and fewer cold dry air 

masses of continental origin.  Average annual precipitation is 32 to 34 inches, and 

average annual snowfall ranges from 36 inches in the south to approximately 44 inches in 

the north (Wendland et al. 1992).   

 

Geology 

The Drift Plain is underlain by Paleozoic bedrock deposited in marine and near-shore 

environments, including sandstone, shale, limestone, and dolomite (Dorr and Eschman 

1984). This Paleozoic bedrock was deposited in an intercratonic basin, known as the 

Michigan basin, which was occupied by marine waters from the Silurian through 
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Pennsylvanian Periods. Mississippian and Devonian bedrocks are nearest the surface in 

the south and along the Great Lakes shorelines; Pennsylvanian bedrock is near the 

surface in the north (at the center of the Michigan basin). Bedrock exposures are few and 

small. At the eastern edge of the Drift Plain near Lake Erie, Devonian limestone bedrock 

is often within 5 feet of the surface and is locally exposed along streams. Local exposures 

of Mississippian shale, sandstone, and limestone occur within the Lake Plain ecoregion, 

closer to Saginaw Bay, but glacial lacustrine deposits can also be as deep as 300 feet on 

the inland portions of the lake plain (Albert 1994).  Over the rest of the Drift Plain, 100 to 

400 feet of loamy glacial drift cover the bedrock (Akers 1938), but very localized 

outcrops of Pennsylvanian sandstone do occur along the Grand River and its tributaries 

(Dorr and Eschman 1984).  

Within the Till Plain ecoregion, the glacial drift covering the bedrock is generally less 

than 50 feet thick, except on the eastern edge where it can range from 100 to 200 feet 

thick (Trotta and Cotter 1973). The predominant bedrocks are Silurian dolomite to the 

east along Lake Michigan, and Ordovician dolomite in the central and western parts of 

the ecoregion (Ostrom 1981, Morey et al. 1982). Some limestone, sandstone, and shale 

are present in both of these bedrocks. Undifferentiated Devonian marine deposits are 

localized along the Lake Michigan shoreline. Cambrian sandstone, with some dolomite 

and shale, is along the far western edge of the subsection. Precambrian quartzite is 

localized in the west and Precambrian rhyolite, granite, and diorite are localized west of 

Lake Winnebago (Morey et al. 1982).  

The geological history of the Driftless Area accounts for its distinctive physiographic 

features, including bedrock dominance.  During the Paleozoic Period (ca. five hundred 

million years before present), layers of sediment and shells from marine organisms were 

deposited in seas, which covered the region.  While retreating glaciers in adjacent regions 

buried topographical features in glacial drift, erosion in the unglaciated Palezoic Plateau 

produced a dissected landscape with deep channels in a bedrock-dominated terrain.  

Stream erosion has dissected the landscape leaving more resistant rock types, such as 

sandstones and carbonates, in high cliffs and bluffs above the gentler slopes and 

waterways of the more erodible shales. The oldest layer exposed at the EFMO is the 

Jordan sandstone, which formed during the Cambrian period.  This layer is seen along the 

base of the east facing bluffs and is an important aquifer for the area. Overlying the 

Jordan sandstone is the Prairie Du Chien formation of dolomite limestone (Mg Ca 

(Co3)2).  This geologic stratum forms the bluffs in EFMO and the vicinity.  The 

Mississippi River and its tributaries contain terraces and floodplain deposits, developed 

through a complex history of erosion and aggradation due to melt waters, scouring, and 

sediment deposition following the Wisconsin glaciation. Within the calcareous strata, 

weathering led to karst formations, including caves, sinkholes, springs, subsurface 

caverns, and underground and disappearing streams. 
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Soils 

Most of the soils within the Drift Plains are calcareous and loamy, derived from 

underlying limestone, shale, and sandstone. Glacial till deposits are primarily loams, silt 

loams, and clay loams. Lacustrine soils are silt- and clay-rich; lacustrine sands are often 

banded with silt or clay. The outwash plains of the interlobate regions are largely 

comprised of sands, often containing abundant gravel. Most of the soils are classified as 

Alfisols, including Aqualfs and Udalfs, but there are also Aquepts, Aquolls, and 

Psamments (USDA Soil Conservation Service 1967).  

A silt-loam cap of loess, about 2 feet thick, covers the soils of most of the Till Plains 

ecoregion, but there are also clay soils developed from glaciolacustrine deposits and sand 

soils developed from outwash deposits. Soils derived from the loess are silt loam at the 

surface, but subsoils are generally calcareous loam (till) or calcareous sand and gravel 

outwash (Hole and Germain 1994). The Driftless Area is covered with thin loess soils 

that create a well-drained landscape. 

Landforms 

Wisconsinan-age glacial and postglacial landforms cover the entire land surface of the 

project area. The glacial landforms include lake plains, outwash plains, ground moraines, 

and end moraines. The Lake Plains ecoregion is characterized by broad, flat, lacustrine 

plains that occur along all of the Great Lakes and extend more than 50 miles inland along 

the Lake Huron shoreline at Saginaw Bay within the Lake Plain ecoregion of our project 

area. Within the Drift Plains, sand dunes form a 1- to 5-mile band along much of the 

Lake Michigan shoreline. However, the interior of the Drift Plains consists of a relatively 

low plain of ground and end moraines, with narrow outwash channels throughout. The 

Driftless Area is the most dissected region in the project area, comprised by rolling hills 

and bluff outcroppings, exposed bedrock ridges, and deeply carved river valleys. 

 

Potential Natural Vegetation 

Most of the Drift and Lake Plains regions were forested (Albert 1994). Oak savanna was 

probably the most prevalent in the Drift Plains, followed by oak-hickory forest and 

beech-sugar maple forest.  However, the Drift Plains is the only region of Michigan that 

originally supported large areas of tallgrass prairie, which was concentrated in the sandy 

interlobate area in the southwestern part of the state. The Lake Plains also contained large 

areas of wet prairie along the margins of Lake Erie, Lake St. Clair, and Lake Huron. 

Wetlands were also prevalent in both the Drift and Lake Plains and included extensive 

marshes, fens, and swamp forests (Comer et al. 1993a, 1993b).  

Bur oak openings (savannas), oak forest, and tallgrass prairie were predominant in the 

western part of the Till Plains, but sugar maple-basswood forest was common to the east 

where there is greater fire protection because of dissected topography and numerous 
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kettle lakes of this region (Albert 1994). The prevailing directional trend of features, such 

as drumlin ridges and adjacent wetlands, helped determine the dominant vegetation 

within the Till Plains. On some southwest-northeast trending drumlin fields, tallgrass 

prairie and savanna were dominant; whereas north-south-trending drumlins served as fire 

barriers and allowed sugar maple-basswood forests to dominate.  

Prior to European settlement  the vegetation in the Driftless Area consisted of bluestem-

dominated tallgrass prairies and oak savannas on ridgetops and dry upper slopes, and 

sugar maple (Acer saccharum), oaks (Quercus spp.), and basswood (Tilia americana) 

along cooler, moister slopes.  Marsh and floodplain forests, as well as wet and mesic 

prairies were also common on river floodplains.  Prairie occurred primarily on the 

broader ridge tops or steep slopes with south or southwest aspects.   

Natural Disturbances 

Fire was a key process for maintaining oak savannas and tallgrass prairies in all four 

regions. However, large windthrows were also frequently documented in the late 1800’s 

in the Government Land Office (GLO) survey notes covering the Lake Plains region. 

This suggests that wind also likely played an important role as a natural disturbance 

serving to reset the succession cycle for natural vegetation and help maintain patches of 

early successional states. 

 

Current Land use and Vegetation 

Most of the project study area is farmed for row crops and collectively the Drift, Till, and 

Lake Plains regions represent the most heavily farmed sections in Michigan and 

Wisconsin.  Almost all the original tallgrass and wet prairies have been converted to 

farmland (Albert 1994; USEPA 2003). The oak savannas have become forests as a result 

of fire suppression and some of the heaviest urban, industrial, and residential 

development in Michigan and Wisconsin has occurred in our project area, especially 

along the Great Lakes shorelines.  

 

Not surprisingly, agriculture plays an important role in the economy of the region.  The 

2007 Census of Agriculture reported that there were nearly 126,000 farms in the Great 

Lakes Region and the value of the associated agriculture sales from these farms was 

about $14.5 billion. About 67 percent of the farms primarily raise crops, about 26 percent 

are primarily livestock operations and the remaining 7 percent produce a mix of crops 

and livestock.  More specifically, land use in Till Plains is mostly cropland, but the crops 

are largely forage and feed grains to support dairy operations, rather than corn and 

soybeans for cash crops (USEPA 2003).  The Drift Plains is less agricultural than the flat 

agricultural Lake Plain to the east.  Feed grain, soybean, and livestock farming as well as 

woodlots, quarries, recreational development, and urban-industrial areas are common in 

the Drift Plains.  Today, most of the Lake Plains region has been cleared and artificially 
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drained and contains highly productive farms producing corn, soybeans, livestock, and 

vegetables; urban and industrial areas are also extensive.  

 

Stream Habitat and Fish Communities 

Stream habitat and quality have been moderately to severely altered across the project 

area due to a variety of human activities, including by channelization, ditching, tiling, and 

other agricultural activities.  Altered hydrologic and thermal regimes, increased sediment 

and nutrient inputs, and loss of instream physical habitat are all primary concerns for 

streams in the project area. Specifically, land clearing, ditching, tiling, impoundments, 

and impervious surfaces have all collectively led to significant alteration of the hydrology 

of the project area.  Many streams presently exhibit higher peak flows and lower base 

flows than they did prior to these activities.   Fertilizer and manure applications along 

with point source discharges have led to increased nutrient concentrations and loads of 

many streams and receiving waters.  Studies have shown clear relations between these 

habitat alterations and various biological measures of stream health, including fish 

communities (Rankin et al. 1999; Wang et al. 2007).  Both Rankin et al. (1999) and 

Wang et al. (2007) found significant reductions in percent intolerant fishes and overall 

index of biotic integrity values with increased nutrient and sediment concentrations 

within streams of the southern Great Lakes.  
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Objective 1: 

 

Develop a fine-resolution SWAT model across the agricultural regions 

of the southern Great Lakes to provide predicted values for water 

quality and flow variables that can be linked to existing biological 

sampling data of the region. 
*Note: Objective 1 was carried out by a companion project that was jointly funded by 

TNC and NRCS CEAP (Coop Agreement: 68-7482-10-513).  The principal investigator 

for this project was Dr. Amirpouyan Nejadhashemi, a faculty member within the 

Department of Biosystems and Agricultural Engineering at Michigan State University. A 

more detailed description of this work can be found in the following paper: 

Nejadhashemi, A., C. Shen, B. J. Wardynski, P. Mantha. 2010.  Evaluating the Impacts of 

Land Use Changes on Hydrologic Responses in the Agricultural Regions of Michigan 

and Wisconsin.  ASABE Paper 1008770, Pittsburgh, PA. 

