NIDA for Teens: The Science Behind Drug Abuse
Find NIDA for Teens on: NIDAnews on Twitter NIDANIH on YouTube NIDANIH on Facebook
Educators

Effects of Drugs of Abuse on the Brain

Pleasure, which scientists call reward, is a very powerful biological force for our survival. If you do something pleasurable, the brain is wired in such a way that you tend to do it again. Life sustaining activities, such as eating, activate a circuit of specialized nerve cells devoted to producing and regulating pleasure. One important set of these nerve cells, which uses a chemical neurotransmitter called dopamine, sits at the very top of the brainstem in the ventral tegmental area (VTA) (Figure 6). These dopamine-containing neurons relay messages about pleasure through their nerve fibers to nerve cells in a limbic system structure called the nucleus accumbens. Still other fibers reach to a related part of the frontal region of the cerebral cortex. So, the pleasure circuit, which is known as the mesolimbic dopamine system, spans the survival- oriented brainstem, the emotional limbic system, and the frontal cerebral cortex.

Figure 6 This drawing of a brain cut in half demonstrates the brain areas and pathways involved in the pleasure circuit

Click the image to enlarge

Figure 6: This drawing of a brain cut in half demonstrates the brain areas and pathways involved in the pleasure circuit

All drugs that are addicting can activate the brain's pleasure circuit. Drug addiction is a biological, pathological process that alters the way in which the pleasure center, as well as other parts of the brain, functions. To understand this process, it is necessary to examine the effects of drugs on neurotransmission. Almost all drugs that change the way the brain works do so by affecting chemical neurotransmission. Some drugs, like heroin and LSD, mimic the effects of a natural neurotransmitter. Others, like PCP, block receptors and thereby prevent neuronal messages from getting through. Still others, like cocaine, interfere with the molecules that are responsible for transporting neurotransmitters back into the neurons that released them (Figure 7). Finally, some drugs, such as Methamphetamine, act by causing neurotransmitters to be released in greater amounts than normal.

Figure 7 When cocaine enters the brain, it blocks the dopamine transporter from pumping dopamine back into the transmitting neuron, flooding the synapse with dopamine. This intensifies and prolongs the stimulation of receiving neurons in the brain's pleasure circuits, causing a cocaine

Click the image to enlarge

Figure 7: When cocaine enters the brain, it blocks the dopamine transporter from pumping dopamine back into the transmitting neuron, flooding the synapse with dopamine. This intensifies and prolongs the stimulation of receiving neurons in the brain's pleasure circuits, causing a cocaine "high."

Prolonged drug use changes the brain in fundamental and long-lasting ways. These long-lasting changes are a major component of the addiction itself. It is as though there is a figurative "switch" in the brain that "flips" at some point during an individual's drug use. The point at which this "flip" occurs varies from individual to individual, but the effect of this change is the transformation of a drug abuser to a drug addict.