 

OBJECTIVE 1 METHODS 

 

Description of the Soil and Water Assessment Tool (SWAT) Model  
SWAT is a physically based, computationally efficient, watershed scale, continuous-time 

model that operates on daily time step and was developed by Dr. Jeff Arnold at the 

United States Department of Agriculture (USDA) Agricultural Research Service (ARS).  

The model “was developed to predict the impact of land management practices on water, 

sediment, and agricultural chemical yields in large complex watersheds with varying, 

soils, land use and management conditions over long periods of time” (Neitsch et al., 

2000).  SWAT is mostly comprised of weather, hydrology, soil characteristics, plant 

growth, nutrients, pesticides, and land management components (Gassman et al. 2007). 

To allow for better estimate of impact of varying soil and land use types on hydrology, in 

SWAT, a watershed is divided into number of subwatersheds or subbasins. The subbasins 

are further divided into hydrologic response units (HRUs) based on similar land cover, 

soil, slope, and management combinations. 

 

Hydrology components of SWAT include canopy storage, infiltration, redistribution, 

evapotranspiration, lateral subsurface flow, surface runoff, ponds, tributary channels, and 

return flow. A daily water budget in each HRU is calculated based on daily precipitation, 

runoff, evapotranspiration, percolation, and return flow from subsurface and groundwater 

flow (Nelson et al., 2006). In SWAT the surface runoff is calculated using either:  The 

SCS curve number procedure ((USDA Soil Conservation Service, 1972)) or the Green & 

Ampt infiltration method ((Green and Ampt, 1911)1911). In addition, peak runoff rate is 

calculated with a modified rational method. SWAT estimates daily potential 

evapotranspiration using one of the three methods requiring varying inputs: Penman-

Monteith, Hargreaves, or Priestly-Taylor. SWAT uses a kinematic storage model 

developed by Sloan et al. (1983) to estimate lateral flow. The groundwater system in 

SWAT consists of shallow and deep aquifers, which are calculated using empirical and 

analytical techniques (Neitsch et al., 2005). In SWAT, water is routed through the 
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channel network using the variable storage routing method (Williams, 1969) or the 

Muskingum River routing method (Chow et al., 1998). 

 

SWAT Model Inputs 

Data required for this study were acquired from various sources. For the current land use, 

2001 National Land Cover Data (NLCD 2001) was used (Figure 2a). Pre-settlement land 

uses datasets (around early to mid 1800) were obtained from 1) Michigan Natural 

Features Inventory (MNFI, http://web4.msue.msu.edu /mnfi/data/veg1800.cfm). 2) 

Wisconsin Department of Natural Resources (http://dnr.wi.gov/maps/gis/ 

documents/orig_vegetation_cover.pdf). 3) the Institute of Natural Resource Sustainability 

at the University of Illinois at Urbana-Champaign. These pre-settlement land cover maps 

were reclassified to the NLCD 2001 classes to provide consistency between land cover 

maps, which was then incorporated into the model for further analysis (Figure 2b). 

          
Figure 2a. Current land use map.                        Figure 2b. Pre-settlement land use map. 

The soil data was obtained from State Soil Geographic State Base (STATSGO) at the 

resolution of 1- by 2-degree topographic quadrangle units. USGS 1:250,000-scale Digital 

Elevation Model Grid (DEMG) at three arc second (100 m) resolution was obtained for 

the study area (http://seamless.usgs.gov/). National Hydrography Dataset (NHD; www. 

horizon-systems.com/nhdplus/) was used to improve hydrologic segmentation and 

subwatershed boundary delineation (Winchell et al., 2007). Daily precipitation records 

along with minimum and maximum temperature were acquired from 195 precipitation 

stations and 158 temperature stations within and around the study area (Figure 3) for 19 

years (1990 - 2008). Eight different US Geological Survey (USGS) gauging stations were 

used for the SWAT model calibration and validation. At least nineteen years of daily 

stream flow records are available for each station (Figure 4).  
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Figure 3. Precipitation (RNG) and temperature (TMPG) monitoring stations used for 

obtaining SWAT model input data. 

 

 
Figure 4. USGS gauging stations used for SWAT model calibration. 

 

Sensitivity Analysis, Model Calibration and Validation Procedures 

Sensitivity analysis is used to explain how the variation in the output of a model can be 

attributed to different sources of variation in the model input. The sensitivity analysis 

helps to determine parameters that controls watershed characteristics, understand 

behavior of the system being modeled, and to evaluate applicability of the model. Model 

calibration is an iterative process that compares simulated and observed data of interest 

through parameter evaluation. Validation extends calibration to ensure that the calibrated 
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model adequately represents variables and conditions affecting model results. The goal of 

validation is to conclude that the model is able to predict field observations for time 

periods separate from the calibration period (Donigan Jr. 2002).  

 

In this study the sensitivity analysis concerning daily flow rate was performed on 42 

different SWAT parameters on the nine HUC 8 digit watersheds for current and pre-

settlement land uses. Eight USGS gauging stations with daily stream flow from 1990 – 

2008 were used for the SWAT model calibration and validation. We plotted the average 

annual precipitation from 1990 to 2008 for the study area to identify the simulation 

period, for calibration and validation, in which a broad range of climatological conditions 

are represented (the figure is not shown here). We selected the period of 2002-2007 for 

the model calibration and validation because this period includes dry, wet, and normal 

climate conditions based on long term average precipitation records. Year 2002 was 

selected as the model warm-up year.  

 

Due to lack of various long term weather data for mid-1800s the pre-settlement scenario 

was set up using current climatological data (1990 – 2008) to compare the results of land 

use changes in the region while eliminating the climatological difference. In addition, the 

same adjustments were made to the calibration parameters under pre-settlement scenario 

as they were under current land use scenario to minimize a possible bias caused by 

calibration process. 

 

 

OBJECTIVE 1 RESULTS AND DISCUSSION 

 

Sensitivity Analysis, Model Calibration and Validation Results 

Among 42 parameters that were used for sensitivity analysis, 15 parameters were selected 

for further investigation. These parameters directly or indirectly influence the daily flow 

rate and overall ranked higher than others. Two criteria (mean and median) were selected 

to identify the most influential parameters, which affect daily flow rates. Among the 

study parameters, a significant shift in overall ranking was observed in Cn2 (initial SCS 

curve number for moisture condition II), Sol_Z (depth from soil surface to bottom of 

layer), Rchrg_Dp (deep aquifer percolation fraction), and Canmx (maximum canopy 

storage). 

To evaluate satisfactory model performances on daily basis we used following criteria: 

ENS 0.20 and R2 > 0.4 (Pouyan et al, 2010). Study results obtained from the SWAT 

model calibration, validation, and combined statistical analysis (Table 1) demonstrates 

that the model performance in all watersheds can be considered as satisfactory. 
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Table 1. Statistical analysis based on daily streamflow SWAT model outputs. 

Watershed Parameter Uncalibrated 

Statistics 

 

Calibration 

Statistics 

(2003-

2005) 

 

Validation 

Statistics 

(2006-

2007) 

 

Overall 

Statistics 

(2003-

2007) 

 

040302 

NSE -4.42 0.76 0.59 0.73 

RMSE 73.50 13.60 9.07 16.40 

R
2 

0.016 0.80 0.73 0.75 

040301 

& 40400 

NSE -0.68 0.82 0.68 0.78 

RMSE 18.65 7.02 5.74 9.07 

R
2
 0.20 0.82 0.71 0.78 

070700 

NSE 

RMSE 

R
2
 

-1.01 

62.69 

0.08 

0.40* 

81.07* 

0.62* 

0.46** 

96.87** 

0.56** 

0.45*** 

126.32*** 

0.60*** 

070900 

NSE 

RMSE 

R
2
 

-8.76 

285.70 

0.09 

0.74 

35.64 

0.80 

0.70 

30.57 

0.71 

0.74 

46.95 

0.77 

040801 

NSE 

RMSE 

R
2
 

-2.46 

15.06 

0.17 

0.29 

4.71 

0.47 

0.48 

4.17 

0.55 

0.40 

6.29 

0.50 

040802 

NSE 

RMSE 

R
2
 

-1.38 

206.70 

0.11 

0.77 

48.31 

0.77 

0.83 

35.68 

0.83 

0.80 

60.06 

0.80 

040900 

NSE 

RMSE 

R
2
 

-1.87 

17.26 

0.20 

0.69 

3.95 

0.74 

0.71 

3.69 

0.76 

0.72 

5.41 

0.77 

040500 

NSE -2.68 0.80 0.84 0.80 

RMSE 167.56 31.62 20.46 37.7 

R
2
 0.11 0.81 0.84 0.82 

* Period of calibration 1994-1996, * * Period of validation 1992-1993, 

 ** * Period of overall model performance 1992-1996 

 

Basin-Wide Impacts of Land Use Changes 

Basin-wide impacts of land use changes on hydrologic characteristics are presented in 

Figures 5 and 6. In general, the basin was divided into to three major classes. 1) positive 

high: if percent change in hydrologic characteristics is equal or more than 10% of the 

original value; 2) modest: if percent change in hydrologic characteristics is between -10% 

to 10% of the original value and; 3) negative high: if percent change in hydrologic 

characteristics is equal or less than -10% of the original value (Figure 5). 
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(a)                                                                    (b) 

   
(c)                                                                      (d) 

   
                                    (e)                                                                       (f) 

Figure 5. Modeled percent changes resulting from land use change: (a) actual 

evapotranspiration; (b) recharge entering aquifers; (c) surface runoff; (d) lateral flow 

contribution to streamflow; (e) groundwater contribution to streamflow; and (f) water 

yield. Note: Values > 5000% or <- 5000% are reported as ± 5000%. 
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Figure 6. Percentage of project area falling into 3 change classes of: a) positive high, b) modest, 

or C) negative high classes; (ET) actual evapotranspiration; (Recharge) recharge entering 

aquifers; (Surf_Q) overland flow contribution to streamflow; (Lat_Q) lateral flow contribution to 

streamflow; (GW_Q) baseflow contribution to streamflow; and water yield 

 

Figures 5a and 6 demonstrate that percent change in evapotranspiration is modest in the majority 

of the basin, particularly in the northwest region of the study area in which forested lands are 

generally preserved. In addition, decreases in evapotranspiration can be observed especially in 

heavily populated areas such as Detroit (MI) and Milwaukee (WI). Regarding recharge to 

aquifers and baseflow, more than 70% of the study area is classified as negative high. This can 

be attributed to conversion of forestlands to agricultural lands that have lower recharge potentials 

(Figures 5b, and 5e). Overland flow contribution to streamflow (Surf_Q) was increased in 

majority of the region in comparison to pre-settlement scenario. In fact, more than 65% of the 

study area is classified as positive high concerning overland flow which can be explained by vast 

expansion of agricultural lands in the region. The majority of the region experiences modest 

changes in water yield, while about 15% of region is classified as positive high and 24% is 

classified as negative high. The positive high region mostly corresponds to urbanization and the 

negative high region is mostly associated to conversion of wetlands, rangeland and forested areas 

to agricultural production. 

 

Collectively the results demonstrate that the hydrology of the Great Lakes region have been 

altered due to major land use change from pre-settlement conditions over the past 150 years. 

More specifically the results demonstrate that at the basin-level, modest changes in 

evapotranspiration and water yield, significant increases in overland flow generation, and 

significant decreases in recharge, baseflow, and lateral flow in the majority of the basin were 

observed. Land use changes such as urbanization, deforestation, and reforestation have and 

continue to affect groundwater-surface water interactions and associated instream physical 

habitat, water quality, and flows.  The focus of objective 2 is to use these data to assess the 

relation of fish community metrics to these modeled historic and current instream conditions. 
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OBJECTIVE 2: 

Develop models that predict selected riverine biological endpoints based on 

SWAT variables and other relevant watershed and local catchment variables 

 

OBJECTIVE 2 METHODS 

Selection of Conservation Practices 

In Phase 2 of the Great Lakes CEAP Project we will be working with NRCS conservationists, 

conservation districts and other key partners to develop detailed conservation blueprints, 

implementation schedules and cost estimates for implementing a select subset of conservation 

practices within select priority subwatersheds of the Saginaw Bay watershed.  Although this is a 

Phase 2 objective, knowing what specific practices will be used in those scenarios is critical to 

certain steps being taken in Phase 1 related to establishing “caps” on fish community 

expectations due to factors or conditions that are either not adequately addressed by SWAT 

and/or not adequately addressed by the selected set of conservation practices.  Because we 

wanted to keep these scenarios realistic, we quantified the prevalence of practices implemented 

from 1999-2009 across the project area, using the NRCS Conservation Practice Database 

(USDA-NRCS, National Conservation Planning Database, October, 2009).  From this analysis 

we selected the nine most prevalent practices across the region that also addressed the three 

issues of altered flows and increased nutrients and sediments that are consistently cited as the 

most critical stream habitat problems within our study area.  We supplemented this analysis with 

input on which practices SWAT will be able to effectively model from Dr. Amirpouyan 

Nejadhashemi and with expert input on the relative benefits of less prevalent practices.  Experts 

consistently cited the benefits and need for more wetland restoration in the project area, which 

are supported by numerous studies (Craft and Casey 2000, Mitsch and Day 2006), so we added 

two additional practices for a total of 11 practices that will be included in our SWAT 

conservation scenarios for Phase 2 of the project (Table 2).  
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Table 2. Conservation practices for which Phase II modeling will focus.   

Practice Name 

Nutrient Management/Waste Utilization 
Conservation Crop Rotation 

Filter Strip 

Conservation Cover 

Residue and Tillage Management, No-Till/Strip Till/Direct Seed 

Mulch Till, Residue Mgt & Residue and Tillage Mgt 

Residue Management, No-Till/Strip Till 

Cover Crop 

Pasture and Hay Planting 

Wetland Creation/Restoration 

Wetland - Floodplain restoration 

 

Selection of Biological Endpoints (Response Variables) 

Biologically meaningful endpoints for setting goals and guiding watershed restoration could be 

developed for a variety of taxonomic groups.  However, fish and aquatic macroinvertebrate 

communities have largely been the focus of such efforts due to availability of data for these two 

taxa (Berkman et al. 1986; Plafkin et al. 1989). Fish assemblages have some added advantages of 

being more highly valued as a resource and more readily understood by the general populace 

when addressing conservation issues (Karr 1981). Fish also cover many trophic levels, including 

piscivores, herbivores, omnivores, and insectivores and have a breadth of other functional traits 

(e.g., modes of reproduction) that make them sensitive to a variety of habitat variables and thus 

sensitive to a range of human disturbances. Furthermore, fishes exhibit a range of life spans and 

mobility which helps to detect both long-term and broad scale disturbances to freshwater 

ecosystems (Karr 1981, Babour et al. 1999).  For these and other reasons we selected instream 

fish communities to serve as the biological endpoint for our project. 

As suggested above, there are many possible metrics that could be developed based on fish 

community composition that could serve as indicators of biological integrity or stream health.  

Recognizing this Karr (1981) developed the multi-metric index of biotic integrity (IBI), which 

integrates several individual metrics into an overall measure of stream health.  The original IBI 

consisted of 12 metrics and was developed for the Midwest United States.  Over the years the 

original IBI has been modified and customized to specific geographic regions, and successfully 

used to assess biological integrity of streams (Lyons 1992, Lyons et al. 1996, Roth et al. 1996, 

MDEQ 1997, Lammert and Allan 1999, Wang et al 2008).  Because of its integrative nature and 

successful application in Midwestern streams, our analyses and modeling efforts for this project 

focused on the IBI.   

 

We also used a subset of the functional guild metrics that make up the IBI due to their known 

sensitivity to instream habitat disturbances that are often associated with agricultural practices.  
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Evaluating biological communities from a functional guild perspective provides a means for 

identifying the primary pathways in which a particular disturbance is transmitted throughout an 

ecosystem (Austen et al. 1994; Merritt and Cummins 1996; Poff 1997). The specific functional 

guild metrics are calculated as a percentage of the overall fish community and include; percent 

omnivores (PCOMNINB), percent insectivores (PCINSENB), percent lithosphilus spawners 

(PCLITHNB), and percent piscivores (PCPISVNB).  Since the ratio of these individual guild 

metrics are often very informative due to their ability to demonstrate community dynamics (e.g., 

predator to prey interactions) with a single metric, we also included a piscivore to insectivore 

ratio (PISINSRATIO) in our analyses.  Finally, we also included a metric that quantifies the 

percent of intolerant individuals (PCINTONB) within the sample.  This metric was of interest 

because the binary designation of tolerant versus intolerant fish species is largely a reflection of 

that species sensitivity to water quality conditions, which are a primary concern in intensively 

agricultural landscapes, which includes our project area. 

The IBI scores used in our project are calculated depending on both the size (wadeable or non-

wadeable) and thermal (cold, cool, or warm) classification of the stream.  Specifically, a 

modified procedure developed by the MDEQ (1997) was used to determine IBI scores for 

wadeable warmwater streams.  IBI scores for wadable coldwater sites were calculated based on 

procedures described by Lyons et al. (1996).  For cool water sites, IBI scores were calculated 

based on both of the preceding methods and the higher of the two IBI scores was used.  For the 

larger, non-wadeable rivers, the IBI scores were calculated following the scoring criteria 

developed by Lyons et al. (2001).   

 

Sources of Fish Community Data 

The fish community dataset that provided the biological response variables for this project 

consisted of 1022 fish community collections that were made between 1982 and 2007 and 

standardized across Michigan and Wisconsin (See Figure 1).  These data were provided by 

collaborators Li Wang of the Michigan Department of Natural Resources, Institute of Fisheries 

Research and John Lyons of the Wisconsin Department of Natural Resources.  The dataset 

included IBI scores calculated for each site, based on the methods described earlier, as well as 

values for each of the individual component metrics.  

 

Selection of Predictor Variables 

For this objective we are trying to extend the predictive capabilities of SWAT to include 

biological endpoints.  This would provide us with the ability to move from retrospective 

assessments of biological conditions to forecasting such conditions under future conservation 

scenarios.  As a result, our analyses and modeling efforts were primarily focused on identifying 

relations between fish community metrics and instream habitat (water quality and flow) variables 

generated by SWAT.  However, we also fully recognize that riverine fishes are influenced by 

numerous landscape and in-channel factors and processes operating at multiple spatial and 

temporal scales (Rabeni and Sowa 1996).  Of particular interest are those natural landscape 

factors and human disturbances operating within the overall watershed and local catchment 

draining to a stream segment (Sowa et al. 2007).  Watershed and local catchment metrics, like 

percent of a particular surficial geology or percent impervious surface, can indirectly capture 
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habitat patterns and processes (e.g., stream channel morphology, thermal regime, bedload 

movement, etc.) that are not effectively captured by discrete field samples or even modeled by 

complex and temporally dynamic models like SWAT.  Failing to account for these factors, that 

often serve as higher level constraints on fish communities, could lead to erroneous expectations 

in Phase 2 of our project as we develop future conservation scenarios with SWAT that will not 

address the full suite of potential limiting factors.  Consequently, to supplement the predictor 

variables provided by SWAT we also included a broad suite of predictor variables pertaining to 

overall watershed and local catchment physiography (termed Natural Variables) and non-

agricultural human disturbances (termed Non-Target Threat Variables).   

 

Sources of Predictor Variables 

Water Quality and Flow Variables—All of our instream habitat variables came from a relatively 

detailed SWAT model developed specifically for this project and detailed earlier under Objective 

1.  However, we further summarized the resulting SWAT outputs in order to put them into more 

ecologically meaningful set of; a) seasonal and annual instream reach loadings and 

concentrations and b) annual local subbasin runoff and sediment and nutrient contributions. 

Seasons for calculating the seasonal data were assembled based upon a visual assessment of 

seasonal hydrologic patterns for seven gaged streams from across the study area (Figure 7). From 

this assessment we identified four distinct seasons, which we called: Spring Rising (January 15-

March 15), Spring Falling (March 15-May 15), Summer Falling (May 15-August 15), and Fall-

Winter Stable (August 15-January 15).  Water quality variables included numerous flow, 

nutrient, and sediment variables calculated for total loadings and concentrations, at annual and 

seasonal time-scales.  These loadings and concentrations were calculated under both current and 

pre-settlement land cover (Figure 8).  We also quantified the difference and percent change 

between pre-settlement and current data for each variables.  These partitions of the data resulted 

in a total of 1,121 water quality and flow predictor variables. 
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Figure 7.  Average daily discharge values for seven streams from across the project area and 

showing the consistent annual hydrographs we used to for summarizing each SWAT water 

quality variable into distinct seasonal variables.   

 

Figure 8.  Maps showing predicted mineral phosphorous concentrations (mg/l) during the spring 

rising season based on historic (left panel) and current (right panel) land use and land cover 

conditions. 

Natural Variables—Water quInstream habitats (including water quality and flow) and biological 

communities vary across landscapes both naturally, as a result of natural variation in climate and 

physiography, and as a result of human disturbances.  In order to accurately relate fish 

community indicators to water quality and flow, it is important to account for variation 

attributable to natural variables, which have repeatedly been shown to be important in relating 

biological communities to water quality or anthropogenic stresses (Richards et al. 1996, 

Fitzpatrick et al. 2001, Wang et al. 2003).  As such, we used the broad suite of natural 
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physiographic variables assembled as part of the USGS Great Lakes Aquatic Gap project, as well 

as variables assembled for the National Fish Habitat Action Plan (NFHAP; Esselman et al. 2011, 

Wang et al. 2011) to first relate to fish community indicators to identify dominant natural 

predictor variables.  The 600 natural variables included measures of stream size, network 

position, hydrologic and thermal regime indices, surficial and bedrock geology, and natural land 

cover.  Natural variables were quantified for five distinct spatial units; channel, local riparian, 

local catchment, upstream riparian, and overall watershed. 

Non-Target Threat Variables—As mentioned earlier, the SWAT modeling used to develop water 

quality and flow predictor variables, did not fully account for all anthropogenic stresses that can 

significantly impact water quality, flows, physical habitat, and ultimately biological 

communities. For example, extremely high cattle densities can influence water quality, but cattle 

densities were not incorporated into the SWAT model inputs and therefore were not accounted 

for in the water quality predictions.  Also, the twelve practices we selected are not ideally suited 

to addressing runoff from extremely high density cattle areas like confined animal feeding 

operations. Therefore, it was also important to account for variation attributable to these and 

other  threat variables.  We used the threat variables assembled for the NFHAP to relate to fish 

community indicators to identify dominant threat predictor variables.  The 98 threat variables 

from this dataset included cattle density, dams, human population densities, and water 

withdrawals.  Threat variables were quantified for both the overall watershed and local 

catchment. 

Spatially Integrating all Response and Predictor Variables 

The most difficult aspect of projects dealing with spatially-explicit data involves integrating 

multiple datasets that are geographically linked to different geospatial baselayers.  Unfortunately, 

in order to integrate the full set of response and predictor variables into a single common dataset 

suitable for analysis we had to work with three distinct stream layers across our project area. 

The NFHAP dataset was developed using the 1:100,000 scale National Hydrographic Dataset 

Plus (NHDPlus) as the baselayer (Esselman et al. 2011).  The NHDPlus is a nationwide highly 

improved 1:100,000 scale hydrography datasets, which contains network of related streams, local 

catchments, and network catchments. The dataset contains flow direction, flow accumulation, 

and elevation data that can be used to study various local to network level phenomenon 

(http://www.horizon-systems.com/nhdplus/). All 1022 fish community sampling locations had 

already been spatially linked to the Great Lakes Aquatic GAP stream network, via a unique 

locational id: PU_GAPCODE.  Fortunately, the Aquatic GAP stream network represents a 

modified version of the 1:100,000 NHD-Plus (Wang et al. 2011), which allowed us to cross-walk 

this modified network  back to the original NHD-Plus, via the shared COMID attribute and 

integrate it with the NFHAP data for most stream segments.  Finally, the most difficult task was 

spatially linking the fish community samples to the stream network used for developing the 

SWAT models across the region.  This SWAT stream network is a much more generalized 

stream layer containing which was developed using the ArcSWAT tool and a 30 meter digital 

http://www.horizon-systems.com/nhdplus/
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elevation model (DEM) layer. We had hoped to retain all or at least most of the 1022 samples 

during this process.  However, that would have required generating SWAT subbasins with 

outlets occurring at each of the 1022 sampling locations.  Unfortunately, this was not technically 

or logistically feasible at the time and so we ended up losing nearly 70% of the fish community 

samples in this process.  Furthermore, this process had to be done manually by visually linking 

sites to the appropriate subbasin to ensure that the SWAT model predictions correctly 

corresponded with the specific stream segment at which each fish community sample was made.  

As a result, we were able to successfully link only 345 of the 1022 fish community samples to 

the DEM derived stream network used for SWAT modeling (Figure 9). 

 

Figure 9.  Map showing the location and IBI scores for the 345 fish community samples that 

could be spatially linked to the DEM derived stream network attributed with SWAT modeled 

values for instream water quality and flow. 

Data Transformation and Reduction 

Natural, threat, and water quality variable datasets were all analyzed for normality using 

skewness and kurtosis distribution tests.  Variables with skewness or kurtosis values ≥3 were log 

transformed (log x+1), or in the case of proportional data arcsine transformed, to attain or 

approximate normality.  Variables with >90% zero values were deleted from analyses.  Prior to 

performing CART modeling (see below), transformed data that remained non-normal were 

further transformed by placing them into bins based on distribution breaks in the data.  This was 
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done to diminish the influence of outliers by ensuring the relatively high sample size across the 

range of values for each variable.  Specifically, bins were created to ensure that all bins 

maintained at least 10% of the total data points for that variable. 

Statistical Analyses 

Our analyses for objective 2 focused primarily on three sets of complimentary analyses to help; 

1. identify influential predictor variables and their relative degree of influence 

2. identify biological thresholds and constraints for the fish community metrics, and  

3. develop predictive models within a single hierarchical model or via a set of multiple 

models based on wedge plots 

 

These complimentary analyses consisted of Redundancy Analysis, Classification and Regression 

Trees, and Simple Scatter and Wedge Plots.  Redundancy Analyses and Classification and 

Regression Trees were used to generally evaluate which natural, threat, and water quality 

variables were influential across all fish community metrics, and which fish community metrics 

were most responsive to water quality variables.  These analyses provided both a multivariate 

(Redundancy Analysis) and univariate (Classification and Regression Trees) assessment of 

predictor variables.  Through these analyses, we were then able to proceed to subsequent 

analyses (wedge plot evaluations) with a smaller subset of variables that we knew were 

predictive of fish community metrics.  Classification and Regression Trees were also used to 

attempt to predict IBI metrics, based on water quality and flow.  Wedge plots were used to 

identify thresholds, above which a predictor variable fundamental limits a fish community metric 

score, regardless of other factors.   

 

Redundancy Analyses 

Redundancy Analyses (RDA) were conducted to evaluate relationships between IBI metrics and 

natural, threat, and water quality variables using the statistic software CANOCO (CANOCO 

v4.5; ter Braak and Smilauer 2002). Redundancy analysis is a direct gradient analysis that 

evaluates linear relationships between multiple dependent and independent variables.  Natural, 

threat, or water quality variables that are predictive of fish community metrics were selected 

through a forward selection process that uses Monte Carlo permutations (999) to calculate a 

probability for whether a particular variable is significantly predictive.  Separate RDAs were run 

for natural, threat, and water quality variables, and then a combined analysis to evaluate 

relationships between IBI variables across all predictor types.  For each set of RDAs, analyses 

were first run with all potential variables where significant variables were selected, then rerun on 

the reduced set of significant variables. We elected to use RDA instead of canonical 

correspondence analysis (CCA)--another form of direct gradient analysis that evaluates non-

linear relationships—because scatter plots of the relations between the environmental variables 

and IBI metrics indicated that linear responses rather than unimodal responses prevailed. This 

analysis helped to identify variables that consistently influence multiple IBI metrics, to evaluate 

how they influence IBI metrics, and in identifying which IBI metrics are more sensitive to 

natural, water quality, and threat variables.  
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For the RDA of water quality variables, we selected three dominant natural variables, drainage 

area, State, and Darcy (an estimate of groundwater activity based on geological features) as 

covariates to force into the model prior to performing the analysis; preliminary analyses without 

these key contextual natural variables were dominated by water quality variables that were 

correlated with these natural variables. For the combined RDA, only the natural and threat 

variables significant in the individual RDA models were included, and all land use types accept 

urban were excluded from the analysis, because land use plays a major role in determining water 

quality variables in SWAT and we wanted to avoid water quality variables getting “masked” as 

predictors due to selection of land use variables. The SWAT modeling did not sufficiently reflect 

urban land use, so it was left in the analysis. All water quality variables were included in the 

combined analysis, in the event that additional important water quality influences might be 

revealed when including the context of the natural and threat variables in the analyses.   

CART Analyses 

Fish community metrics and the IBI were also modeled using Classification and Regression Tree 

(CART) analyses. These analyses were used to better understand the complex relations among 

the response and predictor variables and the relative strength or nesting of those relations.  These 

analyses were also used to put SWAT variable predictors within the proper landscape/watershed 

context. CART analyses are nonlinear and nonparametric modeling techniques that use a 

recursive-partitioning algorithm to repeatedly partition the input data set into a nested series of 

mutually exclusive groups. Each resulting group is as homogeneous as possible with respect to 

the response variable (Olden and Jackson 2002). The resulting tree-shape output represents sets 

of decisions or rules for the classification of a particular response variable relative to a set of 

distinct combinations of predictor variables. These rules can then be applied to a new 

unclassified dataset (and corresponding GIS layer) to predict which records or, in our case, 

location will have a given outcome.  

 

Nonlinear models, like CART, are gaining favor in wildlife-habitat relation modeling because 

the resulting nonparametric models define constraint envelopes of suitable habitat rather than 

correlations and thus more formally agree with niche theory (O’Connor 2002). That is, nonlinear 

models more accurately capture the normal distribution curve that species abundance will 

typically follow along an environmental gradient (ter Braak and Prentice 1988). Also, nonlinear 

models do not fall under the standard assumptions of linear, additive or multiplicative 

relationships, normally distributed errors, and uncorrelated independent variables, which are 

often unrealistic assumptions that are violated with correlative approaches (Olden and Jackson 

2002; Huston 2002; O’Connor 2002). CART analyses, in particular, have become a popular 

modeling technique because they construct models with accuracy comparable to the more 

“sophisticated” nonlinear methods (e.g., Neural Networks; Olden and Jackson 2002), and yet are 

much easier to construct and interpret (Breiman et al. 1984; De’ath and Fabricus 2000).  

The specific modeling algorithm we used was Exhaustive CHAID, which is a modification of 

CHAID developed by Biggs et al. (1991). It was developed to address some weaknesses of the 

CHAID method. In some instances CHAID may not find the optimal split for a variable since it 
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stops merging categories as soon as it finds that all remaining categories are statistically 

different. Exhaustive CHAID remedies this problem by continuing to merge categories of the 

predictor variable until only two “supercategories” are left and then examines the series of 

merges for the predictor and finds the set of categories that gives the strongest association with 

the target variable and computes an adjusted-p value for that association. Consequently, 

exhaustive CHAID can find the best split for each individual predictor and then choose which of 

these predictors to split on at each level in the tree by comparing the adjusted-p values.  

Exhaustive CHAID allows the user to specify a priori stopping criteria related to the size of the 

tree (i.e., number of levels) and the minimum number of collection records that can occur in any 

given child node. These stopping criteria help reduce the probability of gross overfitting of the 

model which can be a problem with extremely large datasets containing a large number of 

predictor and/or response variables. We set the maximum number of levels allowable in the final 

tree equal to 5, which was higher than the number of levels ever achieved. We set the minimum 

number of collections allowable in a parent node equal to 25 and the number allowable in a child 

node equal to 10, for a ratio of 25:10. This ratio was selected based on results of trial runs with 

ratios of 25:10, 30:15 and 40:20.  We set the alpha level for splitting and merging equal to 0.05 

and used the Bonferoni alpha adjustment to account for the increased likelihood of a Type One 

error associated with multiple comparisons. 

Based on the results of the RDA our CART analyses focused on just two (IBI and %Intolerant 

species) of the original nine fish community metrics.  These two metrics consistently exhibited 

the strongest correlations to our all sets of predictor variables and minimal intercorrelation.  Then 

similar to the RDAs we first ran CART independently for each set of predictor variables to 

identify the most informative variables within a predictor set and used this to create a subset of 

natural, threat, and SWAT variables.  We then ran CART models for IBI and %Intolerant using 

this full subset of predictor variables.   

The RDAs and CART models consistently revealed the significant influence of measures on 

drainage area or stream size with our fish community metrics.  Since we were interested in the 

residual influence of other predictor variables and to simplify our analyses, we elected to stratify 

our CART analyses into two categories of drainage to account for this overriding influence 

apriori.  To help maintain consistency with stream size classes already used within the project 

area, we based our initial drainage area categories on three categories that were developed for the 

Michigan Water Withdrawal Assessment Tool (Hamilton and Seelbach 2010); <80 mi
2
 = 

streams, 80-300 mi
2
 = small rivers, >300 mi

2
 = large rivers.  We assigned each stream segment 

and corresponding fish community sample into these three strata based on their watershed areas 

and then tested for differences in the fish community metrics between the three categories.  We 

lumped the upper two categories into one category due to a lack of strong distinction between 

them and for a larger sample size in the resulting categories (<80 mi
2
 = streams, ≥80 mi

2
 = 

rivers) (Figure 10). The rest of our CART modeling corrected for drainage area based on these 

two categories. 
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Figure 10. Box plots showing significant differences in IBI scores between streams with drainage 

areas less and greater than 80 mi
2
.  These two categories of Stream and River were used to 

apriori stratify our CART analyses for examining relationships between fish community and 

environmental variables. 

 

Fish community metrics sometimes exhibited erratic patterns across the range in values for a 

particular environmental predictor. When this happened, we plotted the variable to the fish 

community metric to view where the model had split the data and to further examine patterns or 

anomalies in the data distribution.  Sometimes the erratic patterns matched the overall 

distribution of the data as demonstrated by linear and loess trend lines.  However, when the 

pattern did not match the readily observable trend across data distribution, we manually binned 

the predictor variable to increase the sample size of bins across the range of values.  To do this 

he variable was binned based on the distribution shown in a histogram and the trend lines for the 

scatter. The newly binned variable then replaced the previously unbinned variable and the model 

was run again. Unfortunately such iterative data transformations were needed to account for our 

loss of biological data and low sample sizes which required us to use relatively low parent and 

child ratios (25:10).  In such situations the relative influence of a handful of data points can 

significantly influence an otherwise visible trend.  Through this process we were able to make 

more effective use of our limited data and generate more informative models. 
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Scatter and Wedge Plots 

After winnowing the number of variables down through RDA and CART analyses, scatterplots 

with the remaining natural, threat, and water quality variables (x-axis) plotted against fish 

community indicators (y-axis) were examined for trends and for wedge plots.  Threat, or non-

target disturbances, related to row-crop agriculture (e.g. % row-crop) were specifically not 

examined since these landscape variables are specifically integrated into the water quality 

data.   Wedge plots occur when a relationship between a predictor variable and response variable 

results in a wide scatter in the data, because the response variable is influenced by multiple 

factors, but along the upper limits of the predictor variable (e.g., higher urban land use) the 

response variable is constrained by the predictor variable so that a wedge is formed along the 

upper limit of the predictor variable (Brendon et al. 2008). Wedge-shaped relationships are 

believed to be common along aquatic gradients (Wang et al. 2003).  We focused on two fish 

community metrics, IBI and % Intolerant, because RDAs and other preliminary analyses 

indicated that these two indicators were generally more responsive to threats, but also water 

quality variables.   

 

We used wedge plots for natural, threat and water quality variables to identify fundamental 

limitations in the potential values for IBI or % Intolerant species.  While wedge diagrams do not 

provide the specific potential for any given site, they do provide a threshold above which the 

response variable is limited across all sites.  Upon identification of a wedge, a wedge line was 

drawn and the equation was generated for the slope along the wedge.  Using the original data 

across all reaches for each natural, threat, or water quality variable with wedges, we calculated 

the upper maximum potential IBI or % Intolerant species for all stream reaches within the 

network that had values above any given threshold.  These were then mapped across the network 

of SWAT modeled streams.  Limiting natural threat, water quality and flow variable was mapped 

individually, and results were combined to create maps showing the upper maximum potential 

IBI or % Intolerant value across all variables, as well as what variable or variable type (natural, 

threat, water quality/quantity) was most limiting for each stream reach.  An improvement 

capacity map was also created that represents the difference between the maximum potential IBI 

or % Intolerant species with natural and threat thesholds and the maximum potential based on 

water quality and quantity.  Sites with negative maximum potential values would indicate that 

the upper maximum is lower based on natural or threat variables, and therefore conservation 

practices to improve water quantity or quality will not improve the fish community.    

 

OBJECTIVE 2 RESULTS & DISCUSSION 

Redundancy Analyses—Twenty-two natural variables were selected as significant predictors in 

the natural variable RDA.  These explained 18.5% of the variation in IBI metrics.  Natural 

variables represented all scales except the local riparian, with the most variables being at the 

overall catchment or channel scales (Figure 11).  Drainage area was the most influential natural 

variable, as indicated by the fact that it’s vector in Figure x is the longest.  The percent Intolerant 
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species metric tended to be associated with high Conifer and shrub landcover at the catchment 

scale and high deciduous forest at the local watershed scale, as well as high drainage scale slope, 

the Mixed Wood Plains Ecoregion, and channels flowing through coarse moraines. Intolerant 

species were negatively associated with catchment fine end-moraines and percent sand and 

gravel, overall riparian carbonate bedrock, and minimum July air temperature.  IBI scores were 

similarly influenced by these variables, but also increased with drainage area.  Lithophilic 

spawners, piscivores, insectivores and the piscivore-to-insectivore ratio were also associated with 

higher drainage area and somewhat negatively associated with grassland in the local watershed 

and channels with bedrock depths between 100 and 400 ft.  Omnivores tended to have 

associations opposite to intolerant species and IBI, except that they were also positively 

associated with larger drainage area and were negatively associated with grasslands.  Note that 

since a forward selection process was used to select variables into the model, each variable 

independently explains significant variation in the IBI metrics.       

 

 

Figure 11. Redundancy Analysis plot showing the relationships between natural variables and 

fish Index of Biotic Integrity (IBI) scores and six individual IBI metrics.  These metrics are the 

proportional abundance of fish species that are piscivores, insectivores, omnivores, lithophilic 

spawners, and intolerant of degraded water quality (% Intolerant), as well as a piscivore to 

insectivore ratio (PIS:INS).  Natural variables were quantified at five different scales, channel 

(C), local riparian (R), local watershed (W), catchment riparian (RT) and catchment (WT). 

Vectors indicate the direction environmental factors increase in value in relation to IBI metrics. 
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Vectors also extend in the opposite (negative) direction but for simplicity are not shown. Smaller 

angles between a vector and an axis indicate higher correlation of the variable with the axis, and 

longer vectors indicate greater IBI metric variation accounted for. The approximate center of 

distribution for an IBI metric across an environmental gradient is the perpendicular intersect of a 

line drawn from its centroid to a vector (positive or negative). 

Eleven threat variables were selected as significant predictors in the threat variable RDA.  These 

explained 10.7% of the variation in IBI metrics. Most threat variables selected were at the 

catchment scale (Figure 12).  The percent of the catchment in medium- and low-density urban 

and row-crop agriculture were the most influential threat variables, as indicated by the length of 

their vectors.  Omnivores tended to be positively associated with each threat, while IBI, 

intolerant species, and to some extent piscivores tended to be negatively associated with them.  

The other IBI metrics demonstrated little response to threat variables.  

 

Figure 12. Redundancy Analysis plot showing the relationships between threat variables and fish 

Index of Biotic Integrity (IBI) scores and six individual IBI metrics (see figure 11). Threat 

variables were quantified at two different scales, local watershed (W) and catchment (WT). 

Ten water quality (SWAT) variables were selected as significant predictors in the water quality 

RDA.  These explained 16.1% of the variation in IBI metrics.  Seasonal flow variable were the 

most influential water quality variables, as indicated by the length of their vectors (Figure 13).  

These flow variables and spring-rising nitrate (NO3) concentrations were positively correlated 

with IBI, insectivores, piscivores and intolerant species.  It is important to remember that this 

model was corrected for drainage area (it was included as a covariables), so the importance of 



31 
 

these flow variables is independent of stream size.  As such, they likely reflect a combination of 

groundwater contributions and differential local climatic conditions (e.g. higher rainfall, lower 

evapotranspiration).  Omnivores were associated with high local surface runoff and lower flows. 

Lithophilic spawners were positively associated with local sediment phosphorus yield, while 

intolerant species, piscivores, and insectivores were somewhat negatively associated with it.   

Figure 13. Redundancy Analysis plot showing the relationships between water quality (SWAT) 

variables and fish Index of Biotic Integrity (IBI) scores and six individual IBI metrics (see Figure 

11 for details).  

 

Eighteen variables were selected in the combined RDA, seven natural, five threat, and six water 

quality (SWAT) variables. These explained 20.6% of the variation in IBI metrics.  Drainage area 

was the most influential natural variable, as indicated by the fact that it exhibits the longest 

vector in Figure 14.  IBI and intolerant species were positively associated with open-water in the 

local watershed and catchment, surface water usage, woody wetlands, and drainage area, and 

were negatively associated with urban land use, cattle and alluvium in the local watershed, 

spring-rising organic phosphorus, organic nitrogen and sediment bound phosphorus runoff, and 

minimum July air temperature.  Insectivores and piscivores were similarly associated, except that 

they were not as negatively correlated with the phosphorus and nitrogen variables or minimum 

July air temperature.   
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Figure 14.  Redundancy Analysis plot showing the relationships between natural, threat, and 

water quality (SWAT) variables and fish Index of Biotic Integrity (IBI) scores and six individual 

IBI metrics (see Figure 11 for details).  

Overall, natural variables explain more variance in IBI metrics than threat or water quality 

variables (Table 3).  However, the model the combines natural, threat, and water quality 

variables provides the most thorough explanation of variation in IBI metrics.  Across the 

analyses, IBI and intolerant species consistently demonstrated high sensitivity to (i.e. negative 

associations with) threats or environmental conditions we consider to be related to threats (e.g., 

higher nutrients, lower base flow).  Similarly, omnivores consistently demonstrated positive 

associations with these threat or threat-related variables.   

Table 3.  Variance in IBI metrics explained by Natural, Threat, Water Quality, and Combined  

               RDA models. 

Environmental Variable Type Variance in IBI Metrics Explained 

Natural Variables 18.5% 

Threat Variables 10.7% 

Water Quality Variables* 16.1% 

All Variables Combined 20.6% 

* Note that the total variance here was reduced because a portion of it had already been 

explained by the covariables. 
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CART Analyses 

CART model relationships between IBI and water quality (SWAT) variables are shown 

separately for streams (Figure 15) and rivers (Figure 16).  For streams, IBI decreases with 

increasing runoff in the local subwatershed. Among the lowest runoff streams, IBI decreased 

with summer nitrate concentrations, but among the highest runoff streams IBI unexpectedly 

increases with spring-rising sediment concentrations.  For rivers, IBI responded with a bell-

shaped curve to ammonia. In subsequent tiers of the model, some relationship fit expectations 

(e.g. decreasing IBI with increasing spring-falling organic phosphorus, spring-rising total 

nitrogen and spring-falling total phosphorus), but others did not (increasing IBI with increasing 

spring-rising mineral phosphorus, spring-rising total phosphorus, and summer total phosphorus).  

Other iterations of the CART models produced similar results, where relationships between fish 

community metrics and water quality variables were mixed, with some relationships being quite 

logical and others being illogical.  Frequently, illogical relationships included bins with low 

sample size (n < 15).  Similar to the RDA, seasonal water quality variables were dominant 

predictors, with average annual variables rarely occurring in the models.  

CART model relationships between IBI and natural variables (Figure 17) and threat variables 

(Figure 18) were much more complex and produced more logical relationships than water quality 

models.  Watershed area was the first variable selected for both of these models.  Other dominant 

natural variables were related to bedrock type, hydrologic soil group, groundwater index and 

natural land cover types.  Dominant threat variables were related to cattle densities, urban land 

cover, and row crop land cover.  The relative importance of row crop land cover was lower than 

anticipated though, potentially because row crop was generally predominant across the project 

area.  It is worth noting that the more complex and logical natural and threat CART models are 

based on the much larger set of fish sites (n>1000) than the water quality models (n=345).   

Ideally, we were hoping that the CART analyses would reveal the nested sets of relations where 

the upper levels of the trees were dominated by natural watershed features and major categories 

of human threats and that this initial set of strata would serve as meaningful constraints, much 

like ecoregional strata have been used for developing biocriteria, and then the residual variance, 

in fish community metrics, remaining within these upper level constraints/strata would largely be 

explained via relations between SWAT variables.  While we saw glimmers of this idealized 

hierarchy of relations, it was obvious that our analyses suffered from our low sample size of 345 

sites where we have SWAT variables linked to fish community samples.  A simple factorial 

exercise illustrates why large sample sizes are needed for these types of landscape scale 

associative analyses.  Four predictors variables, put into 3 categories of low, medium, and high, 

you end up with 81 distinct combinations of conditions.  In order to have samples in each of 

those distinct combinations, which is the minimum needed to generate a mean and variance, 

would require 243 fish community samples.  Consequently, it is easy to see that losing nearly 

700 of our original 1022 fish community samples significantly hindered our ability to generate 

relations.  Since our sample size were not sufficient to provide nested sets of relationships with 
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representation by natural and threat variables, as well as water quantity and flow variables, 

analyses to identify ecological thresholds are focused on the results from the wedge diagrams, 

and resulting upper maxima analyses.   

 
Figure 15: CART model for predicting IBI in streams using SWAT data.  
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Figure 16: CART model for predicting IBI in rivers using SWAT data.  
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Scatter/Wedge Plots—  

Of the six natural and threat variables selected with wedges, three were selected for both IBI and 

percent intolerant species.  Two watershed scale natural variables, fine end-moraine and size of 

nearest downstream lake (Figure 19), and two watershed scale threat variables, percent 

impervious and average cattle density (Figure 20), were selected as scatterplots that exhibited 

wedge relationships with IBI.  Three watershed scale natural variables, size of nearest 

downstream lake (Figure 21a), groundwater index, and downstream Link (D-link), and two 

watershed scale threat variables, percent impervious (Figure 21b) and average cattle density, 

were selected as scatterplots exhibiting wedge relationships for percent intolerant species.  For 

most wedges, the majority of sites fell below the threshold, so most sites do not appear to be 

limited by an upper maximum potential limitation specifically from the particular variable in 

question.    
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Figure 19:  Index of Biotic Integrity with (a) proportion of fine end-moraine in the watershed 

(arcsine transformed) and (b) size of closest downstream lake or impoundment (log 

transformed). The wedge lines shows the upper maximum potential IBI above the threshold used 

to cap data. 
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Figure 20:  Index of Biotic Integrity with (a) percent impervious surface in the watershed 

(arcsine transformed) and (b) average cattle density in the watershed. The wedge line shows the 

upper maximum potential IBI above the threshold used to cap data. 
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Figure 21:  Percent Intolerant Species with (a) size of closest downstream lake or impoundment 

(log transformed) and (b) percent impervious surface in the watershed (arcsine transformed). The 

wedge line shows the upper maximum potential Percent Intolerant above the threshold used to 

cap data. 
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The spatial distribution and extent of stream reaches where the potential IBI or percent intolerant 

species would be limited by the natural and threat variables selected for capping is highly 

variable.  For example, the natural variable percent fine end-moraine in the watershed effected 

fairly small areas, whereas the size of the nearest downstream lake effected large areas, 

especially in central Wisconsin (Figure 22). Similarly, the threat variable percent impervious 

surface effected potential IBI in urban areas scattered throughout the project area, but in larger 

concentrations around Chicago and Detroit (Figure 23), whereas the average cattle density was 

widely distributed as a limiting variable, but mostly in Wisconsin.  Percent intolerant species 

were impacted by watershed groundwater index values over large areas, but like IBI is only 

limited by percent impervious around significant urban areas (Figure 24).  The effect of 

impervious surfaces was slightly more widespread for IBI, but the limitations were generally 

more intense for percent intolerant species (Figure 23 and 24).     

The size of the nearest downstream lake limited both IBI and percent intolerant species.  Streams 

that flow into lakes tend to have more habitat generalists and fewer fluvial specialists than free 

flowing streams (Herbert and Gelwick 2003, Guenther and Spacie 2006).  Fluvial specialists are 

fishes that generally reside only in flowing-water habitats (Kinsolving and Bain 1993) and tend 

to also be species that are more intolerant of harsh physicochemical conditions (Herbert and 

Gelwick 2003).  Declines in fluvial species upstream from lakes result from reductions in the 

amount and connectivity of fluvial habitats (Winston et al. 1991, Herbert and Gelwick 2003).  

Increases in generalist species above lakes is due to opportunistic movement of portions of lake 

fish populations upstream (Herbert and Gelwick 2003).  It is logical that these effects would be 

more pronounced upstream from larger lakes, because larger lakes would result in greater 

reduction and fragmentation of fluvial habitats, and would provide for larger habitat generalist 

source populations.   

Impervious surfaces limited both IBI and percent intolerant species.  Impervious surfaces have a 

strong influence on fish communities (Allan 2004).  In a study in southeast Wisconsin—within 

our study area—across broad gradients of both agricultural and urban land use, impervious 

surfaces were the best predictor of fish community indices, including IBI (Wang et al. 2001).  

Impervious surfaces reduce groundwater recharge and increase surface runoff, which results in 

more variable stream flow and temperature regimes, and increase the amount and variety of 

pollutants delivered to streams (Allan 2004).   

Cattle density in the watershed also influenced both IBI and percent intolerant species.  Cattle 

can impact stream habitat and fish communities at local scales by altering bank and riparian 

vegetation and degrading instream habitat through trampling (Lyons et al. 2000).  Cumulatively, 

these local impacts can impact fish communities at watershed scales under high cattle densities. 

However, cattle are not as frequently found to be important in shaping fish community health at 

watershed scales—particularly in the Midwest (Rinne 1999).  The fact that this variable emerged 

at a watershed scale indicates that more emphasis should be placed in understanding the 

mechanism of these impacts.   
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Fine end-moraine influenced IBI scores.  The importance of geological features is not surprising.  

Across much of the Saginaw Bay watershed, Richards et al. (1996) found that surficial geology 

features were very important predictors of macroinvertebrate community structure.  However, 

the patterns exhibited between IBI scores and fine end-moraine are not entirely clear and should 

be explored further.  Further research is needed to better understand these patterns.  Downstream 

link, or the size of stream downstream from a given reach, influenced the percentage of 

intolerant species.  Downstream link has been known to have a strong influence on fish 

communities (Osborne and Wiley 1992) resulting from adventitious movement by fish from 

larger streams or rivers into tributaries (Gorman1986).  Downstream link has been known to 

influences IBI scores (Osborne et al. 1992).  Groundwater index, or the percent of flow that is 

derived from groundwater sources, influenced the percent intolerant species.  The importance of 

groundwater in influencing fish assemblages is well documented within the region (Zorn et al. 

2002).  Groundwater would also influence IBI scores, except that IBI scores are calculated 

differently for cold water streams (Lyons et al. 1996), which generally are streams with high 

groundwater contributions.   

While the majority of stream reaches were not limited by individual natural and non-target threat 

variables (i.e., they did not fall under the wedge), across all variables there was an upper 

maximum limitation for 49% of stream reaches for IBI and 58% of reaches for percent intolerant.  

Natural variables tended to limit potential IBI and percent intolerant species at larger spatial 

scales than threat variables.  For non-target threats specifically, 33% of stream reaches were 

limited for IBI and 8% were limited for percent intolerant species.  The prevalence of these 

“background” limitations across the study area indicates how critical it was to analyze 

relationships between the fish community and water quality and flow variables with these natural 

and non-target threat variables as a filter.     
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Figure 22.  Maximum potential IBI scores based on wedge relationships between IBI and (A) 

Fine End-Moraine in the watershed and (B) size of nearest downstream lake.  

A 

B 
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Figure 23.  Maximum potential IBI scores based on wedge relationships between IBI and (A) 

percent impervious in the watershed and (B) average cattle density in the watershed.  

A 

B 
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Figure 24.  Maximum potential percent intolerant species based on wedge relationships between 

percent intolerant species and (A) watershed groundwater index value and (B) percent 

impervious in the watershed.  

A 

B 
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Water quality variables that exhibited threshold wedge relationships with IBI included local 

average annual surface runoff, local nitrate in surface runoff, summer sediment concentration, 

spring-rising organic phosphorus, spring-falling organic phosphorus, summer organic 

phosphorus, fall-winter organic phosphorus, and summer total phosphorus (see Figure 25 for 

examples).  Water quality variables that exhibited wedge relationships with percent intolerant 

species include local average annual soluble phosphorus runoff, spring-falling organic 

phosphorus, spring-rising nitrate, summer total phosphorus, summer nitrate, summer ammonia, 

and fall-winter organic phosphorus (see Figure 26 for examples).   Less agricultural areas in the 

northern portions of the study area had fewer water quality limitations, as did urban areas to 

some extent, where SWAT modeling was less effective in predicting water quality impacts and 

non-target threats dominated.  However, these latter areas were largely captured in the capping 

for impervious surfaces.   

This approach allowed us to evaluate restoration potential for water quality and flow variables 

constrained by limitations due to natural features and other threats.  Threshold values water 

quality and flow variables, as well as natural and non-target threats, are shown in Table 4 for IBI 

and Table 5 for percent intolerant.  To be clear, the wedge diagram approach is a conservative 

approach for threshold identification, and subsequently goal-setting, because it only identifies an 

upper maximum for each wedge variable and specific streams may be limited by a given variable 

prior to reaching that threshold, due to stream type or other local conditions.  But with this 

conservative approach, we can be confident in the upper maximum predictions that resulted from 

our analyses.   

Water quality or flow variables, the target variables, were generally most limiting for IBI across 

the agricultural dominated areas in the southern portions of the study area—especially in 

Michigan—and outside of urban areas with high impervious surfaces (Figure 27A).  These trends 

were similar for percent intolerant species, except that Michigan’s thumb was mostly limited by 

natural variables (Figure 27B).   

Phosphorus variables were more frequently limiting for IBI across the study areas, except in 

eastern Wisconsin where nitrogen was more limiting and scattered headwater areas throughout 

the study areas where summer sediment concentrations or local surface runoff were most 

limiting (Figure 28).  Spring-rising organic phosphorus was limiting at more than twice as many 

sites as any other water quality variable (Tables 6 and 7).  Over half of stream reaches were most 

limited for IBI by water quality variables (Table 7), with the remaining reaches evenly divided 

between natural variables, non-target threats, and no variable limiting.   

Limiting water quality variables were more balanced across phosphorus and nitrogen variables 

for percent intolerant species, and there is no clear pattern to discriminate where each tends to be 

limiting across the study area (Figure 29; Tables 6 and 7).  Nearly half of stream reaches were 

most limited for percent intolerant species by water quality variables (Table 6), but most of the 

remaining sites (35%) were limited by natural variables and very few reaches were limited by 
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non-target threats (Table 7).  The percentage of sites with no limiting variable was remarkably 

similar for IBI (16%) and percent intolerant species (15%).   

Our results demonstrate the importance of considering natural and non-target threats when 

evaluating relationships between water quality and fish community indices/metrics.  By 

identifying thresholds for natural and non-target threats, we were able to substantially reduce the 

number of reaches identified as most limiting by water quality variables from 15,564 (68%) to 

11,245 (52%) for IBI and from 16,065 (75%) to 9899 (46%) for percent intolerant species.  This 

is important because it reduces the area of focus for row-crop oriented conservation practices and 

ensures that the limited time and money spent implementing conservation practices will be 

focused in areas where it can result in improved biological communities.  Still, when combining 

reaches most limiting for water quality and flow variables across both IBI and percent intolerant 

species, we see that most reaches are limited (Figure 30).  But improvement capacity (Figure 31) 

can be used to further prioritize among reaches, by focusing on streams that can be substantially 

improved.  In the next phase of this project, we will further prioritize by identifying locations 

where conservation practices can be reasonably expected to be able to result in meaningful 

improvements in the fish community.   

Of course, reaches that are most limited by non-target threats should not be written off.  Areas 

identified here as most limited for percent impervious surfaces or cattle should be targeted for 

conservation practices related to those threats.    
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Figure 25: IBI to (a) predicted average annual surface flow (mm), (b.) predicted nitrate in 

surface runoff (kg/ha), (c.) predicted sediment concentration in summer (mg/kg)(log 

transformed), and (d.) predicted total phosphorus in summer (mg/L).  

 

 

a. b. 

c. d. 
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Figure 26: Wedges for percent intolerant to (a) predicted average annual soluble phosphorus 

(kg/ha), (b) predicted nitrate in spring rising (mg/L), (c) predicted organic phosphorus in spring 

falling (mg/L), and (d) predicted total phosphorus in summer(mg/L).  

 

 

  

d. c. 

b. a. 
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Table 4.  IBI threshold values for natural, threat, and water quality variables.  Thresholds 

represent the value for each variable above which IBI can no longer exceed 100, 80, 60, 40 or 20. 

 
Threshold Levels 

IBI Capping Variables 100 80 60 40 20 

Natural 
        Fine Moraine in watershed (%) 0.25% 0.50% 0.76% 1.01% *1.27% 

   Downstream Lake Size (acres) 530 5726 61,747 665,744 *7,177,812 

Other Threats 
        Impervious in watershed (%) 8.3% 23.5% 38.1% 51.8% *64.3% 

   Cattle Density on Farmland (# per 100 acre) 2169 3216 4263 5310 *6358 

SWAT Variables 
        Surface Runoff (kg/ha) 343 388 433 478 *523 

   Nitrate in Surface Runoff (kg/ha) 6.10 9.13 13.47 19.65 28.49 

   Summer Sediment Concentration (mg/l) 33 189 1065 6001 *33,775 

   Summer Total P (mg/l) 0.32 0.68 1.05 1.41 *1.77 

   Spring Rising Organic P (mg/l) 0.21 0.58 0.96 1.33 *1.70 

   Spring Falling Organic P (mg/l) 0.12 0.55 0.99 1.42 1.86 

   Summer Organic P (mg/l) 0.06 0.40 0.75 1.09 *1.43 

   Fall-Winter Organic P (mg/l) 0.12 0.41 0.78 *1.24 *1.83 

*Estimates beyond data range, so values potentially inflated 

 

Table 5.  Percent Intolerant Species threshold values for natural, threat, and water quality 

variables.  Thresholds represent the value for each variable above which the percent intolerant 

species can no longer exceed 80, 60, 40, or 20. 

 
Threshold Levels 

% Intolerant Capping Variables 80 60 40 20 

Natural 
       Downstream Lake (acres) 1345 18,234 247,033 *3,346,708 

   Downstream Link # 191 637 2122 7064 

   ♯Groundwater Index (%) 54.2% 46.5% 38.8% 31.0% 

Other Threats 
       Impervious in watershed (%) 14.6% 27.5% 39.8% 51.5% 

   Cattle Density on Farmland (# per 100 acre) 3084 3765 4445 5125 

SWAT Variables 
       Soluble P in Surface Runoff (kg/ha) 0.16 0.22 0.28 0.34 

   Spring Rising Nitrate (mg/l) 1.86 4.3 6.8 9.2 

   Summer Nitrate (mg/l) 1.46 8.0 14.5 21 

   Summer Ammonia (mg/l) 0.32 0.70 1.09 1.47 

   Spring Falling Organic P (mg/l) 0.18 0.43 0.67 0.91 

   Summer Total P (mg/l) 0.23 0.52 0.81 1.10 

   Fall-Winter Organic P (mg/l) 0.17 0.53 1.00 1.61 
*Estimates beyond data range, so values potentially inflated 

♯For the Groundwater Index, the threshold represents the value below which the percent intolerant species is 

limited. 
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Figure 27: Lowest limiting variable group for each stream reach for (A) IBI and (B) percent 

intolerant species.  Target disturbances are water quality and flow variables related to row crop 

agriculture.  Non-target disturbances are anthropogenic threat variables unrelated to row-crop 

agriculture (e.g., impervious surfaces).  Reaches with “no cap” were not limiting for any variable 

in our analyses. 

A 

B 
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Figure 28: Stream reaches where IBI was limited by (a) any target disturbance (water quality or flow) variable, (b) various limiting phosphorus 

variables, (c) nitrogen in local surface runoff, and (d) local surface runoff and sediment concentration. 

d. c. 

b. a. 
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Figure 29: Stream reaches where percent intolerant species was limited by (a) any target disturbance (water quality or flow) variable, (b) 

various limiting phosphorus variables, and (c) various limiting nitrogen variables.

c. 

b. a. 
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Table 6.  Frequency that each wedge variable is the most limiting variable for a particular stream reach for IBI 

and Percent Intolerant species.  Frequencies were calculated for water quality (target disturbance) variables only 

and across all wedge variables.   

 
Limiting Frequency 

  
Limiting Frequency 

IBI  
Wedge Variables 

# Reaches - 
Water 
Quality 

# Reaches - 
All 

Variables 
 

% Intolerant  
Wedge Variables 

# Reaches 
- Water 
Quality 

# Reaches - 
All 

Variables 

Natural 
   

Natural 
     Fine Moraine N/A 776 

 
   Downstream Lake N/A 1622 

   Downstream Lake N/A 3014 
 

   Downstream Link # N/A 2062 

   Natural Subtotal N/A 3790 
 

   Groundwater Index N/A 3801 

Other Threats     
 

   Natural Subtotal N/A 7485 

   Impervious Surfaces N/A 587 
 

Other Threats     

   Cattle Density N/A 2506 
 

   Impervious Surfaces N/A 283 

   Other Threat Subtotal N/A 3093 
 

   Cattle Density N/A 635 

Water Quality      
 

   Other Threat Subtotal N/A 918 

   Surface runoff 292 262 
 

Water Quality    

   NO3 in runoff 570 268 
 

   Soluble P in runoff 2705 1778 

   Summer sediment conc. 3098 1906 
 

   Spring rising NO3 3211 1619 

   Summer TP 1163 902 
 

   Summer NO3 1433 1264 

   Spring rising ORGP 4573 4333 
 

   Summer NH4 2393 965 

   Spring falling ORGP 1120 985 
 

   Spring falling ORGP 676 532 

   Summer ORGP 2618 1657 
 

   Summer TP 2481 1770 

   Fall-Winter ORGP 1130 932 
 

   Fall-Winter ORGP 3166 1971 

   Water Quality Subtotal 14,564 11,245 
 

   Water Quality Subtotal 16,065 9899 

No Limiting Variable 6903 3339 
 

No Limiting Variable 5402 3165 
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Table 7.  Percentage of the time that each wedge variable is the most limiting variable across stream reaches for 

IBI and Percent Intolerant species.  Percentages were calculated for water quality (target disturbance) variables 

only and across all wedge variables.   

 
Limiting Percentage 

  
Limiting Percentage 

IBI  
Wedge Variables 

% Reaches 
- Water 
Quality 

% Reaches 
- All 

Variables 
 

% Intolerant  
Wedge Variables 

% Reaches 
- Water 
Quality 

% Reaches 
- All 

Variables 

Natural 
   

Natural 
     Fine Moraine N/A 4% 

 
   Downstream Lake N/A 8% 

   Downstream Lake N/A 14% 
 

   Downstream Link # N/A 10% 

   Natural Subtotal N/A 18% 
 

   Groundwater Index N/A 18% 

Other Threat     
 

   Natural Subtotal N/A 35% 

   Impervious Surfaces N/A 3% 
 

Other Threat     

   Cattle Density N/A 12% 
 

   Impervious Surfaces N/A 1% 

   Other Threat Subtotal N/A 14% 
 

   Cattle Density N/A 3% 

Water Quality    
 

   Other Threat Subtotal N/A 4% 

   Surface runoff 1% 1% 
 

Water Quality      

   NO3 in runoff 3% 1% 
 

   Soluble P in runoff 13% 8% 

   Summer sediment conc. 14% 9% 
 

   Spring rising NO3 15% 8% 

   Summer TP 5% 4% 
 

   Summer NO3 7% 6% 

   Spring rising ORGP 21% 20% 
 

   Summer NH4 11% 4% 

   Spring falling ORGP 5% 5% 
 

   Spring falling ORGP 3% 2% 

   Summer ORGP 12% 8% 
 

   Summer TP 12% 8% 

   Fall-Winter ORGP 5% 4% 
 

   Fall-Winter ORGP 15% 9% 

   Water Quality Subtotal 68% 52% 
 

   Water Quality Subtotal 75% 46% 

No Limiting Variable 32% 16% 
 

No Limiting Variable 25% 15% 
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Figure 30: Stream reaches that are limited by any target disturbance (water quality or flow variable) for either 

IBI or percent intolerant species, or both.   
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Figure 31: The improvement capacity for each stream reach for IBI or percent intolerant species.  

Improvement capacity is how much improvement is possible before reaching the natural limit for 

IBI (100) or percent intolerant species (80) or a limitation set by a wedge cap for a natural or 

non-target disturbance (threat) variable.  Sites with no improvement capacity either had no 

limiting variable or were more limited by a natural variable or non-target disturbance.   
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In addition to scatter and wedge plots, we also developed a suite of tri-plots showing fish 

community metrics against both a) predicted historic water quality conditions and b) percent 

change from historic conditions.  Preliminary examinations of some of these analyses suggest 

that there are a small subset of streams that should be expected to have relatively low values for 

IBI and percent intolerant fish species in the community even in relatively pristine conditions 

(Figure 32). These tri-plots also suggest that the deviation from historic conditions is possibly as 

much or more important than the actual current conditions, but only when placed within the 

proper context of the inherent potential of the site.  These results are consistent with ecological 

theory that suggests that there is an inherent biological potential of each stream and that current 

biological conditions should reflect that potential (Frissel et al. 1986). 

 

 

Figure 32: Tri-plot showing the relation of current IBI scores to predicted historic spring rising 

organic phosphorus concentrations (l) and percent change from predicted historic to predicted 

current concentrations of the same parameter.  
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OVERALL DISCUSSION  

 

Project Benefits 

Our project successfully demonstrated that you can develop fine resolution SWAT model 

predictions across a large geographic area and quantitatively link the resulting water quality and 

flow measures to fish community indicators to generate spatially explicit predictions.  Our ability 

to, in essence, extend the predictive capabilities of SWAT to biological endpoints and also 

incorporate constraints not addressed by SWAT or NRCS conservation practices allowed us to 

begin developing more realistic expectations to guide strategic conservation across the project 

area.  This will help us to achieve our objectives in Phase 2 of the Great Lakes which is seeking 

to develop realistic goals (expectations) for fish community conditions in priority subwatersheds 

of the project area and working with partners to develop detailed strategies for achieving those 

goals. 

Demonstrating the ability to predict fish community metrics from SWAT model outputs has the 

potential to significantly advance strategic conservation in the Great Lakes and beyond.  Our 

results consistently demonstrated the importance of seasonal water quality and flow parameters, 

particularly the spring rising period, rather than average annual conditions, which are more 

typically available and thus used by scientists to elucidate relations of these parameters to 

biological endpoints.  This result alone demonstrates an important benefit of SWAT, which can 

generate data at a variety of time steps, for advancing our understanding of the complex relations 

between biological endpoints and instream habitat conditions.  Results like ours can also help 

guide conservation actions to further focus on critical periods, like early spring, to reduce runoff 

and associated sediment and nutrient inputs.   

Another benefit of SWAT, as demonstrated by our project, is that it has the potential to be used 

to develop spatially comprehensive data and predictions at a fine spatial grain across a large 

project area and model.  This ability provides benefits for both science and conservation 

planning.  From a science perspective, the SWAT model predictions allowed us to fill gaps in 

water quality and flow data at locations with biological samples.  In our study only a small 

fraction of original 1022 fish community sampling locations had existing water quality and flow 

data.  While we were only able to link SWAT model outputs to 345 of these sites, it must be 

noted that most of these sites also lacked water quality data.  And, the data that is available is 

certainly far from the consistent and comparable data we had for hundreds of parameters. 

However, to truly realize this benefit we must make it a priority to evaluate and improve the 

accuracy of hydrologic models, like SWAT, particularly as it applies to downscaling such 

models to finer spatial grains and making predictions beyond the gage stations used for 

calibration.  The detailed and spatially comprehensive data provided by SWAT and the other 

predictors allowed us to assess and map likely fish community conditions and thresholds beyond 

sampled locations.  Our models and maps exhibited extreme spatial heterogeneity in biological 

expectations under both current and historic conditions.  This finding suggests that we should not 
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hold all streams to the same standard even within a relatively small watershed or region, which is 

somewhat contrary to certain methods used to establish goals for fish community endpoints in 

streams. 

Equally important to the temporal and spatial issues described above is the fact that the SWAT 

model also allows you to assess past, present, and potential future conditions based on different 

land use, land cover and management scenarios.  The demand for demonstrating the benefits of 

conservation, particularly to biological endpoints, has increased sharply in recent years.  

Monitoring program and the associated retrospective analyses are useful for addressing this 

demand.  However, we argue that equally important to these retrospective assessments are 

modeling efforts that forecast the likely benefits of conservation.  The ability of SWAT to 

forecast future instream habitat and biological conditions based on different amounts and 

configurations of agricultural BMPs is very appealing for conservation planning.  These 

management scenarios provide a means of developing management alternatives needed for 

developing truly realistic desired conditions by allowing decision makers to simultaneously 

evaluate ecological benefits relative to funding needs and constraints and potentially other 

socioeconomic costs in terms of agricultural production, farm income, and other valued services.  

As stated earlier, having the ability to extend such forecasts to biological endpoints, like fish 

communities, provides organizations like The Nature Conservancy the ability to identify where 

we can make meaningful improvements in freshwater biodiversity and help secure the necessary 

resources and attention needed to bring about those improvements.   

The SWAT modeling was focused on watershed and subwatershed scale water quality and flow 

relationships.  Some stream reaches will be more sensitive to these water quality and flow 

impacts (e.g., depositional areas) and therefore may require more stringent thresholds.  Other 

stream reaches will be more resilient.   Further, the wedge approach for threshold identification 

is only identifying a fundamental limitation beyond which stream reaches will not attain.  But 

many stream reaches will be affected by the limiting variable prior to reaching the threshold.    

Therefore, the thresholds identified here should be considered highly conservative.  

 

Limitations and Opportunities for Improvement 

Despite all of the realized and potential benefits of our project we must also be mindful of its 

limitations and opportunities to build upon this work and improve our ability to develop realistic 

expectations for biological endpoints and strategies to achieve them.   Similar to previous studies 

(Rankin et al. 1999; Wang et al. 2007; 2008), our analyses revealed relatively good threshold 

relations between fish community metrics and several water quality and flow variables.  

However, these preliminary RDAs and CART analyses for Phase 1 did not explain as much of 

the variation in fish community metrics as other efforts (Rankin et al. 1999; Wang et al. 2007; 

2008; Annis et al. 2009).  In fact, our analyses thus far have only explained about half (~20%) of 

the variance reported by these and other studies examining similar suites of predictor and 

response variables.  These lower values could be the result of many factors related to the original 
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source data, transformations, or analyses that were discussed earlier in the report.  However, 

given the potential benefits of our approach for advancing strategic conservation we again want 

to stress the importance of taking steps to improve the accuracy of such predictions in the future.  

Therefore offer several suggestions on how this might be accomplished in similar projects in the 

future.   

1. Further downscaling of SWAT models 

There is an immense number of ecological factors that collectively determine the distribution and 

abundance of fish and other freshwater taxa.  Identifying significant relations within this realm of 

complexity demands an extremely large sample size for both predictor and biological response 

variables.  This is particularly true whenever you are trying to isolate the influence of a particular 

subset of variables, like water quality and flow variables, as we were for Objective 2 of this 

project. Unfortunately, we were unable to use nearly 70% of the original 1022 fish community 

samples that we had compiled for this project because we were literally pushing the limits of 

technology for SWAT modeling at the time. We firmly believe we would have been able to 

explain significantly more variation in fish community metrics and develop more accurate 

predictive models if  we had been able to use all of those 1022 samples.  What prevented us from 

using those data was our inability to further downscale the SWAT model and generate model 

outputs for every single stream segment containing a fish community sample.  So, we suggest 

every effort must be made, regionally and nationally, to develop finder resolution SWAT 

models.   

Fortunately, in just two years since our project began, the rapid advancements in computing 

power combined with technical advancements in the SWAT model algorithms that have reduced 

computer processing and memory demands, those technical limitations that hindered our project 

have been eliminated (Jeff Arnold, personal communication).  In fact, the CEAP Cropland 

Modeling team is working on the development and calibration of a national SWAT model that 

will provide predictions for all of the individual reaches contained within a slightly modified 

version of the NHD-Plus. The development of these downscaled SWAT predictions and the 

associated processing capabilities holds significant promise for improving the accuracy of 

models like ours where once again the sample size is so critical to providing the statistical power 

needed to collectively assess the complex array of variables that influence local biological 

assemblages.   

2. Fill critical data gaps for certain predictor variables 

We had a large number of predictor variables for our study, yet there is still significant variation 

in fish communities that our models could not explain.  For instance, our project did not include 

data for drainage tiles, which occur extensively throughout much of the project area and have a 

significant influence on hydrology and water quality.  Having and incorporating accurate 

geospatial on these and other critical factors for which we currently lack good data would likely 

help improve the SWAT models and the associated biological models. 
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3. Incorporate spatial statistics to account for neighborhood effects 

Because organisms are mobile and utilize resources at different spatiotemporal scales, local 

biological assemblages may not always be a reflection of the local stream habitat (Schlosser 

1991; Rabeni and Sowa 1996; Fausch et al. 2002).  Local assemblages may actually be more 

reflective of stream habitat conditions occurring upstream or downstream, or reflect the average 

conditions found within a much longer stretch of stream (Schlosser 1991; Rabeni and Sowa 

1996; Cooper and Mangel 1999; Fausch et al. 2002). Spatial statistics incorporates locational 

attributes as potential explanatory variables which can help address the influence of more 

complex features like patches (e.g., distinct geographic neighborhoods) on the distribution and 

abundance of biota (Legendre 1990; Borcard et al. 1992; Anderson and Gribble 1998).   

4. Make a concerted effort to improve the accuracy of downscaled SWAT models 

Obviously we should expect better relations between the fish community metrics and observed 

water quality and flow data than water quality and flow data based on SWAT predictions.  

However, because of the many potential benefits of SWAT for advancing strategic conservation 

we believe we must make it a priority to improve the accuracy of downscaled SWAT models and 

we believe there are many options for such improvements.  Incorporating spatially extensive, but 

temporally discrete (e.g., average annual nutrient concentrations) water quality data into the 

SWAT model calibration process.  A limitation of the SWAT modeling process used in our 

project, and most SWAT modeling projects, is that the model is calibrated to one or a few gage 

stations within the watershed.  Incorporating additional calibration sites would help account for 

the spatial heterogeneity in water quality and flow conditions that consistently occur across large 

regions and are not fully accounted for by existing equations like RUSLE. Another option for 

improving the accuracy of downscaled SWAT models would be to follow the methods used in 

regional assessments by the Cropland Component of CEAP, which uses the farm survey data 

from Natural Resource Inventory (NRI) to better account for existing conservation practices and 

also APEX models to better model field scale hydrologic conditions (USDA 2011). 

5. Use complimentary sets of models and water quality and flow data 

All data and models have strengths and weaknesses.  We have talked extensively about the 

strengths of SWAT, particularly its ability to be calibrated and offer predictions at a daily or any 

other larger time step.  The results of our study, where seasonal variables consistently revealed 

the strongest relations to fish community metrics, clearly show the benefit of this temporally 

intensive calibration.  SWAT was not originally designed for predictions are fine spatial scales, 

like we developed for our project.  However, there are other models, like SPARROW, that were 

developed for this very purpose, yet suffer from the inability to provide detailed time step 

predictions (http://water.usgs.gov/nawqa/sparrow/).  So, the strength of SWAT is the weakness 

of SPARROW and vice versa.  We believe that integrating the strengths of these two models to 

produce water quality and flow predictor variables could significantly improve our ability to 

predict biological endpoints. Further supplementing these predictors with actual field 

measurements of certain water quality and flow variables could offer additional benefits.   
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